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Today, coupled-cluster theory offers the most accurate results among the practical ab initio
electronic-structure theories applicable to moderate-sized molecules. Though it was originally
proposed for problems in physics, it has seen its greatest development in chemistry, enabling an
extensive range of applications to molecular structure, excited states, properties, and all kinds of
spectroscopy. In this review, the essential aspects of the theory are explained and illustrated with
informative numerical results.
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I. PERSPECTIVE ON THE MOLECULAR ELECTRONIC
PROBLEM

As the recent developments in coupled-cluster �CC�
theory have been mostly accomplished in quantum

chemistry circles, we begin with a quote from Ken Wil-
son �1989�:

“Ab initio quantum chemistry is an emerging com-
putational area that is fifty years ahead of lattice
gauge theory…and a rich source of new ideas and
new approaches to the computation of many fer-
mion systems.”
Driving these developments are the types of problems

addressed by quantum chemists, as shown in Fig. 1. Pri-
mary among these are potential-energy surfaces �PES�
which describe the behavior of the electronic energy
with respect to the locations of the nuclei, subject to the
underlying Born-Oppenheimer or clamped nuclei ap-
proximation. As shown, these PES can be for ground or
electronic excited states. At the equilibrium geometry,
�E�R�=0 defines the molecular structure. The second
derivatives ��E�R� determine whether the critical point
is a minimum or a saddle point.

In addition, from the ground- and excited-state wave
functions one obtains all properties that arise from a
solution to the vibrational Schrödinger equation that
gives the frequencies, and, with the derivatives of the
dipole moment, the infrared intensities. The derivatives
of the dipole polarizability define the Raman intensities.
Electronic excited states are also accessible along with
electronic and photoelectron spectra.

For the more kinetic aspects of chemistry, the basic
concept is a reaction path that is defined as a multidi-
mensional path along which all vibrational degrees of
freedom are optimum except one, which defines a path
toward products. The latter might have a saddle point as
shown, which defines a transition state and its activation
barriers. From that information, it is possible to obtain
rate constants and state-to-state cross sections.

In addition, properties that arise from the one-particle
density matrix, such as dipole moments, hyperfine cou-
pling constants, and electric-field gradients, are readily
available. Also, one obtains second- and higher-order
properties such as the dipole polarizability and NMR
chemical shifts and coupling constants. From even
higher-order electric-field derivatives, one obtains hy-
perpolarizabilities, which determine nonlinear optical
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behavior. From derivatives relative to atomic displace-
ments in molecules, one obtains anharmonic effects on
vibrational-rotational spectra. The two-particle density
matrix, besides having a role in the energy, is also essen-

tial for spin operators such as Ŝ2 and spin-orbit effects in
particular.

Consequently, the objective is an accurate solution of
the Schrödinger equation for molecules composed of
comparatively light elements. When relativistic effects
are essential, the solution of the Dirac equation might
be preferred. Of course, Darwin, mass-velocity, and
spin-orbit effects can be added to the nonrelativistic so-
lution to provide a wealth of approximations lying be-
tween the Schrödinger equation and the four-
component Dirac equation.

For modest-sized molecules of up to �15 light atoms
or �100 electrons and small-molecule relativistic calcu-
lations, coupled-cluster theory �Coester, 1958; Coester
and Kümmel, 1960; Čížek, 1966, 1969; Paldus et al., 1972;
Bartlett and Purvis, 1978, 1980; Bishop and Lührmann,
1978� has become the preeminent tool to introduce the
instantaneous effects of electron correlation that are not
included in a mean-field approximation �Urban et al.,
1987; Bartlett, 1989, 1995; Paldus, 1991; Lee and Scuse-
ria, 1995; Gauss, 1998�. There are many textbook and
similar accounts, each with a different focus �Lindgren
and Morrison, 1986; Harris et al., 1992; Bartlett and
Stanton, 1994; Bishop, 1998; Crawford and Schaefer,
2000; Helgaker et al., 2000; Bishop et al., 2002; Shavitt
and Bartlett, 2006�.

In short, from the viewpoint of a physicist, coupled-
cluster theory offers a synthesis of cluster expansions,
Brueckner’s summation of ladder diagrams �Brueckner,

1955�, the summation of ring diagrams �Gell-Mann and
Brueckner, 1957�, and an infinite-order generalization of
many-body perturbation theory �MBPT� �Kelly, 1969;
Bartlett and Silver, 1974a, 1976�. Hence, it is a very pow-
erful method for correlation in many-electron systems.
Its principal rationale compared to other quantum
chemical methods is its correct scaling with size, termed
size extensivity �Bartlett and Purvis, 1978, 1980�. This
means it is a purely linked diagram theory that guaran-
tees correct scaling with the number of particles or units
in a system, and facilitates accurate relative energies
along a potential-energy surface or between different
electronic states. Only with this property are applica-
tions to polymers, solids, or the electron gas possible,
and, even for small molecules, its effects are numerically
quite significant. Configuration interaction methods,
long the focus of the correlation problem in quantum
chemistry �Shavitt, 1998�, do not, in general, have this
property which is responsible for the emphasis on CC
theory and its MBPT approximations �Kelly, 1969;
Bartlett and Silver, 1974a, 1974b; Pople et al., 1976� in
chemistry.

The CC theory was introduced in 1960 �Coester and
Kümmel, 1960� for calculating nuclear binding energies
in nuclei that could be treated in the first approximation
by a single configuration of neutrons or protons. The
detailed equations for electrons were first presented in
1966 �Čížek, 1966� and its initial applications to elec-
tronic structure were reported �Čížek, 1966; Paldus et al.,
1972�. Starting in 1978 general purpose programs and
applications of CC theory were developed �Bartlett and
Purvis, 1978, 1980; Pople et al., 1978; Purvis and Bartlett,
1982�. Early in the history of the CC, it was shown to be
remarkably accurate for describing the correlation en-
ergy of the electron gas compared to the random-phase
approximation �RPA� �Freeman, 1977; Bishop and Lühr-
mann, 1978�.

For more details, the history of CC theory is best told
from the viewpoint of some of its principal developers.
In the proceedings from the workshop “Coupled Cluster
Theory of Electron Correlation” papers of Kümmel
�1991� and Čížek �1991� address this issue. More re-
cently, papers on this topic �Bartlett, 2005; Paldus, 2005�
are pertinent. For the physics viewpoint, in the previous
proceedings see Arponen �1991� and Bishop �1991�.

For larger molecules and solids, far more approximate
but more easily applied methods such as density-
functional theory �DFT� or from the wave-function
world the simplest correlated model MBPT�2� �also
sometimes known as MP2 when using a Hartree-Fock
reference function� are preferred. There are CC solu-
tions for some simple polymers �Hirata, Grabowski, et
al., 2001; Hirata, Podeszwa, et al., 2004�. For nuclei, after
an appropriate regularization of the strong interaction,
CC theory can be applied almost as it is for molecules
�Coester and Kümmel, 1960; Kümmel et al., 1978;
Guardiola et al., 1996; Bishop et al., 1998; Heisenberg
and Mihaila, 1999; Mihaila and Heisenberg, 2000; Kow-
alski et al., 2004; Włoch et al., 2005�.

FIG. 1. The nature of quantum chemical problems.
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Heavy-atom relativistic CC theory is also widely ap-
plied in several variants. These range from simply using
relativistic pseudopotentials to describe the passive
�Darwin and mass-velocity� relativistic effects �Perera
and Bartlett, 1993; Sari et al., 2001�, to generalized
pseudopotentials that also address spin-orbit effects
�Mosyagin et al., 2001�, to one- and two-component
Douglas-Kroll-Hess methods �Kaldor and Hess, 1994;
Hess and Kaldor, 2000�, and to a full four-component
method �Eliav and Kaldor, 1996; Visscher et al., 1996;
Eliav et al., 1998�.

An essential element to understand when quantum
chemists and electronic-structure physicists attempt to
communicate �to paraphrase George Bernard Shaw,
“one discipline divided by a common language”� is that
chemists are typically interested in molecules whose
wave functions satisfy square-integrable boundary con-
ditions, instead of infinite systems whose wave functions
satisfy periodic boundary conditions. Since wave func-
tions for individual molecules go to zero at infinity, this
suits the Gaussian basis-set expansions used for mol-
ecules. For periodic boundary conditions, Gaussians are
still often used, but there is also the prospect of using
plane waves that are not tied to specific atoms, yet these
have not yet found a role in the wave-function correla-
tion treatment of individual molecules �see, however,
Chawla and Voth, 1998; Sorouri et al., 2006�. Also purely
numerical solutions can be considered and are for
atomic �Lindgren and Salomonsen, 2002� and some di-
atomic applications of CC theory �Adamowicz et al.,
1985�, but because of the multicenter nature of mol-
ecules, and the need for explicit consideration of two-
particle effects in CC and related methods �as opposed
to DFT�, such grid-based solutions have not been shown
to be as feasible.

On the other hand, finite Gaussian basis sets intro-
duce an inherent error in any solution of the
Schrödinger equation that has to be considered in its
applications. High-level calculations will typically use a
converging series of Gaussian basis functions such as the
cc-pVXZ sets �Dunning, 1989; Kendall et al., 1992;
Woon and Dunning, 1993� or atomic natural orbital sets
�Almlöf and Taylor, 1987�, where cc means “correlation
consistent,” the pV indicates “polarized valence,” mean-
ing that the basis will have higher angular momentum
orbitals than those required to describe an atom’s
ground state, and X will range from D for double zeta,
meaning two linear combinations of Gaussian atomic or-
bitals per electron, to T, Q, 5, 6, etc. For the N atom, for
example, there are 14 contracted Gaussian functions in
the DZ form, 30 for TZ, 55 for QZ, 91 for the 5Z, and
140 for 6Z. Calculations followed by extrapolation can
then be argued to approach the basis-set limit. A better
but more complicated solution for the basis set is the
inclusion of explicit r12 interactions with coupled-cluster
methods �R12-CC� �Noga et al., 1992�. However, most
molecular applications make little attempt to achieve
the true basis-set limit, but instead depend upon the ap-
proximate cancellations known for the relative energies
in spectroscopy, or along a reaction path, or breaking a

bond into its fragments, causing much of the common
basis-set correlation error to cancel from the computa-
tion. In fact, without this effect there would scarely be a
computational chemistry.

II. PLAN FOR REVIEW

The intent of this review is to systematically develop
the ideas that have enabled CC theory to become the
predictive method for electron correlation in molecules,
as supported by its numerical results. In Sec. III, we
present an overview of solutions to the correlation prob-
lem, using elementary configuration space concepts to
discuss its description using configuration interaction
�CI�. Configuration interaction is exact in the full CI
limit, but lacks size extensivity with any truncation of
the configuration space, such as to single and double

excitation Ĉ1 and Ĉ2. This is the wave function �CISD

= �1+ Ĉ1+ Ĉ2��0, with �0 an independent particle �mean-
field� reference function. See Fig. 2 for the definition of
such excitations.

We then relate CI to Rayleigh-Schrödinger perturba-
tion theory �RSPT� as a way to extract the CI eigen-
value. Rayleigh-Schrödinger perturbation theory has the
same failings as truncated CI, but once all configurations
that can contribute in a given order are considered,
RSPT becomes many-body perturbation theory
�MBPT�, which as a fully linked method has to be size

FIG. 2. Graphical examples of the selected single ��i
a�, double

��ij
ab�, and triple ��ijk

abc� excitations due to the T1 �C1�, T2 �C2�,
and T3 �C3� operators, respectively. Electrons from all possible
occupied orbitals can be excited to all possible unoccupied or-
bitals, so T3�0=�

a�b�c
i�j�k tijk

abc�ijk
abc.
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extensive. In practice, MBPT mostly offers a finite-order
approximation to the correlation problem, with the in-
herent failings of such expansions.

On the contrary, coupled-cluster theory offers a very
convenient and powerful resummation of MBPT dia-
grams, providing an infinite-order approximation in se-
lected cluster operators. In particular, �MBPT
=exp�T��0=�CC for T=T1+T2+ ¯ +Tn, where Tp is a
connected cluster operator that corresponds to p-fold
excitations �Fig. 2�. Correct scaling with the number of
particles �extensivity� is ensured due to the exponential
form with the condition that T be connected. Limiting
the resummations to all terms that arise from single and
double excitation cluster operators T1 and T2, e.g., de-
fines �CCSD=exp�T1+T2��0, which adds all the products
like T2

2 /2 and T1T2 to the CI wave function. As shown in
Fig. 3, numerical results of CI with higher excitation op-
erators compared to orders of MBPT and CC with
higher excitation clusters clearly demonstrate the nu-
merical superiority of CC theory.

In Secs. IV and V, we introduce the unambiguous eas-
ily applied diagrammatic approach that has been devel-
oped to derive the detailed form of the CC equations
including T2, coupled-cluster doubles �CCD�, T1 and T2
�CCSD�, and with triples �CCSDT� and connected qua-
druple excitations �CCSDTQ�. The computational diffi-
culty and the expense of the latter necessitate some sim-
plified approximations, and these can be iterative like
CCSDT-1, or noniterative like CCSD�T�. Section VI de-

fines and documents how well all these approximations
work for real world applications in comparison with ex-
periment.

Section VII introduces the � deexcitation operator,
which allows the treatment of energy derivatives on
potential-energy surfaces �E�R�= �0��1+��exp�−T�
��H�R�exp�T��0� and for the density matrices �pq

= ��0��1+��exp�−T�ĉp
†ĉq exp�T���0� and �pqrs= ��0��1

+��exp�−T�ĉp
†ĉq

†ĉsĉr exp�T���0�, where ĉp
†ĉq are occupa-

tion number operators described in Sec. V. � and exp�T�
are dual. Together they define the CC functional E
= �0��1+��e−THeT�0�. Numerical results for molecular
structures and vibrational frequencies are pertinent
here.

In the next section, we consider excited, ionized, and

electron attached states by using the ansatz R̂k�CC=�k,

where R̂k=R0
�k�+R1

�k�+R2
�k�+¯ is another excitation op-

erator which after a constant creates single, double, etc.
excitations from the CC reference solution. Inserting
this ansatz into the Schrödinger equation for the kth
excited state and subtracting the ground state leads to

the EOM-CC method �H̄ , R̂k	�0�=�kR̂k�0�, with �k=Ek

−E0, and R̂k is a right-hand eigenvector. The left-hand

eigenvector �L̂k is a deexcitation operator� L̂kH̄= L̂k�k,

�0�L̂kR̂l�0�=	kl; L0= �1+�� and R0=1, making the
connection with the ground-state functional. Excited
states have the associated density matrices, �pq

kl

= �0�L̂k exp�−T�ĉp
†ĉq�T�R̂l�0�. The spectrum of eigenvec-

tors also defines second- and higher-order response
properties. Many numerical results are presented.

The final section considers the generalization of the
reference function ��0� to multireference form by re-
placing it with a linear combination of important deter-
minants 
�1 ,�2 , . . . ,�m�, and redefines the cluster ex-
pansion operator accordingly to define two different
multireference �MRCC� methods. These are pertinent
when there are quasidegeneracies as would occur in
open-shell atoms, or as bonds are broken in dissociation.
One then obtains an effective Hamiltonian matrix and
associated eigenvector equations that can treat several
states at once, or be reduced to a multireference, state-
specific form. Numerical illustrations of Hilbert-space
and Fock-space MRCC applications are discussed, in-
cluding the application of an intermediate Hamiltonian
to eliminate intruder states.

III. SOME ESSENTIAL PRELIMINARIES

The Hamiltonian in the Born-Oppenheimer approxi-
mation is

H�R� = − 1
2�

i=1

n

�2�ri� − �



Z
/�ri − R
�

+ 1
2 �

i,j=1

n

1/�ri − rj� + 1
2�

,�

Z
Z�/�R
 − R�� �1�

FIG. 3. �Color online� Performance of theories for the corre-
lation energy in small molecules. Graphed is the percentage of
the full correlation energy achieved by the CI, CC, and MBPT
theories, as a function of the level of approximation. To facili-
tate comparisons, the ordinate gives the size-scaling parameter
of the approximation 
=
n+
N+
it in the computational cost
function n
nN
NNit


it. Shown are MBPT �solid circles�, approxi-
mations �2�–�6�; CI �solid squares�, approximations SD-SDTQ;
and CC �stars�, approximations SD-SDTQ. The correlation en-
ergy is defined with respect to the Hartree-Fock energy for the
given basis set, and the full correlation energies are obtained
from the FCI calculations quoted in Table I.
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=�
i

h�ri� + 1
2�

i,j
ĝ�ri,rj� + ENN, �2�

where 
ri� locates the electrons and 
R
� the nuclei. Z
 is
the atomic number of the nucleus 
. ENN is a constant at
any geometry, so it needs no further consideration
within the clamped nuclei approximation.

Choosing to use expressions in terms of spin orbitals
x1=1=r�1�1 with �1 the spin coordinate for electron
1, the independent particle wave function is
A„1�1�2�2�¯n�n�…, where A= �1/�n!��P�−1�pP, with
P providing the permutation and �−1�p its parity.

Separating the electronic Hamiltonian that is para-
metrically dependent on R into an unperturbed and per-
turbed part,

H�r ;R� = H0 + V , �3�

H0 = �
i

�ĥ + û	�i� = �
i

ĥeff�i� , �4�

V = 1
2�

ij
ĝ�ij� − �

i
û�i� , �5�

where û�i� represents an average �mean� field potential

as in the Hartree-Fock case, where û�1�= Ĵ�1�−K̂�1�
=d�2�j

nj
*�2�j�2� / �r1−r2�−d�2�j

nj
*�2�P12j�2� / �r1−r2�,

and ĥeff�1�= f̂�1� is the Fock operator. x and R represent
positions of all electrons and nuclei, respectively. The
space-spin volume element is d�2, and P12 indicates the
permutation of electrons 1 and 2. Unless stated other-
wise, throughout this review we will assume the spin-
orbital form of the one-particle equations. This is the
simplest for formal manipulations and means all equa-
tions will be equally applicable to closed-shell and high-
spin �i.e., maximum unpaired spin� open-shell atoms and
molecules. In the simplest case, � will reduce to either 

for spin Sz= +1/2 or � for spin −1/2. For generalized
spin orbitals �1=N�
1+c�1�, which would sacrifice the
Sz quantum number.

With the solution to the one-particle equation

ĥeff�1�p�1�=�pp�1�, the solution of the unperturbed
Schrödinger equation is given by H0�0=E0�0, where
E0=�i�i. �0 is the single-determinant approximation to
the electronic wave function Eref= ��0�H��0�=E0+E�1�.

In addition, in any finite basis-set solution of the one-
particle equation, the spatial part of the orbitals �=�c,
where � is the underlying, typically Gaussian atomic-
orbital basis set of dimension, M, and c is a vector of the
coefficients. These functions are determined for differ-
ent elements and are located on all atoms in a molecule.
This leads to the equation heffc=Sc�, where S is an over-
lap matrix Sij= ��i ��j�. There are M solutions to this
equation, so for p�n, we have occupied orbitals �those
below a Fermi level�, and for p�n, M−n=N unoccu-
pied orbitals, sometimes called virtual since they are a
by-product of the finite basis calculation and have no
role in defining heff.

A. Configuration interaction

The essence of the electron correlation problem in a
one-particle basis set is to give the n-particle wave func-
tion the flexibility to keep electrons apart by the admix-
ture of the higher excitations. The traditional route in
quantum chemistry that goes back to Slater �1929�, Parr
�Parr and Crawford, 1948�, and Boys �1950� has been
configuration interaction �CI�. That is, build an
n-particle wave function from the singly excited, doubly
excited, etc., determinants, 
�i

a� , 
�ij
ab� , . . ., where each

such excitation means a determinant where some of the
n occupied orbitals, i , j ,k , l , . . . ,n are replaced by the
M−n=N virtual orbitals, a ,b ,c ,d , . . . ,N when the orbit-
als have the same spin. We use the indices p ,q ,r ,s when
the orbitals are unspecified. We choose intermediate
normalization ��0 ��CI�=1. The exact wave function in a
finite basis set is the full CI �FCI�, which means include
all same-spin excitations up to n-tuple ones for n elec-
trons,

�CI = �0 + �
a,i

Ci
a�i

a + �
i�k,a�b

Cij
ab�ij

ab + ¯

+ �
i�j�k�¯

a�b�c�¯

Cijk¯n
abc¯M�ij¯n

ab¯N �6�

=�1 + �
p

n

Ĉp��0, �7�

where the coefficients 
Cij¯
ab¯�, of which there are

��nN�m, where m indicates the excitation level, are nor-
mally determined variationally. The full CI is an impos-
sibility for any but quite small molecules in small basis
sets since the number of determinants is ��nN�n�Mn

for M basis functions. However, the full CI is an unam-
biguous reference model for the correlation problem as
it is the best possible solution in any finite basis set. It is
variational ECI�Eexact, invariant to all orbital rotations,
and is size extensive. In a complete basis, the full CI,
then termed the complete CI, gives the exact solution to
the Schrödinger equation. When one refers to a trun-
cated CI, one means that one is limited to some subset
of the possible excitations, like all single and double ex-
citations, or CISD. It is variational, invariant to orbital
transformations among just the occupied or unoccupied
orbitals, but it is not size extensive.

Paying a little more attention to the eigenvalue prob-
lem for a truncated CI like CISD, we have the equations

��i
a��H − �E�Ĉ1 + HĈ2�0� = 0, �8�

��ij
ab�HĈ1 + �H − �E�Ĉ2�0� = 0, �9�

ECISD = ��0�H��0� + �E , �10�
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�E = ��0�H�Ĉ1 + Ĉ2���0� . �11�

The size-extensivity problem in CI arises from the
−�ECn terms, which will remain in any less than full CI
calculation. These, of course, contribute unlinked dia-
grams �discussed in the next section� into the CISD en-
ergy, since �E is represented by closed diagrams, caus-
ing its product with Cn to be unlinked. Such unlinked
terms can only be removed from the CI equations by
formal consideration of some kinds of contributions
from higher excitations beyond those in the particular
truncated CI. The proper inclusion of such contributions
is accomplished in MBPT and coupled-cluster theory.

B. Perturbation theory

The connection between CI and perturbation theory
is readily apparent when perturbation theory �PT� is
used to extract the CI eigenvalue. Using the CISD ma-
trix problem for the ground-state energy as an example,

���0�H��0� ��0�H�h�
�h�H��0� �h�H�h� �� 1

C
� = � 1

C
�E ,

where �h� indicates the single ��i
a� and double ��ij

ab� ex-
citations in configuration space. Solving for C in the ma-
trix equation, a little manipulation gives the ground-
state eigenvalue

E = ��0�H��0� + ��0�H�h��h�E − H�h�−1�h�H��0� . �12�

From this expression, Rayleigh-Schrödinger PT emerges
from a separation of H=H0+V, where H0=�ih

eff�i�, V
=H−H0, and a recognition that E=E0+E�1�+E�2�+¯.
Then, R= �h�E0−H0+V−�E�h�−1=R0+R0�V−�E�R.
This leads to the energy E= ��0�H��RSPT�, and wave-
function corrections �RSPT=�0+��1�+��2�+¯ �Löwdin,
1968�. Within the configuration space �h�,

E0 = �
i=1

n

�i, �13�

E�1� = ��0�V��0� , �14�

E�2� = ��0�H�h��h�E0 − H0�h�−1�h�H��0�

= ��0�VR0V��0� = ��0�V���1�� , �15�

E�3� = ��0�VR0�V − E�1��R0V��0� �16�

=��0�V���2�� = ���1��V − E�1����1�� , �17�

E�4� = ��0�V���3��

= ��0�VR0�V − E�1�����2�� − E�2����1����1�� �18�

=���2��E0 − H0���2�� − E�2����1����1�. . . ,

. . . . �19�

The resolvent operator R̂0= �h��h�E0−H0�h�−1�h�
= �h�R0�h�. We also have �E0−H0���ij¯

ab¯�= ��i+�j+ ¯−�a

−�b− ¯ ���ij
ab�, which makes the resolvent matrix diago-

nal. With a Hartree-Fock �HF� reference, only double
excitations contribute to E�2� and E�3�.

Note that as long as the configuration space is re-
stricted to a subset of possible excitations, like single
and double excitations, renomalization terms like
−E�2����1� ���1�� remain. Since E�2� has to scale linearly
with the number of particles, and it may be shown that
���1� ���1�� does likewise, such renormalization terms
have the potential �except for exclusion principle violat-
ing �EPV� terms, discussed later	 to scale as �n2 with
those in higher orders of PT scaling with higher powers
of n. So any truncated CI eigenvalue will retain such
terms. However, in the full CI they would not. Their
elimination is achieved in a given order when all higher
excitations are included in the space of configurations
�h� that can contribute to that order. That is, in fourth
order we have to consider �h�= �h1h2h3h4� where we also
have triple and quadruple excitations. Once we include
the latter, with some algebra �Bartlett and Silver, 1975� it
can be shown that −E�2����1� ���1�� is solely determined
by double excitations and is removed from E�4� by the
role of quadruple excitations in the lead term of E�4�.
This cancellation between different categories of excita-
tions was first shown by Brueckner �1955�. This is the
substance of the linked-diagram theorem, as proved to
all orders by Goldstone �1957� using time-dependent,
diagrammatic techniques. It may also be proven in a
time-independent way �Paldus and Čížek, 1975; Manne,
1977; Shavitt and Bartlett, 2006�. Hence, if we do not
restrict our configuration space but allow all excitations
that can contribute in a given order �that is always less
than the full CI space�, we make the transition from
RSPT to MBPT and dispense with any renormalization
or unlinked terms. In MBPT, we can then write

��MBPT� = ��0� + �
k=1

n

�R̂0�V − E�1��	k��0�L, �20�

E�n+1� = ��0�V���n��L, �21�

E�2n+1� = ���n��V − E�1����n��L, �22�

E�2n� = ���n��E0 − H0���n��L, �23�

where L indicates the restriction to linked diagrams. In
this form, MBPT assumes the formal simplicity of
Brillouin-Wigner perturbation theory �Löwdin, 1968�,
but without the dependence on an unknown energy.

This simple example leads to several important conse-
quences. �i� Rayleigh-Schrödinger perturbation theory
when allowing all categories of excitations that can oc-
cur in a given order of perturbation theory becomes
many-body perturbation theory �MBPT�, where the
many-body terminology emphasizes that the theory has
to provide correct scaling with the number of particles
or size-extensive results for the energy, wave function,
and density matrices �i.e., there are no unlinked dia-
grams�. �ii� The converse is if we restrict the excitations
in RSPT to subsets like single and double excitations, as
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in CISD, infinite-order RSPT=CISD, and any such trun-
cated CI is not size extensive. Only the full CI is.

An important benefit of the linked-cluster factoriza-
tion is that the contribution of �h4� into E�4� might ap-
pear to require eight-index denominators since R0

would contain �h4��h4�E0−H0�h4�−1�h4�� ��ijkl
abcd���i+�j

+�k+�l−�a−�b−�c−�d�−1��ijkl
abcd�, but all such terms are

replaced by a product of two four-index denominators
��i+�j−�a−�b���k+�l−�c−�d� by simply putting two
terms over a common denominator �Bartlett and Silver,
1975�, a simple application of the Frantz-Mills factoriza-
tion theorem �Frantz and Mills, 1960�. The effect of such
a factorization is important numerically, since an eight-
index denominator would require an �n4N6 computa-
tional procedure, while four-index denominators, even
as products, never require more than an �n2N4 proce-
dure. This is the same as CISD, but now the effects of
essential quadruple excitations are included.

One final lesson in this simple example is that for two
electrons �i , j� we have no quadruple excitations, so
rather than canceling the renomalization term, the exact
result would have to retain it. However, we can still al-
low the formal quadruple excitations like �h4� to be in-
cluded in the equations, even though we know that these
determinants violate the exclusion principle for two
electrons making their contribution zero. However, after
the cancellation of the renormalization term, we are left
with nonvanishing contributions of those determinants
that appear as part of the quadruple excitation linked
diagrams that remain, even for two electrons. For two
electrons their value is equal to that of the renormaliza-
tion term, thereby accounting for it. These residual
terms are somewhat misleadingly called EPV for exclu-
sion principle violating �Kelly, 1962�, though, of course,
there is no violation. It is just a different way of counting
�Szalay and Bartlett, 1992�. This will also be the reason
why all equations in MBPT and CC theory will have
unrestricted summation indices, which is very different
from CI, where the exclusion principle is enforced for
every determinant in the wave function. This, too, offers
a distinct computational advantage.

C. Coupled-cluster theory

The basic equations of coupled-cluster theory are de-
ceptively simple. We start from the fact that the exact,
linked-diagram wave function above �as will be shown in
the next section� can be written as

�MBPT = �CC = exp�T��0 = ��0, �24�

�CC = �1 + T + T2/2 + T3/3! + ¯ ��0, �25�

where � is often called the wave operator as it takes an
unperturbed solution into the exact solution. The cluster
operator T is composed of a series of connected opera-
tors that can be expanded in terms of its components
that introduce single �i

a, double �ij
ab, triple �ijk

abc, etc.
excitations into the wave function as in Fig. 2,

T = T1 + T2 + T3 + ¯ + Tn, �26�

Tn = �n!�−2 �
i,j,. . .

a,b,. . .

tij¯
ab¯ĉa

†ĉb
†
¯ ĉjĉi, �27�

T1�0 = �
i,a

ti
a�i

a, �28�

T2�0 = �
i�j,a�b

tij
ab�ij

ab, �29�

T3�0 = �
i�j�k,a�b�c

tijk
abc�ijk

abc, �30�

T4�0 = �
i�j�k�l,a�b�c�d

tijkl
abcd�ijkl

abcd, �31�

. . . .

These Tn contributions are referred to as connected
since they cannot be reduced further. However, by virtue
of the nonlinear terms in the exponential expansion, we
have, in addition, the disconnected �but linked� compo-
nents of the exact wave function,

1
2T2

2�0 = �
i�j,a�b

k�l,c�d

tij
abtkl

cd�ijkl
abcd, �32�

1
2T1

2�0 = �
i,a

j,b

ti
atj

b�ij
ab, �33�

T1T2�0 = �
ia

k�l,c�d

ti
atkl

cd�ijk
abc, �34�

. . . .

Note that even though these terms such as T2
2 /2 intro-

duce quadruple excitations into the wave function, they
are greatly simplified as their coefficients are composed
of products of just double excitation coefficients, or
�n2N2 coefficients instead of the �n4N4 associated with
T4.

The equations for the CC amplitudes 
tij¯
ab¯� are ob-

tained by insertion into the Schrödinger equation, fol-
lowed by projection onto a sufficient number of excita-
tions,

exp�− T�H exp�T��0 = H̄�0 = E�0, �35�

��ij¯
ab¯�H̄��0� = QH̄P = 0, �36�

E = ��0�exp�− T�H exp�T���0� = ��0�H̄��0� . �37�

From the well-known Hausdorff expansion,
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H̄ = H + �H,T	 +
1
2

��H,T	T	 +
1
3!

���H,T	T	T	

+
1
4!

����H,T	T	T	T	 , �38�

which has to terminate after fourfold commutators when
H has no more than two-electron operators in it. Hence,
the CC equations �36� are connected, as any terms that
would not have indices in common between H and T
would be eliminated. This makes the CC wave function
�CC=exp�T���0� linked, and consequently the energy in
Eq. �37� is too. This requires that the energy be size
extensive �Bartlett and Purvis, 1978�, which is an essen-
tial requirement of the theory. Note that Eq. �36� is of
the general form Tp= f�T1 ,T2 , . . . ,Tp−1�+g�Tp ,Tp+1 ,
Tp+2�. The contribution of the first term is always
�npNp+1, while Tp into Tp is always one N higher, with
Tp+1 being nN2 and Tp+2 being n2N3 higher. Hence, for
CCSD where T3=T4=0, we have a computational scal-
ing of �n2N4; CCSDT is �n3N5, and
CCSDTQ is �n4N6.

Comparing the exact CC solution with the full CI, we
see that

C1 = T1, �39�

C2 = T2 + 1
2T1

2, �40�

C3 = T3 + T1T2 + T1
3/3!, �41�

C4 = T4 + T2
2/2 + T1T3 + T1

2T2/2 + T1
4/4!, �42�

] ,

which demonstrates the cluster decomposition of the
wave function. As the Hamiltonian has at most two-
particle interactions in it, logically one might expect that
the simultaneous correlation of two electrons in differ-
ent parts of a molecule, as represented by T2

2 /2, is more
important in the wave function than the true, connected
four-particle cluster interactions associated with T4, and
for electronic structure this is indeed the case. Hence, a
coupled-cluster wave function limited to connected
double excitations �CCD� �CCD=exp�T2��0, the sim-
plest CC approximation, already includes the discon-
nected parts of quadruples, hextuples, and higher even-
ordered excitations. Such disconnected products are
responsible for the size-extensivity property of the
method. That is, it is appropriate for many electrons.
Without this, CC theory, like truncated CI, could not be
applied to infinite systems such as crystalline solids or
the electron gas.

Besides the obvious application to infinite systems, a
manifestation of size extensivity in chemistry is the en-
ergy released �or absorbed� in a reaction, called the heat
of the reaction. For example, for the reaction A+B
→C+D, �Erxn=�E�C�+�E�D�−�E�A�−�E�B�. When
these energies are obtained from CC theory, it is appro-
priate to add them as above since �assume closed shells

for simplicity� HA+B�CC�A+B�=HA�CC�A�HB�CC�B�
and EAB=EA+EB, but for a nonextensive method such
as CI, separate calculations have to be made for A+B
and C+D far apart, to get meaningful energy differ-
ences, since HA+B�CI�A+B��HA�CI�A�HB�CI�B�.
Hence, there cannot be any such thing as a table of en-
ergies computed by truncated CI for a variety of mol-
ecules, which can then be added to evaluate energies
�heats� of chemical reactions.

Another manifestation is obtaining consistent, relative
energies along a PES. That is, the theory should give
meaningful energy differences for activation barriers
where bonds are being formed and broken, or even for
the detailed vibrational frequencies for a molecule in its
equilibrium geometry. Size extensivity is absolutely es-
sential in today’s quantum chemistry, and that has led to
the emphasis on CC and its MBPT approximations.

Since the full CI has to be the exact result in a basis
set, it provides an unambiguous measure of how well a
given approximation does for electron correlation. In
Table I and Fig. 3, we illustrate results from CI subject
to higher excitation operators and finite-order MBPT
and CC theory with higher connected operators. The
plot shows convergence to 100% of the correlation en-
ergy with an excitation level or order of perturbation
theory. All methods first require an integral transforma-
tion from atomic to molecular orbitals. For M=n+N ba-
sis functions, this scales as �M5. In terms of computa-
tional scaling, the CI and CC methods without further
restrictions scale as �nlNl+2Nit with the level of excita-
tion l, where n means the number of occupied orbitals
and N is the number of unoccupied ones, and Nit indi-
cates the number of iterations required to converge. In
other words, to do CISD requires �n2N2 coefficients in

Ĉ2 and at least one summation of N2 in the evaluation of

��ij
ab�HĈ2��0�. Adding quadruple excitations into CI re-

quires �n2N2 more time and computational resources.
As even in a small calculation, n=10, N=100, the exten-
sion to quadruple excitations is �106 times as difficult.
The most important parts of the quadruple excitations in
CI are those that account for the unlinked diagrams.
Hence, the transition to MBPT has already eliminated
such terms to all orders, making even the low-order re-
sults better in some cases. The MBPT�2� approximation
is limited by the integral transformation unlike the other
methods, as it has a very quick �n2N2 evaluation. The
MBPT�3� approximation scales the same as CISD, but it
is noniterative as are all the MBPT approximations. The
power of CC theory is shown when considering the scal-
ing of CCSD which is the same as CISD, but unlike the
latter CCSD already benefits from the elimination of
unlinked quadruple excitation diagrams, and the largest
part of the remainder of the linked ones is conveniently
introduced by the disconnected term T2

2 /2. But the scal-
ing of this term is only �n2N4, compared to �n4N6 for
the quadruples in CISDTQ, which would include con-
nected, disconnected, and unlinked terms. This is obvi-
ously an enormous savings. Full MBPT�4� scales as
�n3N4, since the rate-determining step is for connected
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triple excitations. If they are eliminated leaving SDQ-
MBPT�4�, then we have the noniterative ��n2N4� ap-
proximation to CCSD. The noniterative approximation
MBPT�4� to CCSDT has one N higher in scaling instead
of two because there is no T3→T3 coupling in MBPT�4�.
Those terms would arise in fifth order, along with the
first contribution from connected quadruple excitations
T4. The T4→T4 part of connected quadruples first arises
in sixth order. By combining MBPT and CC theory,
noniterative approximations such as CCSD�T� are de-
rived. These are discussed in Sec. V. Because of this
combination, CCSD�T� scales as �n2N4Nit+n3N4, which
is a significant savings on CCSDT, and there is no stor-
age of the �n3N3tijk

abc amplitudes. An iterative method
such as CCSDT-3 �Sec. V.D� scales as �n3N4Nit, and also
does not require storage of triple excitation amplitudes.

IV. NORMAL-ORDERED HAMILTONIAN

The CC equations can be developed systematically us-
ing the unifying and compact diagrammatic develop-
ment that has evolved over several years �Čížek, 1969;
Paldus et al., 1972; Kucharski and Bartlett, 1986�. Dia-
grammatic methods begin with the second-quantized
form of the electronic Hamiltonian in Eq. �1�. In the
following, we have no time or frequency dependence so

creation operators p̂† , âp
† ,X̂p

† , ĉp
† and annihilation opera-

tors p̂ , âp ,X̂p , ĉp work in occupation number space, such
that

ĉb
†�0� = �− 1�mb�111

ijk
¯ 010

abc
¯ �

with �0� the Fermi vacuum and

ĉk�0� = �− 1�mk�110
ijk

¯ 000
abc

¯ � .

The parity of the operation is determined by the number
of occupied orbtials mb �mk� to the left of the b �k� lo-
cation. The important part of these operators, regardless
of chosen notation, is their indices, so the most compact
notation is simply to use p̂† and p̂ in the operators. Then
the Hamiltonian can be written in terms of field opera-

tors, �̂†�x1�=�pp�x1�p̂†,

H =� �̂†�x1�ĥ�̂�x1�d�1

+
1
2 � d�1� d�2�̂

†�x1��̂†�x2�
1

r12
��̂�x1��̂�x2�

− �̂�x2��̂�x1�	 , �43�

H = �
pq

�p�h�q�p̂†q̂ + 1
4 �

pqrs
�pq��rs�p̂†q̂†ŝr̂ . �44�

Here �pq �rs� represents an antisymmetrized integral
defined as �pq �rs�− �pq �sr�, where �pq �rs�
=�p

*�1��q
*�2�1/r12�r�1��s�2�d�1d�2. See also definitions

listed in Table II. From the definition of p̂† and p̂, con-
sider all the possibilities p̂†q̂†=−q̂†p̂†, p̂q̂=−q̂p̂, and p̂†q̂
=	pq− q̂p̂†, which give the standard anticommutation re-

TABLE I. Correlation corrections �in mH� with various CC methods relative to FCIa values.

Molecule CCSDb CCSDTb CCSDTQb CCSDTQPc

BH Re 1.79 0.068 0.001 0.000
1.5Re 2.64 0.026 0.000 0.000
2.0Re 5.05 −0.091 0.001 0.000

HF Re 3.006 0.266 0.018 0.000
1.5Re 5.099 0.646 0.041 0.000
2.0Re 10.181 1.125 0.062 0.001

H2O Re 4.122 0.531 0.023 0.002
1.5Re 10.158 1.784 0.139 0.025
2.0Re 21.404 −2.472 −0.015 0.026

SiH2 Re 2.843 0.100 0.002 0.001
1.5Re 6.685 0.058 −0.015 0.001
2.0Re 14.869 −3.689 −0.346 0.001

CH2 Re 3.544 0.206 0.007 0.000
1.5Re 6.961 0.310 0.026 0.000
2.0Re 14.648 −1.900 −0.050 0.000

N2 Re 13.465 1.626 0.192 0.016
C2 Re 29.597 3.273 0.622 0.103

mean abs. err. 9.17 1.069 0.092 0.010

aBauschlicher and Taylor, 1986, 1987a, 1987b; Bauschlicher et al., 1986; Kucharski and Bartlett 1993; Christiansen et al., 1996.
bKucharski and Bartlett, 1998a.
cMusiał et al., 2002b.
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lation p̂†q̂+ q̂p̂†=	pq. Once p̂ and q̂ refer to occupied
orbitals i , j ,k , . . . and unoccupied ones a ,b ,c , . . ., the nor-

mal order indicated by 
 � is defined to have all hole î†

and particle â operators moved to the right of the other

operators, to facilitate î†��0�= î†�0�=0 and â�0�=0. So


â†i�= â†î, 
îâ†�=−â†î. Now introducing the contraction
definition

and considering all the hole-hole, particle-particle, etc.
forms, we immediately see that this contraction vanishes
unless

where p̂† and q̂ represent hole operators î , ĵ , k̂ , l̂, while

similarly vanishes unless the operators correspond to

particles â , b̂ , ĉ , d̂. The form of the Hamiltonian above
can be put into normal-ordered form by virtue of Wick’s
theorem �Wick, 1950; Čížek, 1966; Paldus and Čížek,
1975�. The particular form used here, which is integral to
the diagrammatic development that is the cornerstone of
this review, is the time-independent mixed particle-hole
operator form of the theorem �Bogoliubov and Shirkov,
1959�. Wick’s theorem says any product of second-
quantized operators,

TABLE II. The rules to interpret the diagram algebraically.

Each upgoing line is labeled with a “particle” label a ,b ,c ,d , . . . and each downgoing line with a “hole” label i , j ,k , l , . . ..
Open lines should be labeled in sequence as a , i ;b , j ;c ,k, etc.

Each one-particle vertex in the diagrammatic equation should be interpreted as the integral
�left out �operator� right in�

Each two-particle vertex corresponds to the antisymmetrized integral
�left out, right out �left in, right in�

Similarly, the cluster vertices occurring in the diagrammatic equations correspond to

etc., and are antisymmetric as well; hence tij
ab=−tji

ab=−tij
ba= tji

ba and similartly for tijk
abc.

All the orbital labels are summed over “internal” lines, i.e., lines terminating below the last HN.
The sign of the diagram is obtained from �−1� raised to the power of the sum of hole lines and loops: �−1�h+l. For the

purpose of getting the sign, open lines are closed into fictitious loops by paring i ,a ; j ,b; etc.

The weigh factor for the diagram is specified by � 1
2

�m, where m is the number of pairs of “equivalent” lines. A pair of
equivalent lines is defined as being two lines originating at the same vertex and ending at another, but identical vertex, and
going in the same direction.

To maintain full antisymmetry of an amplitude, the algebraic expression for a diagram should be preceded by a
permutation operator permuting the open lines in all distinct ways, �P�−1�PP.

A factor of 1
2 is also required for each pair of equivalent Tn vertices �a pair of T vertices is considered equivalent if they

have the same number of line pairs and are connected in equivalent ways to the interaction vertex�, i.e.,
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�45�

Using this theorem �and now suppressing the ˆ on the
operators for simplicity� defines the normal-ordered op-
erator

�46�

For the two-particle part,

Hence, the normal-ordered Hamiltonian becomes

H = �
p

fpp
p†p� + �
p�q

fpq
p†q� + 1
4 � �pq��rs�
p†q†sr�

+ �0�H�0� . �47�

Choosing to subtract the constant �0 �H �0�=E0+E�1�

=Eref, we have a slight redefinition

HN = H − �0�H�0� , �48�

fN = f − �0�f�0� , �49�

WN = W − �0�W�0� . �50�

In this way, all internal contractions are removed from
the operators themselves, making all subsequent deriva-
tions dependent upon contractions among products of

normal-order operators. For purposes of perturbation
expansions, in the most general case, the normal-
ordered HN=H0+VN,

H0N
= �

p
fpp
p†p� + �

i�j
fij
i†j� + �

a�b
fab
a†b� , �51�

VN = �
a,i

fai
a†i + i†a� + 1
4 � �pq��rs�
p†q†sr� , �52�

VN = fov + WN, �53�

where fov represents the occupied-virtual part of fN and
WN is the two-electron operator.

Hence, the Schrödinger equation now becomes HN�
=�E�, where �E=E−Eref, the correlation correction
�Löwdin, 1959�. This eliminates E�1� from expressions
previously containing V−E�1� once we understand that
VN is normal ordered as above.

Note that the appearance of the Fock operator in the
Hamiltonian is a consequence of normal ordering and
does not presuppose HF orbitals or a HF reference func-
tion. The Hamiltonian is completely general. However,
for the canonical HF case fpq=�p	pq, giving the simple
form HN=�p�p
p†p�+WN. For any other choice of orbit-
als and reference determinant, such as Kohn-Sham
�where the density is given by a single determinant�
�Kohn and Sham, 1965�, natural �Löwdin, 1955� �where
the first natural determinant gives the best single deter-
minant approximation to the density matrix�, and
Brueckner �Brueckner, 1955� �where the Brueckner de-
terminant has maximum overlap with the exact wave
function�, we retain the fij and fab parts in H0 and fai in
VN. That is, we insist upon orbital invariance for any
rotation of the occupied orbitals among themselves, or
the virtual orbitals among themselves. For non-Hartree-
Fock orbitals fai�0, so those effects, which rotate the
virtual space into the occupied space, will change the
results �except for full CI� and are introduced in VN.
Many-body perturbation theory will be invariant to any
rotations in the occupied or virtual space, as long as H0
does not change. Hence, this choice of H0 has this prop-
erty and is the only one that does. Generalized MBPT
presented elsewhere �Bartlett, 1995� assumes this H0,
and as a special case of CC theory it naturally allows
MBPT to be done with any single determinant reference
and associated orbitals. As an infinite-order method, the
CC solutions are formally independent of H0, except the
choice of H0 will suggest a natural iterative scheme for
the solution of the nonlinear equations. Coupled-cluster
theory will also be invariant to rotations in the occupied
or virtual space, and at the CCSD level and beyond,
noninvariant, but insensitive to orbital rotations that mix
the two spaces, beginning to approach full CI’s invari-
ance. This feature �discussed later� gives CC theory a
very high degree of flexibility for orbital choices not
shared by MBPT or truncated CI.
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V. COUPLED-CLUSTER EQUATIONS

We choose the diagrammatic notation shown in Fig. 4
for the Hamiltonian HN. Note that two �four� lines con-
nected with the one- �two-� electron operator indicate
two �four� creation-annihilation operators occurring in
the definition of the Hamiltonian, Eq. �48�. Our dia-
grams are based upon normal-ordered operators, spin
orbitals, and use antisymmetrized two-electron integrals
and cluster amplitudes, but are drawn in the Goldstone
form with one antisymmetrized diagram representing
several conventional Goldstone diagrams, as in the Hu-
genholtz convention. We also identify the various terms
in the perturbation VN by their excitation level, meaning
that if it is 0, there is no change, but +1 increases the
excitation, and �2 decreases it by that amount. The
three particle-hole pairs in T3 and higher cluster ampli-
tudes have to also be understood to be treated equiva-
lently, as there is no diagrammatic distinction between
the center pair and the other two. Using these diagrams,
we can immediately write the linked diagrams of the
MBPT wave function,

�MBPT = �0 + �
k=1

�

�R0V�k��0�L = �0 + ��1� + ��2� + ¯

where we choose not to indicate the line directions.
These skeleton diagrams are sufficient for our current
formal manipulations, but the line directions would have
to be introduced in a computational formula. The en-
ergy diagrams E�n+1�= �0 �V ���n�� are closed, with ex-
amples shown in Fig. 5. The wave functions are neces-
sarily linked, meaning that there are no closed energy
diagrams. But the remaining open linked diagrams have
both connected and disconnected parts. Now cluster op-
erators are introduced,

to sum all connected terms that result in a net double
excitation and

FIG. 4. Diagrammatic form of the fN, WN, and Tn operators.
The labels at the bottom of the fN and WN operators refer to
the changes in the excitation level caused by that form of the
operator.

FIG. 5. Skeleton diagrams for the second- and third-order
MBPT energies.
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to do the same for single excitations, and T3,T4, etc. for
the higher connected terms. The linked, but discon-
nected terms like

arise from the higher terms in the exponential expansion
once it is understood that the factorization theorem
�Frantz and Mills, 1960� provides

That is, we exploit the factorization theorem to remove
the eight-index denominator that occurs via

in using all distinct time orders of the two-particle inter-
actions in favor of a product of two four-index ones, and
for each T2 cluster operator. Generalization to any order
can be established with mathematical induction �Shavitt
and Bartlett, 2006� so that it is apparent that the linked-
diagram MBPT wave function may be written as

�MBPT = �0� + �
n=1

�

�R̂0V�n�0�L = exp�T��0� , �54�

where R̂0 is the resolvent defined in Sec. III.B. This was
first stated by Hubbard �1957�. This also tells us that the
wave operator �=exp�T� takes the approximation �0�
into ���.

We find the choice of spin-orbital, antisymmetrized
two-electron integrals and amplitudes to be the most
convenient for formal derivations, while at the same
time accounting for closed- and �single determinant�
open-shell molecules. The equations for the various spe-
cial cases �discussed below� can be derived from the gen-
eral form by adding line directions and carrying out the
appropriate spin integrations. Also, based upon antisym-

metrized spin-orbital forms, we present below and in
Fig. 6 easily applied tools that enable an unambiguous
generation of all the diagrams with no redundancy,
eliminating the uncertainty often associated with dia-
grammatic derivations.

As discussed in Eqs. �21�–�23�, the CC equations are

�0�H̄�0� = E�0� , �55�

� ij¯
ab¯�H̄�0� = 0. �56�

Individual, normal-ordered excitations will be indicated

by �ij¯
ab¯�= �0�
î†âĵ†b̂¯ �. The quantity

H̄N = HN + �H,T	 +
1
2
†�H,T	T‡ +

1
3!

�†�H,T	T‡T	

+
1
4!
†�†�H,T	T‡T	T‡ , �57�

H̄N = exp�− T�HN exp�T� = �HN exp�T�	C �58�

obtained from H by a similarity transformation, Eq. �58�,
is a critical one in CC theory since it terminates after
fourfold commutators. That is, because the Hamiltonian
has only one- and two-particle operators, the maximum
number of T operators that can lead to nonvanishing
contributions to the CC amplitude equations is four, re-
gardless of their excitation level. This feature will cause
the CC equations to always have a finite number of
terms, or be in closed form, despite the fact that the CC
wave function remains an unterminated exponential in
T. The commutators necessarily eliminate any terms in
H and T that have no indices in common. Hence, the
equations for the energy and amplitudes in CC are
linked, and the amplitudes, themselves, necessarily con-
nected. The concept of an exponential wave function for
fermions was considered by Coester and Kümmel
�1960�, with the first workable equations presented by
Čížek �1966� for the simplest model, coupled-cluster
doubles �CCD�, then called coupled-pair many-electron
theory �CPMET�.

Using the occupation number representation and rec-
ognizing that we can only have fully contracted opera-
tors in a vacuum matrix element of normal-ordered op-
erators to be nonvanishing, we can derive the energy as
a simple illustration,

E = �0�H̄�0� , �59�

E = �0�H + �HT1�C + �HT2�C + �HT1
2/2�C�0� = Eref + �0��fvoT1�C + �WT2�C + �WT1

2/2��0� , �60�

�61�
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�62�

�63�

Note the sign rule, which means if the number of lines
crossed in the full contraction is even, the term is posi-
tive; if odd, it is negative. Though straightforward, the
redundancy of contractions that lead to identical expres-
sions makes such an exercise tedious. With the diagrams,
however, we immediately have the answer.

A. Double excitations in CC theory

For the CCD wave function ���CCD�=exp�T2��0�	, we
have

0 = � ij
ab�HN exp�T2��0�C ∀ a,b,i,j �64�

=� ij
ab�HN + HNT2 + HNT2

2/2�0�C �65�

=� ij
ab�W + H0T2 + WT2 + WT2

2/2�0�C. �66�

We used the fact that H0 cannot couple a double excita-
tion with the reference function �0�, or a double with a
quadruple that would derive from T2

2. If we persist in
using occupation number tools above to obtain the re-
sults, we would need to evaluate the several vacuum
contractions,

1
4 �

pqrs
�pq��rs��0�
i†aj†b�
p†q†sr��0� , �67�

�
pq

fpqtkl
cd�0�
i†aj†b�
p†q�
c†kd†l��0� , �68�

1
4 �

pqrs
�pq��rs�tkl

cd�0�
i†aj†b�
p†q†sr�
c†kd†l��0� , �69�

1
16 �

pqrs
�pq��rs�tkl

cdtmn
ef �0�
i†aj†b�
p†q†sr�
c†kd†l�
e†mf†n��0� .

�70�

However, the nonlinear term begins to challenge our pa-
tience �one might even go back to using determinants
and Slater’s rules, which can be done through CCD at
least �Čížek and Paldus, 1971; Hurley, 1976�	. We prefer
more powerful diagrammatic ways to derive the CC
equations for higher than double excitations.

The diagrams introduced in Fig. 4 and shown in Fig. 6
immediately tell us what the CCD diagrams are, where
we use the excitation and deexcitation level indicated
under the f and W operators. The diagrams take advan-
tage of the fact that �i� the particular double excitation
projection need never be explicitly included, and �ii� the
factor of 1

4 in the antisymmetrized W operator will be
subsummed into the diagrams’ numerical factors, rather
than having to be associated with four different contrac-
tions that amount to the same term, and �iii� the sign of
the terms will be automatic. Furthermore, we follow the
prescription shown in Fig. 6 where we identify the net
excitation level, the excitation level of the products of T
amplitudes, and the relevant part of the perturbation
that will reduce or enhance the excitation level to that
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desired. Then we make all possible, simple combinations
that will allow us to achieve the final, net excitation
level. Since there are only a handful of combinations,
and each leads uniquely to one and only one distinct
antisymmetrized diagram �regardless of how it is drawn�,
anyone can follow this prescription confidently to derive
unique diagrams. When the diagram is interpreted using
the rules listed in Table II, we easily have the algebraic
form in terms of spin-orbital, antisymmetrized integrals
and antisymmetrized amplitudes, which are shown in
Fig. 6.

B. Choice of single determinant reference function

From this point, the actual equations programmed de-
pend upon the choices made for the spin-orbital form.
The possibilities are shown in Fig. 7. If we are describing
a closed-shell molecule with doubly occupied spatial or-
bitals as in Fig. 7�a�, i.e., spin orbital p=p=P
 and
p+1=q=P�, we can go from antisymmetrized diagrams
to the usual Goldstone form by drawing all the exchange

variants as shown in Fig. 8. This allows the immediate
interpretation of the CC equations in terms of the spa-
tial orbitals P as all closed loops now account for a fac-
tor of 2 in the equations, and there is a vertical symme-
try 1

2 rule but no equivalent line rule. The diagrams and
the interpretation are shown in Fig. 8.

If we want to describe a closed-shell but spin-
polarized system like Fig. 7�b�, then we require different
orbitals for different spins �DODS�, p=P

 ,p+1=P��,
where P
�P�. For the HF case, this is termed unre-
stricted Hartree-Fock �UHF�. The diagrams and compu-
tational equations are shown in Fig. 9. We present the
diagrams for 
� and 

 spin blocks, since the �� block
can be easily obtained from Fig. 9�a�. Note that all work-
ing equations take advantage of spin integration, since
otherwise the spin-orbital calculations would be �26

slower than the closed-shell calculation. Once the spin
integration is made, the difference in time for DODS
versus doubly occupied is �3. Such a single UHF deter-
minant is not an eigenfunction of spin, unlike the doubly
occupied case. The more common use for a UHF refer-
ence is for open shells �Fig. 7�c�	 when the number of 

electrons exceeds those for �. Though also not an eigen-
function of spin, it will be much closer for high-spin
cases. In contrast, for the closed-shell spin-polarized ex-
ample, the UHF solution can be a 50-50 mixture of the
singlet and triplet, like for H2 at large R separation.

The intermediate situation is shown in Fig. 7�d�. Here

FIG. 6. Generation of the WT2 and WT2
2 /2 contributions to

the T2 amplitude.

FIG. 7. The choices made for the spin-orbital form: �a� RHF
�closed-shell molecule with doubly occupied spatial orbitals�,
�b� UHF �closed-shell spin polarized situation�, �c� UHF open-
shell triplet, and �d� ROHF �triplet maximum double occu-
pancy�.

FIG. 8. Diagrammatic representation of the CCD method in
the closed-shell spatial orbital form together with the corre-
sponding algebraic expression. Summation over repeated up-
per and lower indices assumed. P�ia / jb� implies a sum of two
components differing by permutaion of ia and jb.
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we have maximum double occupancy up to open-shell
orbitals. This kind of wave function is usually referred to
as a restricted open-shell Hartree-Fock �ROHF� func-
tion. Here the single determinant approximation is a

spin eigenfunction Ŝ2�ROHF�=S�S+1��ROHF�. How-
ever, using that as the reference determinant does not
mean that the corresponding CC method will provide a
spin eigenfunction. The complication occurs due to the
role of nonlinear terms. If T is spin adapted, then its
direct product with a second spin-adapted T leads to a
reducible representation that has to be properly reduced
to give the spin eigenfunction. And in CC theory, unlike
CI where there are no nonlinear terms, this is not easy.
Our approach �Lauderdale et al., 1992; Bartlett, 1995� to
using ROHF is to build the Fock matrix f in terms of
those orbitals, and then exploit the fact that any rotation
of the occupied-occupied and virtual-virtual block is al-
lowed, to semicanonicalize the matrix to the form

From this point, the calculation is like any other UHF
calculation, except we have to have fai terms in the per-
turbation, V. In this way, any kind of reference determi-
nant and orbitals can be used in CC theory. However,
because of the essential role of fai, which now will arise
in second-order perturbation theory like W �see Fig. 5�,
it is not meaningful to use such arbitrary orbitals without
at least the CCSD approximation discussed below.

For completeness, consider a low-spin situation, like
that for an open-shell singlet. Here we require that two
determinants with the same Sz=0 value be coupled to-
gether to get a spin eigenfunction 1

�2 ��A
B��± �A�B
�	.

FIG. 9. Diagrammatic representation of the CCD method in the spin-expanded open-shell form together with corresponding
algebraic expressions. Summation over repeated upper and lower indices assumed. The antisymmetrizer is defined as P�pq /rs�
=1+ �qp��sr�− �qp��rs�− �pq��sr�. The capital letters A, B, I, J, etc. refer to 
 spin-orbitals, and lower case letters a, b, i, j, etc.
denote � spin-orbitals.
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For the Sz=0 component of the triplet, we can describe
equally well the state starting from a single determinant
�A
B
� ,Sz=1; but for the singlet, we are forced to use
both determinants, which would require the equivalent
treatment of two determinants. Single determinant ref-
erence CC cannot describe such states appropriately
without modification �Balkova and Bartlett, 1992�. In
terms of configurations instead of determinants, where a
configuration means a combination of determinants that
are spin eigenfunctions, the open-shell singlet is a single
configuration, and a proper orthogonal spin-adapted
single reference CC theory is possible �Li and Paldus,
2004�, but for more general cases it is formally and com-
putationally much more difficult than might be ex-
pected, due to the complications introduced by the non-
linear terms discussed above. Consequently, the single
determinant reference CC methods in ACES II �Stanton
et al., 1993; Bartlett and Watts, 1998� will allow for UHF,
ROHF, RHF, or their equivalents with Kohn-Sham,
natural, Brueckner, or quasi-Hartree-Fock �QRHF� or-
bital references. The latter means orbitals taken from
some related system like using neutral orbitals to de-
scribe an N2

+ state or F− orbitals to describe the F atom.
Such almost arbitrary orbital choices are possible in
CCSD and beyond because of the theory’s orbital insen-
sitivity, as CCSD does not depend much upon a varia-
tionally optimum reference function �see below�. For
open-shell singlets a two-determinant CC method, which
is the simplest realization of multideterminant CC, has
been developed and is included in ACES II �Balkova
and Bartlett, 1992; Szalay et al., 1995�.

The CCD equations in their most general and—at the
same time—most compact form are shown in Fig. 10.
Here we do not separate the spin part from the space
part of the spin orbital, which means that we do not

perform the spin integration. Each line is summed over
the whole range of one-particle functions: the hole lines
over all occupied spin orbitals and the particle lines over
all virtual spin orbitals. Such a situation occurs when we
treat nucleons with the CC approach �Kowalski et al.,
2004�. Naturally, for that case we need a new Hamil-
tonian with properly defined one-nucleon and two-
nucleon integrals transformed to the spin-orbital basis,
but in other respects such calculations require us simply
to evaluate the diagrams in Fig. 10. The algebraic ex-
pressions coresponding to the latter are given in Eq. �67�
�Fig. 10.1�, Eq. �68� �Fig. 10.2–3�, Eq. �69� �Fig. 10.4–6�,
and Eq. �70� �Fig. 10.7–10�.

The generic form of the CCD equations as given in
Fig. 10 also has another important application, namely,
in relativistic calculations. Solving, e.g., the full four-
component Dirac equation �Pisani and Clementi, 1995;
Visscher et al., 1996� requires the general, i.e., non-spin-
integrated formulas for CC equations. Also for other
somewhat simpler calculations using the two-component
Douglas-Kroll-Hess Hamiltonian �Kaldor and Hess,
1994�, the spin integration cannot be performed since
here j is the appropriate quantum number instead of sz,
which indicates that the generic form of the CC equation
should be used, although some symmetry simplification
is still possible �Visscher, 1996�.

Hence, the generic CC equations enable the treat-
ment of two- and four-component relativistic problems
as well as nucleons in the same manner as electrons, as
long as no inappropriate further simplifications of the
generic formulas are made. This generality recommends
using the underlying spin-orbital framework for both
formal and computational aspects of CC theory.

C. Single excitations in CC theory

The role of single excitations in CCSD �Purvis and
Bartlett, 1982� theory, �CCSD=exp�T1+T2��0�, is quite
important. Whereas the contribution to the energy from
single excitations subject to a RHF or UHF reference
function first appears in the fourth-order energy, for a
non-HF reference, singles appear in second order just
like doubles, and can be quite large. Also, whereas CCD
subject to HF is correct through the third-order energy
of perturbation theory, the one-particle density matrix,
and thus all properties, is already wrong in second order.
CCSD fixes this.

Another important point is that we know that single
determinant references can be related by �0�
=exp�T1���� �Thouless, 1961; Flocke and Bartlett, 2003�;
so rather than trying to get some kind of optimum ref-
erence function for CC theory, it is frequently preferable
to simply solve the CCSD equations and allow the
exp�T1� operator to account for orbital changes in the
reference function, passively. As we go to even higher
levels of CC theory, like �CCSDT=exp�T1+T2+T3��0�,
the additional coupling between T1, T2, and T3 further
enhances this effect, causing the CC result to begin to
approach the complete orbital invariance of full CI.

FIG. 10. Diagrammatic representation of the CCD method in
the generic spin-orbital form together with the corresponding
algebraic expression. Summation over repeated upper and
lower indices is assumed. The antisymmetric permutation op-
erator P�pq /rs� is defined as P�pq /rs�=P�pq��rs�=1+ �qp��sr�
− �qp��rs�− �pq��sr�.
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However, the CCSD equations have 45 diagrams com-
pared to only 10 for CCD, and they would be difficult to
derive without diagrammatic �or computer-aided� proce-
dures �Hirata, 2003�. Using the diagrams, we easily get
expressions and additional diagrams shown in Fig. 11.
We will not interpret these diagrams, but that could be
easily done using the rules in Table II. All interpreta-
tions and diagrams through CCSDTQ have been pre-
sented �Shavitt and Bartlett, 2006�. CCSD was first for-
mulated and implemented in 1982 �Purvis and Bartlett,
1982�. With this foundation, higher-connected-cluster
operators could be introduced to rapidly approach the
full CI solution.

Another way to get the benefit of exp�T1� but limit the
computation to just the few diagrams of CCD is to ex-
ploit the flexibility to make orbital rotations such that
T1=0. The orbitals that accomplish this are termed
Brueckner orbitals. The determinant composed of these
orbitals, �B, is also guaranteed to have maximum over-
lap with the exact wave function,

�����B�� = max. �71�

If a reference determinant ��0� is chosen, then a deter-
minant different from ��0� is obtained by rotating virtual
orbitals into occupied orbitals, represented by the op-
erator ti

a
a†i�, which leads to

����i
a� = 0 ∀ i,a . �72�

The condition of vanishing T1 amplitudes partitions
the orbital space into a new occupied and virtual space.
Since they are obtained by rotating virtual orbitals into
the occupied space, the T1 equation, where all diagrams
containing T1 amplitudes are removed, defines the
virtual-occupied block of an effective, Brueckner,
Hamiltonian,

�Heff	ai = fai + �
jb

fjbtij
ab + 1

2�
jbc

�aj��bc�tij
bc

− 1
2�

jkb
�jk��ib�tjk

ab. �73�

Diagonalization of the Brueckner effective Hamiltonian
provides updates to ti

a until at convergence T1=Hai
eff=0.

Brueckner orbital-based CC theory and its extensions
have been used in a variety of CC applications �Chiles
and Dykstra, 1981; Adamowicz and Bartlett, 1985;
Handy et al., 1989; Stanton et al., 1992; Krylov et al.,
2000� where the hope, particularly for properties other
than the energy, is that higher-order products involving
T1 with T3 and higher clusters that are implicitly set to
zero will help for some classes of problems �Watts and
Bartlett, 1994�. It also offers an important link to a cor-
related effective one-particle theory that offers an exact,
correlated analog to Hartree-Fock theory, including a
Koopmans-type theorem that would give exact ioniza-
tion potentials for its orbital energies �Lindgren and
Salomonsen, 2002; Beste and Bartlett, 2004�.

D. Triple and quadruple excitations in CC theory

Triple excitations in CC theory are also important, as
they contribute to the fourth-order MBPT energy. At
the CCD level, we already have the disconnected contri-
butions of quadruple excitations in the wave function.
Once we add singles, we have further disconnected con-
tributions to the CI triples and quadruples, including all
through fourth order in MBPT except for the connected
triple excitations T3. This is quite different from CI, be-
cause CI retains large contributions from unlinked dia-
grams whose initial contributions are not canceled until
quadruple excitations are included in the CI. Hence,
triple excitations are comparatively less important. This
is shown in Fig. 3, where we illustrate the convergence
of single reference CI, MBPT, and CC theory toward the
full CI limit �see also Table I�. Note the abrupt change
when quadruple excitations are introduced in CI. Due to
this cancellation of the fourth-order unlinked diagrams
discussed in Sec. III.B, MBPT has the advantage that all
the unlinked diagrams are removed from the beginning,
but suffers from being finite-order approximations.

FIG. 11. Diagrams representing the single excitation and
single contributions to the double-excitation CCSD equations.
Diagrams occurring in the T2 equation plus those present in
the CCD model �Fig. 10� form the full T2 equation in the
CCSD method.
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Coupled-cluster theory combines the linked-diagram ad-
vantages of MBPT with infinite-order summations, so it
has to give the best convergence of these three ex-
amples.

Drawing all the 99 diagrams for CCSDT and 180
CCSDTQ tells us little �see Tables III and IV for these

numbers�. Instead we can summarize the equations for
higher-level CC theory in terms of the quasilinearized
form, Figs. 12 and 13, based upon the intermediates

from H̄ that are actually computed in such programs.
These are shown diagrammatically in Fig. 14 and alge-

TABLE III. General formulas for the number of the diagrams in the CC equation for Tn amplitude
�valid for n�1�;a Na=1/24n3+1 5/8n2+11 1/12n+1; Ng=1/12n3+3 1/2n2+24 1/6n−9.

Model

Diagrams in the Tn equation Diagrams in the Tn equation

HF non-HF HF NON-HF

n even
CCT1¯Tn Na−n−2 Na Ng−n−2 Ng

CCT1¯Tn+1 Na−n+3 Na+6 Ng−n+14 Ng+18
CCT1¯Tn+2 Na−n+4 Na+7 Ng−n+19 Ng+23

n odd

CCT1¯Tn Na−
9
2

−
9n+1

8
Na−

5
2

−
n+1

8
Ng−

5n

4
−5

1
2

Ng−
n

4
−3

1
2

CCT1¯Tn+1 Na+
1
2

−
9n+1

8
Na+

7
2

−
n+1

8
Ng−

5n

4
+10

1
2

Ng−
n

4
+14

1
2

CCT1¯Tn+2 Na+
3
2

−
9n+1

8
Na+

9
2

−
n+1

8
Ng−

5n

4
+15

1
2

Ng−
n

4
+19

1
2

aConstant term in T2 equation not included.

TABLE IV. Number of antisymmetrized and Goldstone diagrams in the Tn equation, n=1 to 6.

Tn Model

Antisymmetrized diagrams Goldstone diagrams

HF non-HF HF non-HF

T1 CC¯T1 4 7a 8 11a

CC¯T2 9 13a 20 25a

CC¯T3 10 14a 24 29a

T2
a CC¯T2 26 30 50 54

CC¯T3 31 36 66 72
CC¯T4 32 37 71 77

T3 CC¯T3 42 47 88 93
CC¯T4 47 53 104 111
CC¯T5 48 54 109 116

T4 CC¯T4 68 74 143 149
CC¯T5 73 80 159 167
CC¯T6 74 81 164 172

T5 CC¯T5 92 99 198 205
CC¯T6 97 105 214 223
CC¯T7 98 106 219 228

T6 CC¯T6 127 135 272 280
CC¯T7 132 141 288 298
CC¯T8 133 142 293 303

aConstant term not included.
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braically in Table V. The quasilinearized form is ob-
tained using the factorization procedure, which can be
explained with the following example. Taking the inter-
mediate

defined in Fig. 14.3a and applying it in the term

�third term in Fig. 12�a�	, we obtain the following three
diagrams:

which can be identified easily as those contributing to
the T1 equation in Fig. 11. Taking other intermediates
defined in Fig. 14 and applying them to the terms in the
equation shown in Figs. 12�a�–12�c�, we can reproduce
all terms contributing to the T1, T2, and T3 equations in
the CCSDT model, respectively. For completness, we
also present the quasilinearized form of the CCSD equa-
tions in Fig. 15 �cf. Figs. 10 and 11�. Use of the recur-
sively computed intermediates �Kucharski and Bartlett,
1991a� makes the concept of a high-order CC program

quite straightforward, and that, plus using various auto-
matic �Hirata, 2003� or other computer-generated pro-
grams �Olsen, 2000; Kallay and Surjan, 2001; Kallay and
Gauss, 2004�, has now made it possible to go to quite
high levels of excitation through hextuples, i.e.,
CCSDTQPH, for example. Their application to chemi-
cally interesting problems, though, is limited by other
factors.

As discussed briefly earlier, CCSD requires no more
than �n2N2tij

ab amplitudes, and the rate-determining step
is the evaluation of the ladder diagram, �n2N4, the
fourth diagram in Fig. 9, which already arises in CCD.
Once we go to CCSDT, we have �n3N3 amplitudes and
a computational dependence of �n3N5. In general, we
have �nlNl amplitudes and an �nlNl+2 computational
dependence for the level of excitation l. For our modest-
sized example from before n=10, N=100 functions,
CCSDT would require storing some �109 amplitudes. A
lower bound to its time for the evaluation of a single
iteration would be �10�1011 operations ��1 h for a 2
gigaflop processor�. Doubling the size of molecule adds
�212 to the time attesting to the extreme nonlinear de-
pendence of high-level CC calculations if no further sim-
plification is made. Yet, today, CCSD �Purvis and Bart-
lett, 1982�, CCSDT-1 �Lee et al., 1984�, CCSDT-3 �Noga
et al., 1987�, CCSD�T	 �Urban et al., 1985�, and CCSD�T�
�Ragavachari et al., 1989; Bartlett et al., 1990� calcula-
tions are done with �300 basis functions and have used
�600. The first two triples models include the principal
effects of triple excitation iteratively, which requires
only an �n3N4 step and is done without storing the tijk

abc

amplitudes. The last two are further perturbative ap-
proximations of triples based upon CCSDT-1 that are

FIG. 12. Diagrammatic CCSDT equations with total factoriza-
tion of nonlinear terms: �a�, �b�, and �c� represent the T1, T2,
and T3 equations, respectively.

FIG. 13. Diagrams representing connected quadruple contri-
butions to the double-, triple-, and quadruple-excitation equa-
tions in the CCSDTQ method.
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used to augment the CCSD solution �see Sec. V.E�, but
reduce the computational dependence down to a nonit-
erative �n3N4 step augmenting an iterative �n2N4

CCSD calculation. At each level some accuracy is sacri-
ficed for a broader range of applications.

In addition to the CCSD diagrams shown in Fig. 10,
the additional diagrams that define CCSDT-1 �Lee et al.,
1984� are shown in Fig. 16, truncating the T3 equation to

its lead, second-order term and then adding the triple
excitation contribution to the T1 and T2 equations. In
this way, the T3 amplitudes, which would appear on the
right-hand side of the full CCSDT equations, are not
allowed to contribute to T3. However, the T3 obtained
does contribute to T1 and T2 and T2 then updates the T3

amplitudes, until reaching convergence. The tijk
abc�2	

„the

FIG. 14. Diagrammatic form of intermediates introduced in CCSDT and CCSDTQ models with total factorization of nonlinear
terms. The * indicates that the intermediate is preceded by a 1/2 to avoid overcounting.
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TABLE V. Algebraic expression for the intermediates used in the CCSDT and CCSDTQ equations.

Intermediate Expressiona

1. Ia
i fa

i + tn
f vaf

in

2. Ib
a

fb
a + tn

f vbf
an−

1
2

tno
af vbf

no− tn
aIb

n

3. Ij
i Ij�

i+ tj
fIf

i

3a. Ij�
i

fj
i+ tn

f vjf
in+

1
2

tjn
fgvfg

in

4. Ibc
ai

�bc
ai −

1
2

tn
avbc

ni

4a. �bc
ai

vbc
ai −

1
2

tn
avbc

ni

5. Ika
ij

�ka
ij +

1
2

tk
f vfa

ij

5a. �ka
ij

vka
ij +

1
2

tk
f vfa

ij

6. Icd
ab

Icd�
ab+

1
2

tno
abvcd

no

6a. Icd�
ab vcd

ab−P�a /b��cd
antn

b

7. Ikl
ij

vkl
ij +P�k / l��kf

ij tl
f+

1
2

tkl
fgvfg

ij

8. Ibj
ia

�bj�
ia+vbf

intjn
af+

1
2

Ibf
ia tj

f

8a. �bj
ia

vbj
ia −

1
2

vbj
intn

a +�bf
ia tj

f

8b. �bj�
ia

vbj
ia −

1
2

vbj
intn

a +
1
2
�bf

ia tj
f

8c. �bj�
ia

vbj
ia −vbj

intn
a +

1
2

Ibf
ia tj

f

9. Ici
ab

vci
ab+vcf

abti
f−P�a /b�tn

a�ci
nb−Ic

ntni
ab+P�a /b�Icf

antin
bf+

1
2

tno
abIci

no−
1
2

tnoi
afbvcf

no

9a. Ici�
ab

vci
ab+

1
2

vcf
abti

f−P�a /b�tn
a�ci�

nb

10. Ijk
ia Ijk�

ia+If
itjk

fa

10a. Ijk�
ia

vjk
ia −vjk

intn
a +P�j /k�tj

f�fk�
ia+P�j /k�Ijf

intkn
af +

1
2

Ifg
iatjk

fg+
1
2

vfg
intjnk

fga

10b. Ijk�
ia

vjk
ia −

1
2

vjk
intn

a

11. Idij�abc 1
2

P�ab /c�Idf
abtij

fc+P�a /bc�Idf
antijn

bcf+
1
2

P�i / j�Idi
notnoj

abc−
1
2

vdf
notnoij

afbc

12. Ijkl�iab

−
1
2

P�jk / l�Ijk
intnl

ab−P�a /b�P�kl / j�Ifj
iatkl

fb+P�j /kl�Ijf
intk ln

abf

+
1
2

P�a /b�Ifg
iatjkl

fgb+
1
2

vfg
intjnkl

fgab

13. Iklm�ija 1
2

vfg
ij tklm

fga

14. Icjk�iab 1
2

vcf
intjkn

abf

aSummation over repeated indices assumed. P�i / j� or P�a /b� implies the sum of two components differing by permutation of i,
j and a, b indices, respectively. P�ab¯ /c¯ � indicates that in addition to the identity permutation, the summation should include
all possible permutations exchanging labels between subsets �ab¯ � and �c¯ �. The same refers to P�ij¯ /k�.
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�2	 instead of �2� indicates a generalized second order

since the T̄2 amplitudes contain infinite-order terms…
amplitudes are used on the fly to avoid any storage. An-
other convenience, if not a necessity in this evaluation, is
that we are free to dismiss the off-diagonal part of the
diagram

by exploiting the fact that CCSDT-1, like any other it-
erative CC approximation that always evaluates com-
plete diagrams as opposed to using just selected parts of
them, will be invariant to rotations in the occupied or
virtual space. Hence, we are free to make the semica-
nonical transformation of the Fock matrix discussed in
Sec. V.B to make the off-diagonal fij= fab=0. Without
doing so, we could be left with an extra �n3N4 iterative
step in the determination of the above diagram. For
non-HF cases, in the equations below, we will assume
that this transformation has already been made. As
shown in Figs. 16 and 17, to make the transition from
CCSDT-1 to CCSDT-3 �Noga et al., 1987�, which means
that all possible contributions of T2 and T1 to T3 are
included instead of just their lead terms, it is apparent
that this requires nothing but the replacement of the

diagram units in CCSDT-1 by their corresponding H̄ in-

termediates. Another way of saying this is

�ijk
abctijk

abc�T − 3� = � ijk
abc��HN exp�T1 + T2�	C�0� �74�

instead of just using linear T2 as is done in CCSDT-1. So
this too is an iterative �n3N4 method, yet it has the
enhanced orbital insensitivity that accrues due to the in-
clusion of higher-order terms in T1 and T2. This method
still avoids the storage of the �n3N3 tijk

abc amplitudes and
gains �N in speed over the full CCSDT, making it a
practical, yet highly accurate level of approximation for
many molecular problems.

E. Noniterative approximations

Short circuiting the iterative procedure of CCSDT-1
and simply using converged T̄2 and T̄1 amplitudes from
CCSD, and using the expectation value energy formula
instead of that in Eqs. �59�–�63� �Urban et al., 1985�,
gives

E = �0�exp�T†�H exp�T��0�/�0�exp�T†�exp�T��0� �75�

=�0��exp�T†�H exp�T�	C�0� �76�

=�0�exp�T†��H exp�T�	C�0� . �77�

This formula recognizes that the HN expectation value
of the full CC wave function also gives the energy. By
inserting the resolution of the identity, it is easy to see
that

E = �0�exp�T†�exp�T�exp�− T�HN exp�T��0�/�0�exp�T†�exp�T��0� �78�

=�0�exp�T†�exp�T��P + Q�exp�− T�HN exp�T��0�/�0�exp�T†�exp�T��0� �79�

=�0��HN exp�T�	C�0� , �80�

which is the usual, sometimes called, transition formula.

This formula follows from the fact that QH̄�0�=0 as the
CC equations would be satisfied for any excitation in Q.
Whereas the transition formula is always in closed form,
the expectation value form is not, either requiring divi-
sion by the denominator in Eq. �75�, or, as in Eq. �76�,
the division has already been incorporated by the re-
striction to the connected form in the numerator �Čížek,
1966� which similarly leads to an infinite series regard-
less of the number of electrons in the problem. For spe-
cific CC approximations like CCSD, the energy equiva-
lence does not hold, and in fact it can be shown that
important contributions from connected quadruple exci-
tations will arise from the expectation value of CCSD
�Bartlett and Noga, 1988�. The third form, Eq. �80�, is
intermediate and particularly useful for the following
analysis, as it imposes connectedness on the �HNeT�c
products.

Slightly generalizing the original derivation �Urban et
al., 1985� to the non-HF case �Watts et al., 1993�, we use
the tijk

abc�2	 amplitude evaluated from the first iteration of
CCSDT-1 to obtain the noniterative approximation
CCSD�T	 by computing the fourth-order terms that can
arise from connected T3,

ET
�4	 = �0�T3

�2	†�H0T3
�2	�C + T3

�2	†�WT̄2�C + T̄2
†�WT3

�2	�C

+ T̄1
†�WT3

�2	�C + T̄2
†�fvoT3

�2	�C�0� . �81�

Using the T3
�2	 equation, � ijk

abc�H0T3
�2	+WT̄2�0�=0, it is ap-

parent that the first and second terms cancel, and the
third term, the complex conjugate of the second, can be
replaced by the negative of the first and the extra de-
nominator indicated, to give the diagrams
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If we count orders relative to HF, then T̄1 would first
arise in second order. So the appropriate purely fourth-
order approximation is given by diagram 1, which is the
original CCSD�T	 �Urban et al., 1985�.

Once we consider non-HF cases, then the second dia-
gram corresponds to a fourth-order term, and adding it
we obtain CCSD�T� �Ragavachari et al., 1989�. Its evalu-
ation is as follows:

�i
ati

a�3	�T3� = � i
a��WT3�C�0� , �82�

EST
�5	 = 1

4�
i,a

t̄i
a*ti

a�3	. �83�

So when used for HF cases this selects only one of many
fifth-order terms, yet the numerical results tend to im-
prove since this diagram usually acts in an opposite di-
rection to the first term, which is necessarily negative; so

the second term can help to avoid overshooting the en-
ergy in difficult cases.

Finally, the completely general form of Eq. �81� also
adds diagram three �and presupposes the semicanonical
transformation to avoid the off-diagonal diagram previ-
ously mentioned� �Watts et al., 1993�. This final, nonit-
erative form has exactly the same invariance properties
as iterative CC methods, as it is invariant to orbital ro-
tations within the occupied or within the virtual space, a
highly desirable benefit of the approximation. Among
other properties, the invariance facilitates analytical de-
rivatives of the energy as discussed in Sec. VII. The
presence of the denominator in Eq. �75� can be ex-
ploited to derive renormalized approximations for non-
iterative corrections. This will be discussed in Sec. VI.C.

An even more general derivation of iterative and
noniterative triple and quadruple excitation contribu-
tions can be made based upon the CC functional pre-
sented in Sec. VII, and derived there.

We can achieve even a lower dependence for some of
the T4 effects as follows. Assume we are improving upon
an existing CCSDT solution, and for non-HF cases in-
voke the semicanonical transformation. Focusing on the
lead term in the T4 equations,

0 = � ijkl
abcd�H0T4�0� + � ijkl

abcd��WT̄2
2/2�C�0�

+ � ijkl
abcd��WT̄3�C�0� ∀ a,b,c,d,i,j,k,l , �84�

T4
�3	 = R̂4��WT̄2

2/2�C + �WT̄3�C	 , �85�

T2
�4	�T4� = R̂2WT4

�3	, �86�

E�5	�T4� = �0�WT2
�4	�T4��0� , �87�

where the last term arises for the usual transition energy
formula �R2 means the double excitation part of the re-
solvent and R4 the quadruples excitation part�. Further
manipulations of the energy expression give

E�5	�T4� = �0�WR̂2
WR4��WT̄2
2/2�C + �WT̄3�C	C��0� �88�

FIG. 15. Diagrammatic CCSD equations with total factoriza-
tion of nonlinear terms.

FIG. 16. Additional diagrams to the CCSD model that define
the CCSDT-1 method.

FIG. 17. Additional diagrams to the CCSD model that define
the CCSDT-3 method.
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= 1
2 �0�T2

�1�†T2
�1�†WT4

�3	�0� . �89�

We have identified WR0 as the first approximation to
T2

† ,T2
�1�†. Then using the factorization theorem in the

last line, 1
2 �WR̂2W�+WR̂2�W��= 1

2 �W�2
−1W�+W��2

−1��W�	
=WW���2+�2�� /�2�2� eliminates R̂4��4� from the energy
expression. As the eight-index �4 denominator would re-
quire in this case an �n4N5 computational step, its elimi-
nation reduces the computation to �n2N5 for the T2

2

term and to �n3N4 for T3.
Though this can be done rigorously in the fifth-order

transition energy expression, it cannot be done in the
amplitude expression. However, as we know that the T4

�3	

amplitudes inserted into the T2 equation will introduce
this initial energy correction �Kucharski and Bartlett,
1998c�, we can modify the T2 equation by adding to it,

T2Qf

�4	 �T4� = 1
2R̂2
T2

�1�†�W�T2
2/2 + T3�C	� . �90�

This can be incorporated into its iterative solution in the
normal way, coupled to the T1 and T3 equations. Its en-
ergy contribution would then arise in the usual energy
formula, Eq. �80�. This factorization preserves the same
computational simplicity of the factorized approxima-
tion into the amplitude equation as it only adds an
�n3N4 and an �n2N5 step to an already �n3N4 CCSDT-
n or �n3N5 full CCSDT method. It is also fundamen-
tally different from the usual CC disconnected simplifi-
cation as it approximately factorizes a connected T4. In a
series of comparisons for H2O, HF, and BH molecules in
their equilibrium geometry, the use of the T2Qf

�4	 ampli-
tude approximation differs from using the regular qua-
druple contribution by �0.003 mH �Kucharski and
Bartlett, 1998c�.

Finally, using the expectation value energy expression
as we did above for triples and isolating the contribution
of quadruples, we have

EQf

�5	 = 1
2 �0�T̄2

†T2
�1�†�W�T̄2

2/2 + T̄3�C	�0� , �91�

which defines a noniterative, fifth-order factorized qua-
druple contribution in analogy to that for T3, called
CCSDT�Qf� �Kucharski and Bartlett, 1998c�. One can
also use a lower approximation than CCSDT with its
�n3N5 step, by evaluating Qf from an underlying
CCSDT-n approximation, or go all the way to
CCSD�TQf� where the usual T is combined with Qf. The
latter is the simplest possible initial approximation for
connected T3 and T4. All such approximations, particu-
larly the noniterative ones, make applications possible
that could not be done otherwise. Several such nonitera-
tive approximations have been considered that are cor-
rect through fifth �Kucharski and Bartlett, 1998a� and
sixth order �Kucharski and Bartlett, 1998b�, using three
different types of energy formulas: that from the expec-
tation value, the normal expression, and the CC func-
tional to be discussed in Sec. VII. Other such nonitera-
tive approximations that include quadruple excitations
have been suggested �Gwaltney and Head-Gordon,

2001; Hirata, Nooijen, et al., 2001; Hirata, Fan, et al.,
2004; Bomble et al., 2005�. The latter, termed
CCSDT�Q�, is correct to sixth order and the most com-
plete to date. It is discussed in Sec. VII.

The above approximations have established the para-
digm of converging, size-extensive approximations for
electron correlation from

MBPT�2� � CCSD� CCSD�T� � CCSDT

� CCSDT�Qf� � CCSDT�Q�

� CCSDTQ� full CI.

Coupled with an adequate basis set for the phenomena
of interest, this paradigm provides predictive results to
within reasonable error bars.

One word about applications to nuclei. The abstract
of Kowalski et al. �2004� says, “the quantum chemistry
inspired coupled-cluster approximations provide an ex-
cellent description of ground and excited states of nu-
clei. The bulk of the correlation effects is obtained at the
CCSD level. Triples, treated non-iteratively, provide vir-
tually the exact description.”

For those readers who prefer to continue with new
theory developments, the next section focuses primarily
on CC numerical results at equilibrium and some of the
limitations in single reference CC �SR-CC� in breaking
molecular bonds.

VI. SURVEY OF GROUND-STATE NUMERICAL
RESULTS

A. Equilibrium properties

In the vicinity of the equilibrium geometry for mol-
ecules, single determinant CC theory is exceptionally ac-
curate. However, all ab initio results depend upon the
quality of the basis set as well as the correlation correc-
tions. So we have three levels of meaningful numerical
comparison for coupled-cluster theory with MBPT and
CI: �a� comparison of CC with full CI; �b� comparison of
CC with experiment as a function of basis set; and �c�
comparison of CC with experiment at the extrapolated
basis-set limit, or, alternatively, using CC-R12 where
most of the basis-set dependence is removed due to ex-
plicit R12 inclusion.

Full CI comparisons are the least ambiguous, as one
advantage of finite basis-set methods is that the exact
results in the basis is given by the full CI that includes all
excitations through n-fold for n electrons. The limita-
tion, of course, is that the full CI itself cannot generally
be obtained except for few electrons in small basis sets.
Subject to this caveat, in Fig. 3 we demonstrate how the
evaluation of the correlation energy converges with in-
creasing CI excitation, with orders of MBPT diagrams,
and with the addition of higher connected excitations in
the infinite-order CC method. Whereas nonpolarized
bases cannot be expected to offer meaningful measures
of behavior, once polarization functions are included,
the correlation effects for small molecules are indicative.
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The next level of comparison is to experiment as a
function of basis set. The most extensive set of results
for CC theory has been presented by Helgaker and co-
workers �Bak, Gauss, et al., 2000; Bak, Jörgensen, et al.,
2000; Helgaker et al., 2000; Coriani et al., 2005�. We re-
plot some of their results for bond lengths for a selection
of 31 molecules in Figs. 18�a� and 18�b�. The structure of
bound molecules is typically the easiest quantity to cor-
rectly describe in quantum chemistry, with even
Hartree-Fock often being adequate. In each case the
Hartree-Fock, MP2, CCSD, and CCSD�T� values with a
triple-zeta �cc-pVTZ� basis and then a quadruple zeta
basis are shown. In the triple-zeta basis, the HF distri-
bution of errors centers at about −2 pm �−0.02 Å�,
and varies from −6 to +4 pm, while MP2 centers at
about +2 pm and varies from −3 to +6. For the larger
basis, the HF distribution is virtually the same, as the
HF limit has likely been achieved already for this prop-
erty, while the simplest correlated method MP2 is im-
proved somewhat centering at +1 pm. CCSD further im-
proves upon the MP2 distribution, with it being centered
at exactly the experimental value in the QZ basis.
CCSD�T� is not necessarily an improvement over CCSD
for this example because of very small errors encoun-
tered and core correlation effects. The cc-pVXZ bases
do not have functions explicitly chosen to correlate core
electrons. The core effect is shown in Fig. 19 as a func-
tion of basis set where the cc-pCVQZ adds core corre-
lation functions. Then the error in CCSD�T� is less than
±2 pm.

Energies are more difficult to obtain accurately. The
worst energy for a basis-set-dependent quantum chem-
istry calculation is the heat of atomization for a poly-
atomic molecule, because separating a molecule into its
atomic fragments maximizes the basis-set errors in the
calculation. For 16 small molecules, the heat of atomiza-
tion in a cc-pVQZ basis is shown in Fig. 20. CCSD�T�
is a notable improvement over CCSD, which has a
narrower distribution than MP2, but is not as well cen-
tered as the latter. The range of errors in CCSD�T�
is about −13 to +6 kcal/mol �1 kcal/mol=4.184 kJ/mol
=0.043 349 eV�.

Bond dissociation energies are somewhat easier to de-
scribe accurately, because breaking one bond in a poly-
atomic molecule instead of all retains much of the basis-
set error cancellation in the calculation, except for
diatomic molecules. For a set of 13 molecules, the reac-
tion enthalpies compared to experiment are illustrated
in Fig. 21 for a core-corrected, cc-pCVQZ basis. The
errors in CCSD range from −8 to +6 kcal/mol, and cen-
ter just a little below experiment. CCSD�T� narrows the
distribution somewhat �±6 kcal/mol� and is centered
just slightly above experiment. There is substantial im-
provement from HF�MP2�CCSD�CCSD�T�, as one
would anticipate.

For a property other than the energy, CCSD�T� dipole
moments in Debyes as a function of basis sets are com-
pared to reference values for 11 polar molecules in Fig.
22. All such properties are evaluated analytically from
the response density matrices discussed in the next sec-

tion, which are the CC analogs �Bartlett, 1995� of the
standard density matrices associated with variational
wave functions. In good basis sets, the errors are less
than ±0.2 D, compared to an even larger augmented QZ

FIG. 18. Normal distribution functions of the deviations from
experiment of the calculated bond distances �pm� for a set of
31 molecules in the �a� cc-pVTZ basis set and �b� cc-pVQZ
basis set �Coriani et al., 2005�.

316 Rodney J. Bartlett and Monika Musiał: Coupled-cluster theory in quantum chemistry

Rev. Mod. Phys., Vol. 79, No. 1, January–March 2007



basis. The augmentation adds several more diffuse basis
functions than in the standard basis, and these functions
will be important in accurately describing the dipole op-
erator �ieiri.

To summarize, with a triply polarized basis like cc-
pVTZ, the CCSD�T� standard deviations are for struc-
ture ��0.0024 Å�, dissociation energies for single bonds
��3.5 kcal/mol� �Helgaker et al., 2000�, and harmonic
vibrational frequencies ��5–20 cm−1� �Bartlett, 1995�.
Hence, this kind of accuracy for modest-sized molecules
can be expected. To quote from the CI community,
Thom Dunning has stated that “…of the methods in
widespread use today, the CCSD�T� method is the only
one that provides a consistently accurate description of
molecular interactions for all interaction scales investi-
gated, from more than 200 kcal/mol to 0.02 kcal/mol.”
Better basis sets, plus basis extrapolation, and better lev-
els of CC theory like CCSDT-3 or CCSDT will typically
�but not always� give even more accurate, but more ex-
pensive results. At the highest levels, we might also have
to concern ourselves with achieving balance between T4

and T3, recommending a level like CCSDT-3�Qf� �Ku-
charski and Bartlett, 1999� or CCSDT�Q� �Bomble et al.,
2005�.

As illustrated in Tables VI and VII, if we want to
obtain the harmonic vibrational frequency of a small
molecule to an accuracy of �1 cm−1, we can only
achieve that for N2 �Kucharski et al., 1999; Musiał et al.,
2001� and C2 �Kucharski et al., 2001� when using some
consideration of pentuple excitations �Pf� on top of
CCSDTQ, in a core-corrected, cc-pCV6Z basis. That ba-
sis set has 460 contracted Gaussian functions for N2 and
C2. Note the convergence with basis set and the neces-
sity of extrapolation to fill in the tables. In Table VIII we
show results where further effects of basis sets as mea-
sured with explicit R12-CCSD �the best current approxi-
mation to removing the basis-set error in CC theory�
and full CCSDTQP are used, plus adiabatic and relativ-
istic corrections �Pawlowski et al., 2003; Ruden et al.,
2004�. The core-correlation effects are listed separately.
Extremely high-accuracy CC extrapolated thermochem-
istry �HEAT� values have been presented by Tajti et al.
�2004� to resolve discrepancies in the thermochemistry

FIG. 19. Normal distribution functions of the deviations from
experiment of the calculated bond distances �pm� for a set of
31 molecules for the CCSD�T� method in the cc-pVDZ, cc-
pVTZ, cc-pVQZ, and cc-pCVQZ basis sets �Coriani et al.,
2005�.

FIG. 20. Normal distribution of errors �kcal/mol� for calcu-
lated equilibrium atomization energies compared to experi-
ment for a set of 16 molecules containing first-row atoms in the
cc-pCVQZ basis set �Bak, Jörgensen, et al., 2000�.
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data bases for some small molecules and radicals. Other
workers �Pawlowski et al., 2003; Alexeev et al., 2005�
have provided similar ultimate accuracy CC results to
answer questions that depend upon an accuracy of less
than 1 kcal/mol. The fact that this can be done attests to
the power of CC theory.

For a more demanding example for vibrational fre-
quencies, consider the ozone molecule. Ozone has two
nearly degenerate MO’s �a2 and b1� of which only one
�a2ā2� is doubly occupied to define the Fermi vacuum.
�The ā2 means it has � spin.� This is an example of a
problem with some multireference character, since a
multireference approach would try to treat both orbitals
equivalently. Instead, SR theory requires that the second
be introduced via the double excitation operator in the
cluster expansion, and since it will have a comparatively
large weight in the final wave function compared to that
for �a2ā2�, that can lead to slower convergence. More
importantly, a proper wave function might be expected
to include both determinants into a MR space from the
beginning, which would then introduce excitations from
both determinants equivalently, which the SR-CC theory

does not do. As Figs. 23 and 24 show, for the symmetric
A1 vibrational frequencies the symmetric stretch and the
bend CC theory still does very well, with the better
methods showing some improvement over the lower
ones. The first figure uses a DZP basis, while the second
uses a cc-pVTZ basis. The effect of the larger basis set is
pronounced, though the general behavior of the SR-CC
methods is still quite good for symmetric vibrations.
However, in all cases the antisymmetric vibration is not
too well described.

This is an interesting feature of the O3 problem dis-
cussed long ago �Stanton et al., 1989�. When the antisym-
metric vibration is considered, two other determinants

abruptly enter into the calculation, �a2b̄1� and �ā2b1�,
which together provide another singlet configuration
that only contributes when the C2v symmetry of O3 is
broken, allowing the formal a2 and b1 orbitals now to
mix. This abrupt change causes some lack of balance in
determining this antisymmetric vibrational frequency
compared to the symmetric ones, which makes it a more
demanding test for the theory. Both the effects of basis

FIG. 21. Normal distribution of errors �kcal/mol� for calcu-
lated reaction enthalpies compared to experiment for a set of
13 reactions containing first-row atoms in the cc-pCVQZ basis
set �Bak, Jörgensen, et al., 2000�.

FIG. 22. �Color online� Normal distribution of dipole moment
errors �D� related to the CCSD�T�/aug-cc-pVQZ reference
numbers for a set of 11 polar closed-shell molecules for the
CCSD�T� method in the cc-pVXZ �X=D ,T ,Q� and cc-
pCVQZ basis sets �Bak, Gauss, et al., 2000�.
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set and level of theory are important. The DIP-STEOM
method �Nooijen and Bartlett, 1997c�, which we have
not yet defined but will in Sec. VIII, treats these deter-
minants equivalently, and shows some improvement
over other SR-CC methods. We will further consider
this example using MR methods in Sec. IX.

A great deal of chemistry pertains to modest changes
from equilibrium geometries like the vast majority of
structure determinations, spectroscopic measurements,
and heats of reaction. Transition states where bonds be-
gin to break and form occur somewhat farther from
equilibrium, and place some extra demands upon the
theory. However, of all readily applicable quantum
chemical and DFT methods, only CCSD�T� can reduce
the error in the activation barrier for simple reactions to
�1 kcal/mol �Lynch and Truhlar, 2003�. Using a cc-

pVTZ basis, the mean error for their benchmark ex-
amples is 0.91 kcal/mol, while with the augmented basis
aug-cc-pVTZ the error is 0.24. All DFT methods cur-
rently applicable have errors more negative than
−4 kcal/mol. In a rate constant, an error of �1 kcal/mol
in the barrier changes the rate by a factor of �5.

B. Basis-set issue

The basis-set limitations in molecular applications are
well known. For two-electron interactions, the solution
of the correlation problem ultimately depends upon the
MO product approximation �p�1�q�2�. Hence, the
two-electron basis is much poorer than the one-electron
basis set. It has been known since the time of Hylleraas

TABLE VI. Computed and extrapolated harmonic frequencies with coupled-cluster methods for the
N2 molecule.

Basis
set

No. basis
functions

CC

Expt.
SD�T� SDT SDT�Qf� SDTQ SDTQ�Pf�

� �cm−1�

cc-pVDZ 28 2339a 2347a 2325a 2328a 2324b

cc-pVTZ 60 2346a 2356a 2337a

cc-pVQZ 110 2356a 2366a 2348a

cc-pV5Z 182 2360a 2370a 2351a 2354a,c 2350
cc-pCV5Z 290 2370d 2380a,c 2361a,c 2364a,c 2360
cc-pV6Z 280 2361a 2371a,c 2352a,c 2355a,c 2351

cc-pCV6Z 460 2371d 2381a,c 2362a,c 2365a,c 2361 2358.6e

aKucharski et al., 1999.
bMusiał et al., 2001.
cEstimated value.
dPeterson et al., 1997.
eHuber and Herzberg, 1979.

TABLE VII. Computed and extrapolated harmonic frequencies with coupled-cluster methods for the
C2 molecule.

Basis
set

No. basis
functions

CC

Expt.
SD�T� SDT SDT�Qf� SDTQ SDTQ�Pf�

� �cm−1�

cc-pVDZ 28 1828a 1829a 1821a 1816a 1814b

cc-pVTZ 60 1845a 1847a 1838a 1833a

cc-pVQZ 110 1856a 1859a 1849a

cc-pV5Z 182 1859a 1861a 1852a 1847a,c 1845
cc-pCV5Z 290 1870d 1872a,c 1862a,c 1857a,c 1855
cc-pV6Z 280 1860a 1862a,c 1853a,c 1848a,c 1846

cc-pCV6Z 460 1871d 1873a,c 1863a,c 1858a,c 1856 1854.7e

aKucharski et al., 2001.
bMusiał et al., 2001.
cEstimated value.
dPeterson et al., 1997.
eHuber and Herzberg, 1979.
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�1929� that wave functions that are constructed with ex-
plicit r12 dependence will be much more accurate. Such a
wave function satisfies the so-called �singlet� electron
cusp condition defined by Kato �1957�,

lim� 	�
	r12

� =
1
2
��r12 = 0� . �92�

Kutzelnigg, Klopper, and Noga �Kutzelnigg, 1985;
Noga et al., 1992; Noga and Kutzelnigg, 1994� have de-
veloped such an explicit R12-dependent CC approach
into a practical computational method, CC-R12. Within
the CC-R12 ansatz, the exponential operator consists of
the conventional, standard exponential T operator and a
new R operator that takes care of the correlation cusp,
and more importantly the short-range correlation. The
final wave function ����� is expressed as

��� = eReT��� = e�R+T����

and R is defined as

R = 1
4ckl

ij Rij
kl, �93�

Rij
kl = 1

2R̄
�
kl ãij


� = 1
2 �r̄
�

kl ãij

� − r̄ab

kl ãij
ab� , �94�

r̄pq
rs = �rs�r12�pq� − �rs�r12�qp� , �95�

where 
 ,� , . . . denote virtual orbitals within a complete
basis; ãrs

pq= 
p†q†sr�; ckl
ij are a set of amplitudes defining

the r12 contribution to the double excitation operator
and r12 is an operator representing the interelectronic
distance.

An R12 theory is most effective when applied to the
coupled-cluster approach since it makes it possible to
combine the fast convergence of the CC approach to-
ward the full correlation limit with more robust satura-
tion toward the complete basis-set limit �Noga et al.,
1992, 2001; Noga and Kutzelnigg, 1994; Noga and Va-
liron, 2000, 2002�. From the computational point of view,
the effort required to solve the additional set of equa-
tions connected with the R12 amplitudes is not much
more demanding than normal CC, once the new three-
electron integrals that arise in the theory are approxi-
mated by resolutions of the identity �ROI� approxima-
tions. However, ROI imposes a restriction to large basis
sets. The performance of the CC-R12 approach has been
summarized by Noga and Valiron �2002�. The mean de-
viation from estimated complete basis-set limit
CCSD�T� correlation energies for a number of ten-
electron systems is equal to 16.14 mH, while the same
quantity for the CCSD�T�-R12 method is reduced to
1.69 mH. A significant improvement due to the R12 an-
satz is also observed for atomization energies and elec-
trical properties �Franke et al., 1995�. Further improv-
ments in the R12 theory arise from using it in an
exponential form, exp�−�r12

2 � �Hino et al., 2002�, that
cuts off the inappropriate long-range effect of R12.

The advantage of the CC-R12 theory can be appreci-
ated most fully for small molecular systems where very
large basis sets can be used. Also, the extensions re-
quired for analytical gradients and EOM-CC excited
states have not yet been made.

TABLE VIII. Contributions to the best estimates of harmonic
frequencies �in cm−1�.

HF N2 F2 CO

CCSD-R12a 4191.0 2443.2 1026.5 2238.5
CCSD�T�-CCSDb −48.4 −80.6 −95.7 −71.5
CCSDTQ-CCSD�T�b −4.5 −9.1 −12.2 −6.5
CCSDTQP-CCSDTQb −0.1 −3.9 −0.8 0.0
Core-correlation correctionb 4.0 9.8 1.6 9.9
Totalb 4142.0 2359.4 919.4 2170.4
Adiabatic correctionb 0.4 0.0 0.0
Relativistic correctionb −3.5 −1.4 −0.5 −1.3
Best estimateb 4138.9 2358.0 918.9 2169.1
Experimentc 4138.3 2358.6 916.6 2169.8

aPawlowski et al., 2003.
bRuden et al., 2004.
cHuber and Herzberg, 1979.

FIG. 23. �Color online� Vibrational frequencies of ozone �DZP
basis set�. Experimental values are 1135, 1089, and 716 cm−1

for symmetric stretch, asymmetric stretch, and bending modes,
respectively �Tanaka and Morino, 1970; Barbe et al., 1974�.

FIG. 24. �Color online� Vibrational frequencies of ozone �cc-
pVTZ basis set�. See Fig. 23 for the experimental values.
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The other important issue refers to the use of the
coupled-cluster method in calculations for large mol-
ecules. The construction of such computational schemes
is guided by the idea of retaining the most essential sub-
sets of CC amplitudes and neglecting the less important
ones, which eventually leads to substantial reduction in
the number of amplitudes. Such procedures are built
upon either the singular value decomposition �SVD� ap-
proach �Kinoshita et al., 2003; Hino et al., 2004�, the
Cholesky decomposition �Beebe and Linderberg, 1977;
Koch et al., 2003�, or they try to exploit localization ar-
guments �Schuetz and Werner, 2000; Flocke and Bart-
lett, 2003�. The singular value decomposition applies to
any matrix, while Cholesky requires a positive-definite
one. In the first case, we can replace the matrix by an
expansion in vectors weighted by their singular values,
which measures their importance. Then we can make a
contraction of the usual MO indexed amplitudes tij¯

ab¯ by
a contracted set tX

Y as determined, in principle, by their
singular values. �In practice, we have to obtain the
weight factors from some simpler, related problem like
MBPT�2�.	 Now the effective dimension of the CC prob-
lem is greatly reduced, again dramatically diminishing
the high scaling of the unmodified calculation. This is
called compressed coupled cluster. Very impressive lo-
calized orbital results for quite large molecules have
been reported �Schuetz and Werner, 2000�, some even
with explicit R12 effects �Werner and Manby, 2006�.

The coupled-cluster method CCSD has also been ap-
plied to polymers for its first numerical example for an
infinite, translationally invariant system �Hirata,
Grabowski, et al., 2001; Hirata, Podeszwa, et al., 2004�.
Prior CCD work was reported by Förner et al. �1997�.
Such correlated methods for periodic systems are diffi-
cult to do, primarily because of having to converge the
lattice sums, even though long-range interaction terms
can be effectively grouped together and the integral cal-
culation limited to the symmetrically unique integrals
that extend over several neighbor unit cells. The main
new element in the cluster amplitudes is that in addition
to the usual i , j¯a ,b¯ orbital indices, one has to also
add the wave vector k to the Bloch spin-orbitals. How-
ever, not all wave-vector indices are varied indepen-
dently, because the t-excitation amplitudes will vanish
when such excitations do not conserve momentum. In
this respect, the polymer problem is closer to that de-
scribed in standard physics texts on many-body theory
than is the rest of this review. The CCSD equations then
become

�0�H̄�0� = KEunit cell, �96�

��iki

aka�H̄�0� = 0 ∀ a,i,ki, �97�

��ikijkj

akabkb�H̄�0� = 0 ∀ a,b,i,j,ki,kj,ka, �98�

where �ka−ki� ·a=2�m and �ka+kb−ki−kj� ·a=2�n,
with m and n integers and a the fundamental vector that
defines the unit cell. K is the number of wave-vector

sampling points. The detailed equations have been
shown by Hirata, Grabowski, et al. �2001�, and Hirata,
Podeszwa, et al. �2004�. Results have been presented for
polyethylene, polyacetylene, polyyne �C�C��, as well as
prototypes �LiH�� and �HF��. In particular, the decay of
the integrals and amplitudes as a function of the number
of unit cells has been studied extensively.

If the CC paradigm of converging methods,
MBPT�2� � CCSD� CCSD�T� �CCSDT�CCSDT�Q�
�CCSDTQ� full CI, and its EOM-CC variants for ex-
cited, ionized, etc. states discussed in Sec. VIII could be
effectively applied to 1D, 2D, and 3D systems, then CC
theory would be able to offer significant insights into
several interesting phenomena in solid-state physics,
such as band gaps, phonon spectra, optical and magnetic
properties, and superconductivity.

C. Bond breaking

When insisting upon correct separation all the way to
the asymptotic dissociation limit for a molecule, there
can be difficulties. This is not a problem with CC meth-
ods as such, but with the reference function used in the
single determinant based CC. An RHF reference for a
closed-shell molecule cannot separate correctly to open-
shell fragments. So for even H2→2H it is well known
that the RHF energy will go to an average of that for a
proton H+ and a hydride ion H−. For the fragmentation
of an open-shell molecule, ROHF will have similar
problems to RHF. The unrestricted Hartree-Fock will
usually correctly separate, but at the cost of breaking the
symmetry of the wave function to permit an electron to
localize on each H atom. Though the wave function is
wrong, the energy is correct for such a solution at the
dissociation limit. The density is also correct at separa-
tion. In the interest of developing CC methods that can
even transcend the deficiencies of an incorrectly separat-
ing reference function, one often intentionally uses a
RHF reference to test the CC approach. Obviously,
CCSD, which is the full CI for H2, would give the right
answer for two electrons with any possible single deter-
minant reference, including RHF and UHF.

Figure 25 shows the behavior of the F2 potential-
energy curve at various levels of CC theory �Musiał and
Bartlett, 2005� with a RHF and a UHF reference. F2 is
an interesting case since, as shown in Fig. 26, the RHF
curve is artificially bound because of its incorrect sepa-
ration, while contrary to fact, the UHF curve shows no
binding, as the two F atoms are lower in energy than the
F2 molecule. At the CCSDT level for RHF and CCSD
for UHF, both curves are qualitatively correct as would
be expected for a single bond, showing that CC theory
has the capacity to overcome a misbehaving reference
determinant. Closer inspection shows difficiences in that
the CCSDT result slips below the asymptotic limit in the
RHF reference case, while CCSD is too high. Adding
the quadruple excitations CCSDTQ mostly corrects
these features for the RHF reference. Results for the
widely used CCSD�T� approximation are also shown.
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Obviously, any perturbative correction to the infinite-
order CCSD for a RHF reference will invariably fail
since as the bond breaks, the highest occupied MO
�homo�, �n, and the lowest unoccupied MO �lumo�, �n+1,
energies can become degenerate, causing the term to go
to minus infinity. For the UHF reference, CCSD�T� has
to behave better because the UHF function is separating
correctly. Similarly, the differences between CCSD and
CCSDT are less pronounced at separation, since the
UHF is energetically correct there, but as the RHF so-
lution is the correct, lowest-energy single-determinant
solution at the equilibrium geometry, shortly beyond
that the UHF becomes lower in energy than the RHF
and there is a bifurcation. This region is sometimes
called the spin recoupling region as the closed shell is
beginning to take on the characteristics of two doublet
open shells through the UHF localization, causing the
spin-eigenfunction property of the RHF-CC method to
be lost. However, insofar as we are converging onto the
full CI solution for F2, the actual eigenfunction would
have to eventually become a spin eigenfunction even if
we do not impose it a priori. However, we can monitor

this behavior by evaluating �Ŝ2�.

We can compute �Ŝ2� in two ways. �i� As a projected
value in analogy to the transition formula for the energy,

where �0�Ŝ2���= S̄�S̄+1�, with an average multiplicity

obtained from the approximate spin eigenvalue S̄. This

gives a quadratic equation where 2S̄+1=�1+4�0�Ŝ2���
�Purvis et al., 1988�. �ii� As an expectation value

���Ŝ2���= S̄�S̄+1�, which is in general an infinite series
in CC theory, but it will be shown in the next section
that it can be written in closed form as �0��1
+��exp�−T�Ŝ2 exp�T��0� �Stanton, 1994�. The former
projected value is consistent with how the energy is de-
termined in CC theory, and is a convenient index for

UHF-based CC results, as 2S̄+1 will typically be a num-
ber like 3.0001 for a triplet state, attesting to the fact
that there is little spin contamination. For a ROHF ref-

erence, however, it follows that �0�Ŝ2�0�=S�S+1�, which
guarantees that the projected value would be exactly
2S+1 regardless of ���. So if we want to more defini-
tively assess the residual spin contamination in the CC
wave function, the second choice is preferred. Several
numerical results for the spin multiplicity for open shells
are shown elsewhere �Purvis et al., 1988; Stanton, 1994;
Bartlett, 1995�.

FIG. 25. �Color online� Potential-energy curves for the F2 mol-
ecule obtained with various CC methods in a cc-pVDZ basis
set.

FIG. 26. The SCF potential curves for the F2 molecule.
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The more difficult example for bond breaking is of-
fered by the triple bond in N2. The curve needs to
change from a normal closed-shell RHF-based solution
at Req to two 4S states for the N atoms, each with three
unpaired electrons, whose multiplicity could be as high

as a septet. Here, as shown in Fig. 27�a� �Chan et al.,
2004�, the extreme change makes the RHF-based CCSD
and CCSDT poorer in the large R region, with the latter
falling beneath the asymptotic limit. Once again, the
UHF-based CC curves are qualitatively correct. Closer
inspection of the recoupling region shows the difficulties
with the latter, however. This effect is nicely summarized
in the paper of Chan, Kallay, and Gauss, see Fig. 27�b�
�Chan et al., 2004�. Even though the UHF-CCSD�T�
looks qualitatively right in Fig. 27�a�, as shown in Fig.
27�b�, between about 2 and 4 bohr it can be in error by
up to about 19 mH, compared to UHF-CCSD’s error of
26. As shown in Fig. 27�b�, the maximum error is re-
duced to about 10 with UHF-CCSDT, while T4 further
reduces it to 4 mH. Pentuples �T5� reduce that to
2.3 mH and hextuples �T6� to 0.8 mH.

At the levels of CC theory that are available for seri-
ous molecular application, CCSD, CCSD�T�, CCSDT-3,
and maybe CCSDT-3 �Qf� beyond some simple single
bond-breaking examples, we cannot expect that that
level of CC theory without further modification can
overcome the deficiencies of an incorrectly separating
single-determinant reference. And even if the UHF does
separate correctly, there will still be regions of the PES
that are less well described. Most would say that correct
bond breaking requires a multireference treatment
where more than one determinant is used in the refer-
ence function. As such, CI linear combinations can be
built to ensure that all elements required for correct
separation are present in the wave function. We discuss
multireference CC in the last section of this review, but
despite substantial effort �Lindgren, 1979; Jeziorski and
Monkhorst, 1981; Lindgren and Mukherjee, 1987; Jezi-
orski and Paldus, 1989; Mukherjee and Pal, 1989; Ku-
charski and Bartlett, 1991b; Bartlett, 2002� and encour-
aging recent progress �Pittner, 2003; Li and Paldus, 2004�
there is no generally applicable MR-CC for PES yet
available. Instead, extensions of the more easily applied
single reference methods are being pursued further. The
essence of the problem, then, is how to get the critical
effects of higher-order cluster contributions that facili-
tate bond breaking into a practical CC computational
method with the accuracy and wide applicability that
currently exists for molecules near their equilibrium ge-
ometries.

To illustrate the problem, consider the ansatz that the
correct CC wave function for bond breaking should
have a part that accounts for the so-called nondynamic
correlation, which roughly means the quasidegeneracy
encountered in bond breaking; and a second part that
accounts for the dynamic correlation, which means to
keep electrons apart. The full CI obviously has both, so
this is an artificial separation but one found to be useful
when discussing the problem, as the two effects are de-
scribed somewhat differently. The nondynamic part typi-
cally requires a few or several highly weighted determi-
nants to effect correct separation, while the dynamic
part is composed of small contributions from very many
determinants. The CC method does the latter extremely
well, which is why such accurate, correlated results can

FIG. 27. �Color online� Potential-energy curves for the N2
molecule. �a� CC results compared to full CI in a cc-pVDZ
basis set �frozen core�. �b� Errors compared to CI for UHF-CC
methods as a function of R.
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be obtained near a molecule’s equilibrium geometry.
To illustrate this point we assume a CC ansatz

�Piecuch et al., 1993; Kinoshita et al., 2005� that will force
a solution to be composed of a nondynamic part,
exp�Text��0�, and a dynamic part, exp�Tint�,

��� = exp�Tint�exp�Text��0� , �99�

�Tint,Text	 = 0, �100�

��� = exp�Text��0� , �101�

��� = exp�Tint���� , �102�

ECAS-CI = Eref = �0�H��� , �103�

ETCCSD = Eref + �ECCSD
int , �104�

where Text will be taken from a correct nondynamic so-
lution, and Tint will be subsequently determined by the
usual CC equations. Li and Paldus �1994� have used such
an ansatz called externally corrected to add effects for
quadruple and higher excitations into CCSD. Here we
use a different variant that is limited to just single and
double excitations that leads us to tailored CCSD
�TCCSD�. The simplest solution to bond breaking is to
do the full CI in a small, active orbital space that has the
essential elements for the bond breaking. For a single
bond like the HF molecule, that means the occupied �
orbital and the unoccupied �*. Using two orbitals, a lin-
ear combination of the two determinants gives the cor-
rect, bond-breaking behavior shown in Fig. 28. Note
how much higher the energy is than in the correlated
results. However, this correct behavior is all that is re-
quired to enable the TCCSD result to show correct bond
breaking. Extracting the external amplitudes from the
full �sometimes called complete active space� CI in the
two-orbital problem, by using the cluster decomposition,
T1

ext=C1 and T2
ext=C2− �T1

ext�2 /2. So by inserting the two
T1,2

ext amplitudes involving the � and �* orbitals, while all
the rest �T1,2

int � are obtained from the standard CCSD
equations, in effect, the reference function in the ansatz
becomes the two-determinant one. Usually that would
require the tools of MR-CC, which would also have the
advantage that the two functions would be treated com-
pletely equivalently, but by virtue of fixing the external
amplitudes and determining the internal ones separately,
some of the MR effect is introduced without operation-
ally changing the vacuum from the single determinant.
Tailored coupled-cluster TCCSD greatly improves the
separation, yet the method only uses a single determi-
nant reference and has much the same ease of applica-
tion as the usual single reference CC theory. Once the
coupling between Text and Tint is permitted, one moves
toward the true MR-CC problem. One intermediate
point is to add in the higher excitations into the single
reference problem that would correspond to single and
double excitations out of a second reference determi-
nant �Oliphant and Adamowicz, 1992�, which are triple
and quadruple excitations out of the first. To make this

feasible also requires some kind of active orbital restric-
tion to limit these excitations. Finally, if CC is built upon
a generalized valence bond �GVB� reference, it would
achieve the same bond-breaking behavior for a single
bond, but now both components in the reference func-
tion would be treated equivalently �Balkova and Bart-
lett, 1995�. Also, because of its fixed form, it is possible
to do GVB-based CC �Van Voorhis and Head-Gordon,
2001� without all the complications of general MR-CC.
Single bonds, however, are not really the problem.

Application to N2 requires breaking a triple bond, so
the active orbital space consists of the three valence oc-
cupied orbitals �g, �u and the three corresponding un-
occupied orbitals �u��*�, �g��*�. Figure 29 shows the
correct behavior for this very small full CI. Here some of

the effects of the higher-order excitations Ĉ3 through Ĉ6
are subsummed from cluster analysis into just the T1 and
T2 external amplitudes, and once the remaining ampli-
tudes are determined from the CCSD equations, there is
again correct separation. The comparison here is to a
very large �14-electron, 10-orbital� MR-CI result. The
comparative timings for the two calculations are �407 s
for the MR-CI to �1.25 s for the TCCSD. When in-
creasing the basis from pVDZ to pVTZ, it is not practi-
cal to do the MR-CI but the TCCSD requires only
�36 s, which is essentially the same as for the ordinary
CCSD itself. So in a calculation that is much faster than
would be the case for even CCSDT, we achieve qualita-
tively correct bond breaking. The conclusion is that if we
can hide into the T1 and T2 amplitudes in CCSD the
essential effects required for the bond breaking, which
are only known here from some consideration of the
higher-order CI coefficients, it would give a viable ap-
proach. The down side is that if we allow the additional
coupling between Text and Tint, we have to move to a
MR-CC framework. Even the alternative of adding

FIG. 28. �Color online� Potential-energy curves for the HF
molecule in the cc-pVDZ basis set. The horizontal axis repre-
sents the internuclear distance normalized by the equilibrium
bond length �Re=1.733 a.u.� �Kinoshita et al., 2005�.
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some additional higher excitations in an augmented
single reference approach is now quite limited, as there
are 52 D2h reference determinants in the six-orbital–six-
electron CAS-CI for N2.

It is clear that improvements on the basic single refer-
ence CC framework will have to arise from some kind of
consideration of higher excitations, since QnH exp�T1
+T2�P�0, n�2. This prohibits the equivalence shown
in Eqs. �78�–�80�. Of course, this is the basic idea of
methods like CCSD�T�, as discussed in Sec. V.E, but
what other ways can this information be incorporated?

Another partial solution that has been suggested
�Kowalski and Piecuch, 2000a� is to renormalize the
SR-CC equations. The issue of renormalization might be
approached from Eq. �75�, where there is potentially a
denominator. As shown in the derivation of CCSD�T�
above, we used the connected expectation form for the
energy without any denominator. However, we limited
the numerator to just fourth-order terms. It might be
argued that rather than cancelling the denominator com-
pletely from the equation, which leads to just connected
terms in the numerator, we should retain the denomina-
tor to the same order as the numerator �Meissner and
Bartlett, 2001�. Once that is done, we have the general
renormalized correction �ER=�E / �1+S� form, where S
is an overlap and �E would be the triples correction,
e.g., in CCSD�T�. Expansion shows that �ER=�E
−S�E+S2�E−¯. Clearly, except for the so-called EPV
terms, which will arise as parts of linked diagrams,
all such terms have unlinked character, just as
E�2����1� ���1�� did in our introductory fourth-order PT
example in Sec. III. This violates size extensivity, the
guiding principle of CC theory, which raises arguments
about how far such methods should be pursued. How-
ever, in the limit of the full CC, the expression is exact.

When quasidegeneracy is not present, �S��1, but it
grows rapidly as bonds are broken which offsets the fact
that �E tends to go to minus infinity. This keeps the
curve from turning over as in the N2 and F2 examples
shown previously.

Many different kinds of approximations to this basic
structure have been considered, termed renormalized
and completely renormalized. To show just one, their
CR-CCSD�T� correction �Kowalski and Piecuch, 2000b�
is given by

�ECR-CCSD�T�

=
�0��T̄1 + T̄2

†�WR3�W exp�T̄1 + T̄2�	C�0�

�0��1 + �T̄1
† + T̄2

†��1 + WR3�	exp�T̄1 + T̄2��0�
, �105�

where the denominator is composed of second- and
third-order corrections �counting T1 as first order� to ac-
commodate the fourth-order terms in the numerator.

Although the details might be critical in finding the
optimum way to renormalize, they all tend to have simi-
lar numerical behavior. For example, a different, but
more easily evaluated one �Meissner and Bartlett, 2001�
has

�ER-CCSD�T�
M�

=
�0��T1

† + T̄1
2/2 + T̄2

†�WR3WT̄2�0�

�0��1 + �T̄1
† + T̄1

2/2 + T̄2
†��1 + WR3�	exp�T̄1 + T̄2��0�

.

�106�

Results are shown for RHF reference N2 compared to
the full CI result in Fig. 30. Due to the denominator, the
curve cannot turn over like the unmodified CCSD�T�
did in Fig. 27�a�. However, closer inspection of the two
sets of curves shows that in the vicinity of the equilib-
rium geometry, the unmodified CC methods are superior
to their renormalized versions. This is another manifes-
tation of the size inextensivity of such models, which
also guarantees that the vibrational frequencies ob-
tained from some such model will not be nearly as good
as the usual CC results. In fact, it can be argued that the
size-extensive UHF-based CC results that can separate
correctly are actually better for many applications.

If the denominator is limited to just provide EPV
terms instead of more general denominators, then one
can regain size extensivity. Some attempts at doing this
have been considered �Kowalski and Piecuch, 2000b;
Nooijen, 2005�. The main objection to this approach is
that when EPV parts of diagrams are retained, instead
of the whole diagram that contains the EPV part �Bart-
lett and Musiał, 2006�, the orbital invariance of CC
methods is compromised. If localized orbitals are used,

FIG. 29. Potential-energy curves for the N2 molecule in the
cc-pVDZ basis set. The horizontal axis represents the internu-
clear distance normalized by the equilibrium bond length �Re
=2.074 a.u.� �Kinoshita et al., 2005�.
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good virtually extensive results are obtained at separa-
tion, but a rotation of the orbitals destroys this behavior.
Also, any particular choice of orbitals would have to
apply at any R, and that further complicates the issue.
So at this time, such renormalized CC approaches have
significant formal limitations. There is also no denomi-
nator in iterative CC �like CCSDT-n� as opposed to
noniterative CC approximations. So renormalization
cannot be achieved by denominators, per se, but there is

still room for other ways to exploit the higher QnH̄P
equations such as by modification of the left-hand eigen-
vector of the CC functional �Moszyński et al., 2005;
Piecuch et al., 2006�.

Another possibility for a better description of bond
breaking is offered by the so-called extended CC �ECC�
method of Arponen and Bishop �Arponen, 1983; Ar-
ponen et al., 1987a, 1987b�. The main element of the
ECC theory relies on using a double similarity transfor-
mation defined through two sets of amplitudes � and T.
The ECC energy functional in the singles and doubles
approximation �ECCSD� is expressed as

E�ECCSD� = �0�e�
†
e−THeTe−�†

�0� , �107�

where T is a standard cluster operator defined in Eqs.
�26�–�29� and �† is a deexcitation operator of the same
cluster structure as T†,

�† = �1
† + �2

† �108�

and

�n
† = �

ij¯

ab¯

�ab¯
ij¯ i†j†

¯ ba . �109�

Taking advantage of the transformation �Arponen,
1983� and remembering that �†�0�=0, we may rewrite
Eq. �107� as

E�ECCSD� = �0��e�
†
�HeT�c	dc�0� , �110�

where dc �doubly connected� indicates that the � opera-
tor is connected with H or at least two T operators. The
double connectedness property ensures that the equa-
tions for � and T contain only connected contributions.

The usefulness of the ECCSD theory in the descrip-
tion of the bond-breaking situation has been considered

FIG. 30. �Color online� Potential-energy curves for the N2
molecule in the cc-pVDZ basis set obtained with the FCI and
R-CCSD�TQf� methods.

FIG. 31. �Color online� Potential-energy curves for the N2
molecule in a STO-3G basis set obtained with the FCI,
ECCSD, ECCSD�TQ�, CCSD, and CR-CCSD�TQ� methods.
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�Van Voorhis and Head-Gordon, 2000; Gwaltney et al.,
2002; Fan et al., 2005�. It can be observed from Fig. 31,
taken from Fan et al. �2005�, that the ECCSD curve
shows correct behavior in the region of 2Re unlike the
standard variants such as CCSD or even renormalized
versions with inclusion of the noniterative triples and
quadruples CR-CCSD�TQ�. Apparently the best curve
is obtained by combining the so-called renormalized
noniterative corrections with the ECCSD iterative solu-
tion �Fan et al., 2005�; see the ECCSD�TQ� curve in Fig.
31. It needs to be stressed, however, that the rigorous
formulation of the ECC approach even in its simplest
singles and doubles approximation is a complicated and
costly method. One has to carry out simultaneous itera-
tions of the two sets of the amplitude equations: � and
T. The terms occurring in both equations are cumber-
some and require a high-rank computational procedure.
Some of the diagrams originating from the term
��ij

ab��2
†2HT2

4�0� /48 contributing to the T2 amplitude af-
ter proper factorization scale as M10, which is prohibitive
for wider applications of the method. An inclusion of
higher clusters, such as �3 and T3, which are necessary to
obtain a method correct through fourth order of pertur-
bation theory, is still more complex and only feasible in
approximate versions.

VII. THE COUPLED-CLUSTER FUNCTIONAL
AND THE TREATMENT OF PROPERTIES

A molecule has 3N−6 vibrational degrees of freedom
for N atoms, or, in terms of Cartesian forces that are
most frequently obtained in calculations, 3N atomic de-
rivatives. Absolutely essential to the wide range of CC
applications that are made is the existence of analytical
procedures to obtain the 3N forces, �E�R�=F�R�, to
search a PES to determine the points where the forces
vanish, which will give a molecule’s structure and saddle
points for transition states. Furthermore, to know that
the molecule’s geometry is indeed a minimum energy
configuration requires the matrix of second derivatives,
��E�R�, the Hessian. This defines the harmonic force
constants from which solution of the vibrational
Schrödinger equation yields the vibrational frequencies.
If at a point where F�R�=0 all frequencies are real, then
the geometry on the PES is a minimum, while if only
one is imaginary, then we have a saddle point that cor-
responds to a transition state on a reaction coordinate.
Without some procedure to evaluate the forces in about
the same amount of time as the wave function and en-
ergy at a point, applications of theory to PES for poly-
atomic molecules would be hopeless. The fact that today
this can be done for CC theory �Adamowicz et al., 1984;
Bartlett, 1986; Scuseria et al., 1987; Salter et al., 1989� is
critical to its role as the reference method for most mo-
lecular applications.

The essential new idea required can be readily de-
rived in a few steps. We know that the CC energy at

each point of a PES is E�R�P=PH̄�R�P. If we differen-
tiate it with respect to R, we obtain the forces. The key,

then, is to arrange this expression for the forces into a
computationally convenient form that can be evaluated
in about the same amount of time as can the wave func-
tion itself. This is done through the following steps:

E�R�P = PH̄�R�P , �111�

�E�R�P = P � H̄�R�P , �112�

�E�R�P = P exp�− T���H�R�	exp�T�P

+ P�H̄,�T�R�	P �113�

=P�H�R�P + PH̄�P + Q� � T�R�

− �T�R��P + Q�H̄P �114�

=P�H�R�P + PH̄Q � T�R�P , �115�

where after inserting the resolution of the identity 1
=P+Q, the last line uses the fact �i� that �T�R� has to
correspond to an excitation from the reference determi-
nant �0� or the P space, P= �0��0�, to its orthogonal

complement Q; and �ii� that QH̄P=0 by virtue of the CC
equations being solved; the bar over the operator indi-

cates its similarity transformed form H̄=e−THeT, Eq.
�58�. We also need to consider the derivative of the am-

plitude equations QH̄P=0, which gives

Q�H�R�P + Q�H̄,�T�R�	P = 0. �116�

Again inserting the resolution, we can write

Q�H�R�P + Q�H̄�P + Q� � T�R�

− �T�R��P + Q�H̄	P = 0, �117�

Q�H�R�P + Q�H̄Q � T�R�

− �T�R�PH̄	P = 0. �118�

The form of the last term can be recognized as that from
first-order perturbation theory, since we have

�E − QH̄Q� � T�R� = Q�H�R�P , �119�

�T�R� = �E − QH̄Q�−1Q�H�R�P , �120�

�T�R� = RQ�H�R�P , �121�

where we introduced the resolvent operators for H̄, R.
Inserting this into the energy formula and defining �

=P�HRQ leads to

�E�R� = �0��1 + ���H�R��0� . �122�

The quantity � is independent of the 3N perturbations.
Notice also that it is a deexcitation operator, as �

=P�Q=�i�j�¯�a�b�¯

�ab¯
ij¯ 
i†aj†b¯ �. It is also essential

to recognize that �H�R�=exp�−T��H exp�T� has re-
moved any T dependence from the gradient, leaving
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only the gradient of the Hamiltonian. Hence, combining
these features we have a generalized Hellman-Feynman
formula for the forces. If we specify to a single degree of
freedom � /�X
, the formula becomes

E
�R� = �0��1 + ��H̄
�R��0� . �123�

This can be viewed as a generalization of the inter-
change theorem of double perturbation theory �Dal-
garno and Stewart, 1958; Bartlett, 2004�.

We can further generalize Eq. �123� using the integral
Hellman-Feynman theorem, which simply means inte-
grate the above expression to give the CC functional E
=0

R��E /�R�dR,

E�R� = �0��1 + ��H̄�0� . �124�

The functional is a very important quantity in CC
theory. As shown here, it arises as a natural consequence
of simply asking for energy derivatives along with the
energy �Adamowicz et al., 1984; Bartlett, 1986; Salter et
al., 1989�. From another viewpoint, it arises from a gen-
eralization of CC theory, where NCC �meaning normal
CC in this designation� would be the usual CC equations
and adding � is viewed as an extension �Arponen et al.,
1987a�. A third way to obtain this formula is to intro-
duce constraints via a Lagrangian multiplier when deriv-
ing the CC gradient equations �Koch et al., 1990; Szalay
et al., 1993�. The functional immediately shows that

	E /	�=0 gives the CC equations, QH̄P=0, and varia-
tion with respect to T gives the � equations,

P�QH̄Q + PH̄Q − EP�Q = 0, �125�

P��,H̄	Q + PH̄Q + PH̄Q�Q = 0. �126�

Note that Eq. �125� has E in it, as it is CI-like and linear
in �. This leads to disconnected contributions to the �2
equations, as shown in Fig. 32. The second form of the �
equations formally eliminates E by introducing the com-
mutator and facilitates its diagrammatic derivation. Fig-
ure 32 presents the skeleton �undirected diagrams� for
�1 and �2 in the CCSD approximation. Through linear
terms in T, �=T†.

The functional also allows the immediate definition of
CC one-particle and two-particle response density ma-
trices as

�pq = �0��1 + ��e−Tp̂†q̂eT�0� , �127�

�pqrs = �0��1 + ��e−Tp̂†q̂†ŝr̂eT�0� . �128�

Notice that these density matrices apply equally well to
methods like CCSD�T� that do not have associated wave
functions. This is very different from that in ordinary
quantum mechanics where the density matrix is defined
as an expectation value of the wave function. It is true,
however, that �pq= �0�eT†p̂†q̂eT �0� / �0�eT†

eT�0� in the limit

of all Tn, and similarly for the two matrix; but the expec-
tation value is an infinite series and the �-based expres-
sion is always in closed form. In second-order perturba-
tion theory, the two forms are equivalent. Detailed
expressions for the particular blocks of the one-particle
density matrix can be derived from the diagrams given
in Fig. 33. For example, the particle-particle block can
be expressed as �Fig. 33�a�	 �ab=�m�a

mtm
b + 1

2�mne�ea
mntmn

eb

+�mne�ea
mntm

e tn
b. Similar expressions correspond to the re-

maining blocks of �. Using the same diagram rules, we
can readily write down the response correlation correc-
tions for the CC density matrices from just the normal
ordered parts 
p̂†q̂�, 
p̂†q̂†ŝr̂� of the density matrix opera-
tors. See Shavitt and Bartlett �2006� for the details. Most
first-order properties, meaning those defined by first-
order perturbation theory where a one-particle operator

ĥ
 is added to the one-particle part of the Hamiltonian

ĥ+ ĥ
 �like moments, field gradients, etc.�, arise from the
generalized expectation value,

h̄
 = �0��1 + ��e−Tĥ
eT�0� , �129�

FIG. 32. Skeleton diagrams for the �1 and �2 equations for
CCSD.
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h̄
 = �
p,q

�pqhpq

 , �130�

and can be readily evaluated to quite high accuracy by
CCSD and its modifications due to triples �Bartlett,
1995�.

However, though any CCSD and higher approxima-
tion benefits from the fact that �0�=exp�T1���� relates
two determinants and introduces substantial orbital in-
sensitivity, the response density matrices do not explic-
itly contain the effects of orbital relaxation that occur
for the reference determinant problem, which by virtue
of changing the orbitals propagates through the correla-
tion calculation. That is, it allows the occupied and vir-
tual orbitals in the reference function to change to ac-
commodate a perturbation due to h
. For example, if
h
=�p,q�p�z�q�p†q, which would be the z component of a
perturbation due to a static electric field, the orbitals
that define the Fermi vacuum would be changed by this
perturbation. Such changes are normally introduced into
the theory by orbital perturbation theory. That is, as-
suming a HF reference determinant one seeks the solu-
tion of the coupled-perturbed Hartree-Fock equations
to define �
=�d
, subject to �
��+ ��
�=0. Each
orbital equation written in terms of the unperturbed and
perturbed Fock operators is

��p
�0� − f̂�0��
 = �f̂
 − �p


��0�. �131�

Expanding out the Fock operators and isolating the par-
ticular coefficient, the CPHF equations can be written in
terms of the familiar A and B matrices from RPA
�TDHF� theory,

�A + B�d
 = − h
, �132�

Aai,bj = ��a − �i�	ij	ab − �aj��bi� , �133�

Bai,bj = �ab��ij� . �134�

Note that here too, we run into the problem of comput-
ing every d
 unless we once again use the interchange
theorem �Dalgarno and Stewart, 1958� by formally tak-
ing the inverse of �A+B�−1, the resolvent operator in
CPHF theory, to isolate d
 �Handy and Schaefer, 1984�.
Then putting this together with Eq. �123�, we can isolate
all effects of the true operator to define a MO relaxed
density matrix Dpq such that we evaluate a property as

h̄
 = �
p,q

hpq

 Dpq. �135�

This density matrix obviously accounts for the appropri-

ate orbital relaxation regardless of what the actual ĥ


might be.
The most general kind of first-order property is the

analytical gradient problem, which adds a third element
that arises from the changes in the finite AO basis for
the problem. For such a property, the first-quantized op-
erator h
=�h /�X
 and the second-quantized form will
add, in addition to the changes in the MO coefficients
that introduce orbital relaxation, changes in the AO ba-
sis functions, as they follow the atoms in the molecule.
That is, HN


 is

H
�R0� = �
p,q

�/�X
�p�f�q�R0

p†q�

+ 1
4 �

pqrs
�/�X
��pq��rs��R0


p†q†sr� �136�

and then

��/�X
�p�R� = �
�

���/�X
����R��R0
c�p�R0�

+ �
�

����R0���/�X
�c�p�R��R0
�137�

=�
�

���/�X
����R��R0
c�p�R0�

+ �
q�p

�q�R0���/�X
�dqp�R��R0
,

�138�

FIG. 33. Diagrams representing the one-particle reduced den-
sity matrix for CCSD: �a� particle-particle elements, �b� hole-
hole elements, �c� hole-particle elements, and �d� particle-hole
elements.
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 = �
�

���
�R��R0
c�p�R0� + �

q
�q�R0�dqp


 �R��R0
.

�139�

In any analytical gradient calculation where we choose
to use a basis set of atomic orbital functions attached to
the atoms, we have to compute all the one- and two-
electron atomic orbital integrals at each R to account for
the AO derivative term. This, however, is simply an
�M4 calculation, which is much faster than the CC cal-
culation itself. The CPHF problem now has to be
slightly modified to accommodate the new terms that
arise from the AO derivatives, and those also affect the
HF �reference� part of the analytical gradient calcula-
tion. Incorporated within the most general Dpq are the
two interchange theorems, one to avoid T
 and the
other to avoid d
. Only with both does the analytical
gradient formula assume a form that permits a compu-
tationally convenient evaluation of all 3N gradients for a
CC wave function in about the same amount of time as
the CC calculation itself. The evaluation of �, as a linear
equation, is somewhat faster than that for T, while the
additional evaluation of the derivative integrals adds
overhead and, if they are stored rather than recomputed
for a displacement, substantial disk space requirements.
The rather involved analysis that leads to these final CC
derivative equations is presented in detail elsewhere
�Salter et al., 1989; Shavitt and Bartlett, 2006�. Analytical
second derivatives were formulated some years ago
�Salter and Bartlett, 1989�, with an implementation by
Gauss and Stanton �2002�. Stanton and Gauss have also
implemented analytical derivatives for excited states
�Stanton and Gauss, 1995�, as discussed in Sec. VIII.

Before we finish this section, we reconsider nonitera-
tive triple and quadruple excitation corrections to CC
based upon the CC functional �Kucharski and Bartlett,
1998a; Crawford and Stanton, 1998� instead of the CC
expectation value. First we assume an underlying CCSD
solution and then isolate all terms that would depend
upon T3 or �3,

ET
�4	 = �0��3�H0T3

�2	�C + �3�WT2
�2	�C + �2�WT3

�2	�C

+ �1�WT3
�2	�C + �2�fvoT3

�2	�C�0� .

Then using the fact that the T3
�2	 amplitudes are defined

by �3��H0T3
�2	�C+ �WT̄2�C	�0�=0, we are left with

ET
�4	 = �0��2�WT3

�2	�C + �1�WT3
�2	�C + �2�fvoT3

�2	�C�0� .

The �-based diagrams are basically the same as those
for CCSD�T� except that the top vertex represents �
and because of the different symmetry we cannot fur-
ther simplify the first term. So finally the diagrammatic
terms are

This �CCSD�T� modification has been proposed �Craw-
ford and Stanton, 1998; Kucharski and Bartlett, 1998a�
and shown to have prospects of being a better approxi-
mation than CCSD�T�.

Starting from CCSDT and doing precisely the same
thing for �4 and T4

�3	, and recognizing that �4��H0T4
�3	�C

+ �WT̄2
2 /2�C+ �WT̄3�C	�0�=0, we have

EQ = �0��3�WT4
�3	�C + �2�WT4

�3	�C + �3�fvoT4
�3	�C�0�

or in diagrammatic form as

to define �CCSDT�Q�. Unlike �CCSD�T�, which only
contains �generalized� fourth-order corrections,
�CCSDT�Q� has both fifth- and sixth-order terms. This
makes the rate-determining step �n4N5 compared to
�n3N4 for the triple variant. If the �second diagram�
fifth-order term itself is separated �CCSDT�Qf�, then as
shown in Sec. VI it can be factorized into an �n2N5 term
for Qf. Odd-order contributions, however, tend to be
less stable than those based on even orders of perturba-
tion theory. See Hirata, Fan, et al. �2004a� for a nonfac-
torized fifth-order approximation and Bomble et al.
�2005� for a sixth-order approximation. The latter re-
places � in the above diagrams by T†.

VIII. EQUATION-OF-MOTION COUPLED-CLUSTER
METHOD FOR EXCITED, IONIZED, AND ELECTRON
ATTACHED STATES

A convenient approach to excited states in CC theory
is offered by the equation-of-motion �EOM-CC�
method, whose basic ideas were presented in Reviews of
Modern Physics �Rowe, 1968�. The general idea was
used in various quantum chemical contexts �Dunning
and McKoy, 1967; Simons and Smith, 1973; McCurdy
et al., 1982�.

It derives from simultaneously considering two
Schrödinger equations, one for an excited state k and
one for a ground or reference state,

H�k = Ek�k, �140�
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H�0 = E0�0. �141�

We introduce an operator �k, such that it will create the
excited state from the reference state,

�k = �k�0, �142�

and after subtracting one equation from the other, and
left multiplying by �, we obtain

�H,�k	�0 = �k�k�0, �143�

�k = Ek − E0. �144�

At this point there are two decisions to make: what to
choose for �k and what to choose for �0. Answering the
second question first, we want �0 to be a CC wave func-
tion �0=exp�T��0� �Emrich, 1981�. The simplest option
for �k, if we want to create an electronic excited state, is
to make it an excitation operator,

�k = R̂k = r0�k� + �
a,i

ri
a�k�
ai� + �

a�b,i�j
rij

ab�k�
a†ib†j�

+ ¯ �145�

as we know that has to give the exact excited-state wave
function. Also as an excitation operator, �� ,T	=0.
Hence, using the CC wave function for the reference
state, the EOM Eq. �143� becomes �Sekino and Bartlett,
1984; Geertsen et al., 1989�

�H̄,Rk	�0� = �kRk�0� , �146�

�H̄Rk�C�0� = �kRk�0� , �147�

�H̄Rk� = Rk�k, �148�

�H̄R�C = R� . �149�

We use the symbol Rk for the operator �not to be con-
fused with the resolvents from earlier� to indicate that it

is a right-hand eigenvector because the matrix H̄
= �h�e−THeT�h�, where �h� is the excitation manifold, is
non-Hermitian. Limiting Rk to single and double excita-
tions, �h�= �h1h2�, defines EOM-CCSD �Comeau and
Bartlett, 1993; Stanton and Bartlett, 1993b; Geertsen et
al., 1989� �see Figs. 34 and 35�.

For the H̄R product diagrams, the EOM-CCSD ma-
trix will have a rank of �n2N2+nN. For the n=10, N
=100 example from earlier, we would have to extract
eigenvalues and vectors for a matrix with a rank of a
million. Adding triples to define EOM-CCSDT, it be-
comes a billion. In a typical problem, about 20 or so
roots are obtained using large-scale non-Hermitian gen-
eralizations of Lanczos-type methods �Davidson, 1975;
Hirao and Nakatsuji, 1982�.

FIG. 34. Diagrammatic form of the EE-EOM-CCSD equa-
tions.

FIG. 35. Diagrammatic form of the three-body elements of H̄
used in the EE-EOM-CCSD equations.

FIG. 36. The diagrammatic representation of the one-, two-,
and three-body elements of H̄.
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The diagrammatic form of the H̄ elements is com-
posed of 1, 2, 3, 4, and higher particle number operators,

H̄=�k=0
2 Ik

1 +�k=0
4 Ik

2 +�k=0
3 Ik

3 +�k=0
3 Ik

4 +¯. The quantity Ik
n

means an n-body element, while subscript k indicates
that there are k annihilation lines �or k second-
quantized annihilation operators�. Due to the two-body
nature of the electronic interaction, we have the relation
that k�3. Formally we can consider k=4, but in this
case the intermediate I4

2 is reduced to the two-electron

integral. All are shown in Fig. 36. The H̄ elements that
represent a complete set of diagrammatic contributions
are indicated by a wiggly line. Elsewhere we present the
general formulas for the number of the diagrams con-

tributing to the H̄ elements �Musiał et al., 2002a� and the
number of diagrammatic terms occurring in the com-
plete form of the Ik

n element for n=1, 2, 3, and 4.
In EOM-CC we can also consider excited states as

those that correspond to an ionization into orbital a,
where a is considered to be in the continuum. In the
sudden approximation an electron in a continuum plane-
wave orbital has no interaction with those in the bound,
square-integrable orbitals. This makes the operator that
ionizes the electron from the mth orbital become

R̂k = �
m

rm�k�
m� + �
b,m�i

rim
a �k�
b†im� + ¯ , �150�

where we have one-hole and two-hole one-particle op-
erators in the equivalent, IP-EOM-CCSD, approxima-
tion. We can equally well do an electron attachment, i.e.,
bring in an electron from the continuum,

�
a

ra�k�
a†� + �
a�b,i

ri
ab�k�
a†b†i� + ¯ , �151�

to define an EA-EOM-CCSD approximation. Triple ex-
citation operators introduce three-hole, two-particle and
three-particle, two-hole operators �Musiał and Bartlett,
2003; Musiał et al., 2003�, respectively. We can consider
double ionization, electron attachment �Nooijen and
Bartlett, 1997c�, etc., processes as we are simply exploit-
ing the Fock space structure of the theory to obtain
eigenvectors and eigenvalues for any sector of Fock
space.

Since the matrix H̄ is not Hermitian, it also has left-

hand eigenvectors, �0�L̂k, with the same eigenvalue. That
is,

�0�L̂kH̄ = �0�L̂k�k, �152�

LH̄ = �L . �153�

These are chosen to be normalized such that �0�L̂kR̂l�0�
=	kl. Unlike the right-hand eigenvector, the left-hand

one is not necessarily connected to H̄. We now should
realize that the ground-state CC functional is simply a
special case of the EOM-CC problem for excited states,
as L0= �1+�� and R0=1. So EOM-CC simply extends
the concept into any stationary state.

To complete the specification of the excited state k,
we require the corresponding density matrix, which in
the EOM-CC framework is

�pq
k = �0�L̂ke−Tp†qeTR̂k�0� �154�

just as was used for the ground state. For oscillator
strengths, we also require the transition density matrix

�pq
kl = �0�L̂ke−Tp†qeTR̂l�0� , �155�

which provides the dipole strength,

��pq
kl �2 = �0�L̂ke−Trpqp†qeTR̂l�0��0�L̂le

−Trpqp†qeTR̂k�0� ,

�156�

that gives the intensity of the transition. This is pre-
ferred since the individual transition density matrices
are not self-adjoint in EOM-CC.

An alternative development of the excited-state prob-
lem is offered by the time-dependent linear-response CC
method �Monkhorst, 1977�, sometimes called CCLR
�Sekino and Bartlett, 1984; Koch and Jörgensen, 1990�.
From this viewpoint, instead of dealing with stationary
states, which are a characteristic of EOM-CC, one starts
with the time-dependent Schrödinger equation and
seeks the frequency-dependent polarizability. From its
poles, one obtains the same EOM-CC excitation ener-
gies. The residue at the pole provides the dipole
strength. However, there are some differences between
the treatment of properties like dipole strengths in the
CCLR compared to the EOM treatment outlined above.
A discussion with applications of EOM-CC to the dy-
namic polarizability addresses these, formally and nu-
merically �Rozyczko et al., 1997; Sekino and Bartlett,
1999�. A related approach to EOM-CC and CCLR is the
SAC-CI method �Nakatsuji, 1978� whose differences are
discussed elsewhere �Bartlett, 2005�.

When any EOM-CC state is determined from a
closed-shell reference CC calculation, whether singlet,
doublet, or triplet, it too will be a spin eigenstate. When
EOM-CC is used relative to an open-shell reference,
that is not necessarily the case, but a measure of

�0�L̂k exp�−T�Ŝ2 exp�T�R̂k�0� will typically show that the
spin contamination is minor except for pathological
cases. For ROHF-based EOM-CC calculations of exci-
tation energies starting from the open-shell reference
determinant, the approach of Szalay and Gauss �2000�,
though computationally based upon spin-orbital equa-
tions, returns an exact spin target state. This procedure
thereby maintains the attractive generality of the under-
lying spin-orbital framework of CC theory presented in
this review.

Other properties of interest that are amenable to
EOM-CC are second-order properties, which means
that they arise from second-order perturbation theory
instead of first-order properties discussed in the last sec-
tion that come from the generalized expectation value.
For second-order properties, we require the first-order
perturbed wave function and cannot make the simplifi-
cations made for first derivatives. Consequentially, for
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some perturbation �
�h
+ 1
2�
,��

2h
�, we have from
second-order perturbation theory that ��CC=�CC

�0� �

E
� = ��CC�h
���CC� + ��CC�h
 − E
����

+ ��CC�h� − E���
� , �157�

��
� = Re−Th
eT�0� = Rh̄
�0� , �158�

E
� = �0��1 + ��h̄
��0� + �0��1 + ���h̄
 − E
�Rh̄��0�

+ �0��1 + ���h̄� − E��Rh̄
�0�

= �0��1 + ��h̄
��0� + �E
�. �159�

Use was made that the left-hand eigenvector ��CC�
= �0��1+��e−T. Note the contribution of the second-
order h
� perturbation is a generalized expectation
value. For the other two terms, we use the resolvent R,
introduced in Sec. VII,

R = Q�E − H̄�−1Q . �160�

Since we know the eigenfunctions of H̄ consist of 
�0�Lk
and Rk�0��, to refer the resolvent to the general state CC
solution instead of the �0� reference implicit in R, we
have to exclude the left- and right-hand reference func-

tions to define a modified resolvent R̃0,

R̃0 = R − �0��0��1 + �� = �
k�0

R̂k�0��0�L̂k

�k
. �161�

This enables representing the perturbed CC wave func-
tion in a generalized sum-over-states �SOS� form
�Sekino and Bartlett, 1999�,

�E
� = �
k

��0��1 + ���h̄
 − E
�R̂k�0��k
−1�0�L̂kh̄��0�

+ �0��1 + ���h̄� − E��R̂k�0��k
−1�0�L̂kh̄
�0�	 ,

�162�

to make the connection with ordinary perturbation
theory. In practice, there can be no meaningful evalua-
tion by using the SOS form, which for the examples we
have discussed even at the EOM-CCSD level easily
have �106 states. So, in practice, to avoid evaluation of
the inverse resolvent, one solves the linear equation
�Stanton and Bartlett, 1993a�

��h1�E − H̄�h1� �h1�E − H̄�h2�

�h2�E − H̄�h1� �h2�E − H̄�h2�
��C1




C2

�

= ��h1��1 + ��h̄
�0�

�h2��1 + ��h̄
�0�
� ,

which can be accomplished much more efficiently using
the same kind of numerical methods employed for the
diagonalization of the EOM-CC equations, to get solu-
tions for C
. The second-order property can then be
conveniently obtained from the matrix product

�E
� = �0��1 + ���h̄
 − E
��h1h2�C�

+ �0��1 + ���h̄� − E���h1h2�C
. �163�

When the energies E
 and E� remain in the expression,
just as in ordinary RSPT there is the potential for size
inextensivity, since their scaling for N units will be
E
�N�=NE
, and without their cancellation, the final
second-order result will not be size extensive except
in the limit of all excitations �Kobayashi et al., 1994;
Rozyczko and Bartlett, 1997; Sekino and Bartlett, 1999�.
Hence, there is a slight difference between this pertur-
bation �or propagator� -type approximation to a second-
order property and the second derivative with respect to
� in the finite limit. The latter introduces a quadratic
term in the perturbed T’s,

E
� = �0��1 + ���h̄
 − E
�R̄h̄��0� + �0��1 + ���h̄�

− E��R̄h̄
�0� + �0��1 + ���H̄ − E��f��f�T
T��0� ,

�164�

where �f� indicates all determinants beyond those in
�h1h2�. As a derivative of a size-extensive quantity, it
must be size extensive. However, its evaluation is more
difficult. For two electrons there is no �f�, so there is no
quadratic term. Yet for more than two electrons, the
quadratic term effects the cancellation of the energies
E
 in the lead term among other things. To maintain the
distinction between the two different approximations,
we refer to the perturbation form as the CI-like approxi-
mation since we are using the EOM-CC eigenstates that

are CI solutions to the H̄ matrix. As a CI approximation
for excited states, unlike a CC approximation that would
use an exponential operator as in Fock space CC �see
below�, it will not be completely size extensive. We can
simply remove the offending term and get excellent ex-
tensivity �Sekino and Bartlett, 1999�, but that introduces
an approximation. Results using the quadratic approxi-
mation, the perturbation, CI-like approximation, and its
linearized, extensive form are shown elsewhere for dy-
namic polarizabilites �Rozyczko and Bartlett, 1997;
Sekino and Bartlett, 1999�. In general, for individual
molecules the CI-like and quadratic form give quite
close results. For NMR coupling constants they are vir-
tually indistinguishable �Perera et al., 1996�.

It is a failing of standard CC theory that there are two
ways to define second- and higher-order properties that
are equivalent in the limit. We have recently shown that
the more general unitary CC, exp����0�, where �=T−T†

�Bartlett et al., 1989�, has to make them equivalent
�Taube and Bartlett, 2006�. However, the nontermina-
tion of the UCC ansatz has to still be addressed.

A. Numerical results

A few numerical examples of how well the EOM-CC
methods perform for vertical excitation energies com-
pared to full CI are shown in Tables IX–XII. For satu-
rated atoms and molecules like Ne, HF, and H2O, all
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excited states are Rydberg in character, meaning that
they can be approximated by a one-electron atom en-
ergy formula −Zeff / �n−	�2 in terms of an effective
atomic number with n the principal quantum number
and 	 the quantum defect. It also means that the elec-
tron is comparatively far from the molecule as measured
by �r2�, for example. When this is computed from the
excited state’s density matrix for a Rydberg state, it will
be much larger than that in the ground state. On the
other hand, for a valence excited state they will be com-
parable in size. To have lower-lying valence excited
states typically requires some unsaturation in the mol-
ecule or other quasidegenerate behavior. Hence, Ryd-
berg excited states are quite sensitive to the diffuseness
in the Gaussian basis to describe them, but somewhat
less sensitive to the description of electron correlation,
while the valence states tend to reverse this behavior. To
show one example of the former, results for EOM-
CCSD and EOM-CCSDT for Ne are shown in Table IX
along with Fock space �FS� and STEOM results to be
discussed later. At the CCSD level, the error in a cc-
pVDZ basis is a little more than �0.2 eV. The EOM-
CCSDT result reduces this to �0.02 eV. Comparisons to
experiment would not be good in this basis, as it lacks

suitable diffuse functions, but when compared to full CI
there is no ambiguity. If we make the same comparisons
for the HF molecule’s lowest 14 excited states and H2O’s
lowest 9, we obtain average errors of 0.123 for EOM-
CCSD and 0.035 for EOM-CCSDT, respectively.

For the more correlation-demanding excited states as
in CH+, shown in Table X, we see very large errors at
the CCSD level for the third 1�+ and 1� states. The
reason for this is that these states have a large compo-
nent of double excitation character, which can be judged
by the large weight of double excitations in the excited-
state wave function, perhaps most easily measured by
the magnitude of the amplitudes from R1 and R2 �Stan-
ton and Bartlett, 1993b�. For these three states the
singles contribution is, respectively, 0%, 0.22%, and
1.04%. Once we add the triple excitations fully into the
calculation via EOM-CCSDT, the errors are greatly re-
duced to a few hundreths of an eV. The lowest-lying
excited 1� state is mostly a double excitation, as its %
singles is 0.23, and as a valence state, its error at the
CCSD level, �0.5 eV, is reduced to �0.07 with triples.
Similar behavior is shown by the second and third 1�
states.

Table XI shows how higher-order cluster amplitudes
continue to modify the excitation energy for the meth-
ylene radical. In this case, the reference state is not the
ground state, but the excited 1A1. To get the ground
state from EOM-CC, we deexcite to 3B1. For all states,
singlets or triplets, most of the error that remains at the
CCSD level is removed by triple excitations. For the
lowest 1A1, 1B2, and 3B2 states, there is a significant con-
tribution of double excitations that are again handled by
the inclusion of triples.

For the C2 molecule �Table XII�, the inclusion of
triples significantly improves the CCSD results, reducing
the deviations from the FCI values even by several eV
�cf. the 3�g state�. But the interesting observation is that
EOM-CCSDT results in some cases are off by �0.1 eV
and only inclusion of quadruples cures the problem �see,
e.g., the 1�g state�. For molecules like C2, which has
quasidegeneracy even at this equilibrium geometry, the
cluster convergence of the EOM results is much slower

TABLE IX. Vertical excitation energies �in eV� of Ne with a cc-pVDZ basis set augmented by
additional diffuse functions with exponents s�0.04�, p�0.03�. The active orbitals �lowest-lying unoccu-
pied, highest occupied� are �4,4� for the FS and STEOM calculations.

State
symmetry

STEOM
CCSDa

FS EOM

FCIcCCSDa CCSDTb CCSDc CCSDTb

1P0 16.162 16.153 16.380 16.158 16.372 16.398
1D 17.975 17.968 18.225 17.963 18.185 18.213
1P 18.013 18.003 18.231 18.005 18.228 18.256
1S 18.261 18.242 18.553 18.248 18.450 18.485

aMeissner, 1998.
bMusiał and Bartlett, 2004b.
cKoch et al., 1995.

TABLE X. Vertical excitation energies �in eV� of CH+ �R
=1.131 Å� with 6-31G** basis set. The lowest and highest or-
bitals were frozen.

State
symmetry

EOMa

FCIa �
EOM-CCSDTQCCSD CCSDT

1�+ 9.0742 8.6030 8.5304
1�+ 14.3658 14.3070 14.3042
1�+ 19.8063 18.0541 18.0224
1� 3.2366 3.2066 3.2087
1� 14.5036 14.2220 14.1595
1� 17.6963 17.1199 17.0573
1� 7.8325 6.9707 6.9335
1� 17.6687 16.8020 16.8460

aHirata et al., 2000.
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than the previous examples, and to achieve good agree-
ment with the reference values higher EOM models
need to be considered.

Recognizing that we have different numbers of results
at the various levels, and without further separation into
Rydberg or valence, for all excited states we obtain av-
erage deviations from FCI shown in Table XIII. There
we also show results from other approximations like
CC2 and CC3 �Christiansen et al., 1995a, 1995b�, which
are defined to be consistent through second- and third-
order perturbation theory based upon the CCLR analy-
sis.

In Tables XIV and XV, we show the same kind of full
CI comparison for the EA-EOM-CC for CH+ and the
IP-EOM-CC for BH and C2, where the accuracy is simi-
lar to that for excitation energies.

As we only have full CI results for small molecules in
small basis sets, the more meaningful step toward ex-
periment is offered by basis-set extrapolated results. For
molecules, of course, unless one obtains at least the op-
timum geometry in each of the bound excited states to
obtain an adiabatic excitation energy, which is what the
spectroscopists should see, or better, even simulate the
spectrum �Stanton and Gauss, 1999�, theory compari-
sons are at the mercy of comparing with what the spec-
troscopists say is the correct vertical excitation energy.
Also, the theorist has to be able to trust the basis-set
extrapolation even though there are variants that will
give different answers. With those caveats, such com-
parisons can be made and are illustrated for vertical ex-
citation energies, vertical ionization potentials, and ver-
tical electron affinities in Tables XVI–XIX. To offer one
number to characterize the quality of the results, the
mean absolute errors are 0.241 for CCSD and 0.089 for
CCSDT for excitation energies, which are close to those
deduced from the full CI comparisons. C2, however,
which is a very difficult molecule to treat due to its
quasidegeneracies, does not compare as well as the
other, very well studied systems. This might suggest an
inaccurate vertical excitation energy for comparison.
When the same C2 molecule is studied in a small basis

TABLE XI. Vertical excitation energies �in eV� of CH2 �R=1.102 Å, �HCH=104.7°� with 6-31G*

basis set. The lowest and highest orbitals were frozen.

State
symmetry

EOMa

FCIa�EOM
CCSDTQPHCCSD CCSDT CCSDTQ CCSDTQP

1B1 1.6677 1.6776 1.6787 1.6787 1.6787
1A1 5.8437 4.5629 4.5178 4.5168 4.5168
1A2 6.1006 6.0920 6.0926 6.0926 6.0926
1B2 9.6915 8.2780 8.2540 8.2536 8.2536
1A1 9.1202 9.0559 9.0531 9.0529 9.0529
3B1 −0.3443 −0.3120 −0.3101 −0.3101 −0.3101
3A2 5.3001 5.3143 5.3150 5.3150 5.3150
3B2 8.3816 6.9525 6.9054 6.9041 6.9041
3A1 8.3891 8.3291 8.3267 8.3265 8.3265
3B2 9.3035 9.1548 9.1504 9.1502 9.1502

aHirata et al., 2000.

TABLE XII. Vertical excitation energies �in eV� of C2 �R
=2.348 a.u.� with a cc-pVDZ basis set augmented by additional
diffuse functions with exponents s�0.0469�, p�0.04041�. The 1s
orbitals were frozen.

State
symmetry

EOM

FCICCSD CCSDT CCSDTQ

1�u 1.475a 1.419a 1.386a 1.385b

1�g 4.347a 2.700a 2.317a 2.293b

1�u
+ 5.799a 5.715a 5.615a 5.602b

1�g 6.202a 4.582a 4.487a 4.494b

a 3�u 0.280c 0.317c 0.305c

c 3�u
+ 0.777c 1.143c 1.214c

b 3�g
− 3.566c 1.889c 1.385c

d 3�g 4.290c 2.723c 2.589c

g 3�g 10.712c 6.847c 6.670c

aHirata, 2004.
bChristiansen et al., 1996.
cLarsen et al., 2001.

TABLE XIII. Average deviations �in eV� from FCIa excitation
energies for several methods. Results averaged over the series
of small systems: Ne, HF, CH2, H2O, N2, and C2.

CC2 EOM-CCSD CC3 EOM-CCSDT

Singlet states
0.50 0.25 0.07 0.05

Triplet states
0.42 0.13 0.03 0.02

aKoch et al., 1995; Christiansen et al., 1996; Hald et al., 2001;
Larsen et al., 2001.
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set where the full CI comparison is possible �Hirata et
al., 2000�, 1�u and 1�u

+ at the EOM-CCSDT level differ
by 0.03 and 0.11 eV, respectively, suggesting that at least
the former vertical excitation energy is likely to be mis-
assigned. At the EOM-CCSDTQ level, the difference
from the full CI is 0.001 eV for the first state and
0.013 eV for the second. To make basis-set limit EOM-
CCSDTQ calculations is beyond the state of the art at
present.

As shown in Table XVII, the valence ionization po-
tentials show less dependence on triple excitations re-
gardless of whether the basis sets used in the extrapola-
tion are the normal ones or those augmented with extra
diffuse functions. The results appear to be quite close to
the experimental ones. In Table XVIII, we have poly-
atomic molecules where the chances of missing the ori-
gin of the band in the experimental photoelectron spec-
trum are greater, potentially causing more apparent
differences in the results. However, for the case of eth-
ylene, where several different experimental results
�Bieri and Asbrink, 1980; Holland et al., 1997; Davidson
and Jarzecki, 1998� have reached entirely different con-
clusions as to what the values are, we chose to turn the
problem around and use theory to predict accurate ver-
tical ionization potentials �Yau et al., 2002; Musiał and
Bartlett, 2004a�. In Table XIX, we go to complete basis-
set extrapolations for the difficult electron affinities of
C2 and the ozone molecule.

Matrices with rank �109 for small molecules for
EOM-CCSDT and �1012 for EOM-CCSDTQ clearly re-
quire simplifications before they can be widely applied.
One can use EOM-CCSDT-3 as for the ground state, but
except for a savings in that calculation there is little to
gain for the excited state, as that would still require di-

agonalization using all triple excitations in the problem.
Noniterative approximations should still be possible and
were proposed �Watts and Bartlett, 1995; Watts et al.,
1996� to try to get workable methods. So far, however,
none seem to work nearly as well as does CCSD�T� for
ground states. The basic reason is that the description of
the excited state has different demands from that for the
ground state, and the demands for both the ground and
excited states need to be satisfied to get accurate excita-
tion energies. Using the same kind of analysis as shown

in Sec. VI, an EOM-CCSD�T̃� model can be extracted
from EOM-CCSDT-3 for excited states �Watts and Bart-
lett, 1996�. It tends to lower the excitation energy from
EOM-CCSD and appears to improve the description of
the excitation energy of valence excited states, but closer
inspection shows that it also inappropriately lowers the
excitation energy of Rydberg states. Hence, there is no
good solution along these lines yet.

A better alternative is simply to limit higher excita-
tions to those for a set of active orbitals, that is, to in-
clude triples iteratively, but only those that correspond
to excitations involving the highest occupied orbitals
into the lowest unoccupied ones. Then the rate-
determining step in the EOM-CC calculation is almost
that for CCSD. We call that EOM-CCSDt �Piecuch et
al., 1999� to indicate that the triple excitations are re-
stricted to just those that can be made for a small num-
ber of active orbitals. Extensions to EOM-CCSDtq can
obviously be done. Applications have been reported for
such approximations �Kowalski and Piecuch, 2001;
Piecuch et al., 2002� with excellent results.

Another element that should be appreciated about
EOM-CC methods is their use as a multireference target
state method. That is, by adding or removing electrons,
the method acquires the capability of treating multiple
determinants in the target state. Consider two quaside-
generate MO’s a and b. The target wave function has

four Sz=0 determinants—aā, bb̄, ab̄, and āb—which
should be treated equivalently. This is the essence of a
MR-CC problem. Yet standard single-determinant refer-
ence CC would use aā as the reference, and the other
determinants’ weight in the wave function would have to
be introduced from the Q space into the CC equations.
This means their values would have to be attained
through the iterations of the CC equations, and if some

TABLE XIV. Vertical electron affinities �in eV� of CH+ �R
=1.120 Å� with 6-31G* basis set. The lowest and highest or-
bital were frozen.

State
symmetry

EOMa

FCIaCCSD CCSDT CCSDTQ

1� 10.150 10.117 10.109 10.109
3� 1.701 1.734 1.740 1.741

aHirata et al., 2000.

TABLE XV. Vertical ionization potentials �in eV� of C2 �R=1.262 Å� with 6-31G basis set and BH
with 6-31G** basis set. The two lowest and two highest orbitals were frozen.

Molecule
State

symmetry

EOMa

FCIaCCSD CCSDT CCSDTQ CCSDTQP CCSDTQPH

C2 1�u 12.662 12.314 12.151 12.130 12.132 12.131

2�u
− 15.180 14.803 14.749 14.724 14.721 14.721

BH 3� 9.418 9.384 9.383 9.383 9.383 9.383
2� 16.980 16.688 16.643 16.643 16.643 16.643

aHirata et al., 2000.
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are as large as that for the aā determinant �after ac-
counting for the intermediate normalization�, this would
result in a badly converging calculation. Furthermore,
there would still be a bias toward the aā reference since
the excitations, say singles and doubles, are being taken
from it, but not the same single and double excitations
from the other three determinants. But because of the
matrix diagonalization in EOM-CC, when these four de-
terminants are in the manifold of EOM excitations, their
coefficients have the flexibility to immediately become
whatever they require. To achieve this in EOM, it might
be useful to define the reference function to be a deter-
minant with two fewer electrons, and then use the EOM

double �DEA� operator R̂DEA to add two electrons to
the problem. In that way, these four determinants would

all be treated equivalently in H̄, being able to have their
weights determined by diagonalization to whatever is
appropriate. Similarly, we could start with a closed-shell
reference determinant that has two more electrons than

the target, and use the double �DIP� operator to elimi-
nate two of them, which, once again, gives an equivalent
treatment of all four determinants in the target state.
This is the essence of a multireference problem as al-
ready discussed for ozone. This result for ozone was
shown earlier. Because of CCSD’s insensitivity to orbital
choice, using orbitals for the N−2 determinant or the
N+2 determinant reference is relatively reasonable for
the description of the target state. However, as the
EOM-CC equations are CI-like for the target state, as
opposed to the CC ground state, we cannot always ex-
pect the same degree of orbital invariance as we have
with help of the exponential exp�T1� operator; see To-
bita et al. �2003� for examples where orbital choice is still
important.

Finally, another useful variant on the EOM-CC theme
is that one can use high-spin reference determinants for
CC, which may be UHF, ROHF, or QRHF, and are typi-
cally as good for such states as are the RHF ground-
state references �Watts et al., 1992; Comeau and Bartlett,
1993�, and then deexcite from them to get a description
of lower-spin states. This is the spin-flip approach of
Krylov �Levchenko and Krylov, 2004�. To illustrate,
starting from a ROHF triplet whose reference determi-

nant is �A
B
�, a deexcitation operator for R̂SF

=rB


B�ĉB�
† ĉB
+rA


A�ĉA�
† ĉA
 will give the linear combination

rB

B� �A
B��+rA


A��A�B
�, which depending upon the com-
parative signs of the amplitudes will provide the singlet
eigenstates. In fact, the EOM-CC approach allows many
routes to many different states by excitation, adding and
removing electrons, and adding the spin-flipped compo-
nents.

For an illustration of the EOM-CCSD approach for a
second-order property, consider the scalar spin-spin cou-
pling component of NMR. Its origin arises from interac-
tions between nuclei that have magnetic moments and
electrons. In the Ramsey nonrelativistic theory �Perera
and Bartlett, 2005�, there are four contributions: the dia-
magnetic spin-orbit �DSO� term

TABLE XVI. Extrapolated vertical excitation energies �in
eV�.

Molecule
Nominal

state

CBSa

Expt.EOM-CCSD EOM-CCSDT

N2
1�g 9.546b 9.301b 9.31b

1�u
− 10.167b 9.844b 9.92b

1�u 10.604b 10.251b 10.27b

CO 1� 8.697b 8.540b 8.51b

1�− 10.243b 10.044b 9.88b

1� 10.379b 10.178b 10.23b

C2
1�u 1.287 1.268c 1.041c

1�u
+ 5.523 5.501c 5.361c

aFor N2 and CO: cc-pV�Z; for C2: aug-cc-pV�Z.
bMusiał and Kucharski, 2004.
cMusiał et al. 2004.

TABLE XVII. Extrapolated vertical ionization potentialsa �in eV�.

Molecule
Nominal

state

cc-pV�Z aug-cc-pV�Z

Expt.EOM-CCSD EOM-CCSDT EOM-CCSD EOM-CCSDT

N2 3�g 15.78 15.63 15.80 15.63 15.60
1�u 17.38 17.08 17.38 17.09 16.98
2�u 19.01 18.82 19.02 18.82 18.78

CO 5� 14.30 14.04 14.30 14.04 14.01
1� 17.23 17.12 17.23 17.13 16.91
4� 19.95 19.69 19.95 19.70 19.72

F2 1�g 15.80 15.82 15.82 15.85 15.83
1�u 19.15 18.99 19.16 19.02 18.8
3�g 21.30 21.20 21.32 21.23 21.1

aMusiał et al., 2003.
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h
,� ⇔ HNN��DSO�

=
�0

2�Be �N�N�

8�2

��
k

�rkN · rkN���IN · IN�� − �rkN · IN��rkN� · IN��

rkN
3 rkN�

3 ,

the paramagnetic spin-orbit �PSO�

h
,h� ⇔ HN�PSO� =
�0�B �N

2�i �
k

IN ·
rkN � ��k�

rkN
3 ,

the spin dipole �SD�

h
,h� ⇔ HN�SD�

=
�0�B �N

2�

��
k

3�Sk · rkN��IN · rkN� − rkN
2 �Sk · IN�

rkN
5 ,

and the Fermi contact term �FC�

h
,h� ⇔ HN�FC� =
4�0�B �N

3 �
k
	�rkN�Sk · IN.

Here �0 and �B are the permeability of the vaccum and
the Bohr magneton; �N and �N� are the nuclear magne-
togyric ratios of the nuclei N and N�, respectively; and
IN and IN� are the respective nuclear magnetic moments,
k labels the electrons, and rkN and Sk are the position
vector and the total spin operator of the electron k. Pre-
dictive theory requires that all terms be evaluated. The
DSO term is obtained from the generalized expectation
value of h
,� in Eq. �159�. The others require the treat-
ment of Eqs. �162� and �163�.

In Table XX, we show the NMR spin-spin coupling
constants using the CI-like approximation for several
small molecules. We observe—comparing absolute er-
rors for the coupled-perturbed HF �CPHF� and EOM-
CCSD columns—that electron correlation effects are es-
sential for the adequate description of the coupling
constants. The CPHF average error of 28.1 Hz for the
wide variety of coupling constants shown is significantly
reduced to the value of 3.5 Hz. Before this work �Perera
and Bartlett, 2000�, such coupling constants could not be
adequately described by electronic structure theory.
EOM-CC now enables essentially predictive results to
be obtained for situations that are not amendable to ex-
perimental observation. These include filling in the gaps
in the experimental observation of carbocations like the
2-norbornyl cation that was instrumental in the long-
term classical versus nonclassical carbocation contro-
versy between Georg Olah and H. C. Brown �Perera and
Bartlett, 1996�; or in providing a universal curve that
relates all secondary N-H-N coupling constants across H
bonds to their distance apart, whether they belong to
cations or neutrals �Del Bene et al., 2000�. The latter
might have a role in identifying where protons are in
biochemical structures, since they cannot be seen in
x-ray crystallography.

The vector term in NMR, the chemical shift, has also
been accurately described by CC theory �Gauss and
Stanton, 1995�. Unlike the scalar term it is necessary to
use gauge including atomic orbitals �GIAO�, which adds
some complexity at the basis-set level.

IX. MULTIREFERENCE COUPLED-CLUSTER METHOD

The multireference �MR� formulation of the coupled-
cluster theory is an important extension of the standard
�single reference �SR�	 approach. Basically, one employs

TABLE XVIII. Extrapolated vertical ionization potentialsa �in
eV�.

Molecule
Nominal

state

cc-pV�Z

Expt.EOM-CCSD EOM-CCSDT

C2H2 �u 11.66 11.52 11.49

�g
+ 17.35 17.21 16.7

�u
− 19.24 19.08 18.7

C2H4 B3u 10.77 10.75 10.95
B3g 13.22 13.18 12.95
Ag 15.03 14.92 14.88
B2u 16.42 16.26 16.34
B1u 19.72 19.44 19.40

H2CO 1B2 10.96 10.92 10.9
1B1 14.48 14.42 14.5
2B1 15.98 15.89 16.1
2B2 18.09 17.70 17.0
3B1 22.06 21.63 21.4

aMusiał and Bartlett, 2004a.

TABLE XIX. Extrapolated vertical electron affinitiesa �in eV� of X 1�g
+ C2 and X 1A1 O3.

Molecule

cc-pV�Z aug-cc-pV�Z

Expt.EOM-CCSD EOM-CCSDT EOM-CCSD EOM-CCSDT

C2 3.36 3.23 3.39 3.24 3.27
O3 1.86 1.60 1.97 1.87 2.10

aMusiał and Bartlett, 2003.
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the MR formalism for systems that are degenerate or
quasidegenerate. In the single-determinant approach,
the reference function is very often the Hartree-Fock
determinant. The MR formulation assumes that instead
of the single determinant we have a number of them
forming a subspace denoted as M0. Thus the whole con-
figurational space M is divided into two subspaces: the
model space M0 defined through the projection operator
P and the orthogonal one M� defined through the ac-
tion of the operator Q. We may express the P operator
as

P = �
m

m0

��m���m� ,

where �m is a model determinant and m0 is the size of
the model space. The projectors P and Q are related to
each other through

P + Q = 1.

We have to introduce also the notion of the model func-
tion �k

0 defined through the action of the operator P on
the exact wave function �k,

�k
0 = P�k.

Thus, �k
0 is a component of the function �k residing

within the model space. This can be expressed as a linear
combination of the model determinants,

�k
0 = �

m

m0

Cmk�m.

A principal quantity in the MR theories is the wave
operator �, which is used to construct the exact wave
function �k from the model function �k

0,

�k = ��k
0 = ��k. �165�

Usually one also introduces the assumption of interme-
diate normalization, which can be expressed in operator
language as

P� = P . �166�

The advantage of the multireference formalism relies
on the fact that finding the exact energy of the system
does not require solving the full Schrödinger equation,

H�k = Ek�k, �167�

but instead solving the eigenvalue equation involving an
effective Hamiltonian Heff,

Heff�k
0 = Ek�k

0 . �168�

The Heff operator is defined as

Heff = PH�P . �169�

Equation �168� is obtained by applying the operator P to
both sides of the Schrödinger equation, Eq. �167�, and
by exploiting the relations in Eqs. �165� and �166�.

The last element of the multireference formalism is
the Bloch equation �Bloch and Horowitz, 1958�, ob-
tained by the action of the operator � on the
Schrödinger equation,

TABLE XX. Comparison of CPHF and EOM-CCSD indirect nuclear spin-spin coupling constants
with experiment �in Hz�.

Molecule Coupling CPHF Abs. error EOM-CCSD Abs. error Expt.

H2
1J�1H2H� 54.2 11.26 40.09 2.85 42.94±0.04

HF 1J�19F1H� 654.1 125.1 526.4 2.6 529±23

CO 1J�13C17C� −5.1 11.3 15.6 0.8 16.4±0.1

N2
1J�14N15N� −15.3 13.5 1.3 0.5 1.8±0.6

H2O 1J�1H17O� −96.7 23.2 −76.88 3.38 −73.5
2J�1H1H� −22.6 15.4 −10.61 3.41 −7.2

CH3CN 1J�13C15N� −85.7 68.2 −16.99 0.51 ±17.5±0.4
1J�13C1H� 172.6 36.6 126.20 9.8 ±136.0±0.2
2J�13C15N� 12.2 9.2 3.01 0.01 ±3.0±0.4
2J�13C1H� −49.9 39.9 10.00 0.00 ±10.00±0.2
3J�15N1H� −12.9 11.1 −1.23 0.59 ±1.80±0.1

CH3F 1J�13C19F� −133.3 24.2 −169.56 12.56 −157.5±0.2
2J�1H19F� 62.9 16.54 46.8 0.44 46.36±0.1
1J�13C1H� 180.2 31.1 137.15 11.95 149.1±0.2

CH3NH2
1J�15N1H� −78.5 13.5 −61.33 3.67 −65.0±0.2
1J�13C1H� 159.5 27.3 120.62 11.58 132.2±0.2
2J�15N1H� 2.0 1.0 0.93 0.07 −1.0±0.1

Average 28.1 3.5
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�H�k = Ek�k �170�

and by subtracting from the last equation Eq. �167� to
obtain the Bloch equation,

H�P = �PH�P �171�

or using the Heff operator,

H�P = �PHeffP . �172�

The Bloch equation, as given by Eq. �172�, is general
enough to be applied to various forms of the multirefer-
ence formalism. The text of Lindgren and Morrison
�1986� discusses such approaches in depth. Their focus is
the quasidegeneracy that occurs in open-shell atoms
rather than the quasidegeneracy that occurs in bond
breaking. The latter introduces what most call nondy-
namic correlation, also sometimes called left-right corre-
lation. In our terminology �Bartlett and Stanton, 1994�,
static correlation means correlation encountered in the
treatment of open-shell atoms and molecules that in-
volves proper spin combinations of determinants and
their interactions. Hence, static is not a synonym for
nondynamic. However, both involve quasidegeneracy,
although of a different kind. The multireference prob-
lem is meant to superimpose the essential effects of
static or nondynamic correlation on top of the extremely
efficient characterization of the dynamic correlation in-
troduced by CC theory.

In order to define a model space, we need to intro-
duce a formal classification of the one-particle states as
presented in Fig. 37. The active space includes Nah active
hole levels and Nap active particle levels. Since the num-
ber of active hole levels is equal to the number of elec-
trons assigned to the active space Nae, the complete
Nae-electron model space is constructed by considering
determinants corresponding to all possible distributions
of Nae electrons among Nah+Nap active levels. If some of
determinants are excluded from the model space, then
we have an incomplete model space.

Within the coupled-cluster theory, there are two prin-
cipal definitions of the wave operator �, which leads to
two different MRCC methods: the Hilbert-space MRCC
approach and the Fock-space MRCC approach.

A. Hilbert-space formulation of the MRCC approach

In the first approach, the wave operator is a sum of
operators defined independently for each model func-
tion �Jeziorski and Monkhorst, 1981; Lindgren and
Mukherjee, 1987; Mukherjee and Pal, 1989; Balkova et
al., 1991a, 1991b; Kucharski and Bartlett, 1991b, 1992;
Balkova, Kucharski, et al., 1991; Kucharski et al., 1992;
Paldus et al., 1993; Mašik and Huba~, 1999; Pittner et al.,
1999; Huba~ et al., 2000; Pittner, 2003; Li and Paldus,
2004�. This can be expressed as

� = �
�

�� = �
�

eS�P�, �173�

where P� is a projector onto the Nae-valence-electron
model determinant and the sum over � runs over all
model determinants ��. So the model space is an ex-
ample of an Nae-valence-electron Hilbert space and this
approach is called a Hilbert-space MRCC �HS-MRCC�
or state-universal MRCC �SU-MRCC� method.

The operator S� is a cluster operator,

S� = S1
� + S2

� + ¯ �174�

and

Sk
� =

1

�n!�2�ij¯ab¯� sij¯
ab¯a†b†

¯ ji , �175�

where the prime sign indicates that terms that generate
excitations within the model space are excluded from
the summation. The summation over i , j , . . . runs over all
levels occupied in the �� determinants while a ,b , . . .
represents levels unoccupied in ��. Each of the �� de-
terminants becomes, in turn, a Fermi vacuum that allows
defining the appropriate particle �a ,b , . . . � and hole
�i , j , . . . � levels. Because of the complete active space, the
definition of the wave operator given in Eqs. �173�–�175�
is very similar to the definition of the Tn cluster operator
in the single reference coupled-cluster theory. The main
difference is that all terms in the summation in Eq. �175�
that lead to the excitations within a model space are
excluded. The equations for the amplitudes sij¯

ab¯ are ob-
tained from the Bloch equation, Eq. �172�, using the
definition of the wave operator, Eqs. �173�–�175�, and
projecting against determinants �ij¯

ab¯ outside of the
model space,

��ij¯
ab¯����HeS����� = �

!

��ij¯
ab¯����eS!��!���!�Heff���� .

�176�

The effective operator’s elements are immediately ob-
tained from Eq. �175�, upon projection against the refer-
ence determinant �!,

��!�HeS����� = ��!�Heff���� = H!�
eff . �177�

As a matrix, the effective Hamiltonian is trying to de-
scribe m0 states simultaneously. The set of amplitude
equations given by Eq. �176� is solved for each reference
determinant ��. Note that due to the renormalization
term, i.e., that occurring on the right-hand side of Eq.

FIG. 37. Classification of the one-particle states.

340 Rodney J. Bartlett and Monika Musiał: Coupled-cluster theory in quantum chemistry

Rev. Mod. Phys., Vol. 79, No. 1, January–March 2007



�176�, the equations for each set of amplitudes are
coupled and should be iterated simultaneously. The en-
ergy eigenvalues are obtained by diagonalization of the
effective Hamiltonian matrix defined within the model
space.

The problem of completness versus incompleteness of
the model space is crucial in formulations of the MRCC
theory. The completeness of the model space guarantees
that the amplitude equations as well as the effective
Hamiltonian elements include only connected terms,
which ensures the size extensivity of the method. On the
other hand, construction of the complete model space
requires consideration of a large number of model de-
terminants, particularly when large active spaces are
used. In addition, large model spaces are plagued by the
intruder state problem. The latter arises when determi-
nants from the model space are close energetically to
those belonging to the orthogonal space, and this causes
severe divergences in the iteration process. Thus the
preferable choice would be a development of an ap-
proach that would allow the use of a general model
space �GMS�, i.e., either complete or incomplete de-
pending upon the problem.

Such a method was advocated by Mukherjee, which
required relaxing the intermediate normalization in CC
theory �Mukherjee and Pal, 1989�. An alternative was
proposed by Li and Paldus �2004�, who introduced a
general model space �GMS� SU-MRCC scheme based
on connectivity �C� conditions. The C conditions recog-

nize that in CI language ��= �1+ Ĉ1+ Ĉ2+ ¯ �P�. How-
ever, the intermediate normalization �=�P requires the
exclusion of internal excitations, i.e., those within the

model space, from each Ĉ�. However, the exclusion of

several excitations in Ĉn
� is not equivalent to their exclu-

sion from Sn
�, because of the usual relationship that Ĉ2

�

= 1
2 �S1

��2+S2
�, etc. If the model space is incomplete, some

of the lower excitations in the disconnected products can
generate Q space determinants. The C conditions prop-
erly handle such terms. Hence, they force the cancella-
tion of disconnected terms within both the amplitudes
and effective Hamiltonian, which ensures the size-
extensive property �see Refs. 20, 21, 27, 28 from Li and
Paldus �2004� for details	.

Li and Paldus �2004� tested the performance of the SU
CCSD approach for several choices of model space by
comparing the SU CCSD results with reference values
�FCI or CISDTQ�. In all cases studied �CH+, HF, F2,
H2O, and others�, the SU-CCSD values remain close to
the reference. Figure 38 presents potential-energy
curves for the ground state and three excited states of
CH+ previously considered, obtained with 5R �five ref-
erences in the model space� -SU CCSD. Comparisons
with FCI PES �taken from Li and Paldus �2004�	 show
excellent agreement between FCI and SU CCSD results.

Returning to the problem of ozone’s vibrational fre-
quencies, we can compare the MR-CC results with those
from SR-CC in Fig. 39 in the same DZP basis. The DIP-
STEOM method has already been discussed as it falls

between a true multireference approach and single ref-
erence theory, which it operationally is. Yet it is MR in
that it treats all four of the revelant determinants �three
configurations� equivalently. The MR�3�-CCSD results
of Li and Paldus correspond to the true SU-CCSD re-

FIG. 38. �Color online� CH+ potential-energy curves obtained
with the FCI and 5R-SU CCSD methods.

FIG. 39. �Color online� Vibrational frequencies of ozone �mul-
tireference methods, DZP basis set�. See Fig. 23 for the experi-
mental values.
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sults, and they, too, are quite good and generally better
than the SR-CC approximations. The poorest results are
given by the MR�2�-CISD. The CASSCF includes non-
dynamic correlation, but no dynamic correlation is
added. The final result is from a method termed MR-
AQCC, which means multireference averaged quadratic
CC �Szalay and Bartlett, 1993; Fusti-Molnar and Szalay,
1996; Szalay, 1997�. This method follows the older mul-
tireference linearized CC method �Laidig et al., 1987�
and is close to the MR-ACPF �multireference averaged
coupled-pair� �Gdanitz and Ahlrichs, 1988� method.
Both are built upon the MR-CI structure and programs,
as they benefit from the long-term development of CI
technology, except in a few critical ways. The MR-
AQCC method corrects for CI’s lack of extensivity and
introduces a functional, which makes it easy to do
analytical gradients. The method is available in the
COLUMBUS program system �Lischa et al., 2001�. It has
been used in an extensive number of applications for
complicated systems with outstanding success �Szalay,
1997�. The two-reference variant shown here does rather
well for ozone frequencies. As a final word on ozone
frequencies, the tailored TCCSD discussed in Sec. VI.C
for bond breaking has also been recently applied to this
problem. Unlike for bond breaking, it was found �Hino
et al., 2006� that CAS-CI alone was not adequate for
tailoring the SR-CC. Instead, the orbitals had to be ro-
tated optimally too, to go from CAS-CI to CAS-SCF.
Once this was done with a rather large CAS space con-
sisting of 12 electrons into 9 orbitals, the final results in a
cc-pVTZ basis were �1 �1137 cm−1 versus 1135 cm−1

expt.�, �2 �1137 cm−1 versus 716 cm−1 expt.�, and �3
�1098 cm−1 versus 1089 cm−1 expt.�. All are less than 1%
in error. It is unfortunate that no complete basis-set limit
results are yet available for O3 to bring the basis-set
issue under control and to focus on the correlation prob-
lem unambiguously, but this attests to the limitations of
such basis-set extrapolation techniques as they are en-
countered for even three atoms. This problem would be
a worthy test for quantum Monte Carlo �QMC� calcula-
tions.

B. Fock-space formulation of the MRCC approach

The second MR-CC approach assumes the wave op-
erator to be of the same form for all reference determi-
nants, i.e., it is defined universally with respect to the
whole model space. This version of the MRCC theory is
often called a valence universal MRCC �VU-MRCC�
approach �Lindgren, 1979; Haque and Mukherjee, 1984;
Sinha et al., 1986; Pal et al., 1987, 1988; Jeziorski and
Paldus, 1989; Rittby and Bartlett, 1991; Landau et al.,
1999, 2000�.

The universal definition of the wave operator bears
another important consequence: In order to have a well-
determined set of amplitude equations, one has to in-
clude into the model space also determinants corre-
sponding to variable numbers of active electrons, i.e., for
a complete model space we have to include determi-
nants with a number of valence electrons from 0 to

Nah+Nap distributed among all active levels. This type of
Hilbert space includes, in addition to the Nah-electron
determinants, also those that correspond to the ionized
�up to Nah-tuple ionization� and electron attached �up to
Nap attached electrons� states. This is a Fock-space
MRCC �FS-MRCC� approach.

In fact, it is more convenient to consider the model
determinants as corresponding to a certain number of
quasiparticles instead of a number of electrons �par-
ticles�. That means that having Nah electrons in the sys-
tem with all hole levels occupied, i.e., �0, we have zero
quasiparticles or a zero-valence situation. Similarly, re-
moving one electron from any occupied valence level in
the �0 or adding one electron to any unoccupied valence
level, we have one quasiparticle in the system or one-
valence problem; moving one electron from the occu-
pied valence level to the unoccupied valence level, we
have a two-valence problem �two quasiparticles: one
hole and one particle�.

In the FS-MRCC approach, the wave operator is
given as

� = 
eS̃�P , �178�

S̃ = S̃1 + S̃2 + ¯ + S̃n, �179�

and the S̃n operator in its most general form is expressed
as

S̃n =
1

�n!�2 �
a�b�¯ı�j�¯

�sı�j�¯

a�b�¯
a�†b� †

¯ j�ı�, �180�

where the summation over a� ,b� , . . . �ı� , j� , . . . � runs over in-
active particles �inactive holes� and all valence levels, see
Fig. 37, and the prime indicates that excitations within
model determinants are excluded from the summation.
It is important to note that the summation ranges for

creation operators �a� ,b� , . . . � and for annihilation ones

�ı� , j� , . . . � overlap within the valence levels, and because

of this, contractions among S̃ operators are possible. To
prevent that, a normal-ordered ansatz was introduced by
Lindgren �1978�—indicated by 
 �—of the creation-

annihilation operators in the expansion of eS̃.
We may separate the P operator into zero-valence,

one-valence, two-valence, etc., sectors depending on the
number of valence quasiparticles present in the model
determinant,

P = P�0� + P�1� + P�2� + ¯ . �181�

The n-valence sector can be further separated into the
k-valence particle, l-valence hole �k+ l=n� sectors,

P�0� = P�0,0�, �182�

P�1� = P�1,0� + P�0,1�, �183�
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P�2� = P�2,0� + P�0,2� + P�1,1�, �184�

] .

As an example, we provide an explicit form of the pro-
jectors P�1,0�, P�0,1�, P�1,1�,

P�1,0� = �



��
���
� , �185�

P�0,1� = �
�

�������� , �186�

P�1,1� = �
�


���

����


� . �187�

The same sector structure distinguishes the S̃n operator.

Let us consider, for example, S̃2,

S̃2 = 1
4 �

a�b� ı�j�

�s
ı�j�
a�b�

a�†b� †j�ı�

= 1
4 �

abij
sij

aba†b†ji + 1
2 �

ab
j
s
j

aba†b†j
 + 1
2 �
�bij

sij
�b�†b†ji

+ �
�
bj

�s
j
�b�†b†j
 + ¯

= S2
�0,0� + S2

�1,0� + S2
�0,1� + S2

�1,1� + ¯ ,

where the terms for the sectors �2,0�, �0,2�, �2,1�, �1,2�,
and �2,2� are skipped. To establish the summation ranges
of the a ,b , i , j ,
 ,�, indices, Fig. 37 should be consulted.
In the general case, we have the following sector struc-

ture of the S̃ operator:

S̃�k,l� = �
i=0

k

�
j=0

l

S�i,j� �188�

and by definition the S�i,j� operator includes i annihila-
tion valence particle lines and j annihilation valence hole
lines. It follows from that that there is a hierarchical
structure of the S operator �Haque and Mukherjee,
1984; Chaudhuri et al., 1989�, which can be written as

S�m,n�P�i,j� = 0 if m � i or n � j . �189�

For example,

S�1,0�P�0,0� = 0.

The maximum valence rank of the sector occurring
for the Nah valence holes and Nap particles is Nah+Nap,
i.e., for the complete model space we would need to
consider the �Nap ,Nah� sector. However, in the majority

of applications the valence rank of the S̃�k,l� operator,
i.e., k+ l, is much lower than the size of the model space
Na, which means that we deal with an incomplete model
space.

In Fig. 40, we give algebraic and diagrammatic defini-
tions of the S1 and S2 operators in the sectors �0,0�, �1,0�,
�0,1�, and �1,1�. Note that the S operators for the �0,0�
sector are identical with the T operator introduced in

the single reference theory. The need for considering the

lower sectors arises as follows. The S̃ operator for the
�1,1� sector is defined as

S̃�1,1� = S�0,0� + S�1,0� + S�0,1� + S�1,1�.

The amplitude equations within the �1,1� sector are un-
derdetermined, i.e., the number of equations is smaller
than the number of the unknown amplitudes,

���
ā �S̃���


� = ���
ā ��

b̄�

s�
b̄b̄†� + �

b�!
s�!

b!b†!†!����

�

= s

ā + s
�

ā� . �190�

The above equation does not provide a single amplitude,
unlike SR, but instead determines a sum of two ampli-
tudes s


ā +s
�
ā� . However, the value of s


ā can be deter-
mined from the lower sector, i.e., according to the rela-
tion

��ā�S̃��
� = ��ā��
b̄�

s�
b̄b̄†���
� = s


ā ,

and due to the relation �189� the operators from the �1,1�
sector do not enter the last equation. Thus from the so-
lution of the FS-MRCC equations in the �1,0� and �0,1�
sector, we obtain s


ā and s
ı̄

�, respectively, and we can then
treat them as known quantities when solving the respec-
tive equations within the �1,1� sectors. Hence, s
�

ā� is de-
termined in Eq. �190� uniquely. This is a general feature
of the FS-MRCC approach that in order to solve the
equations for the �m ,n� sector, solutions for all lower
sectors �i , j� �i=0,m and j=0,n� must be known. For ex-
ample, for the �1,1� sector, solutions for �0,0�, �0,1�, and
�1,0� sectors are required. This has sometimes been
called the subsystem embedding condition �Chaudhuri et
al., 1989�.

The general FS-MRCC equation for the �k , l� sector
formulated in the operator form can be written as

FIG. 40. A graphical representation and algebraic expressions
for the S�0,0�, S�1,0�, S�0,1�, and S�1,1� operators at the CCSD
level. In the definition of the S2

�1,1� operator, the case in which
both creation lines are active is excluded �this is denoted by ��.
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H
eS̃�k,l�
�P�k,l� = 
eS̃�k,l�

�P�k,l�HeffP�k,l�. �191�

It is convenient to separate from the S̃ operator that
corresponding to the �0,0� sector,

S̃�k,l� = S̃��k,l� + S�0,0� = S̃��k,l� + T . �192�

Rewriting Eq. �191� on the basis of the equality in Eq.
�192� and multiplying from the left with e−T, we obtain

e−THeT
eS̃��k,l�
�P�k,l� = 
eS̃��k,l�

�P�k,l�HeffP�k,l�, �193�

where e−THeT=H̄ is the quantity introduced in previous
sections. Thus the final form of the FS-MRCC equation
is obtained upon projection of the last equation on the
excited determinants in each sector represented by the
projector Q�k,l�,

Q�k,l�H̄
eS̃��k,l�
�P�k,l� = Q�k,l�
eS̃��k,l�

�P�k,l�HeffP�k,l�, �194�

where S̃�k,l� is defined according to Eq. �188�, i.e., it in-
cludes all S components coming from the lower sectors.

The Heff operator is defined in an analogous manner
as in the HS variant, and, for instance, for the �k , l� sec-
tor we have

P�k,l�HeffP�k,l� = P�k,l�H̄
eS̃��k,l�
�P�k,l�. �195�

In Fig. 41, we present the diagrammatic equation for the
one-valence sectors, i.e., �1,0� and �0,1�. Providing up-
ward �downward� arrows to the annihilation lines in Fig.
41�a�, we obtain equations for the s


ā �s
ī
�� amplitudes;

applying the same procedure to Fig. 41�b�, we obtain
equations for the s
j

ab and sij
�b amplitudes. In Fig. 41�c�,

we present diagrammatic contributions to the effective
Hamiltonian elements also for the one-valence sector.
Note that only the linear term is present in the one-
valence sector, as nonlinear terms contain more than
one annihilation operator which makes them vanish
when applied to the model determinants in the one-
valence sector. The wiggly lines represent the elements

of the H̄ operator.

The equation for the S2 amplitudes in the �1,1� sector
of the FS-CCSD model is given in Fig. 42. Here the S1
and S2 amplitudes determined in the one-valence sectors
are used and they occur both in linear and quadratic
terms, whereas the S2 amplitudes in the �1,1� sector ap-
pear only via linear terms. This is a general feature of
the FS equations that the S�i,j� amplitudes in the equa-
tions for the �i , j� sector occur linearly. The solution of
the FS-MRCC equations presented in Figs. 41 and 42 is
obtained in an iterative manner. In each iteration, a set
of the S amplitudes is constructed as well as the ele-
ments of the Heff operator �see Figs. 41�c� and 43	, which
are further diagonalized to obtain energy eigenvalues.
The majority of applications of the FS-MRCC are lim-
ited to the �1,1� sector of the Fock space, while the clus-
ter expansion, Eq. �179�, is truncated at the S2 operator
�MRCCSD model�. Just recently, an extension of the FS-
MRCCSD model to full inclusion of the connected triple
excitations has been reported �Musiał and Bartlett,
2004b�. The FS-MRCCSDT approach requires determi-
nation of T1 ,T2 ,T3 operators at the zero valence level,
S1 ,S2 ,S3 operators at the one-valence level, and S2 and
S3 operators for the �1,1� sector. One should note that
the rank of the computational procedure �based on the
summation of inactive indices� decreases for higher sec-
tors, i.e., we have an M8 ,M7 ,M6 procedure for the FS-

FIG. 41. The diagrammatic representation of the FS-CCSD
equations for the �1,0� and �0,1� sectors in the skeleton form:
�a� an equation for the S1, �b� an equation for the S2, and �c� an
expression for the one-particle part of the Heff. Active lines are
designated by a circle.

FIG. 42. The diagrammatic representation of the S2 equation
for the �1,1� sector in skeleton form.

FIG. 43. The diagrammatic expression for the two-particle
part of Heff.
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CCSDT model at zero-, one-, and two-valence sectors,
respectively.

In Tables IX and XXI, we compare the performance
of the EOM and FS methods up to triples �relative to
the FCI values�. For the Ne atom, the FS and EOM
values are very close; for the N2 molecule, the CCSD
model provides slightly better results for the FS ap-
proach. In both cases, the inclusion of triples improves
agreement with the FCI values remarkably. It should be
emphasized, however, that the FS-MRCC results are rig-
orously size extensive, while the EOM ones, because of

their dependence on a linear operator R̂ instead of an
exponential as in the Fock space case, mean that it re-
tains certain elements of CI in its solutions. While EOM

is fine for �AB�*→A*+B or A+B*, it does not go
smoothly to A++B−; FS-CC does �Meissner and Bartlett,
1995�.

An intermediate approach between FS-CC and
EOM-CC is the similarity transformed EOM �STEOM�
�Nooijen and Bartlett, 1997a� method. In this approach,
the �0,1� and �1,0� sector problems are solved to define a

second similarity transformation eŜ that is then applied

to H̄, i.e., e−SH̄eS=G. By virtue of the second transfor-
mation, it can be shown that the single-excitation block
of the �1,1� �excited-state� sector is approximately de-
coupled from both double and triple excitations. This
gives a matrix of excited-state solutions whose rank is no

TABLE XXI. Vertical excitation energies �in eV� of N2 �R=2.068 a.u.� with cc-pVDZ basis set. The
1s orbitals were frozen. The active orbitals �lowest-lying unoccupied, highest occupied� are �2,4� for
the FS and STEOM calculations.

State
symmetry

STEOM
CCSD

FS EOM

FCIaCCSD CCSDT CCSD CCSDT

1�g 9.446a 9.409a 9.621b 9.665c 9.593b 9.584c

1�u
− 10.368a 10.315a 10.327b 10.465c 10.333b 10.329c

1�u 10.833a 10.792a 10.722b 10.898c 10.726b 10.718c

1�u 13.981a 14.010a 13.784b 14.009c 13.661b 13.608c

3�u
+ 7.814 7.750 7.882d 7.883d 7.897d

3�g 8.208 8.083 8.223d 8.174d 8.163d

3�u 9.193 9.123 9.265d 9.192d 9.194d

3�u
− 10.155 10.109 10.192d 10.009d 9.999d

3�u 11.555 11.435 11.539d 11.469d 11.441d

aMeissner, 1998.
bMusiał and Bartlett, 2004b.
cChristiansen et al., 1996 �CCLR�.
dLarsen et al., 2001.

TABLE XXII. Vertical excitation energies �in eV� for the CH2, H2O, and C2 molecules compared
with the FCI values.

Molecule
State

symmetry STEOM-CCSD FS-CCSD EOM-CCSD FCI

CH2 3 1A1 6.501a 6.493a 6.509b 6.514b

4 1A1 8.460a 8.454a 8.460b 8.479b

1 1B1 7.733a 7.725a 7.715b 7.703b

1 1B2 1.665a 1.616a 1.780b 1.793b

1 1A2 5.848a 5.801a 5.859b 5.853b

H2O 2 1A1 9.769a 9.755a 9.806c 9.874c

1 1B2 7.344a 7.325a 7.375c 7.447c

1 1B1 11.521a 11.505a 11.524c 11.611c

1 1A2 9.132a 9.108a 9.122c 9.211c

C2
1�u 1.420a 1.399a 1.474c 1.385c

1�u
+ 5.725a 5.717a 5.799c 5.602c

aMeissner, 1998.
bKoch et al., 1995 �CCLR�.
cChristiansen et al., 1996 �CCLR�.
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larger than the very small ��nN� number of single exci-
tations. In a sense this is an exact, size-extensive CI
singles theory for excited states that correspond to single
excitations. The STEOM method also controls intruder
states without further modification, unlike the FS-CC or
HS-CC methods. Applications to free-base porphyrin il-
lustrate its applicability �Nooijen and Bartlett, 1997b;
Gwaltney and Bartlett, 1998�. In Tables IX, XXI, and
XXII, we compare the performance of the FS, EOM,
and STEOM methods at the CCSD level relative to the
FCI values. As we can see, the FS and STEOM methods
give results that are of an overall quality comparable
with EOM, but at substantially less cost because of the
small matrix diagonalization.

The Fock-space approach, in particular, is plagued by
the same complications as its Hilbert-space equivalent,
i.e., by divergence problems in the iterative process
when intruder states occur. That situation is more likely
to occur when large model spaces are used. Intruder
states constitute a serious limitation of the FS-MRCC
approach.

C. Fock-space MRCC based on an intermediate Hamiltonian

In order to avoid the intruder state problem, a new
version of the FS-MRCC method has been established
that is based on the intermediate Hamiltonian theory of
Malrieu et al., �1985� and Meissner �Meissner and Bart-
lett, 1995; Meissner and Nooijen, 1995; Meissner, 1998;
Landau et al., 2000; Meissner and Malinowski, 2000; Ma-
linowski et al., 2002; Musiał and Meissner, 2005; Musiał
et al., 2005�. The main idea of the intermediate Hamil-
tonian approach relies on selecting a part of the or-
thogonal space M� as an intermediate space MI, con-
nected with the projector PI. The MI space is achieved
by the action of the operator Z operating on the model
space P. The remaining part of the orthogonal space
MI� is connected with the projector QI related to PI by

Q = PI + QI. �196�

Within the FS-MRCCSD model in the expansion of the

eS̃�
�1,1�

operator,


eS̃�
�1,1�

�P = �1 + Z + Y�P , �197�

Z = 
�S1
�1,0� + S1

�0,1� + S1
�1,0�S1

�0,1� + S2
�1,1���P�1,1�, �198�

TABLE XXIII. Vertical excitation energies �in eV� for N2 as obtained with the IH-FS and EOM
methods at the CCSD levela �R=2.068 a.u.�

State
symmetry

aug-cc-pVQZ aug-cc-pVQZ+b

Expt.

IH-FS

EOM
IH-FS
�18,4� EOM�6,4� �18,4�

Singlet states
1�g 10.526 9.194 9.489 9.285 9.489 9.31
1�u

− 11.030 9.902 10.109 9.992 10.109 9.92
1�u 11.504 10.395 10.547 10.477 10.546 10.27
1�u 13.419 13.443 13.369 13.054 13.056 12.90

Triplet states
3�u

+ 8.666 7.638 7.818 7.733 7.818 7.75
3�g 9.214 7.978 8.184 8.067 8.184 8.04
3�u 9.859 8.843 9.038 8.931 9.038 8.88
3�u

− 10.976 9.816 9.950 9.914 9.950 9.67
3�u 12.459 11.091 11.363 11.203 11.363 11.19
3�g

+ 12.711 12.379 12.415 11.975 12.018 12.00

aMusiał et al., 2005.
bStandard aug-cc-pVQZ basis set with additional s and p functions with exponents. s :0.0192,

p :0.0136.

FIG. 44. Matrix representation of the intermediate Hamil-
tonian in diagrammatic form.
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Y = 
�S2
�1,0� + S2

�0,1� + S1
�1,0�S2

�0,1� + S1
�0,1�S2

�1,0�

+ S2
�1,0�S2

�0,1��P�1,1�� . �199�

We see that the operator Z operating on the model
space P�1,1� generates determinants belonging to MI

space, while the Y operator connects the P�1,1� and MI�

�1,1�

subspaces. Note that amplitudes of the S�1,1� operator
that are sought in the equation for the �1,1� sector do not
occur in the Y operator. We define the operator HI,

HI = P0
e−Y�H̄
eY�P0 = P0�1 − Y�H̄�1 + Y�P0, �200�

where P0=P+PI is a projection operator onto the
model+intermediate space. Taking into account that Y
generates configurations belonging to the MI�

�1,1� space,
we replace the last equation with

HI = P0H̄�1 + Y�P0. �201�

Diagonalization of the HI operator within the P0 space
provides a subset of eigenvalues that are identical with
those obtained by diagonalization of the Heff operator
within the model space. We also observe that the Y op-
erator used to construct the intermediate Hamiltonian is
expressed exclusively through the operators known from
lower sectors in the current case: S�1,0� and S�0,1�. As a
result, the FS-MRCC approach formulated in terms of
the intermediate Hamiltonian does not require an itera-
tive procedure and is free of the difficulties mentioned at
the end of the previous subsection connected with in-
truder states. The diagrammatic contributions to the HI
elements are given in Fig. 44. Note that here, also, dis-
connected terms contribute but the result is size exten-
sive due to the cancellation of disconnected terms in the
diagonalization process.

The intermediate Hamiltonian formulation of the FS-
MRCC theory has great advantages over the traditional
FS approach. Being free from intruder states and diver-
gence problems, it allows consideration of larger model
spaces for which iterative solutions are impossible. In
Table XXIII, we present IH-FS-MRCCSD results for
the N2 molecule obtained for two relatively large basis
sets: the standard aug-cc-pVQZ basis set �Kendall et al.,
1992� and that with additional diffuse s and p functions.
Two model spaces were considered: one containing 24
reference determinants and the other including 72 deter-
minants. It may be seen from Table XXIII that the re-
sults depend on the type of model space. For the larger
model space, the theoretical values are much closer to
the experimental ones. Particularly good agreement with
experiment is observed for the larger basis set: the dif-
fuse basis functions allow for a proper treatment of the
Rydberg states, and that combined with the sufficiently
large model space gives results much closer to experi-
mental data than the EOM values obtained for the same
basis set. We believe that the intermediate Hamiltonian
version of the FS-MRCC theory opens new and interest-
ing possibilities for multireference CC theory.
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Čížek, J., 1969, Adv. Chem. Phys. 14, 35.
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