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Landau-Level Degeneracy and Quantum Hall Effect in a Graphite Bilayer
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We derive an effective two-dimensional Hamiltonian to describe the low-energy electronic excitations
of a graphite bilayer, which correspond to chiral quasiparticles with a parabolic dispersion exhibiting
Berry phase 2�. Its high-magnetic-field Landau-level spectrum consists of almost equidistant groups of
fourfold degenerate states at finite energy and eight zero-energy states. This can be translated into the Hall
conductivity dependence on carrier density, �xy�N�, which exhibits plateaus at integer values of 4e2=h and
has a double 8e2=h step between the hole and electron gases across zero density, in contrast to �4n�
2�e2=h sequencing in a monolayer.
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FIG. 1. Left: schematic of the bilayer lattice (bonds in the
bottom layer A;B are indicated by solid lines and in the top
layer ~A; ~B by dashed lines) containing four sites in the unit cell:
A (white circles), ~B (hashed), ~AB dimer (solid). Right: the lattice
of a monolayer.
For many decades, the electronic properties of a graphite
monolayer have attracted theoretical interest due to a
Dirac-type spectrum of charge carriers [1–6] in this gap-
less semiconductor [7]. Recently Novoselov et al. [8]
fabricated ultrathin graphitic devices including monolayer
structures. This was followed by further observations [9–
11] of the classical and quantum Hall effects (QHEs) in
such systems confirming the expectations [3] of an unusual
phase of Shubnikov–de Haas oscillations and QHE pla-
teaus sequencing, as manifestations of a peculiar magneto-
spectrum of chiral Dirac-type quasiparticles containing a
Landau level at zero energy [1].

In this Letter we show that quasiparticles in a graphite
bilayer display even more intriguing properties including a
peculiar Landau-level (LL) spectrum: these are chiral qua-
siparticles exhibiting Berry phase 2�, with a dominantly
parabolic dispersion and a double-degenerate zero-energy
LL incorporating two different orbital states with the same
energy. Taking into account spin and valley degeneracies,
the zero-energy LL in a bilayer is eightfold degenerate, as
compared to the fourfold degeneracy of other bilayer states
and the fourfold degeneracy of all LLs in a monolayer. The
structure and degeneracies of the Landau-level spectrum in
a bilayer determine a specific sequencing of plateaus in the
density dependence of the QHE conductivity�xy�N�which
is distinguishably different from that of Dirac-type quasi-
particles in a graphite monolayer and of nonchiral carriers
in conventional semiconductor structures.

We model a graphite bilayer as two coupled hexagonal
lattices including inequivalent sites A;B and ~A; ~B in the
bottom and top layers, respectively. These are arranged
according to Bernal ( ~A-B) stacking [7,12,13], as shown in
Fig. 1. A lattice with such symmetry supports a degeneracy
point at each of two inequivalent corners, K and ~K, of the
hexagonal Brillouin zone [14], which coincide with the
Fermi point in a neutral structure and determine the centers
of two valleys of a gapless spectrum. At the degeneracy
point, electron states on inequivalent (A=B or ~A= ~B) sub-
lattices in a single layer are decoupled, whereas interlayer
coupling � ~AB � �1 forms ‘‘dimers’’ from pairs of ~A-B
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orbitals in a bilayer (solid circles in Fig. 1), thus leading
to the formation of high-energy bands [12,13].

The low-energy states of electrons are described by
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The effective Hamiltonian Ĥ2 operates in the space of two-
component wave functions � describing electronic ampli-
tudes on A and ~B sites and it is applicable within the energy
range j"j< 1

4�1. In the valley K, � � �1, we determine
����1 � ���A�; �� ~B��, whereas in the valley ~K, � � �1
and the order of components is reversed, ����1 �

��� ~B�; ��A��. Here, we take into account two possible
ways of A� ~B hopping: via the dimer state (the main
part) or due to a weak direct A ~B coupling, �A ~B � �3 �

� ~AB (the term ĥw). They determine the mass m � �1=2v2

and velocity v3 � �
���
3
p
=2�a�A ~B=@. Other weaker tunneling

processes [7] are neglected. The term ĥa takes into account
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a possible asymmetry between top and bottom layers (thus
opening a mini-gap	 u).

For comparison, the monolayer Hamiltonian [2],

Ĥ 1 � �v
0 �y

� 0

� �
� �v��xpx � �ypy�;

is dominated by nearest neighbor intralayer hopping
�AB � �BA � �0 
 �1, so that v � �

���
3
p
=2�a�AB=@. For

equivalent parameters in bulk graphite [7], v3 � v in
Eq. (1). Thus, the linear term ĥw, which is similar to Ĥ1,
is relevant only for very small electron momenta (i.e., in an
electron gas with a small density at a very low magnetic
field) whereas the energy spectrum within the interval
1
2�1�v3=v�

2 < j"j< 1
4�1 is dominated by the first term

[15] in Ĥ2 producing a dispersion j�j � p2=2m, which
contrasts with j�j � vp in a monolayer. Ĥ1 and Ĥ2 form
a family of Hamiltonians ĤJ � �Jf�jpj�� � n describing
particles which are chiral in the sublattice space, where
n � lx cos�J’� � ly sin�J’� for p=p � �cos’; sin’��� �
pei’
, and the degree of chirality is J � 1 in a monolayer
and J � 2 in the bilayer. It is interesting to notice that
quasiparticles described by the Hamiltonians ĤJ acquire a
Berry phase J� upon an adiabatic propagation along a
closed orbit; thus charge carriers in a bilayer are Berry
phase 2� quasiparticles, in contrast to Berry phase �
particles in the monolayer of graphene [3]. According to
the inverted definition of sublattice components (for which
we reserve 2� 2 Pauli matrices �i [16]) of the wave
functions ����1 and ����1, quasiparticles in different
valleys � � �1 have effectively the opposite chirality.
Also, the existence of two valleys is crucial for the time-
reversal symmetry of the chiral Hamiltonians. In applica-
tion to Ĥ2, time reversal is described by ��1 �

�x�Ĥ
��p; B; u���1 � �x� � Ĥ��p;�B; u�, where �1

swaps � � �1 and � � �1 in valley space [16].
A microscopic analysis leading to the bilayer

Hamiltonian Ĥ2 uses the tight-binding model of graphite
and the Slonczewski-Weiss-McClure parametrization [7]
of relevant couplings. We represent the Hamiltonian near
the centers of the valleys in a basis with components
corresponding to atomic sites A; ~B; ~A;B in the valley K
[14] and to ~B;A; B; ~A in the valley ~K, and distinguish
between on-site energies, � 1

2 u in the two layers,
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The Hamiltonian H determines the following spectrum
of electrons in a bilayer at zero magnetic field. There are
four valley-degenerate bands, ��� �p�, � � 1; 2, with
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where �2 describes the higher-energy ( ~AB dimer) bands.
The dispersion �1�p� describes low-energy bands. In the

intermediate energy range, 1
2�1�v3=v�

2, u < j�1j<�1, it
can be approximated with

��1 � �
1
2�1�

������������������������������
1� 4v2p2=�2

1

q
� 1
: (2)

This corresponds to the effective mass for electrons near

the Fermi energy in a 2D gas with density N, mc �

p=�@�1=@p� � ��1=2v2�
�������������������������������������
1� 4�@2v2N=�2

1

q
. The relation

in Eq. (2) interpolates between a linear spectrum �1 � vp
at high momenta and a quadratic spectrum �1 � p2=2m,
where m � �1=2v2. Such a crossover happens at p �
�1=2v, which corresponds to the carrier density N� �
�2

1=�4�@
2v2�. The experimental graphite values [7,10]

give N� � 4:36� 1012 cm�2, whereas the dimer band �2

becomes occupied only if the carrier density exceeds
N�2� � 2�2

1=��@
2v2� � 8N� � 3:49� 1013 cm�2. The es-

timated effective mass m is light: m � 0:054me using the
bulk graphite values [7,10].

The 4� 4 Hamiltonian H contains information about
the higher-energy band �2, and, therefore, is not convenient
for the analysis of transport properties of a bilayer which
are formed by carriers in the low-energy band �1. We
separate H into 2� 2 blocks, where the upper left di-
agonal block is H11 � ��12u�z � v3��xpx � �ypy
�, the
lower right diagonal block isH22 � �

1
2�u�z � �1�x, and

the off-diagonal blocks are H21 � H12 � v���xpx �
�ypy�. Then, we take the 4� 4 Green function determined
by H , evaluate the block G11 related to the lower-
band states, and use it to identify the effective low-energy
bilayer Hamiltonian Ĥ2. Using G�0��� � �H�� � "��1, we
write

G�
G11 G12

G21 G22

� �
�

G�0��1
11 H12

H21 G�0��1
22

 !
�1

� �H � "��1:

Then, we find that G11 � �1�G
�0�
11H12G

�0�
22H21�

�1G�0�11 , so
that G�1

11 � " � H11 �H12G
�0�
22H21. Since j"j � �1, we

expand G�0�22 � �H22 � "��1 in ��1
1 , keeping only terms

up to quadratic in p (and therefore in �y; �), and arrive
at the expression in Eq. (1).

For low quasiparticle energies, j"j � �1, the spectrum
determined by Ĥ2 in Eq. (1) agrees with �1�p� found using
the 4� 4 Hamiltonian H . Similarly to bulk graphite
[7,17], the effect of ĥw consists of trigonal warping, which
deforms the isoenergetic lines along the directions
’ � ’0, as shown in Fig. 2. For the valley K, ’0 � 0,
2
3�, and 4

3�, whereas for ~K, ’0 � �, 1
3�, and 5

3�. At the
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FIG. 2. Schematic of the Fermi line in the valley K, � � 1, for
high (light shading) and low density (dark shading). Note that the
asymmetry of the Fermi line at valley ~K, � � �1, is inverted.

0 0.1 0.2 0.3
v

3
/v

-20

-10

0

10

20

ε/
h⎯ ω

c

0 0.1 0.2 0.3 0.4
v

3
/v

-20

-10

0

10

20

(a) (b)

FIG. 3. Numerically calculated Landau levels for various val-
ues of v3 for valley K, � � 1. (a) for B � 0:1T (@!c �
0:216 meV assuming �1 � 0:39 eV, v � 8:0� 105 m=s),
(b) for B � 1T (@!c � 2:16 meV). Broken lines show groups
of four consecutive levels that become degenerate at large v3,
with each group separated from the next by two solid lines
representing levels that are not degenerate.
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lowest energies j"j< 1
2�1�v3=v�2, trigonal warping breaks

the isoenergetic line into four pockets, which can be re-
ferred to as one ‘‘central’’ and three ‘‘leg’’ parts [17]. The
central part and leg parts have minimum j"j � 1

2u at p � 0
and at jpj � �1v3=v2, angle ’0, respectively. For v3 	
0:1v, we find (using the data in Ref. [7]) that the separation
of a 2D Fermi line into four pockets would take place for
very small carrier densities N <Nc � 2�v3=v�2N� 	 1�
1011 cm�2. For N <Nc, the central part of the Fermi
surface is approximately circular with area Ac �
�"2=�@v3�

2, and each leg part is elliptical with area Al �
1
3 Ac. This determines the following sequencing of the first
few LL’s in a low magnetic field, B� Bc � hNc=4e	
1T. Every third Landau level from the central part has the
same energy as levels from each of the leg pockets, result-
ing in groups of four degenerate states. These groups of
four would be separated by two nondegenerate LLs arising
from the central pocket.

In structures with densities N >Nc or for strong mag-
netic fields B> Bc, the above described LL spectrum
evolves into an almost equidistant staircase of levels. We
derive such a spectrum numerically from Eq. (1) using the
Landau gauge A � �0; Bx�, in which operators �y and �
coincide with raising and lowering operators [18] in the
basis of Landau functions eiky�n�x�, such that �y�n �

i�@=�B�
������������������
2�n� 1�

p
�n�1, ��n � �i�@=�B�

������
2n
p

�n�1, and
��0 � 0, where �B �

���������������
@=�eB�

p
. In this we followed an

approach applied earlier to bulk graphite [17] and used the
bulk parameters for intralayer v and interlayer �1, varying
the value of the least known parameter v3. The spectrum
for the valley K (� � 1) is shown in Fig. 3 as a function of
the ratio v3=v for two different fields. Figure 3(a) shows
the evolution of the 20 lowest levels for B � 0:1T as a
function of v3, illustrating the above-mentioned crossover
from an equidistant ladder at v3 � 0 to groups of pocket-
related levels.

The LL spectrum obtained for B � 1T, Fig. 3(b) re-
mains independent of v3 over a broad range of its values.
Hence, even in the absence of a definite value of v3, we are
confident that the LL spectrum in bilayers studied over the
field range where @��1

B > v3m can be adequately de-
08680
scribed by neglecting v3, thus using an approximate
Hamiltonian given by the first term in Ĥ2, Eq. (1). The
resulting spectrum contains almost equidistant energy lev-
els which are weakly split in valleys K (� � �1) and ~K
(� � �1),

"�n � �@!c

������������������
n�n� 1�

p
�

1

2
�	; for n � 2;

�n� � Cn���n;Dn��n�2�; 	 � u@!c=�1:
(3)

Here, !c � eB=m, "�n and "�n are assigned to electron and
hole states, respectively, and Dn� � �"� �u=2� �n	
=

�@!c

������������������
n�n� 1�

p

, Cn� � 1=

�����������������������
1� jDn�j

2
q

. In the limit of

valley (u � 0) and spin degeneracies [19], we shall refer
to these states as fourfold degenerate LLs.

The LL spectrum in each valley also contains two levels
identified using the fact that �2�1 � �2�0 � 0,

(
"0 �

1
2�u; �0� � ��0; 0�;

"1 �
1
2�u� �	; �1� � ��1; 0�:

(4)

According to different definitions of two-component � in
two valleys, n � 0; 1 LL states in the valley K are formed
by orbitals predominantly on the A sites from the bottom
layer, whereas the corresponding states in the valley ~K are
located on ~B sites from the top layer, which is reflected by
the splitting u between the lowest LL in the two valleys. In
a symmetric bilayer (u � 0) levels "0 and "1 are degener-
ate and have the same energy in valleys K and ~K, thus
forming an eightfold degenerate LL at " � 0 (here, spin is
taken into account). Also, note that the spectrum of high-
energy LLs, Eq. (3) is applicable in such fields that @��1

B <
�1=2v. For higher fields the full two-band Hamiltonian H
has to be used to determine the exact LL spectrum, never-
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function of carrier density for bilayer (solid line) is compared to
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theless, the eightfold degeneracy of the zero-energy LL
remains unchanged.

The group of 8 states at j"j � 0 (4 for electrons and 4 for
holes, Eq. (4)) embedded into the ladder of fourfold degen-
erate LL’s with n � 2, Eq. (3) is specific to the magneto-
spectrum of J � 2 chiral quasiparticles. It would be re-
flected by the Hall conductivity dependence on carrier
density, �xy�N� shown in Fig. 4. A solid line sketches the

form of the QHE ��2�xy �N� in a bilayer which exhibits
plateaus at integer values of 4e2=h and has a ‘‘double’’
8e2=h step between the hole and electron gases acrossN �
0 that would be accompanied by a maximum in �xx.
Figure 4 is sketched assuming that temperature and the
LL broadening hinder small valley and spin splittings as
well as the splitting between n � 0; 1 electron/hole LL’s in
Eq. (4), so that the percolating states [18] from these levels
would not be resolved. To compare, a monolayer has a
spectrum containing fourfold (spin and valley) degenerate
LLs [1], "0 � 0 and "�n�1 � �

������
2n
p

@v=�B shown on the
right hand side of Fig. 4, which corresponds to Hall con-
ductivity ��1�xy �N� exhibiting plateaus at �4n� 2�e2=h (dot-
ted line [20]), as discussed in earlier publications [3].

The absence of a �xy � 0 plateau in the QHE accom-
panied by the maximum in �xx in the vicinity of zero
density is the result of the existence of the zero-energy
LL, which is the fingerprint of a chiral nature of two-
dimensional quasiparticles. This contrasts with a gradual
freezeout of both Hall and dissipative conductivities in
semiconductor structures upon their depletion. Having
compared various types of density dependent Hall conduc-
tivity, we suggest that two kinds of chiral (Berry phase J�)
quasiparticles specific to monolayer (J � 1) and bilayer
(J � 2) systems can be distinguished on the basis of QHE
measurements. It is interesting to note that the recent Hall
effect study of ultrathin films by Novoselov et al. [10]
featured both types of �xy�N� dependence shown in Fig. 4.

It is also worth mentioning that the eightfold degeneracy
of the group of � � 0 LLs in a bilayer, Eq. (4), is quite
08680
unusual in 2D systems. It suggests that e-e interaction in a
bilayer may give rise to a variety of strongly correlated
QHE states. For structures studied in Ref. [10], with elec-
tron/hole densities N 	 1012 cm�2, such a regime may be
realized in fields B	 10T.
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