Facile Splitting of Hydrogen and Ammonia by Nucleophilic Activation at a Single Carbon Center
Guido D. Frey, et al.
Science 316, 439 (2007);
DOI: 10.1126/science.1141474

The following resources related to this article are available online at www.sciencemag.org (this information is current as of April 20, 2007):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/cgi/content/full/316/5823/439

Supporting Online Material can be found at:
http://www.sciencemag.org/cgi/content/full/316/5823/439/DC1

This article cites 32 articles, 3 of which can be accessed for free:
http://www.sciencemag.org/cgi/content/full/316/5823/439#otherarticles

This article appears in the following subject collections:
Chemistry
http://www.sciencemag.org/cgi/collection/chemistry

Information about obtaining reprints of this article or about obtaining permission to reproduce this article in whole or in part can be found at:
http://www.sciencemag.org/about/permissions.dtl
Facile Splitting of Hydrogen and Ammonia by Nucleophilic Activation at a Single Carbon Center

Guido D. Frey, Vincent Lavallo, Bruno Donnadieu, Wolfgang W. Schoeller,* Guy Bertrand*

In possessing a lone pair of electrons and an accessible vacant orbital, singlet carbenes resemble transition metal centers and thus could potentially mimic their chemical behavior. Although singlet di(aminocarbene)carbenes are inert toward dihydrogen, it is shown that more nucleophilic and electrophilic (alkyl)aminocarbenes can activate H2 under mild conditions, a reaction that has long been known for transition metals. However, in contrast to transition metals that act as electrophiles toward dihydrogen, these carbenes primarily behave as nucleophiles, creating a hydride-like hydrogen, which then attacks the positively polarized carbon center. This nucleophilic behavior allows these carbenes to activate NH3 as well, a difficult task for transition metals because of the formation of Lewis acid-base adducts.

The activation of enthalpically strong small molecules such as molecular hydrogen (H2) and ammonia (NH3) has attracted considerable interest over the years. The first observation of H2 splitting dates from the end of the 19th century, when Sabatier observed the formation of ethane in the addition of H2 to ethylene over thin slivers of lightly heated reduced nickel (1). Since that time, most of the chemical and biological systems that have been found to split H2 involve a transition metal center. Even for the so-called iron-sulfur cluster-free hydrogenase (Hmd), it has recently been shown that an iron center was of functional importance (2, 3). The only nonmetallic systems reported to cleave H2 under mild experimental conditions (4–7) are phosphine-borane species (8, 9) and a stable digemmyne (10).

In contrast to dihydrogen, ammonia usually forms simple Lewis acid-base adducts with transition metal complexes, as observed first by Werner in the late 19th century, because of the presence of a lone pair of electrons at nitrogen (11). Consequently, examples of NH3 splitting are still very rare (12–17).

The activation of H-X and particularly H-H bonds requires that the pair of bonding electrons be perturbed in some way so as to form a chemically active species. The digemmyne has substantial diradical character and therefore reacts through H atom abstraction from H2, followed by recombination of the resultant radical pair (10). In contrast, the splitting of H2 at a transition metal center results from the primary interaction of a vacant orbital at the metal and the σ-bonding orbital of H2 (18–22) (Fig. 1). When concomitant back-donation from a filled d orbital to the anti-bonding σ* orbital of the bound H2 is sufficiently strong, homolytic bond cleavage occurs. Otherwise, the acidic η1-H2 ligand undergoes proton transfer to another

References and Notes
5. Incompressibility is the resistance to elastic volume compression and is reported as bulk modulus in units of gigapascals. Hardness is resistance to plastic deformation and is reported in units of force per unit area (in gigapascals).
29. This work was funded by NSF under grants DMR-0453121 (R.B.K.), EAR-0501914 (A.K.), and CMS-0307322 (S.H.T.), and an Integrative Graduate Education and Research Traineeship (J.B.L.). Use of the National Synchrotron Light Source, Brookhaven National Laboratory, and the Advanced Light Source, Lawrence Berkeley National Laboratory, were supported by the U.S. Department of Energy, Office of Basic Energy Science, under contracts DE-AC02-98CH10886 and DE-AC03-76SF00098, respectively. The authors thank S. Caldwell, S. Clark, R. Cumberland, S. Fakra, J. Gilman, J. Hu, M. Kunz, and A. Phan for their assistance with this research.

Supporting Online Material
www.sciencemag.org/cgi/content/full/316/5823/456/DC1
Materials and Methods
Fig. S1
26 December 2006; accepted 16 March 2007 10.1126/science.1139322

*To whom correspondence should be addressed. E-mail: gbertran@mail.ucr.edu

UCR-CNRS Joint Research Chemistry Laboratory (UMI 2957), Department of Chemistry, University of California, Riverside, CA 92521-0403, USA.
metal-bound ligand. This latter type of process is often referred to as heterolytic cleavage and is also probably operative for phosphine-borane–containing species (8, 9, 23).

A singlet carbene has a vacant orbital and a filled nonbonding orbital (that sufficient overlap might still occur and thus enable activation of H₂ (Fig. 1).

Herein we report that stable, singlet, acyclic and cyclic (alkyl)(amino)carbenes 1 (26) and 2 (27) undergo a formal oxidative addition of H₂. Calculations predict that the transition state results from the primary interaction of the carbene’s lone pair of electrons with an H₂ antibonding orbital; thus, the carbene acts as a base toward H₂, creating a hydridelike hydrogen that attacks the positively polarized carbon center. This hypothesis of a nucleophilic activation process is reinforced by observation of the reaction of 1 and 2 with NH₃. Because of the strong nucleophilic character of these carbenes, no “Werner-like” adducts can be formed, and hence N-H-like bond cleavage occurs smoothly.

It has already been shown that cyclic di(amino)carbenes (NHCs) (28, 29) do not react with H₂ (30) nor with CO (31), whereas the latter adds to both acyclic and cyclic (alkyl) (amino)carbenes 1 and 2 (32). According to our calculations (33), the highest occupied molecular orbital (HOMO) and the singlet-triplet gap for the model mono(amino)carbenes (1⁰, 2⁰, and 2″) are slightly higher and significantly smaller in energy, respectively, than those of NHC 3 and acyclic di(amino)carbene 4 (Table 1). Consequently, carbenes 1 and 2 are slightly more nucleophilic, but considerably more electrophilic (34), than NHCs 3 and are therefore better candidates for transition metal–like behavior. This hypothesis was borne out upon bubbling H₂ through a solution of (alkyl)(amino)carbenes 1 and 2 at 35°C, because clean reactions occurred, and after purification adducts 5 and 6 were obtained in ~30% yield (35) as colorless crystals (Fig. 2A). All compounds were fully characterized by standard spectroscopic methods, including a single crystal x-ray diffraction study for 6a (fig. S1) (36). We confirmed that cyclic bis(amino)carbene 3 (37) does not react with hydrogen under our experimental conditions and found that the acyclic version 4 (38) is similarly inert.

The calculated energy changes (ΔE) (Fig. 4, Table 1, and table S3) show that although the reactions of all carbenes with H₂ are exothermic, the reactions are significantly more favored for mono(amino)carbenes (1⁰, 2⁰, and 2″) than for di(amino)carbenes (3⁰ and 4⁰). More importantly, the activation energy is at least 40 kJ/mol lower in the case of the mono(amino)carbenes, which readily rationalizes our experimental results.

For the addition of H₂ to model compound 2⁰, we further calculated the geometric parameters of potential intermediate structures along the reaction pathway (Fig. 2B). According to the lowest energy simulated trajectory, the H₂ molecule approaches the carbene as depicted in Fig. 2B. In the transition state, the H-H bond distance (1.071 Å) is comparable to those found for purely σ-bonded H₂ transition metal complexes (1.0 to 1.2 Å) (39). The H₂ molecule becomes polarized, and the positively charged H (±0.178) is already bonded to the carbon (1.206 Å), whereas the pseudohydridic H (±0.195) remains further away at a distance of 1.924 Å. The H-H bond then elongates further (1.388 Å), engendering greater hydridic character (−0.243) to one of the H atoms, which nonetheless remains distant from the carbon center (1.807 Å). Stereochemical inversion at the carbon center then allows the formation of the second C-H bond. This net process is a hybrid between a homolytic and heterolytic cleavage. However, in contrast to the electrophilic activation and proton transfer pathway favored by transition metal centers, carbenes act by initial nucleophilic activation, followed by hydride transfer.

Because H-H and N-H bond dissociation energies are comparable, the main obstacle for the activation of NH₃ by transition metals is the electrophilicity of the metal, which instead favors the formation of Werner-type amine complexes. Having observed the nucleophilic mode of activation of H₂ by mono(amino)carbenes 1 and 2, we considered it likely that these carbenes would also activate the N-H bond of ammonia, although it is known that NHCs do not (39). Our calculations (Table 1 and table S4) predicted comparable reaction barriers to H₂ activation and a less favored, but still exothermic, driving force. Consistent with these computational results, both carbenes 1 and 2 rapidly react with liquid NH₃, even at −40°C, cleanly affording adducts 7 and 8, respectively (Fig. 3A). The compounds were isolated in ~90% yield, and compound 8b was crystallographically characterized (Fig. 3B).

The mode of approach of NH₃ to 2⁰ is calculated to be very similar to that observed with H₂. In the transition state, one of the N-H bonds is very long (1.50 Å) and strongly polarized, with the positively charged H (±0.316) tightly bonded to the carbon (1.155 Å) and the pseudo-amide fragment (−1.042) remaining distant from the carbon center (2.314 Å). Importantly, the nitrogen lone pair is pointing away from the carbene vacant orbital, supporting the nucleophilic character of the activation process (Fig. 3B).

The results reported here show that stable singlet carbenes can mimic to some extent the behavior of transition metals. Like the latter, the electronic properties of carbene centers can be
Fig. 2. (A) Under mild conditions, (alkyl)(amino)carbenes 1 and 2 activate H₂, whereas (diamino)carbenes 3 and 4 are inert. (B) Some structures along the reaction pathway of the insertion of carbene 2’ into H₂ are calculated at the B3LYP/6-311 g** level of theory. Bond distances (Å) and charges (in parentheses) are given in the structure drawings, and relative energies are shown in the reaction coordinate diagram.

Fig. 3. (A) (Alkyl)(amino)carbenes 1 and 2 split ammonia at subzero temperatures. (B) Bond distances (Å) and charges (in parentheses) for the transition state of the reaction of NH₃ with carbene 2’, calculated at the B3LYP/6-311 g** level of theory.

Fig. 4. Model carbenes used for the calculated values shown in Table 1.

tuned by modifying the nature of the substituents, as shown by the differing reactivities of mono(amino)carbenes and diaminocarbenes with H₂ and NH₃. Moreover, the nucleophilic activation of NH₃ under very mild conditions, offers an alternative paradigm in the continuing search for catalytic systems capable of transforming ammonia efficiently into useful amino compounds.

References and Notes
4. A few species, which are only stable in matrices at 10 to 80 K, are also known to split H₂: subvalent group 13 species, (5) triplet carbenes (6), and the highly electrophilic singlet difluorovinylidene (7).
33. M. J. Frisch et al., Gaussian 03 (Gaussian, Wallingford, CT, revision C02, 2004).
34. In a first approximation, the singlet-triplet energy gap parallels the HOMO-LUMO (lowest unoccupied molecular orbital) splitting.
35. Carbenes 1 and 2 are highly moisture sensitive, and the low yields observed are due to the presence of water in the H₂ gas, which gives rise to the H₂O-carbene adducts.
36. Preparation methods and spectroscopic data for compounds 5, 6a, 6b, 7, 8a, and 8b are available on Science Online.
40. We are grateful to NSF (grant CHE 0518675) and RHODIA for financial support of this work, the University of Bielefeld for computer facilities, the Alexander von Humboldt Foundation for a fellowship (G.D.F.), and the Humboldt Foundation for computer facilities. Metrical data for the solid state structures of 6a and 8b are available free of charge from the Cambridge Crystallographic Data Centre under reference numbers CCDC-637184 and CCDC-637185, respectively.

Supporting Online Material
www.sciencemag.org/cgi/content/full/316/5823/439/DC1
Materials and Methods
Figs. S1 and S2 Tables S1 to S4
References and Notes
20 February 2007; accepted 13 March 2007
10.1126/science.1141474