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Graphene on cubic and hexagonal SiC: A comparative theoretical study
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Epitaxial graphene grows on different SiC polytypes possessing distinct bulk band gaps. In this work we
systematically investigate the influence of polytypes on the graphene electronic spectrum employing local-
density approximation (LDA)/Heyd-Scuseria-Ernzerhof (HSE) ab initio calculations including different buffer
layer–graphene layer stackings. We find a variation of the Dirac point position with respect to the valence-band
edge as a function of the polytype hexagonality. HSE values are in good agreement with recent experimental
results, while LDA corroborates the trends. Since the Dirac point, interface-related states, and the Fermi level
follow similar polytype-induced shifts, the doping of the epilayer stays practically the same. For the AB stacked
buffer and epilayer on a Si-terminated SiC substrate the graphene spectrum exhibits a polytype-dependent energy
gap εg which ranges 25–40 meV for different polytypes. On the contrary, for the AA stacking the Dirac cone
remains intact. We suggest a symmetry-based analytical model which explains the origin of the gap and its
absence for the AA geometry and provides a direct connection between εg and the buffer-epilayer interaction
potential.

DOI: 10.1103/PhysRevB.86.155432 PACS number(s): 73.22.Pr, 72.80.Vp, 73.20.−r

I. INTRODUCTION

SiC is a remarkable substrate which supports a self-
organized epitaxial graphene growth.1,2 At elevated temper-
ature, mostly silicon atoms evaporate leading to a carbon
enrichment of the surface. In the course of annealing, the
excess carbon atoms form an epitaxial graphene layer. In the
case of a Si-terminated SiC substrate, this layer rests on a
carbon buffer layer.3–6 The latter has a hexagonal structure
similar to an ideal graphene sheet but distorted to match
the underlying substrate. In spite of its graphene-like atomic
geometry, the buffer layer does not possess the peculiar to
graphene Dirac-Weyl cone-shaped bands at the corners of the
Brillouin zone. In the buffer layer, the electron π states which
are responsible for the Dirac-Weyl spectrum of an isolated
graphene strongly interact with the substrate. This interaction
erases the Dirac-Weyl features of the electron spectrum.7–10 On
the C-face of SiC no buffer layer has been clearly identified
yet, although recently a buffer-like intermediate layer was
reported.11 Due to a much faster growth, one usually obtains
here multilayered stacks of mutually rotated carbon layers.2,12

To date, most experimental studies of epitaxial graphene
were performed on the hexagonal polytype 6H as well as
4H-SiC. Recently, the cubic polytype 3C-SiC has attracted
increasing attention.13–15 The latter is anticipated to be advan-
tageous due to the better compatibility with the common cubic
semiconductors, most importantly silicon. One expects that
owing to a weak graphene-substrate coupling the influence
of a particular polytype on graphene electronic structure
is marginal. However, the band structures of the polytypes
themselves differ substantially as reflected by a notable band
gap variation from ε2H

g = 3.33 eV to ε3C
g = 2.39 eV.16 This

should lead to a different alignment of the Dirac-Weyl cone
with the energy bands of a substrate. On the other hand, a
similar surface geometric structure of the polytypes suggests
a similar interface electronic structure and hence a similar
Fermi-level pinning mechanism. The latter determines the
epilayer doping.1,2,8–10,17

In this paper, we address the polytype influence on elec-
tronic properties of graphene epilayers such as the Dirac cone
splitting and the Fermi-level pinning. We employ a simplified
structural model of the SiC-graphene interface which is most
suitable for a Si-terminated substrate where the existence of
a well-defined buffer layer has been firmly established. For
comparison, we consider in parallel the C-terminated case
assuming a similar buffer layer structure.

Being in registry with a Si-terminated SiC surface the
epitaxial graphene layer is subject to a spatial modulation
such that the unit cell becomes 13 × 13 in terms of graphene
translational period. This unit cell almost exactly coincides
with the (6

√
3 × 6

√
3)R30 surface cell,3,4,18 a hallmark of

reconstruction experienced by the carbon-rich Si-terminated
SiC surface. This coincidence ensures the graphene-substrate
commensuration. Alternatively, the commensuration condi-
tion can be satisfied via an approximate coincidence of the√

13 × √
13 graphene and the 5 × 5 SiC surface cells.19 The

5 × 5 SiC reconstruction is, however, rarely observed5,20,21

and, in practice, the 6
√

3 × 6
√

3 structure dominates. Total-
energy calculations22 confirm that this structure is, indeed,
the most stable amongst the possible low-stress interfaces.
Unfortunately, the size of the 6

√
3 × 6

√
3 cell is prohibitively

large for ab initio band-structure calculations. A simpler,
yet clearly idealized alternative to achieve commensuration
is stretching the graphene layer by 8%, which makes it
commensurate with the (

√
3 × √

3)R30 SiC surface cell. In
spite of its simplicity, this model captures most essential
features of the interface electron spectrum.8–10 Due to the
relatively small unit cell it is computationally tractable in
contrast to the 6

√
3 × 6

√
3 structure. This leads us to choose

this model for the purpose of comparison of graphene electron
spectrum on different SiC polytypes.

We report the results of the density functional theory
calculations with local-density approximation (LDA) and
Heyd-Scuseria-Ernzerhof (HSE06) functionals for a graphene
epilayer on four SiC polytypes, for different surface termi-
nations and different buffer-graphene stackings. In the most
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interesting case of the AB stacking we find a Dirac cone
splitting between 25 and 40 meV depending on the polytype.
On the contrary, for AA stacking the Dirac cone remains
intact. To understand these results we develop an analytical
model based on symmetry arguments. We show that indeed,
the energy gap occurs for the AB stacked epilayer, whereby the
gap width εg is a measure of interaction of the graphene π states
with the interface potential. The model also makes evident that
for the AA stacking symmetry forbids the gap opening. These
results are practically polytype independent, because, within
the model, only the buffer and the underlying substrate atomic
layer contribute to the interaction with graphene. The polytype
is, however, essential for the alignment of the Dirac-Weyl
bands with the SiC band structure. From the ab initio data we
demonstrate a clear dependence of the Dirac point location
within the SiC band gap on polytype hexagonality. Its value
obtained for the HSE functional is in good agreement with
recent experiments for 4H and 6H SiC,23,24 while the LDA
results corroborate the trends.

II. STRUCTURAL MODEL AND
CALCULATIONAL METHOD

We consider one or two carbon monolayers (i.e., the buffer
layer or the buffer layer plus graphene layer) on four SiC
polytypes 2H, 4H, 6H, and 3C. The polytypes range from
the purely hexagonal 2H to the purely cubic 3C structure. In
the calculations, it is convenient to treat the 3C polytype on the
same footing as the hexagonal polytypes using the associated
“3H” unit cell. The matching of the

√
3 × √

3 SiC surface unit
cell with the 2 × 2 graphene cell is achieved by stretching the
graphene layer.

Both graphene and SiC surfaces possess hexagonal recipro-
cal lattices and hexagonal Brillouin zones (BZs) [cf. Fig. 1(a)].
Within the

√
3 × √

3 model, the graphene 1 × 1 BZ and the
BZ of the

√
3 × √

3 structure are rotated by 30◦ relative to
the 1 × 1 SiC BZ. The correspondence of the high-symmetry
points is shown in Fig. 1(b). In the 1 × 1 SiC lattice the
conduction-band minimum (CBM) is situated in the M point
for all considered polytypes except 2H, where it is in the
K point. The valence-band maximum (VBM) is always in
the � point.

FIG. 1. (Color online) (a) The first Brillouin zones for 1 × 1
SiC (blue), 8% strained 1 × 1 graphene (black) and

√
3 × √

3 SiC
(red) structures. The correspondence of the high-symmetry points is
shown in panel (b). The reciprocal-lattice vectors of the

√
3 × √

3
SiC surface cell are shown in red.

TABLE I. Calculated (LDA, HSE) and experimental band gaps
from Ref. 16 (ELDA

g , EHSE
g , and Eexp

g ) of SiC polytypes (in eV).

2H 4H 6H 3C

ELDA
g 2.16 2.17 1.97 1.30

EHSE
g 3.18 3.17 2.94 2.24

Eexp
g 3.33 3.27 3.02 2.39

We use a simulation supercell with either six (2H, 6H, 3C)
or eight (4H) SiC bilayers. On top of the SiC slab one or
two carbon layers are placed in either AB or AA stacking.
To suppress the interaction of the periodic slab replicas we
separate them by more than 10 Å. The dangling bonds on the
bottom of the slab are saturated with hydrogen atoms.

We use the density functional program package VASP25

with the local-density approximation (LDA).26 The projected
augmented wave potentials (PAWs)27 describe the electron-ion
interaction. Calculations were performed using �-centered
k-grids which include the K point and plane-wave basis set
with large energy cutoff (for details cf. Ref. 28). Prior to
the electronic structure calculations the atomic geometry was
optimized using the LDA functional until forces were smaller
than 0.01 eV/Å.

The calculated structural parameters of the pH-SiC poly-
types (a, c)29 are in good agreement with theoretical30

and experimental16,31,32 data. Due to the well-known LDA
overbinding, the lattice parameters are slightly smaller than
experimental values but the ratios c/pa are consistent with
experimental results. Similar agreement is obtained for the
HSE06 functional.

In Table I the fundamental energy gaps of the SiC
polytypes are listed. In comparison with experimental data16

the calculated LDA gaps are underestimated by about 1.1 eV
almost independent of the polytype, which is a well-known
deficiency of the functional. The HSE06 functional, on the
other hand, yields band gaps in fairly good agreement with the
experiment. Such agreement is also obtained by more rigor-
ous quasiparticle calculations.33–37 Full-fledged quasiparticle
(and even DFT-HSE06) calculations would be prohibitively
expensive within the scope of the present work. Thus we
confront a dilemma: on the one hand, we need to correctly
pinpoint the Dirac spectrum relative to the substrate band
structure which requires much more elaborate calculations
than LDA. On the other hand, we aim at surveying a large
variety of structures (different polytypes and graphene-buffer
stackings) which is only possible if the computational effort
stays at a manageable level. Our strategy for resolving the
dilemma involves a combination of the LDA calculation with
the hybrid functional HSE approach.38,39 The latter is known
to provide accurate single-particle energies at higher but still
manageable computational cost. Following this strategy, we
perform a limited set of the HSE calculations and use these
data to benchmark the LDA bands. As expected, LDA spectra
show the accurate band dispersion and the orderly trends along
the polytype series. The position of the LDA gap edges are
corrected by adjusting them to the HSE values in selected
k-points using the vacuum potential as a common energy
reference.
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III. NUMERICAL RESULTS

In this section, we present ab initio results for graphene
on Si- and C-terminated substrates of four SiC polytypes (3C,
6H, 4H, 2H). In particular, we address the Dirac cone position
for two substrate terminations (Secs. III A and III B) and the
Dirac cone splitting for different buffer-graphene stackings
(Sec. III C).

A. Graphene epilayer on a Si-terminated substrate

In the
√

3 × √
3 model,8–10 the first carbon (buffer) layer

binds covalently to the Si-terminated surface such that two
of three surface Si-atoms are bonded to C-atoms leaving a
single silicon dangling bond per surface unit cell. The shortest
distance between buffer C-atoms and the surface Si-atoms
varies between 1.97 Å (2H) and 1.99 Å (3C) which clearly
speaks for a covalent bonding. As the carbon π electrons are
involved in covalent bonding, it is not a surprise that the buffer
layer does not possess Dirac-type bands at the Fermi level
[cf. Figs. 2(a)–2(d)].

An important feature of the band structure in Fig. 2 is the
half-filled flat interface band which pins the Fermi level. The
pinning persists when the second carbon layer (i.e., epitaxial
graphene) is placed on top of the buffer. Now, the Dirac cone
emerges in the SiC band gap. It is clearly seen that graphene
is n-doped [cf. Figs. 2(e)–2(h)]. Note that these properties are
found with the LDA as well as with the HSE06 functionals.
The discussion focuses first on the DFT-LDA band structures
with its high k-point density along the path. Subsequently, we
turn to the HSE06 bands as given at the special k-points �, M ,

FIG. 3. (Color online) The (x,y)-averaged electron density along
the slab z-axis for AB stacked graphene-buffer on Si-terminated 3C
and 2H substrates. The charge density ρ(z) = ∫ |�|2dxdy is shown
for the Dirac states in the K point (black), for the “lower cone” states
in the K point (blue; these states merge with the valence band in the
3C case) and for the interface band at EF (red) [cf. Figs. 2(e) and
2(h)]. In green, the bulk � state at the VBM is shown. Middle panels
show the 3C (a) and 2H (b) slab geometries and charge contours of
the interface states in the K point. Horizontal dashed lines indicate
the average atomic positions within each layer.

and K . The band alignment between LDA and the HSE06 in
Fig. 2 was accomplished by using the vacuum potential as the
common energy reference.

To reveal the origin of the band structure in Fig. 2 we
inspect the electron density distributions along the z-direction
normal to the slab surface for different states. The in-plane
averaged densities ρ(z) = ∫ |�(x,y,z)|2 dxdy for electron
states in the K point are depicted in Fig. 3. It is clearly seen
that, indeed, the states at the apex of the Dirac cone are formed
by the π orbitals of epitaxial graphene layer. Interestingly, a

FIG. 2. (Color online) Calculated band structures for the buffer layer (top panel) and the graphene-buffer stack (bottom panel) on SiC
substrates. All substrates are Si-terminated and the epilayer-buffer stacking is of AB type. The DFT-LDA projected bulk bands are indicated
by gray shaded regions. The black shaded regions show the projected HSE band structure obtained by LDA data adjustment to the HSE band
edges. The LSDA graphene cone and the interface states are shown by open and filled circles representing the opposite spin states. A slight
spin splitting occurs only in the 2H case [panels (d) and (h)]. The HSE data points are shown as black crosses. The Fermi level EF is indicated
by the dotted blue line.
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similar density distribution (shown in blue) which is located
immediately below the graphene layer belongs to a “buried
cone” overlapping with the valence band [cf. Figs. 2(e)–2(h)].
It essentially derives from the residual π orbitals of the buffer
layer which do not participate in covalent bonding. Next follow
the interface states (shown in red) which are responsible for
the Fermi-level pinning. Finally, the bulk state propagating
through the whole slab is shown in green, which is identified
with the VBM state at the � point.

The Dirac cone featured in the lower panel of Fig. 2 is
almost the same as in a free standing graphene, which signifies
that the states at the cone apex practically do not interact
with the substrate except for a small splitting of the cone (see
below). Close to the Fermi energy, however, the Dirac states
show a weak interaction with interface states. This interaction
causes an avoided crossing of the bands. Yet this effect is
suppressed due to a spatial separation of the Dirac states and the
interface states (cf. Fig. 3). A similar weak hybridization was
found in a 5 × 5 supercell calculation for epitaxial graphene
on 2H-SiC.19 Figures 2(e)–2(h) make evident a systematic
shift of the Dirac point (the cone apex) along the considered
polytype sequence. We address this trend in more detail in
Sec. III C.

The analysis of the HSE06 bands and their charge density
obtained at the high-symmetry points �, M , and K reveals
the same assignment to interface, buffer, and graphene states
as for the LDA states within its band gap. In particular we
find that the HSE and LDA Dirac point fall almost on top of
each other after electrostatic potential alignment in the vacuum
region. Also the Fermi-level pinning by the interface states is
preserved, although the interface band position is shifted to
slightly higher energies (�0.3 eV). Due to the pinning by the
interface state, the Fermi level (not shown in Fig. 2) is located
at a slightly higher energy than the LDA. Compared to the LDA
band structure, the largest effect of the HSE is the opening of
the band gap, which affects both the valence and conduction
bands, in agreement with earlier quasiparticle calculations.35

This asymmetric opening largely corrects the position of the
interface state and of the Dirac point with respect to the
valence-band edge. For the polytypes 4H and 6H experiments
measured the position of the Dirac point relative to the valence-
band maximum of 2.91 ± 0.1 eV (Ref. 23) and 2.25 eV
(Ref. 24) in good agreement with the HSE values of 2.53 and
1.9 eV (cf. Table II). This agreement underlines the relevance

of our simplified
√

3 × √
3 interface model for polytype-

related trends. The theoretical values are somewhat smaller
due to the model-dependent strain effect or the HSE error.

B. Graphene epilayer on the C-terminated substrate

In contrast to the Si-terminated surface, the graphene
formation on the C-terminated SiC does not happen via the
carbon-rich 6

√
3 × 6

√
3 surface reconstruction. Due to a much

faster growth, it is very difficult (albeit possible)40,41 to obtain
a monolayer graphene. Usually, one deals with stacks of
tens to hundreds of mutually rotated graphene layers.12,42

The different growth mode on the C-face reflects a different
bonding situation. No well-defined buffer layer was found so
far, with an exception of a recent communication11 where
an interlayer similar to that on a Si-terminated surface was
observed. Still, the well-documented decoupling of a graphene
epilayer from the substrate, which is on the C-face even
more pronounced than on the Si-face, requires some sort of a
buffer-type interface ingredient preventing the direct covalent
bonding between the epilayer and the surface. Silicon adatoms
were considered as alternatives for the carbon buffer layer in
theoretical studies.43

In this paper, we adopt for the C-face an interface model
with the same carbon buffer layer as on the Si-face. On
one hand, it is instructive to compare similar interface
configurations for both substrate terminations. On the other
hand, the buffer interface model for the C-termination bears,
quiet remarkably, universal features which are characteristic
to the real graphene epilayer on the C-face of SiC. Most
importantly, it describes a much weaker graphene-substrate
interaction than on the Si-face, which is reflected by an
extremely small splitting of the Dirac cone (cf. Sec. III C).
Other features such as the large spin splitting of the interface
state and the graphene charge neutrality are clearly model
dependent.

Figure 4 shows the energy bands for the AB buffer-
graphene stack on C-terminated substrates. In contrast to the
Si-terminated case, the interface state is shifted towards the
VBM and exhibits a large spin splitting of about 1 eV.
The Dirac energy ED falls in the spin-split gap and hence no
charge transfer between the substrate and the epilayer occurs.
This situation persists for all considered SiC polytypes.

TABLE II. Calculated values of the Dirac cone splitting εg (in meV), the position of the Dirac point with respect to the valence-band
edge ED − EV (in eV), and the Dirac point position relative to the Fermi energy EF − ED (in eV) for two exchange-correlation functionals.
Experimental values for ED − EV are given where available. All data refer to Bernal (AB) graphene-buffer stacking. Note an extremely small
cone splitting on the C-face.

Si-face Si-face C-face

SiC εLDA
g ELDA

D − ELDA
V ELDA

F − ELDA
D εHSE

g EHSE
D − EHSE

V E
Exp
D − E

Exp
V εLDA

g ELDA
D − ELDA

V

3C 36.7 0.76 0.62 41.4 1.48 1.7 0.66
6H 35.4 1.23 0.64 39.9 1.90 2.25a 1.4 0.62
4H 26.3 1.66 0.61 28.0 2.53 2.91 ± 0.1b 1.4 0.42
2H 32.9 1.90 0.62 33.9 2.39 1.7 0.24

aReference 24.
bObtained from EC − ED = 0.36 ± 0.1 eV given in Ref. 23.
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FIG. 4. (Color online) Calculated band structure of AB buffer-graphene stack on the C-terminated substrates of four SiC polytypes. Only
LSDA data points are shown. The energy zero is taken at the LSDA bulk VBM (EV) in �. The black shaded region shows the projected HSE
band structure obtained by adjustment of the LDA data to the HSE band edges. The Fermi level EF is indicated by the dotted blue line and the
different spin states are shown by closed and open circles.

C. Dirac spectrum

Figures 2 and 4 corroborate the most important property
of the buffer-graphene stacks on SiC—the maintenance of the
Dirac spectrum similar to that of a free standing graphene. In
this section, we focus on a small energy window around the
Dirac point ED to reveal (i) the Dirac state dispersion close to
ED and (ii) the evolution of the Dirac point position along the
polytype series.

Let us address the ED position first. Figure 5 shows ED and
the Fermi level EF as functions of polytype hexagonality. In
the pH-polytype there are two hexagonal bilayers and (p − 2)
cubically stacked bilayers. The ratio 2/p is introduced as the
hexagonality, which vanishes in the 3C case by definition.
In other words, the parameter of hexagonality reflects the
density of wurzite-type bilayer stackings in the material. It
varies between 0 for the cubic 3C-SiC and 1 for the “most
hexagonal” 2H-SiC.

As evident from Fig. 5(a), the separation between the Dirac
point and the valence-band maximum systematically increases
when going to polytypes with larger hexagonality for graphene
on Si-terminated substrates. On the contrary, it decreases for
a C-termination. The latter circumstance, although derived for
an idealized interface model, signifies that the upwards trend

FIG. 5. (Color online) The Dirac point position (circles) and the
Fermi level (blue) relative to the VBM (EV) along a sequence of
polytypes for (a) Si- and (b) C-terminated substrates. The HSE data
for the Dirac point position [panel (a)] is shown as black crosses. The
polytype hexagonality is plotted on the horizontal axis.

for the Si-terminated substrates is most probably unrelated to
the systematic increase of the SiC band gap.

The calculated shift of ED (cf. Table II) compares well with
experimental data available for 4H and 6H polytypes (ED −
EV)4H � 2.91 ± 0.1 eV23 and (ED − EV)6H � 2.25 eV.24 A
comparison with Figs. 2 and 4 favors the suggestion that ED is
linked to the interface state rather than to the bulk gap edges.
Since EF is pinned by the same interface state [as seen already
for the buffer layer system in Figs. 2(a)–2(d)], the Fermi-level
position relative to ED and consequently the epilayer doping
remain unchanged through the polytype series (cf. Fig. 5). We
find the Dirac point 0.62 eV below the Fermi level for the

√
3 ×√

3 interface model (cf. Table II) compared to 0.41 eV for the
5 × 5 (Ref. 19) and 0.32 eV for the 6

√
3 × 6

√
3 (Ref. 18) struc-

tures and 0.45 eV in experiments.24,44 Respectively, for the
electron density we have n � 5.6 × 1013 cm−2 for the

√
3 ×√

3 and n � 2.8 × 1013 cm−2 for the 5 × 5 models.19 For the
6
√

3 × 6
√

3 structure Kim et al.18 reported 8.7 × 1012cm−2

(obtained with a Mullikan analysis). The experimental value
is 1013 cm−2.1,44 It is instructive to calculate the spatially
resolved electron populations within the SiC-buffer-graphene
system to visualize the charge transfer responsible for the
doping. With the Bader population analysis45,46 we obtain
for the electron density in graphene 3.2 × 1013 cm−2. The
small difference with the number resulting from the Fermi-
level position should be attributed to the overlap between
the buffer- and graphene-related states which influences the
charge separation in the Bader analysis. The difference of the
Bader populations of the buffer layer with and without on-top
graphene yields �n � 2.5 × 1013 cm−2 which is reasonably
close to the doping value obtained for the graphene epilayer.
This analysis confirms that the n-type doping of the graphene
epilayer stems from the Fermi-level pinning by the interface
states essentially located in the buffer layer. This mechanism
holds for all polytypes and all interface models for the Si-face.

In this context it is interesting to compare the work functions
of the free standing graphene layers (strained and unstrained)
and for the buffer-SiC surface. We find that the 8% strain
increases the graphene work function from 4.5 to 5.1 eV (and
alters the Fermi velocity, see below). For the

√
3 × √

3 buffer-
SiC surface we obtain 4.0 eV and hence the work function
difference amounts to 1.1 eV if the strained graphene value
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FIG. 6. (Color online) High-resolution spectra of a graphene
epilayer in the range of [ 1

20 MK, 1
20 K�]. Shown are the DFT-LSDA

results obtained on the Si- and C-face (top and bottom panels) and
2H and 3C polytypes for different stackings [AB type (a)–(d) and
AA type (e) and (f)]. Solid red lines are the fitting curves according
to Eq. (1) with vF = 0.84v0

F (see text).

is used. Curiously, this number is in good agreement with
experiment.23 It is also close to the work function difference of
∼1 eV used in Ref. 47 to reproduce the graphene n-doping with
a simple electrostatic model. This indicates that the error due to
simplification of the interface structure is partly compensated
by the error due to the artificial graphene stretching.

Figure 6 shows a close-up of the Dirac bands. The high-
resolution spectra are obtained in the interval [ 1

20 MK, 1
20 K�]

around the K point. The AB stacked graphene-buffer structure
on the Si-face clearly possesses a band gap εLDA

g which ranges
between 26.3 meV (4H) and 36.7 meV (3C) depending on
the polytype (cf. Table II). A similar splitting of the Dirac
bands was calculated within the strain-free 5 × 5 interface
model.19 On the contrary, the Dirac bands in graphene on
the C-face exhibit a vanishing gap for all polytypes, which
is within the computational error margins. This reflects an
extreme weakness of the graphene-substrate interaction in this
case. Quite remarkably, no Dirac cone splitting occurs for
the AA graphene-buffer stacking regardless of the substrate
termination and the polytype [shown for 3C-SiC in Figs. 6(e)
and 6(f)]. As shown in the next section, it is a straightforward
consequence of a specific symmetry of the AA interface
structure.

To extract the Fermi velocity vF we fit the bands in Fig. 6
as

E(k; εg,vF) = ±
√(

εg

2

)2

+ (vF h̄k)2. (1)

The fitting curves shown in red all yield vF = 0.84 v0
F inde-

pendently of the polytype and the surface termination, where
v0

F = 8.33 × 105 m/s is the calculated Fermi velocity of a free
standing (unstrained) graphene layer. Note that v0

F is slightly
lower than the experimental value of about 106 m/s which,
however, is irrelevant for the notable suppression of vF that
we observe in our case. This suppression has its origin in
the artificial 8% strain applied to the graphene layer within
the

√
3 × √

3 interface model. To verify this, we calculate vs
F

for an 8% strained free standing graphene sheet and, indeed,
find vs

F = 0.87 v0
F. This indicates that the interaction with the

FIG. 7. (Color online) Hexagonal unit cell of a graphene lattice
(a) with translation vectors a1,2 and symmetry planes σ . (b) The
Brillouin zone with reciprocal-lattice translations b1,2 and the
equivalent points Kμ.

underlying buffer-SiC substrate has practically no influence
on the Fermi velocity.

IV. SYMMETRY ANALYSIS

To understand the origin of the band gap in epitaxial
graphene we perform a symmetry analysis of the energy
spectrum. For our purposes, the explicit evaluation of the
Hamiltonian is most convenient in a free electron basis. Here
the basis functions at a K point are the symmetrized linear
combinations of the plane waves |Kμ〉 of the three equivalent
K points [cf. Fig. 7(b)] with wave vectors kμ (μ = 1,2,3).

We will see that for a
√

3 × √
3 interface the combination

of both the buffer and the substrate potential is needed to lift
the degeneracy at the K point. We find that the graphene-buffer
stacking is important. Namely, it has to be AB type (Bernal) to
induce a gap, whereas for AA stacking the degeneracy persists.

We start with the perfect isolated graphene sheet. Here the
K point small group C3v {E,2C3,3σ } contains, apart from
the unit element E, two rotations around a trigonal axis at the
origin O and three mirror planes σ1,2,3 (cf. Fig. 7). The latter
swap the neighboring lattice sites A and B [cf. Fig. 7(a)]. In
contrast, rotations by the angle ±2π

3 around the trigonal axis
express the equivalence of the A and B sites separately.

Due to the trigonal symmetry, the Hamiltonian matrix in
the K point has the following form:

ĤK =

⎛⎜⎝ 0 V V ∗

V ∗ 0 V

V V ∗ 0

⎞⎟⎠ (2)

with
V = 〈K 1| V (r) |K 2〉 := |V | eiϕ, (3)

where V defines the matrix element of a crystalline potential.
The matrix of Eq. (2) is brought to diagonal form by the unitary
transformation

Ŝ = 1√
3

⎛⎜⎝ 1 1 1

s s∗ 1

s∗ s 1

⎞⎟⎠ with s := ei(2π/3) (4)
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resulting in

Ŝ ĤK Ŝ† = 2|V |

⎛⎜⎝ cos ϕ 0 0

0 cos
(

2π
3 − ϕ

)
0

0 0 cos
(

2π
3 + ϕ

)
⎞⎟⎠

=: diag[ε1, ε2, ε3 ]. (5)

The eigenfunctions �kμ
belonging to eigenvalues εμ are

�k1 = 1√
3

(
�k1 + �k2 + �k3

)
,

�k2 = 1√
3

(
s∗ �k1 + s �k2 + �k3

)
, (6)

�k3 = 1√
3

(
s �k1 + s∗ �k2 + �k3

)
,

where
�kμ

:= exp (i kμr) (μ = 1,2,3) (7)

is the μth plane-wave basis state |Kμ〉 in r-representation. If
the plane waves are defined relative to the coordinate origin O

in a hexagon center [cf. Fig. 7(a)], the eigenfunction �k1 has
nodes on all lattice sites, whereas �k2 and �k3 have nodes on
sites A or B, respectively.

The trigonal symmetry does not guarantee the degeneracy
of two of three eigenvalues εμ in Eq. (5), for the phase ϕ ∈
(−π,π ) is arbitrary. In other words, if we had a trigonal axis
only, the point group of a K point would be C3 {E,2C3} which
possesses only one-dimensional irreducible representations.
Adding the mirror planes (cf. Fig. 7) raises the symmetry to
C3v . This point group has two one-dimensional A1,A2 and
one two-dimensional E representations. In fact, the mirror
symmetry restricts the phase ϕ to values ϕ ∈ {0,±2π

3 }. The
particular value of ϕ depends, however, on the coordinate
origin O. With our choice in the hexagon center [cf. Fig. 7(a)]
we have σ̂3�k2 = �k3 and 〈�k2 | V |�k3〉 = 〈�k3 | V |�k2〉 and
hence ϕ ≡ 0. Alternatively, the origin shift by τ 2 = (0,d) to
atom A, where d is the nearest-neighbor distance, generates
the phase shifts of the basis functions via

k1τ 2 = 2π

3
, k2τ 2 = 0, k3τ 2 = −2π

3
, (8)

which yields ϕ = −2π
3 . The shift by τ 1 of the origin to atom

B makes ϕ = +2π
3 . It is apparent from Eq. (5) that taking the

different phase choices ϕ = {0 → 2π
3 → −2π

3 } corresponds to
a cyclic permutation of the eigenvalues in Eq. (5) with the two
lowest ones being degenerate. For ϕ = 0 these are ε2,3 and we
have

ε1 = 2|V | and ε2,3 = 2|V | cos

(
2π

3

)
= −|V |. (9)

Obtaining the spectrum in a close vicinity of a K point is
straightforward. Introducing a small shift k from the K point
we get, in addition to Eq. (2), the matrix

Ĥk =

⎛⎜⎝ ξ1 0 0

0 ξ2 0

0 0 ξ3

⎞⎟⎠ , (10)

where ξμ = 3vF k · nμ (μ = 1,2,3) are energy shifts of the
basis states. The unit vectors nμ = kμ

|kμ| point from the
Brillouin-zone center to Kμ and vF appears as the Fermi

velocity in the Dirac-Weyl Hamiltonian (see below). The latter
is obtained transforming Eq. (10) to the eigenstate basis of
Eqs. (6),

Ŝ Ĥk Ŝ† =

⎛⎜⎝ 0 p p∗

p∗ 0 p

p p∗ 0

⎞⎟⎠ . (11)

Here we introduce the notation

p = s∗ ξ1 + s ξ2 + ξ3 = vF k(nx + iny) (12)

with orthogonal vectors

nx = n3 − 1

2
(n1 + n2) and ny =

√
3

2
(n2 − n1). (13)

Now, considering the full Hamiltonian ĤK + Ĥk in the
eigenstate basis of ĤK [cf. Eqs. (6)] we obtain

Ŝ (ĤK + Ĥk) Ŝ† =

⎛⎜⎝ ε1 p p∗

p∗ ε2 p

p p∗ ε3

⎞⎟⎠ . (14)

The Dirac-Weyl Hamiltonian (ĤDW) arises when two of the
three eigenvalues are degenerate. For example, in the case
ϕ = 0 it is the lower right 2 × 2 block in the matrix (14),

ĤDW =
(−|V | p

p∗ −|V |
)

. (15)

The outlined view at the origin O of a graphene spectrum
allows us to easily include the effect of a substrate. Since this
effect is small, we describe the interaction with the substrate
via a perturbation potential v(r) which accounts only for the
buffer and the last atomic layer of a substrate [cf. Fig. 8(a)].
This makes, together with the epitaxial graphene layer, a three
layer system which altogether possesses a trigonal symmetry
axis. In the case of the AB graphene-buffer stacking, there are
no mirror planes. Hence the small group of K becomes C3 and
the degenerate level at the apex of the Dirac cone must split
giving rise to the band gap. On the contrary, for AA stacking
the C3v symmetry is preserved and no gap is expected.

FIG. 8. (Color online) (a) Side and (b) top views of a Si-
terminated substrate with two carbon layers (AB stacking). The
top view (b) shows, along with graphene epilayer (blue circles), the
underlying buffer (grey circles) and last Si-layer (yellow circles) of
the substrate.
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To evaluate the splitting of the Dirac cone we need a
perturbation matrix v̂. Due to the trigonal symmetry it reads
similar to Eq. (2),

v̂ =

⎛⎜⎝ 0 v v∗

v∗ 0 v

v v∗ 0

⎞⎟⎠ (16)

with
v = 〈Kμ| v(r) |K ν〉 := |v| eiχ , (17)

where the phase χ of the matrix element is important, since it
determines the cone splitting. This phase can be revealed in a
following way. Although the whole three-layer structure does
not have mirror symmetries, the potential v(r) is symmetric
with respect to reflections in planes σ1,2,3 [cf. Fig. 8(b)]. These
planes, however, do not intersect in a single point and do not
run through the coordinate origin O in the hexagon center with
respect to which the basis functions (7) are defined. Hence
these reflection operations involve translations by vectors 2τμ

[cf. Fig. 8(b)]. For example,

σ̂1�k1 = e−2i k1τ 1 �k1 ,

σ̂1�k2 = e−2i k2τ 1 �k3 , (18)

σ̂1�k3 = e−2i k3τ 1 �k2 ,

with τ 1 = − a
2 (

√
3,1). For matrix elements (17) we find

v = 〈
�k2

∣∣ v(r)
∣∣�k3

〉 = 〈
�k3

∣∣ v(r)
∣∣�k2

〉
e2i(k2−k3)τ 1 (19)

and hence the phase χ = (k2 − k3)τ 1 = 2π
3 . The matrix ĤK +

v̂ which determines the energy levels in the K point has the
same structure as Eqs. (2) and (16) but with the composite
matrix elements

w = |V | + |v| ei(2π/3) � |V | + i

√
3

2
|v| � |V | eiγ (20)

with

γ �
√

3

2

|v|
|V | � 1. (21)

Using Eq. (5) we find the band gap

εg = ε2 − ε3 = 2|V |
[

cos

(
2π

3
− γ

)
− cos

(
2π

3
+ γ

)]
� 2

√
3 |V | γ = 3|v|. (22)

Apart from the cone splitting, the potential v(r) causes a slight
shift of the midgap energy

1

2
(ε2 + ε3) = −|V |

(
1 − γ 2

2

)
= −|V | + 3

8

|v|2
|V | . (23)

The interface geometry depicted in Fig. 8 corresponds
to the AB graphene-buffer stacking, which is observed on a
Si-terminated SiC substrate. We see that in this case the Dirac
cone is split, whereby the energy gap εg = 3|v| ≈ 30 meV
gives an estimate for a graphene-substrate interaction strength
|v| ≈ 10 meV. If the stacking were of AA type, the three-layer
structure would possess the full point symmetry of an ideal

graphene sheet. In this case no phase shift in the matrix
elements of Eqs. (17), (19), and (20) is generated and the
degeneracy at the apex of the Dirac cone is preserved. The
numerical calculations [cf. Figs. 6(e) and 6(f)] confirm this
conclusion.

The symmetry analysis establishes a connection between
the ab initio band-structure data and the model Hamiltonian
close to the Dirac point. For the

√
3 × √

3 model and for
the strain-free 5 × 5 structure19 it reveals a similar weak
interaction of the Dirac electrons with the substrate resulting
in a similar small Dirac cone splitting. Formally, the symmetry
analysis cannot be directly transferred to the 6

√
3 × 6

√
3

case because of a more complex geometry and the lower
symmetry. Yet, the pronounced similarity of

√
3 × √

3 and
5 × 5 cases let us conjecture that the similar small Dirac
cone splitting occurs also for the 6

√
3 × 6

√
3 interface. The

extensive experimental data1,44,48,49 strongly indicate that this
splitting must be small, giving an upper limit of 40–50
meV. This estimate allows the splitting values that we find
in our calculations. It definitely rules out a much larger
value of 200 meV reported in a 6

√
3 × 6

√
3 calculation by

Kim et al.18

V. SUMMARY

In summary, we compared the band structures of graphene
epilayers on different SiC polytypes with different surface
terminations and buffer-graphene stackings. Combination of
LDA- and HSE-based DFT calculations allowed us to obtain
an alignment of the Dirac and projected-band spectra in
agreement with available experimental data for the 4H and
6H polytypes. We find a systematic shift of the Dirac point
and of the pinned Fermi level with the substrate hexagonality.
Both increase relative to the valence-band maximum for
graphene on the Si-terminated surface and decrease for the
C-termination. The epilayer doping practically remains con-
stant as the Fermi level relative to the Dirac point and the
Fermi velocity are polytype independent. A small energy gap
εg in the range between 25 and 40 meV is present in the
Dirac spectrum of AB-stacked graphene-buffer structures on
Si-terminated substrates. There is no gap for the AA stacking
as well as for graphene layers on the C-face. The origin of
the Dirac cone splitting εg as well as its absence for the
AA stacking case can be understood within the analytical
symmetry-based model. The model provides a direct connec-
tion between εg and the graphene-substrate coupling strength,
which is rather weak (10 meV) and practically polytype
independent.
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27P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

28The extensive high-quality LDA band-structure calculations em-
ployed a 9 × 9 × 1 k-grid and a plane-wave cutoff of 520 eV. For
HSE calculations a 6 × 6 × 1 k-grid and a lower cutoff energy
420 eV, which proved sufficient for that purpose.

29Calculated (and experimental from Refs. 16,31, and 32) structural
parameters (a, c

pa
) of the considered pH-SiC polytypes. Here 3C is

represented in the hexagonal cell (3H), a is the lattice constant, and
c is the lattice parameter perpendicular to the xy-plane of the slab
surface. The LDA results are

3H : a = 3.072 (3.083) Å,
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