Graphene on cubic and hexagonal SiC: A comparative theoretical study

O. Pankratov,* S. Hensel, P. Götzfried, and M. Bockstedte
Lehrstuhl für Theoretische Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstrasse 7 B2, D-91058 Erlangen, Germany
(Received 28 June 2012; published 17 October 2012)

Epitaxial graphene grows on different SiC polytypes possessing distinct bulk band gaps. In this work we systematically investigate the influence of polytypes on the graphene electronic spectrum employing local-density approximation (LDA)/Heyd-Scuseria-Ernzerhof (HSE) ab initio calculations including different buffer layer–graphene layer stackings. We find a variation of the Dirac point position with respect to the valence-band edge as a function of the polytype hexagonality. HSE values are in good agreement with recent experimental results, while LDA corroborates the trends. Since the Dirac point, interface-related states, and the Fermi level follow similar polytype-induced shifts, the doping of the epilayer stays practically the same. For the AA stacked buffer and epilayer on a Si-terminated SiC substrate the graphene spectrum exhibits a polytype-dependent energy gap ϵ_g which ranges 25–40 meV for different polytypes. On the contrary, for the AA stacking the Dirac cone remains intact. We suggest a symmetry-based analytical model which explains the origin of the gap and its absence for the AA geometry and provides a direct connection between ϵ_g and the buffer-epilayer interaction potential.

DOI: 10.1103/PhysRevB.86.155432 PACS number(s): 73.22.Pr, 72.80.Vp, 73.20.–r

I. INTRODUCTION

SiC is a remarkable substrate which supports a self-organized epitaxial graphene growth.1,2 At elevated temperature, mostly silicon atoms evaporate leading to a carbon enrichment of the surface. In the course of annealing, the excess carbon atoms form an epitaxial graphene layer. In the case of a Si-terminated SiC substrate, this layer rests on a carbon buffer layer.3-6 The latter has a hexagonal structure similar to an ideal graphene sheet but distorted to match the underlying substrate. In spite of its graphene-like atomic geometry, the buffer layer does not possess the peculiar to graphene Dirac-Weyl cone-shaped bands at the corners of the Brillouin zone. In the buffer layer, the electron π states which are responsible for the Dirac-Weyl spectrum of an isolated graphene strongly interact with the substrate. This interaction erases the Dirac-Weyl features of the electron spectrum.2-10 On the C-face of SiC no buffer layer has been clearly identified yet, although recently a buffer-like intermediate layer was reported.11 Due to a much faster growth, one usually obtains here multilayered stacks of mutually rotated carbon layers.2,12

To date, most experimental studies of epitaxial graphene were performed on the hexagonal polytype 6H as well as 4H-SiC. Recently, the cubic polytype 3C-SiC has attracted increasing attention.13-15 The latter is anticipated to be advantageous due to the better compatibility with the common cubic semiconductors, most importantly silicon. One expects that owing to a weak graphene-substrate coupling the influence of a particular polytype on graphene electronic structure is marginal. However, the band structures of the polytypes themselves differ substantially as reflected by a notable band gap variation from $\epsilon_g^{3H} = 3.33$ eV to $\epsilon_g^{3C} = 2.39$ eV.16 This should lead to a different alignment of the Dirac-Weyl cone with the energy bands of a substrate. On the other hand, a similar surface geometric structure of the polytypes suggests a similar interface electronic structure and hence a similar Fermi-level pinning mechanism. The latter determines the epilayer doping.1,2,8-10,17

In this paper, we address the polytype influence on electronic properties of graphene epilayers such as the Dirac cone splitting and the Fermi-level pinning. We employ a simplified structural model of the SiC-graphene interface which is most suitable for a Si-terminated substrate where the existence of a well-defined buffer layer has been firmly established. For comparison, we consider in parallel the C-terminated case assuming a similar buffer layer structure.

Being in registry with a Si-terminated SiC surface the epitaxial graphene layer is subject to a spatial modulation such that the unit cell becomes 13×13 in terms of graphene translational period. This unit cell almost exactly coincides with the $(6\sqrt{3} \times 6\sqrt{3})R30$ surface cell,3,4,18 a hallmark of reconstruction experienced by the carbon-rich Si-terminated SiC surface. This coincidence ensures the graphene-substrate commensuration. Alternatively, the commensuration condition can be satisfied via an approximate coincidence of the $(\sqrt{13} \times \sqrt{13})$ graphene and the 5×5 SiC surface cells.19 The 5×5 SiC reconstruction is, however, rarely observed5,20,21 and, in practice, the $6\sqrt{3} \times 6\sqrt{3}$ structure dominates. Total-energy calculations22 confirm that this structure is, indeed, the most stable amongst the possible low-stress interfaces. Unfortunately, the size of the $6\sqrt{3} \times 6\sqrt{3}$ cell is prohibitively large for ab initio band-structure calculations. A simpler, yet clearly idealized alternative to achieve commensuration is stretching the graphene layer by 8%, which makes it commensurate with the $(\sqrt{3} \times \sqrt{3})R30$ SiC surface cell. In spite of its simplicity, this model captures most essential features of the interface electron spectrum.8-10 Due to the relatively small unit cell it is computationally tractable in contrast to the $6\sqrt{3} \times 6\sqrt{3}$ structure. This leads us to choose this model for the purpose of comparison of graphene electron spectrum on different SiC polytypes.

We report the results of the density functional theory calculations with local-density approximation (LDA) and Heyd-Scuseria-Ernzerhof (HSE06) functionals for a graphene epilayer on four SiC polytypes, for different surface terminations and different buffer-graphene stackings. In the most
interesting case of the AB stacking we find a Dirac cone splitting between 25 and 40 meV depending on the polytype. On the contrary, for AA stacking the Dirac cone remains intact. To understand these results we develop an analytical model based on symmetry arguments. We show that indeed, the energy gap occurs for the AB stacked epilayer, whereby the gap width ϵ_g is a measure of interaction of the graphene π states with the interface potential. The model also makes evident that for the AA stacking symmetry forbids the gap opening. These results are practically polytype independent, because, within the model, only the buffer and the underlying substrate atomic layer contribute to the interaction with graphene. The polytype is, however, essential for the alignment of the Dirac-Weyl layer contribute to the interaction with graphene. The polytype series. The position of the LDA gap edges are separated by more than 10 Å. The dangling bonds on the bottom of the slab are saturated with hydrogen atoms.

We consider one or two carbon monolayers (i.e., the buffer layer or the buffer layer plus graphene layer) on four SiC polytypes 2H, 4H, 6H, and 3C. The polytypes range from the purely hexagonal 2H to the purely cubic 3C structure. In the calculations, it is convenient to treat the 3C polytype on the same footing as the hexagonal polytypes using the associated “3H” unit cell. The matching of the $\sqrt{3} \times \sqrt{3}$ SiC surface unit cell with the 2 × 2 graphene cell is achieved by stretching the graphene layer.

Both graphene and SiC surfaces possess hexagonal reciprocal lattices and hexagonal Brillouin zones (BZs) [cf. Fig. 1(a)]. Within the $\sqrt{3} \times \sqrt{3}$ model, the graphene 1 × 1 BZ and the BZ of the $\sqrt{3} \times \sqrt{3}$ structure are rotated by 30° relative to the 1 × 1 SiC BZ. The correspondence of the high-symmetry points is shown in Fig. 1(b). In the 1 × 1 SiC lattice the conduction-band minimum (CBM) is situated in the M point for all considered polytypes except 2H, where it is in the K point. The valence-band maximum (VBM) is always in the Γ point.

We use a simulation supercell with either six (2H, 6H, 3C) or eight (4H) SiC bilayers. On top of the SiC slab one or two carbon layers are placed in either AB or AA stacking. To suppress the interaction of the periodic slab replicas we separate them by more than 10 Å. The dangling bonds on the bottom of the slab are saturated with hydrogen atoms.

Our strategy for resolving the dilemma involves a combination of the LDA calculation with the hybrid functional HSE approach. The latter is known to provide accurate single-particle energies at higher but still manageable computational cost. Following this strategy, we perform a limited set of the HSE calculations and use these data to benchmark the LDA bands. As expected, LDA spectra show the accurate band dispersion and the orderly trends along the polytype series. The position of the LDA gap edges are corrected by adjusting them to the HSE values in selected k-points using the vacuum potential as a common energy reference.

Table I. Calculated (LDA, HSE) and experimental band gaps from Ref. 16 ($E_{\text{g}}^{\text{LDA}}, E_{\text{g}}^{\text{HSE}},$ and E_{exp}) of SiC polytypes (in eV).

<table>
<thead>
<tr>
<th>Polytype</th>
<th>$E_{\text{g}}^{\text{LDA}}$</th>
<th>$E_{\text{g}}^{\text{HSE}}$</th>
<th>E_{exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2H</td>
<td>2.16</td>
<td>3.18</td>
<td>3.33</td>
</tr>
<tr>
<td>4H</td>
<td>2.17</td>
<td>3.17</td>
<td>3.27</td>
</tr>
<tr>
<td>6H</td>
<td>1.97</td>
<td>2.94</td>
<td>3.02</td>
</tr>
<tr>
<td>3C</td>
<td>1.30</td>
<td>2.24</td>
<td>2.39</td>
</tr>
</tbody>
</table>
III. NUMERICAL RESULTS

In this section, we present ab initio results for graphene on Si- and C-terminated substrates of four SiC polytypes (3C, 6H, 4H, 2H). In particular, we address the Dirac cone position for two substrate terminations (Secs. III A and III B) and the Dirac cone splitting for different buffer-graphene stackings (Sec. III C).

A. Graphene epilayer on a Si-terminated substrate

In the $\sqrt{3} \times \sqrt{3}$ model,8–10 the first carbon (buffer) layer binds covalently to the Si-terminated surface such that two of three surface Si-atoms are bonded to C-atoms leaving a single silicon dangling bond per surface unit cell. The shortest distance between buffer C-atoms and the surface Si-atoms varies between 1.97 Å (2H) and 1.99 Å (3C) which clearly speaks for a covalent bonding. As the carbon π electrons are involved in covalent bonding, it is not a surprise that the buffer layer does not possess Dirac-type bands at the Fermi level [cf. Figs. 2(a)–2(d)].

An important feature of the band structure in Fig. 2 is the half-filled flat interface band which pins the Fermi level. The pinning persists when the second carbon layer (i.e., epitaxial graphene) is placed on top of the buffer. Now, the Dirac cone emerges in the SiC band gap. It is clearly seen that graphene is n-doped [cf. Figs. 2(e)–2(h)]. Note that these properties are found with the LDA as well as with the HSE06 functionals. The discussion focuses first on the DFT-LDA band structures with its high k-point density along the path. Subsequently, we turn to the HSE06 bands as given at the special k-points Γ, M, and K. The band alignment between LDA and the HSE06 in Fig. 2 was accomplished by using the vacuum potential as the common energy reference.

To reveal the origin of the band structure in Fig. 2 we inspect the electron density distributions along the z-direction normal to the slab surface for different states. The in-plane averaged densities $\rho(z) = \int |\Psi(x,y,z)|^2 dxdy$ for electron states in the K point are depicted in Fig. 3. It is clearly seen that, indeed, the states at the apex of the Dirac cone are formed by the π orbitals of epitaxial graphene layer. Interestingly, a
similar density distribution (shown in blue) which is located immediately below the graphene layer belongs to a “buried cone” overlapping with the valence band [cf. Figs. 2(e)–2(h)]. It essentially derives from the residual π orbitals of the buffer layer which do not participate in covalent bonding. Next follow the interface states (shown in red) which are responsible for the Fermi-level pinning. Finally, the bulk state propagating through the whole slab is shown in green, which is identified with the VBM state at the Γ point.

The Dirac cone featured in the lower panel of Fig. 2 is almost the same as in a free standing graphene, which signifies that the states at the cone apex practically do not interact with the substrate except for a small splitting of the cone (see below). Close to the Fermi energy, however, the Dirac states show a weak interaction with interface states. This interaction causes an avoided crossing of the bands. Yet this effect is suppressed due to a spatial separation of the Dirac states and the interface states (cf. Sec. III C). A similar weak hybridization was found in a 5 × 5 supercell calculation for epitaxial graphene on 2H-SiC.19 Figures 2(e)–2(h) make evident a systematic shift of the Dirac point (the cone apex) along the considered polytype sequence. We address this trend in more detail in Sec. III C.

The analysis of the HSE06 bands and their charge density obtained at the high-symmetry points Γ, M, and K reveals the same assignment to interface, buffer, and graphene states as for the LDA states within its band gap. In particular we find that the HSE and LDA Dirac point fall almost on top of each other after electrostatic potential alignment in the vacuum region. Also the Fermi-level pinning by the interface states is preserved, although the interface band position is shifted to slightly higher energies (≤0.3 eV). Due to the pinning by the interface state, the Fermi level (not shown in Fig. 2) is located at a slightly higher energy than the LDA. Compared to the LDA band structure, the largest effect of the HSE is the opening of the band gap, which affects both the valence and conduction bands, in agreement with earlier quasiparticle calculations.35 This asymmetric opening largely corrects the position of the Dirac states and the graphene charge neutrality are clearly model dependent.

Other features such as the large spin splitting of the interface state and the graphene charge neutrality are clearly model dependent. Figure 4 shows the energy bands for the AB buffer-graphene stack on C-terminated substrates. In contrast to the Si-terminated case, the interface state is shifted towards the VBM and exhibits a large spin splitting of about 1 eV. The Dirac energy E_D falls in the spin-split gap and hence no charge transfer between the substrate and the epilayer occurs. This situation persists for all considered SiC polytypes.

TABLE II. Calculated values of the Dirac cone splitting ϵ_g (in meV), the position of the Dirac point with respect to the valence-band edge $E_{V} - E_{C}$ (in eV), and the Dirac point position relative to the Fermi energy $E_{F} - E_{D}$ (in eV) for two exchange-correlation functionals. Experimental values for $E_{V} - E_{C}$ are given where available. All data refer to Bernal (AB) graphene-buffer stacking. Note an extremely small cone splitting on the C-face.

<table>
<thead>
<tr>
<th>SiC</th>
<th>ϵ_g^{LDA}</th>
<th>$E_{V}^{LDA} - E_{C}^{LDA}$</th>
<th>$E_{V}^{LDA} - E_{D}^{LDA}$</th>
<th>$E_{V}^{HSE} - E_{C}^{HSE}$</th>
<th>$E_{V}^{HSE} - E_{D}^{HSE}$</th>
<th>$E_{V}^{Exp} - E_{C}^{Exp}$</th>
<th>$E_{V}^{Exp} - E_{D}^{Exp}$</th>
<th>ϵ_g^{LDA}</th>
<th>$E_{V}^{LDA} - E_{C}^{LDA}$</th>
<th>$E_{V}^{LDA} - E_{D}^{LDA}$</th>
<th>$E_{V}^{HSE} - E_{C}^{HSE}$</th>
<th>$E_{V}^{HSE} - E_{D}^{HSE}$</th>
<th>$E_{V}^{Exp} - E_{C}^{Exp}$</th>
<th>$E_{V}^{Exp} - E_{D}^{Exp}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C</td>
<td>36.7</td>
<td>0.76</td>
<td>0.62</td>
<td>41.4</td>
<td>1.48</td>
<td>1.7</td>
<td>0.66</td>
<td>36.7</td>
<td>0.76</td>
<td>0.62</td>
<td>41.4</td>
<td>1.48</td>
<td>1.7</td>
<td>0.66</td>
</tr>
<tr>
<td>6H</td>
<td>35.4</td>
<td>1.23</td>
<td>0.64</td>
<td>39.9</td>
<td>1.90</td>
<td>2.25</td>
<td>1.4</td>
<td>0.62</td>
<td>1.23</td>
<td>0.64</td>
<td>39.9</td>
<td>1.90</td>
<td>2.25</td>
<td>1.4</td>
</tr>
<tr>
<td>4H</td>
<td>26.3</td>
<td>1.66</td>
<td>0.61</td>
<td>28.0</td>
<td>2.53</td>
<td>2.91 ± 0.1</td>
<td>1.4</td>
<td>0.42</td>
<td>1.66</td>
<td>0.61</td>
<td>28.0</td>
<td>2.53</td>
<td>2.91 ± 0.1</td>
<td>1.4</td>
</tr>
<tr>
<td>2H</td>
<td>32.9</td>
<td>1.90</td>
<td>0.62</td>
<td>33.9</td>
<td>2.39</td>
<td>1.7</td>
<td>0.24</td>
<td>32.9</td>
<td>1.90</td>
<td>0.62</td>
<td>33.9</td>
<td>2.39</td>
<td>1.7</td>
<td>0.24</td>
</tr>
</tbody>
</table>

*Reference 24.

Obtained from $E_{C} - E_{D} = 0.36 ± 0.1$ eV given in Ref. 23.

B. Graphene epilayer on the C-terminated substrate

In contrast to the Si-terminated surface, the graphene formation on the C-terminated SiC does not happen via the carbon-rich $6\sqrt{3} \times 6\sqrt{3}$ surface reconstruction. Due to a much faster growth, it is very difficult (albeit possible)40,41 to obtain a monolayer graphene. Usually, one deals with stacks of tens to hundreds of mutually rotated graphene layers.12,42 The different growth mode on the C-face reflects a different bonding situation. No well-defined buffer layer was found so far, with an exception of a recent communication11 where an interlayer similar to that on a Si-terminated surface was observed. Still, the well-documented decoupling of a graphene epilayer from the substrate, which is on the C-face even more pronounced than on the Si-face, requires some sort of a buffer-type interface ingredient preventing the direct covalent bonding between the epilayer and the surface. Silicon adatoms were considered as alternatives for the carbon buffer layer in theoretical studies.43

In this paper, we adopt for the C-face an interface model with the same carbon buffer layer as on the Si-face. On one hand, it is instructive to compare similar interface configurations for both substrate terminations. On the other hand, the buffer interface model for the C-termination bears, quiet remarkably, universal features which are characteristic to the real graphene epilayer on the C-face of SiC. Most importantly, it describes a much weaker graphene-substrate interaction than on the Si-face, which is reflected by an extremely small splitting of the Dirac cone (cf. Sec. III C). Other features such as the large spin splitting of the interface state and the graphene charge neutrality are clearly model dependent.

Figure 4 shows the energy bands for the AB buffer-graphene stack on C-terminated substrates. In contrast to the Si-terminated case, the interface state is shifted towards the VBM and exhibits a large spin splitting of about 1 eV. The Dirac energy E_D falls in the spin-split gap and hence no charge transfer between the substrate and the epilayer occurs. This situation persists for all considered SiC polytypes.
C. Dirac spectrum

Figures 2 and 4 corroborate the most important property of the buffer-graphene stacks on SiC—the maintenance of the Dirac spectrum similar to that of a free standing graphene. In this section, we focus on a small energy window around the Dirac point E_D to reveal (i) the Dirac state dispersion close to E_D and (ii) the evolution of the Dirac point position along the polytype series.

Let us address the E_D position first. Figure 5 shows E_D and the Fermi level E_F as functions of polytype hexagonality. In the pH-polytype there are two hexagonal bilayers and $(p - 2)$ cubically stacked bilayers. The ratio $2/p$ is introduced as the hexagonality, which vanishes in the 3C case by definition. In other words, the parameter of hexagonality reflects the density of wurzite-type bilayer stackings in the material. It varies between 0 for the cubic 3C-SiC and 1 for the “most hexagonal” 2H-SiC.

As evident from Fig. 5(a), the separation between the Dirac point and the valence-band maximum systematically increases when going to polytypes with larger hexagonality for graphene on Si-terminated substrates. On the contrary, it decreases for a C-termination. The latter circumstance, although derived for an idealized interface model, signifies that the upwards trend for the Si-terminated substrates is most probably unrelated to the systematic increase of the SiC band gap.

The calculated shift of E_D (cf. Table II) compares well with experimental data available for 4H and 6H polytypes $(E_D - E_V)^{4H} \simeq 2.91 \pm 0.1$ eV23 and $(E_D - E_V)^{6H} \simeq 2.25$ eV. A comparison with Figs. 2 and 4 favors the suggestion that E_D is linked to the interface state rather than to the bulk gap edges. Since E_F is pinned by the same interface state [as seen already for the buffer layer system in Figs. 2(a)–2(d)], the Fermi-level position relative to E_F and consequently the epilayer doping remain unchanged through the polytype series (cf. Fig. 5). We find the Dirac point 0.62 eV below the Fermi level for the Si-terminated substrates is most probably unrelated to the systematic increase of the SiC band gap.

The calculated shift of E_D (cf. Table II) compares well with experimental data available for 4H and 6H polytypes $(E_D - E_V)^{4H} \simeq 2.91 \pm 0.1$ eV23 and $(E_D - E_V)^{6H} \simeq 2.25$ eV. A comparison with Figs. 2 and 4 favors the suggestion that E_D is linked to the interface state rather than to the bulk gap edges. Since E_F is pinned by the same interface state [as seen already for the buffer layer system in Figs. 2(a)–2(d)], the Fermi-level position relative to E_F and consequently the epilayer doping remain unchanged through the polytype series (cf. Fig. 5). We find the Dirac point 0.62 eV below the Fermi level for the Si-terminated substrates is most probably unrelated to the systematic increase of the SiC band gap.

The Fermi level E_F is pinned by the same interface state [as seen already for the buffer layer system in Figs. 2(a)–2(d)], the Fermi-level position relative to E_F and consequently the epilayer doping remain unchanged through the polytype series (cf. Fig. 5). We find the Dirac point 0.62 eV below the Fermi level for the Si-terminated substrates is most probably unrelated to the systematic increase of the SiC band gap.

The calculated shift of E_D (cf. Table II) compares well with experimental data available for 4H and 6H polytypes $(E_D - E_V)^{4H} \simeq 2.91 \pm 0.1$ eV23 and $(E_D - E_V)^{6H} \simeq 2.25$ eV. A comparison with Figs. 2 and 4 favors the suggestion that E_D is linked to the interface state rather than to the bulk gap edges. Since E_F is pinned by the same interface state [as seen already for the buffer layer system in Figs. 2(a)–2(d)], the Fermi-level position relative to E_F and consequently the epilayer doping remain unchanged through the polytype series (cf. Fig. 5). We find the Dirac point 0.62 eV below the Fermi level for the Si-terminated substrates is most probably unrelated to the systematic increase of the SiC band gap.

The calculated shift of E_D (cf. Table II) compares well with experimental data available for 4H and 6H polytypes $(E_D - E_V)^{4H} \simeq 2.91 \pm 0.1$ eV23 and $(E_D - E_V)^{6H} \simeq 2.25$ eV. A comparison with Figs. 2 and 4 favors the suggestion that E_D is linked to the interface state rather than to the bulk gap edges. Since E_F is pinned by the same interface state [as seen already for the buffer layer system in Figs. 2(a)–2(d)], the Fermi-level position relative to E_F and consequently the epilayer doping remain unchanged through the polytype series (cf. Fig. 5). We find the Dirac point 0.62 eV below the Fermi level for the Si-terminated substrates is most probably unrelated to the systematic increase of the SiC band gap.
is used. Curiously, this number is in good agreement with experiment.\cite{23} It is also close to the work function difference of \(\sim 1\) eV used in Ref. \cite{47} to reproduce the graphene \(n\)-doping with a simple electrostatic model. This indicates that the error due to simplification of the interface structure is partly compensated by the error due to the artificial graphene stretching.

Figure 6 shows a close-up of the Dirac bands. The high-resolution spectra are obtained in the interval \(\{\frac{1}{3}MK, \frac{1}{3}Kl\}\) around the \(K\) point. The \(AB\) stacked graphene-buffer structure on the Si-face clearly possesses a band gap \(\epsilon^{LDA}_{\sigma}\) which ranges between 26.3 meV (4H) and 36.7 meV (3C) depending on the polytype (cf. Table \text{II}). A similar splitting of the Dirac bands was calculated within the strain-free 5 interface model.\cite{19} On the contrary, the Dirac bands in graphene on the C-face exhibit a vanishing gap for all polytypes, which is within the computational error margins. This reflects an extreme weakness of the graphene-substrate interaction in this case. Quite remarkably, no Dirac cone splitting occurs for the \(AA\) graphene-buffer stacking regardless of the substrate termination and the polytype [shown for 3C-SiC in Figs. 6(e) and 6(f)]. As shown in the next section, it is a straightforward consequence of a specific symmetry of the \(AA\) interface structure.

To extract the Fermi velocity \(v_F\) we fit the bands in Fig. 6 as

\[
E(k; \epsilon_g, v_F) = \pm \sqrt{\left(\frac{\epsilon_g}{2}\right)^2 + (v_F \hbar k)^2}.
\]

The fitting curves shown in red all yield \(v_F = 0.84v^0_F\) independently of the polytype and the surface termination, where \(v^0_F = 8.33 \times 10^5\) m/s is the calculated Fermi velocity of a free standing (unstrained) graphene layer. Note that \(v^0_F\) is slightly lower than the experimental value of about 10^5 m/s which, however, is irrelevant for the notable suppression of \(v_F\) that we observe in our case. This suppression has its origin in the artificial 8% strain applied to the graphene layer within the \(\sqrt{3} \times \sqrt{3}\) interface model. To verify this, we calculate \(v^s_F\) for an 8% strained free standing graphene sheet and, indeed, find \(v^s_F = 0.87v^0_F\). This indicates that the interaction with the underlying buffer-SiC substrate has practically no influence on the Fermi velocity.

IV. SYMMETRY ANALYSIS

To understand the origin of the band gap in epitaxial graphene we perform a symmetry analysis of the energy spectrum. For our purposes, the explicit evaluation of the Hamiltonian is most convenient in a free electron basis. Here the basis functions at a \(K\) point are the symmetrized linear combinations of the plane waves \(|K_\mu\rangle\) of the three equivalent \(K\) points [cf. Fig. 7(b)] with wave vectors \(k_\mu\) \((\mu = 1, 2, 3)\).

We will see that for a \(\sqrt{3} \times \sqrt{3}\) interface the combination of both the buffer and the substrate potential is needed to lift the degeneracy at the \(K\) point. We find that the graphene-buffer stacking is important. Namely, it has to be \(AB\) type (Bernal) to induce a gap, whereas for \(AA\) stacking the degeneracy persists.

We start with the perfect isolated graphene sheet. Here the \(K\) point small group \(C_{3v}\) \([E, 2C_{3v}, 3\sigma]\) contains, apart from the unit element \(E\), two rotations around a trigonal axis at the origin \(O\) and three mirror planes \(\sigma_{1,2,3}\) (cf. Fig. 7). The latter swap the neighboring lattice sites \(A\) and \(B\) [cf. Fig. 7(a)]. In contrast, rotations by the angle \(\pm \frac{\pi}{2}\) around the trigonal axis express the equivalence of the \(A\) and \(B\) sites separately.

Due to the trigonal symmetry, the Hamiltonian matrix in the \(K\) point has the following form:

\[
\hat{H}_K = \begin{pmatrix}
0 & V & V^* \\
V^* & 0 & V \\
V & V^* & 0
\end{pmatrix}
\]

with

\[
V = \langle K_1 | V(r) | K_2 \rangle := |V| e^{i\phi},
\]

where \(V\) defines the matrix element of a crystalline potential. The matrix of Eq. (2) is brought to diagonal form by the unitary transformation

\[
\hat{S} = \frac{1}{\sqrt{3}} \begin{pmatrix}
1 & 1 & 1 \\
s & s^* & 1 \\
s^* & s & 1
\end{pmatrix}
\]

with \(s := e^{i(2\pi/3)}\) (4)
resulting in
\[
\hat{\mathbf{S}}_k \hat{\mathbf{S}}_l = 2|\mathbf{V}| \begin{pmatrix}
\cos \varphi & 0 & 0 \\
0 & \cos \left(\frac{2\pi}{3} - \varphi\right) & 0 \\
0 & 0 & \cos \left(\frac{2\pi}{3} + \varphi\right)
\end{pmatrix}
\]
\[
\equiv \text{diag}[\epsilon_1, \epsilon_2, \epsilon_3].
\] (5)
The eigenfunctions \(\Psi_{k_\mu}\) belonging to eigenvalues \(\epsilon_\mu\) are
\[
\Psi_{k_1} = \frac{1}{\sqrt{3}} (\Phi_{k_1} + \Phi_{k_2} + \Phi_{k_3}),
\]
\[
\Psi_{k_2} = \frac{1}{\sqrt{3}} (s^x \Phi_{k_1} + s \Phi_{k_2} + \Phi_{k_3}),
\]
\[
\Psi_{k_3} = \frac{1}{\sqrt{3}} (s \Phi_{k_1} + s^x \Phi_{k_2} + \Phi_{k_3}),
\] (6)
where
\[
\Phi_{k_\mu} \equiv \exp(i k_\mu r) \quad (\mu = 1, 2, 3)
\] (7)
is the \(\mu\)th plane-wave basis state \(\{|K_\mu\}\) in \(r\)-representation. If the plane waves are defined relative to the coordinate origin \(O\) in a hexagon center [cf. Fig. 7(a)], the eigenfunction \(\Psi_{k_\mu}\) has nodes on all lattice sites, whereas \(\Psi_{k_1}\) and \(\Psi_{k_3}\) have nodes on sites \(A\) or \(B\), respectively.

The trigonal symmetry does not guarantee the degeneracy of two of three eigenvalues \(\epsilon_\mu\) in Eq. (5), for the phase \(\varphi \in (-\pi, \pi)\) is arbitrary. In other words, if we had a trigonal axis only, the point group of a \(K\) point would be \(C_3\) \([E, 2C_3]\) which possesses only one-dimensional irreducible representations. Adding the mirror planes (cf. Fig. 7) raises the symmetry to \(C_{3v}\). This point group has two one-dimensional \(A_1, A_2\) and one two-dimensional \(E\) representations. In fact, the mirror symmetry restricts the phase \(\varphi\) to values \(\varphi \in \{0, \frac{\pm 2\pi}{3}\}\). The particular value of \(\varphi\) depends, however, on the coordinate origin \(O\). With our choice in the hexagon center [cf. Fig. 7(a)] we have \(\delta_3 \Phi_{k_1} = \Phi_{k_1}\) and \(\langle \Phi_{k_1} | V | \Phi_{k_2}\rangle = \langle \Phi_{k_1} | V | \Phi_{k_3}\rangle\) and hence \(\varphi = 0\). Alternatively, the origin shift by \(\tau_2 = (0, d)\) to atom \(A\), where \(d\) is the nearest-neighbor distance, generates the phase shifts of the basis functions via
\[
k_1 \tau_2 = \frac{2\pi}{3}, \quad k_2 \tau_2 = 0, \quad k_3 \tau_2 = -\frac{2\pi}{3},
\] (8)
which yields \(\varphi = \frac{-2\pi}{3}\). The shift by \(\tau_1\) of the origin to atom \(B\) makes \(\varphi = \frac{2\pi}{3}\). It is apparent from Eq. (5) that taking the different phase choices \(\varphi = \{0 \rightarrow \frac{2\pi}{3} \rightarrow -\frac{2\pi}{3}\}\) corresponds to a cyclic permutation of the eigenvalues in Eq. (5) with the two lowest ones being degenerate. For \(\varphi = 0\) these are \(\epsilon_{2,3}\) and we have
\[
\epsilon_1 = 2|\mathbf{V}| \quad \text{and} \quad \epsilon_{2,3} = 2|\mathbf{V}| \cos \left(\frac{2\pi}{3}\right) = -|\mathbf{V}|.
\] (9)

Obtaining the spectrum in a close vicinity of a \(K\) point is straightforward. Introducing a small shift \(k\) from the \(K\) point we get, in addition to Eq. (2), the matrix
\[
\hat{H}_K = \begin{pmatrix}
\xi_1 & 0 & 0 \\
0 & \xi_2 & 0 \\
0 & 0 & \xi_3
\end{pmatrix},
\] (10)
where \(\xi_\mu = v_F k \cdot n_\mu \quad (\mu = 1, 2, 3)\) are energy shifts of the basis states. The unit vectors \(n_\mu = \frac{k}{|k|}\) point from the Brillouin-zone center to \(K_\mu\) and \(v_F\) appears as the Fermi velocity in the Dirac-Weyl Hamiltonian (see below). The latter is obtained transforming Eq. (10) to the eigenstate basis of Eqs. (6),
\[
\hat{S}_k \hat{S}_l = \begin{pmatrix} 0 & p & p^* \\ p^* & 0 & p \\ p & p & 0 \end{pmatrix}.
\] (11)
Here we introduce the notation
\[
p = s^x \xi_1 + s \xi_2 + \xi_3 = v_F k (n_3 + in_1)
\] (12)
with orthogonal vectors
\[
n_1 = n_3 - \frac{1}{2}(n_1 + n_2) \quad \text{and} \quad n_2 = \sqrt{\frac{3}{2}}(n_2 - n_1).
\] (13)

Now, considering the full Hamiltonian \(\hat{H}_K + \hat{H}_B\) in the eigenstate basis of \(\hat{H}_K\) [cf. Eqs. (6)] we obtain
\[
\hat{S}_l (\hat{H}_K + \hat{H}_B) \hat{S}_l = \begin{pmatrix} \epsilon_1 & p & p^* \\ p^* & \epsilon_2 & p \\ p & p & \epsilon_3 \end{pmatrix}.
\] (14)
The Dirac-Weyl Hamiltonian \(\hat{H}_{\text{DW}}\) arises when two of the three eigenvalues are degenerate. For example, in the case \(\varphi = 0\) it is the lower right 2 \(\times\) 2 block in the matrix (14),
\[
\hat{H}_{\text{DW}} = \begin{pmatrix} -|\mathbf{V}| & p \\ p & -|\mathbf{V}| \end{pmatrix}.
\] (15)

The outlined view at the origin \(O\) of a graphene spectrum allows us to easily include the effect of a substrate. Since this effect is small, we describe the interaction with the substrate via a perturbation potential \(\nu(r)\) which accounts only for the buffer and the last atomic layer of a substrate [cf. Fig. 8(a)]. This makes, together with the epitaxial graphene layer, a three layer system which altogether possesses a trigonal symmetry axis. In the case of the \(AB\) graphene-buffer stacking, there are no mirror planes. Hence the small group of \(K\) becomes \(C_3\) and the degenerate level at the apex of the Dirac cone must split giving rise to the band gap. On the contrary, for \(AA\) stacking the \(C_{3v}\) symmetry is preserved and no gap is expected.

![Graphene on cubic and hexagonal SiC](image)

FIG. 8. (Color online) (a) Side and (b) top views of a Si-terminated substrate with two carbon layers (\(AB\) stacking). The top view (b) shows, along with graphene epilayer (blue circles), the underlying buffer (grey circles) and last Si-layer (yellow circles) of the substrate.
To evaluate the splitting of the Dirac cone we need a perturbation matrix \hat{v}. Due to the trigonal symmetry it reads similar to Eq. (2),

$$\hat{v} = \begin{pmatrix} 0 & v & v^* \\ v^* & 0 & v \\ v & v^* & 0 \end{pmatrix}$$

(16)

with

$$v = \langle \mathbf{K}_v | v(r) | \mathbf{K}_v \rangle := |v| e^{i\chi},$$

(17)

where the phase χ of the matrix element is important, since it determines the cone splitting. This phase can be revealed in a perturbation matrix \hat{v} similar to Eq. (2), [cf. Fig. 8(b)]. For example, $PANKRATOV, HENSEL, GÖTZFRIED, AND BOCKSTEDTE PHYSICAL REVIEW B$

$\tau_1 = -\frac{\sqrt{3}}{2} (\sqrt{3}, 1).$ For matrix elements (17) we find

$$v = \langle \Phi_k | v(r) | \Phi_k \rangle = \langle \Phi_k | v(r) | \Phi_k \rangle e^{2i(k_3-k_1)\tau_1},$$

(19)

and hence the phase $\chi = (k_3 - k_1)\tau_1 = \frac{2\pi}{3}. The matrix $\hat{H}_K + \hat{v}$ which determines the energy levels in the K point has the same structure as Eqs. (2) and (16) but with the composite matrix elements

$$w = |V| + |v| e^{i(2\pi/3)} \simeq |V| + i\sqrt{3} |v| \simeq |V| e^{i\gamma}$$

(20)

with

$$\gamma \simeq \frac{\sqrt{3}}{2} \frac{|v|}{|V|} \ll 1.$$

(21)

Using Eq. (5) we find the band gap

$$\epsilon_g = \epsilon_2 - \epsilon_3 \approx 2|V| \left[\cos \left(\frac{2\pi}{3} - \gamma \right) - \cos \left(\frac{2\pi}{3} + \gamma \right) \right]$$

$$\simeq 2\sqrt{3} |V| \gamma \approx 3|v|.$$

(22)

Apart from the cone splitting, the potential $v(r)$ causes a slight shift of the midgap energy

$$\frac{1}{2}(\epsilon_2 + \epsilon_3) = -|V| \left(1 - \frac{\gamma^2}{2} \right) = -|V| + \frac{3}{8} \frac{|v|^2}{|V|}.$$

(23)

The interface geometry depicted in Fig. 8 corresponds to the AB graphene-buffer stacking, which is observed on a Si-terminated SiC substrate. We see that in this case the Dirac cone is split, whereby the energy gap $\epsilon_g \approx 30 \text{ meV}$ gives an estimate for a graphene-substrate interaction strength $|v| \approx 10 \text{ meV}$. If the stacking were of AA type, the three-layer structure would possess the full point symmetry of an ideal graphene sheet. In this case no phase shift in the matrix elements of Eqs. (17), (19), and (20) is generated and the degeneracy at the apex of the Dirac cone is preserved. The numerical calculations [cf. Figs. 6(e) and 6(f)] confirm this conclusion.

The symmetry analysis establishes a connection between the $ab\ initio$ band-structure data and the model Hamiltonian close to the Dirac point. For the $\sqrt{3} \times \sqrt{3}$ model and for the strain-free 5×5 structure19 it reveals a similar weak interaction of the Dirac electrons with the substrate resulting in a similar small Dirac cone splitting. Formally, the symmetry analysis cannot be directly transferred to the $6\sqrt{3} \times 6\sqrt{3}$ case because of a more complex geometry and the lower symmetry. Yet, the pronounced similarity of $\sqrt{3} \times \sqrt{3}$ and 5×5 cases let us conjecture that the similar small Dirac cone splitting occurs also for the $6\sqrt{3} \times 6\sqrt{3}$ interface. The extensive experimental data1,44,48,49 strongly indicate that this splitting must be small, giving an upper limit of 40–50 meV. This estimate allows the splitting values that we find in our calculations. It definitely rules out a much larger value of 200 meV reported in a $6\sqrt{3} \times 6\sqrt{3}$ calculation by Kim et al.18

V. SUMMARY

In summary, we compared the band structures of graphene epilayers on different SiC polytypes with different surface terminations and buffer-graphene stackings. Combination of LDA- and HSE-based DFT calculations allowed us to obtain an alignment of the Dirac and projected-band spectra in agreement with available experimental data for the 4H and 6H polytypes. We find a systematic shift of the Dirac point and of the pinned Fermi level with the substrate hexagonality. Both increase relative to the valence-band maximum for graphene on the Si-terminated surface and decrease for the C-termination. The epilayer doping practically remains constant as the Fermi level relative to the Dirac point and the Fermi velocity are polytype independent. A small energy gap ϵ_g in the range between 25 and 40 meV is present in the Dirac spectrum of AB-stacked graphene-buffer structures on Si-terminated substrates. There is no gap for the AA stacking as well as for graphene layers on the C-face. The origin of the Dirac cone splitting ϵ_g as well as its absence for the AA stacking case can be understood within the analytical symmetry-based model. The model provides a direct connection between ϵ_g and the graphene-substrate coupling strength, which is rather weak (10 meV) and practically polytype independent.

ACKNOWLEDGMENTS

This work was supported by ESF under the program EuroGRAPhENE CRP GRAPHIC-RF (DFG Grant No. PA 516/8-1), the DFG special priority program “Graphene” (DFG Grant No. PA 516/9-1), and by the Collaborative Research Center SFB 953.
The extensive high-quality LDA band-structure calculations employed a $9 \times 9 \times 1$ k-grid and a plane-wave cutoff of 520 eV. For HSE calculations a $6 \times 6 \times 1$ k-grid and a lower cutoff energy 420 eV, which proved sufficient for that purpose.

20 Calculated (and experimental from Refs. 16, 31, and 32) structural parameters (a, c) of the considered pH-SiC polytypes. Here 3C is represented in the hexagonal cell (3H), a is the lattice constant, and c is the lattice parameter perpendicular to the xy-plane of the slab surface. The LDA results are

$$3H : a = 3.072(3.083) \, \text{Å}, \quad \frac{c}{pa} = 0.816(0.817),$$

$$6H : a = 3.062(3.073) \, \text{Å}, \quad \frac{c}{pa} = 0.817(0.818),$$

$$4H : a = 3.060(3.073) \, \text{Å}, \quad \frac{c}{pa} = 0.818(0.818),$$

$$2H : a = 3.058(3.076) \, \text{Å}, \quad \frac{c}{pa} = 0.820(0.821).$$

For the HSE06 functional we obtain, e.g., $a_{\text{HSE}} = 3.101$ Å and $a_{\text{HSE}} = 3.073$ Å. In view of the minor spread of the lattice constants we employ a common in-plane lattice constant $a_{\text{HSE}} = 3.072$ Å for all polytypes. The $\frac{c}{a}$ ratios were chosen identical to experimental values.

