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Due to pioneering work of Eugen Wigner, Symmetry is well recognized as a
clue to understanding physical processes. However, except in Particle Physics,
role of Symmetry is mostly conceptual, to give a posteriori profound interpre-
tation of the obtained results. For instance, in Solid State Physics, more than
a century known crystal symmetries are applied to describe phase transitions,
selection rules, tensor shapes. Probably the only exception is the Bloch the-
orem, which gives a priori general forms of the electronic quantum states
and ionic displacements. However, this theorem treats only the translational
symmetry, reducing the calculations to the elementary cell, which is, in many
cases, far bellow the maximal possible reduction.

Over the past decade nanotubes have become one of the most attractive
subjects in Condensed Matter Physics. Elementary cell of nanotubes often
contains large number of atoms, which makes the Bloch theorem based calcu-
lations very robust, and frequently too demanding. Nevertheless, besides the
translational symmetry, quasi-1D-crystals have helical and additional sym-
metries (like horizontal two-fold axes and/or mirror planes), enabling to gen-
erate the whole compound from the so called symmetry cell (symcell), being
only a small part of the conventional unit cell. It is intuitively obvious that
the physical properties of the system are determined by its symmetry group
and by the symcell. Modified group projector technique offers an algorithm to
maximally generalize the Bloch theorem to the full symmetry group. It also
emphasizes that symmetry itself is the most essential property of nanotubes
which proves to be sufficient to predict their unique physical properties.

2.1 Introduction

In this chapter, within a profound and efficient symmetry based approach, an
overview of the electro-optical and vibrational properties of carbon nanotubes
(NT) is presented.

In Sect. 2.2 the basics of single-wall tubes (SWNT) are introduced: con-
figuration, chirality, symmetry and conserved quantum numbers. The stable
configurations of narrow tubes are obtained by the symmetry preserving den-
sity functional relaxation. Afterwards the configuration of double-wall tubes
is described.
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Section 2.3 starts with an outline of the concept necessary to exploit full
symmetry in the band structure calculations and proceeds by giving a unified
description of electron and phonon dispersions: band degeneracy, symmetry
assignation, systematic density of state singularities and selection rules for
various processes. The corresponding generalized Bloch eigenfunctions are
also listed. Finally, dynamical models are reviewed and discussed: p- and sp3-
orbitals are tight-binding and density functionals for electrons, while phonons
are studied by intra-layer force constants and (for double-wall tubes) inter-
layer Lenard-Jones interactions.

Electro-optical properties of SWNTs are studied in Sect. 2.4. Polarized
optical absorption of conventional (with the diameters 8 − 16 Å) and tem-
plate grown (4 Å-diameter) SWNTs are calculated within first order time-
dependent perturbation theory, using exactly evaluated optical transition
matrix elements out of the full-symmetry adapted Bloch eigenfunctions. The
results obtained are discussed and compared to the measured spectra.

Vibrational properties of NTs are discussed in Sect. 2.5. After descrip-
tion of the phonon dispersions of SWNTs (emphasizing some particularly
interesting modes), double-wall tube branches are considered. The so called
rigid layer modes are interpreted with the help of the simple perturbative
model. Also, some related properties, such as heat capacity, sound velocities,
overbending, Raman and infrared activity are discussed.

Finally, Sect. 2.6 is devoted to the interaction between the walls in double-
wall NTs, which is calculated by the use of the expansion over symmetry
based harmonics. Besides the high efficiency, the method profoundly corre-
lates interaction with the breaking of the symmetry of the layers, explaining
experimentally verified weak inter-layer interaction, and yielding, in some
ideal cases, super slippery sliding.

2.2 Configuration and Symmetry

Symmetry of SWNTs is considered from their very discovery [1] due to its
relevance for understanding physical properties of SWNTs. At first, only the
rotational axis of the related fullerene molecule is observed [3]; later, in the
electronic band calculations the translational [4], as well as the helical [5, 6]
symmetry was used. Finally, the full symmetry groups, including parities in
addition to the roto-helical symmetries, were found [7]. These considerations
are based on infinite, defect-free model of SWNTs corresponding to simply
rolled up graphene layer.

2.2.1 Single-Wall Nanotubes

Symmetry

The graphene layer is a highly symmetric structure, with translational peri-
odicity in two directions, a six-fold principle rotational axis and six mirror
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Fig. 2.1. Graphene honeycomb with depicted chiral vector c and chiral angle θ

planes perpendicular to the layer (the horizontal plane and U -axes are not
relevant in this context). To obtain the SWNT (n1, n2), one takes the chi-
ral vector c = (n1, n2) on the graphene (Fig. 2.1), and rolls up the layer so
that this vector becomes the circumference of the cylinder. The special cases
(n, 0) and (n, n) are known as the achiral zig-zag (Z) and armchair (A) tubes,
while the other ones are called chiral (C) tubes. The folding changes the sym-
metry of the structure: the translations perpendicular to the chiral vector
remain translations of the tube, those along c become rotational symmetries
of the tube, while the combined ones give nanotube helical symmetries. After
folding, the graphene principle axis is no longer symmetry, except that the
rotations for π become the U axis of the tube. Finally, only in the achiral
cases, two perpendicular mirror planes are preserved, becoming vertical (σv)
and horizontal (σh) mirror planes of the zig-zag and armchair tubes. Com-
bining all the symmetry transformations of the obtained tube results in its
full symmetry group.

Since the translations perpendicular to the chiral vector (n1, n2) on
graphene remain the translational symmetries of the tube (n1, n2), SWNTs
are quasi one-dimensional crystals, and therefore their symmetries are gath-
ered in the line groups describing the symmetries of such crystals [8, 9]. A
straightforward calculation [7] shows that the obtained line group is:

LC = T r
q (a)Dn = Lqp22, LZA = T 1

2n(a)Dnh = L2nn/mcm, (2.1)

where the parameters n (order of the principle axis), a (translational period),
q (one half of the number of atoms per period) and r (helicity) are:

n = GCD(n1, n2), a =

√
3(n2

1 + n2
2 + n1n2)

nR a0 (2.2)

q = 2
n2

1 + n1n2 + n2
2

nR , r =
n1 + 2n2 − (n2

n )φ( n1
n )−1qR

n1R (mod
q

n
)(2.3)

(R = GCD(2n1 + n2, n1 + 2n2)/n, a0 = 2.46 Å is graphene period, φ(x)
is the Euler function, i.e. the number of coprimes not greater than x). In
international notation helicity is characterized by

p = n
(
rφ( q

n )−1 (mod
q

n
)
)

. (2.4)
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Fig. 2.2. Nanotube (6,0). Symmetries: vertical and horizontal mirror planes σv

and σh intersect along the horizontal rotational axis U ; glide plane σ′
v and roto-

reflectional plane σ′
h intersect along U ′. Atoms: labelled by tsu indices from (2.9).

Neighbors of C000: first to fourth level denoted by 1-4. Coordinate frame: x-axis
coincides with U (z-axis is the tube axis)

Note that for achiral tubes q = 2n, r = 1, and aZ =
√

3a0, aA = a0.
The helical group T r

q (a) is generated by (Cr
q |n

q a), i.e. the rotation for 2πr/q

around the tube axis (z-axis) followed by the translation for na/q along it.
The generators of the point group Dn are the rotation Cn for 2π/n around
the tube, and the rotation U for π around the x-axis (through the center of
the carbon hexagon, Fig. 2.2). The achiral tubes point group Dnh has the
additional generator σv. Therefore, the symmetry transformations of SWNT
are:

�tsu = �C
tsu = (Cr

q |n
q
a)tCs

nUu, �ZA
tsuv = �tsuσv

v , (2.5)

with t = 0,±1, . . . , s = 0, . . . , n − 1 and u, v = 0, 1. All rotational, transla-
tional and helical symmetries (appearing due to the graphene translations)
form the roto-translational subgroup LR = T r

q (a)Cn including the elements
�ts0. Among other transformations there are also radial U axes bisecting
the C-C bonds, as well as various glide and roto-reflection planes (of achi-
ral tubes). Applying only elements �0su onto the initial atom, one gets a
monomer, i.e. the part of SWNT of the length na/q, from which the helical
transformations alone generate the whole tube.

SWNT symmetry groups are non-symmorphic, and their isogonal point
groups, being important for the description of various physical tensors, are:

P I
C = Dq, P I

ZA = D2nh. (2.6)
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Configuration

The number of symmetries in the chiral nanotubes is equal to the number
of atoms, while in the achiral cases it is twice as big. This is extremely large
symmetry. In fact, SWNTs are maximally symmetric structures in the sense
that they are generated by symmetry operations from an arbitrary initial
atom. This property can be used to parameterize the configuration in terms
of symmetry. At first, the diameter and the linear density are:

D =
anR
π
√

3
, λ =

2q

a
= cD (2.7)

(c = 14.375 amu/Å). Taking for the initial atom C000 with the cylindrical
coordinates (Fig. 2.2)

r000 = (
D

2
, ϕ000 = 2π

n1 + n2

nqR , z000 =
n1 − n2√

6nqRa0), (2.8)

any other atom Ctsu is obtained by the action of �tsu on C000:

rtsu = �tsur000 = (
D

2
, (−1)uϕ000 + 2π(

rt

q
+

s

n
), (−1)uz000 + t

n

q
a). (2.9)

The described graphene folding structural model tacitly assumes that
the SWNTs chemical bonds are based on the graphene sp2 hybridization.
However, due to curvature, sp3 hybridization occurs (see Sect. 2.3.4). There-
fore, the rolled up configuration is not stable, and should be relaxed (slightly
changed) to achieve the local minimum of the total energy. Relaxation cannot
change the symmetry: according to the famous topological theorem [10], the
extremes of the energy functional correspond to the most symmetric configu-
rations. Consequently, equations (2.1) and (2.9) refer to the relaxed structures
as well, only the values of D, ϕ000, z000 and a differ. Any change of these
parameters preserves the symmetry of chiral tubes, except that ϕ000 = π/n
for zig-zag and z000 = 0 for armchair tubes must be fixed. Obviously, the
curvature induced rehybridization is significant only for narrow tubes. This
is confirmed by precise density functional (DF) methods: only for tubes with
a diameter of less than 7 Å does the relaxed configuration differ from the
rolled up one by a few percent (see Table 2.1), while the properties of thicker
tubes are well described within the purely rolled up model.

2.2.2 Double-Wall Nanotubes

Double-wall tube W@W′ is assumed to be a pair of coaxially arranged single-
wall tubes: W= (n1, n2) is the inner wall and W′ = (n′

1, n
′
2) is the outer wall.

The inter-wall separation ∆ = (D′ − D)/2 is close to the graphite inter-
layer distance 3.44 Å within some tolerance δ (we use δ = 0.25 Å). Fixing



46 M. Damnjanović et al.

Fig. 2.3. Left: DWNT configuration. Right: unfolded tube (5,5)@(10,10) with sym-
metry elements

Table 2.1. Ultra narrow tubes considered in Sect. 2.4.2. Folded configuration pa-
rameters (raw F) given by (2.8) and (2.2) are compared to the relaxed ones obtained
by density functional tight-binding (raw DFTB, used in this chapter) and local den-
sity (raw DFLD taken from [11]) methods.

SWNT D[Å] a[Å] ϕ000[◦] z000[Å]
(5,0) F 3.92 4.26 36 0.71
DFTB 4.11 4.23 36 0.70
DFLD 4.12 4.30 36 0.73
(3,3) F 4.07 2.46 40 0
DFTB 4.19 2.48 40 0
DFLD 4.24 2.50 40 0
(4,2) F 4.15 11.28 39 0.27
DFTB 4.29 11.27 39 0.26
DFLD 4.34 11.34 39 0.28
(5,1) F 4.36 23.73 35 0.51
DFTB 4.51 23.67 35 0.51
DFLD 4.56 24.18 35 0.52

the interior wall, the configuration is completely determined by the twisting
angle Φ and the axial shift Z of the outer wall: the x-axis of the interior wall
(defined in Fig. 2.2) should be rotated for Φ and shifted upward by Z to get
the x-axis of the outer wall (Fig. 2.3). Therefore, the atomic coordinates are
(2.9) for W, while for W′:

rt′s′u′ = (
D′

2
, (−1)u′

ϕ′
000 + 2π(

r′t′

q′ +
s′

n′ ) + Φ, (−1)u′
z′
000 + t′

n′

q′ a
′ + Z).

(2.10)

Here, q′, r′, n′ and a′ are the parameters (2.2) of the symmetry group (2.1)
of the outer wall.

The stable configuration of W@W′ in such a model corresponds to the
values of Φ and Z minimizing the inter-layer potential:
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V (Φ, Z) =
∑

t′s′u′

∑
tsu

v(rtsu, r′
t′s′u′), (2.11)

where v(rtsu, r′
t′s′u′) is the pairwise interaction of the interior- and outer-wall

carbon atoms. Irrespectively of v, according to the topological argument [10],
the optimal relative position is among the maximally symmetric ones. In fact,
the symmetry group of W@W′ contains only those transformations which
simultaneously leave both walls invariant. Note that the common rotations,
translations and helical symmetries are not affected by the relative positions
of the walls, to differ from U , σv, σh, glide and roto-reflection symmetries
appearing only when the corresponding axes and planes of the two walls
coincide. Consequently, the candidates for the stable position are only those
pairs (Φ, Z) enabling as much as possible coinciding parities. This singles out
rather few a priori known possible stable configurations, reducing greatly
the sensitivity of the choice of the potential model. This emphasizes the
importance of symmetry of DWNTs.

At first, we consider Φ and Z independent roto-translational symmetry,
described by the intersection of the walls’ roto-translational subgroups [7,12,
13]:

LR
WW′ = LR

W ∩ LR
W′ = T R

Q (A)CN . (2.12)

The parameters of this group are [13]:

N = GCD(n, n′), A = â′a = âa′, Q =
N

√
q̃q̃′

τ
, R =

(râτ + sq̃)Q
q

, (2.13)

where q̃ = q/n, q̃′ = q′/n′, â =
√

q̃/GCD(q̃, q̃′), â′ =
√

q̃′/GCD(q̃, q̃′), while
τ =

√
q̃q̃′/GCD( r′ân−râ′n′

N ,
√

q̃q̃′). Further, the equation for the helicity R

involves s = τ(r′â′q − râq′)((n′/N)φ(n/N) − 1)/nq̃q̃′.
Particularly, if the periods of the two walls are incommensurate (i.e. a/a′

is irrational), W@W′ possesses no translational periodicity (A = ∞), reduc-
ing the symmetry to the point group LR

WW′ = CN . In fact, the commen-
surate tubes (CDWNTs) are very rare, about 0.5% of all DWNTs allowed
by the inter-layer distance. Precisely, with 1280 SWNTs having diameters
2.8-50 Å altogether 42236 pairs satisfy requirements for ∆ and δ; among all
these DWNTs only 240 are commensurate. Note here that if both walls are
chiral, the tubes (n1, n2)@(n′

1, n
′
2) and (n1, n2)@(n′

2, n
′
1) must be indepen-

dently considered, since the spatial inversion does not relate them (as in
the single-wall case, which enables us to consider only n′

1 ≥ n′
2 SWNTs).

This increases the number of different CDWNTs found to 318. Among them,
with achiral walls are zig-zag and armchair series ZZn = (n, 0)@(n + 9) and
AAn = (n, n)@(n + 5, n + 5).

Finally, to find numerically the stable configurations and full symmetry
groups, the choice of the potential must be made. It is well known that the
pairwise interaction v is of the Van der Waals type, and several concrete forms
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are proposed in the literature [14,15]. Here we use the simplest Lenard-Jones
one [14]:

v(r) = −18.5426
|r|6 +

29000.4
|r|12 . (2.14)

The results are in accordance with the topological prediction (some details
of calculations are clarified in Sect. 2.6): in all the cases there are coinciding
U axes of the walls, and when both walls are achiral there is also a sym-
metry plane (mirror, glide or roto-reflectional) of one wall coinciding with a
symmetry plane of another wall. Particularly, for incommensurate DWNTs
Φ = 0, while Z is arbitrary (thus the super-slippery sliding of the walls is
enabled, as discussed in Sect. 2.6). For CDWNTs with at least one chiral
wall Φ = Z = 0; for ZZ and AA tubes Φ = 0 and Z = A/4, except that
Φ = π/4N and Z = A/4 for ZZ9 and AA5. Accordingly, the symmetry
groups of commensurate tubes are line groups:

LC
WW′ = T R

Q (A)DN , LZZ9,AA5
WW′ = Tc(A)S2N , LZZ,AA

WW′ = T (A)DNd.

(2.15)

The specific results for more than 200 CDWNTs, given in Table 2.2, show that
DWNTs have drastically reduced roto-translational symmetry in comparison
to their walls.

Table 2.2. CDWNTs with collinear chiral vectors. The outer diameter of the series
shown in column 1 is within 9.6-50 Å) only for n given in column 4 (without braced
values). Columns 2 and 3: line and isogonal groups; translational periods are in the
units of a0 = 2.46 Å.

CDWNTs Line Group Isogonal n

(n, 0)@(n + 9, 0) T (
√

3)D1d D1d
4,5,...,62

(6,9,12,...,60)

T (
√

3)D3d D3d
6,9,12,...,60
(9,18,...54)

T (
√

3)D9d D9d 18, 27, . . . , 63
Tc(

√
3)S18 9

(n, n)@(n + 5, n + 5) T (1)D1d D1d
2,3,...,36 (5,10,
15,20,25,30,35)

T (1)D5d D5d 10, 15, . . . , 35
Tc(1)S10 5

(3n,2n)@(3n+6,2n+4)
(3n+6,2n+4)@(2n+4,3n+6) T 1

2 (
√

57)D1 D2 1, 3, . . . , 13
T (

√
57)D2 2, 4, . . . , 14

(4n,n)@(4n+8,n+2)
(4n,n)@(n+2,4n+8) T 1

2 (
√

7)D1 D2
1,3,...,13
1,3,...,11

T (
√

7)D2
2,4,...,12

2,4,...,12 (6)

T 3
14(

√
7)D1 D14

−
13

T 13
14 (

√
7)D2

−
6

(7n,3n)@(7n+7,3n+3)
(7n,3n)@(3n+3,7n+7) T (

√
237)D1 D1 1, 2, . . . , 7

(8n,n)@(8n+8,n+1)
(8n,n)@(n+1,8n+8) T (

√
219)D1 D1 1, 2, . . . , 7
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2.3 Symmetry Based Band Calculations

Due to Wigner’s pioneering work, the conceptual importance of symmetry in
physics is well recognized. However, except in particle physics, it is commonly
used a posteriori, to give a profound explanation of the results obtained. Par-
ticularly in solid state physics, crystal symmetries which have been known
for more than a century, are applied in this way: description of phase tran-
sitions, selection rules for various processes, tensor shapes. Perhaps the only
exception is Bloch’s theorem, a priori giving the form of the electronic quan-
tum states and ionic displacements; even this theorem treats the translational
periodicity only, which significantly restricts possible symmetry based con-
clusions, although it reduces the calculations to the elementary cell. The
elementary cells of SWNTs contain many (2q) atoms, which makes the Bloch
theorem based calculations very robust, and frequently too demanding even
for the best computers. Nevertheless, it is shown that nontrivial helical, rota-
tional and U -axis symmetries suffice to generate a tube from a single atom.
Here we briefly sketch the modified group projector technique, giving an al-
gorithm to reduce the calculations to the full symmetry cell, or symcell, from
which the structure is generated by a complete symmetry group. Besides the
generalization of the Bloch theorem, it provides a priori assignation of the
(electron/phonon) bands by all the conserved quantum numbers, enabling
application of all possible selection rules for physical processes.

2.3.1 Modified Wigner Projectors

Within the quantum mechanical formalism, the dynamics of the system is
determined by its Hamiltonian H, being an operator in the state space H. Its
eigenstates | n〉 and eigenvalues En solve the time independent Schrodinger
equation H | n〉 = En | n〉. Besides a few analytically solvable cases, this
eigenproblem is hard even for a numerical approach, especially for complex
systems. Below we describe the symmetry to simplify calculations.

Symmetries of a system, comprised in the group L, are in the state space
represented by the unitary operators D(�), � ∈ L. These are reduced to
the block-diagonal matrices, with irreducible representations D(µ)(�) (of the
dimension |µ|, each appearing fµ times) on the diagonal in the symmetry
adapted basis (SAB). Such a basis |µtµm〉 (m = 1, . . . , |µ|) satisfies:

∀� ∈ L : D(�) |µtµm〉 =
|µ|∑

m′=1

D
(µ)
m′m(�) |µtµm′〉, tµ = 1, . . . , fµ. (2.16)

As the Hamiltonian commutes with each D(�) there is a SAB also being the
eigenbasis of the Hamiltonian. Thus, the symmetry enables us to solve the
Hamiltonian eigenequation by parts: each irreducible representation singles
out one fµ dimensional eigenequation. In the case of finite groups, this reduc-
tion is realized by the Wigner group projectors [16]. However, for crystalline



50 M. Damnjanović et al.

Fig. 2.4. Scheme of the modified group projector technique in the induced spaces

systems, due to the infinite symmetry group and the infinite dimensional
state, this procedure, involving summation of D(�) over group elements, is
inappropriate at least numerically. These deficiencies are cured by the modi-
fied group projector technique (MGPT) [17,18]. It is fully implemented into
the polymer symmetry simulation package POLSym devoted to the physics
of the quasi-1D crystals [19], which is used in the forthcoming calculations.

The corner stone of MGPT is simple: in the space H ⊗ H(µ)∗
(here H(µ)

is the space of the irreducible representation D(µ), and the asterisk denotes
its dual) the basis |µtµ〉 of the fixed points of the representation D ⊗ D(µ)∗

generates SAB |µtµm〉 in H by the partial scalar product:

|µtµm〉 = 〈µm |µtµ〉 (m = 1, . . . , |µ|), (2.17)

where |µm〉 are the standard vectors (2.16) of the irreducible representation.
Thus, one needs to find the set of fixed points (Fig. 2.4): this is the range
of the identity representation Wigner projector Lµ for D ⊗ D(µ)∗

(and not
D; thus the name modified projector). Since the fixed points of the whole
group coincide with the common fixed points of the group generators, com-
mon eigenvectors for the eigenvalue 1 of the group generators are found;
summation over the group is avoided.

The infinite dimension of the state space is overcome with the help of
symcell and the convenient properties of Lµ. The action of the group L on a
single atom gives a set of atoms called orbit. This way, the whole compound
decomposes into disjoint orbits. Taking from each orbit OP an arbitrary atom
P (orbit representative), one gets the symcell. Further, all the transformations
of L leaving P invariant form a finite subgroup LP , called stabilizer of P ,
which induces the partition of L onto the cosets: L = LP + z1LP + . . . . The
coset representatives form transversal ZP = {z0 = e, z1, . . . }. Obviously, the
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complete orbit OP is generated from the orbit representative by the action
of ZP .

We consider the case when all the transversals are the same, ZP = Z; oth-
erwise, one can use the intersection of all the transversals; this enlarges the set
of orbit representatives and the dimension of the eigenvalue problem. In the
single-particle models, such as the tight-binding one, the total state space H
is decomposed as the sum H =

∑
t D(zt)H0 of the finite dimensional isomor-

phic subspaces generated by the symmetry operations from the symcell space
H0. In fact, in the electron (phonon) band calculations each symcell atom con-
tributes by some number of orbitals (Cartesian basis), spanning the atomic
space H0P , and the symcell space is the sum of these: H0 =

∑
P H0P . As the

group action does not mix the orbits, the representation D(L) is decomposed
into the orbit subrepresentations D(L) =

∑
P DP (L), each of them being in-

duced from a representation of LP by the transversal ZP . Therefore, in each of
the spaces H0P acts the representation D↓

P , the representation DP of L being
restricted to the stabilizer LP . Thus, for each irreducible representation of L,
one finds the representation of the stabilizer: γµ(s) =

∑
P D↓

P (s) ⊗ D(µ)∗
(s)

(for each s from LP ), defined in the finite dimensional product H0 ⊗ H(µ)∗
.

The main fact is that the fixed point subspace of D ⊗ D(µ)∗
in H ⊗ H(µ)∗

is isometric [17] to the fixed points of γµ in H0 ⊗ H(µ)∗
. One has to find a

modified Wigner projector for γµ, and any basis |0; µtµ〉 in its range. Only a
finite number of symmetry elements (stabilizer or site symmetry group) and
finite dimensional representations are used!

The basis |µtµm〉 is achieved by (2.17), where the basis of the fixed points
|µtµ〉 is generated from the symcell space basis |0; µtµ〉 found with help of the
mentioned partial isometry Bµ (c is a positive number making this operator
isometry on H0 ⊗ H(µ)∗

):

|µtµ〉 = Bµ |0; µtµ〉, Bµ = c
∑
P

Bµ
P , Bµ

P =
∑

t

10P ⊗ D(µ)∗
(zt). (2.18)

Note that the vectors | µtµ 〉 are given by the components in the atomic
basis. Their components on atoms obtained from symcell by the action of the
transversal element zt are found as the terms (2.18):

|µtµ〉t = c
∑
m

D
(µ)∗

mm′(zt) |µtµm〉0, |µtµm〉0 = 〈µm |0; µtµ〉. (2.19)

Finally, to find SAB as the eigenbasis for H, in the same space H0⊗H(µ)∗

the pulled-down Hamiltonian is used:

H↓µ =
∑
P

Bµ†
P HBµ

P . (2.20)

It commutes with all γµ(s), and its eigenvectors, which are simultaneously
the fixed points of γµ, generate the µ-th multiplet of SAB in H through (2.18)
and (2.17). The corresponding eigenenergies of H and H↓µ coincide [17].
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The procedure must be performed for each irreducible representation of
L, and therefore the energies obtained are automatically assigned by the irre-
ducible representation, i.e. by the complete set of the quantum numbers. The
dimension of the eigenproblem in each step is the product of the dimension
of the irreducible representation (the degeneracy of the eigenvalues obtained)
and the dimension of the symcell space (the number of included orbitals for
electrons and trice the number of atoms for phonons). When L describes pure
translational symmetry, the algorithm reduces to the Bloch theorem, showing
that MGPT generalizes it maximally, i.e. to the full symmetry group.

2.3.2 Symmetry and Band Topology

Some general properties of electron and phonon bands are deduced directly
from the irreducible representations of the symmetry group, since Hamilto-
nian eigenvalues are neatly related to them.

Roto-translational elements of the line groups [20] form the abelian sub-
group T r

q (a)Cn, with one-dimensional representations

kAm(�ts0) = eiψk
m(t,s), where ψk

m(t, s) =
kan + 2πmr

q
t +

2πm

n
s (2.21)

defined by the pair µ = (k, m) of quasi momentum (along the z-axis) k ∈
(−π/a, π/a] and quasi-angular momentum (z component) m ∈ (−q/2, q/2].
Accordingly, the corresponding symmetry adapted Bloch states in the
state space are | kmtkm 〉. Besides these transformations, the NT sym-
metry group contains U = �001, reversing both momenta; consequently,
U | kmtkm〉 =| −k,−mtk,m〉. Only when k = 0, π/a and simultaneously m
takes very special values (e.g. for k = 0 and m = 0, q/2) vectors |kmtkm〉 and
|−k,−mtk,m〉 are either the same or of the opposite sign. Consequently, half
k ∈ [0, π/a] of the Brillouin zone suffices to count different representations,
and the pairs kAm and −kA−m are joined into double degenerate represen-
tations kEm. Only the special pairs (k, m) are unaffected by U , giving even
and odd pairs with respect to U one dimensional representations (e.g. 0A

±
0 ,

0A
±
q/2). The corresponding SAB becomes | kmΠU ; tkmΠU

〉, where the par-
ity ΠU = ± for the special representations. Achiral tube representations are
four-dimensional kGm in general, since additionally σv changes the sign of m
and σh that of k; still, as σh leaves the invariant m = 0, n bands, and σh ener-
gies at k = 0, π/a, these special representations are one- or two-dimensional,
obtaining corresponding parities. The parity with respect to the horizontal
(vertical) mirror plane is denoted as Πh = ± (Πv = A/B). Therefore, the
label of representation has the general form kΓΠ

m , where Π = ± for U or σh
even or odd representations (no superscript when neither of the two parities
is defined), and Γ shows the dimension: A (or B for σv odd representations)
E and G for one-, two- and four-dimensional representations. Frequently it is
convenient to use parity quantum numbers Π = ±1 and Π = 0 for even/odd
states and without specific parity.
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This analysis shows that the energy bands of NTs are at least two-fold [21].
Indeed, ignoring at first U symmetry, one obtains bands assigned by the
quantum numbers km of the subgroup T r

q (a)Cn: one band εm(k) along the
full Brillouin zone for each tkm = 1, . . . , fkm. Then, a posteriori interrelating
pairs of the Bloch states by U symmetry, one finds the degeneracy εm(k) =
ε−m(−k) of the eigenenergies. In achiral cases bands are four-fold, except
those with m = 0, n which are double degenerate and the corresponding
Bloch functions are either even or odd in σv.

Note that U and σh even and odd representations may appear only at
the band edges, for k = 0, π/a. The corresponding states are Van Hove sin-
gularities. Indeed, for example for the band ε0(k), either U or σh symmetry
implies ε0(k) = ε0(−k), and such an even function of k is extremal at k = 0.
Therefore, in achiral SWNTs all bands end up by Van Hove singularities at
k = 0, and in chiral ones only the bands with m = 0, q/2. For chiral SWNTs
q is quite large (at least 14 for (4,1), but typically more than one hundred)
and these systematic density of states (DOS) singularities are rare. On the
contrary, in double-wall tubes Q is at most 14, making singularities much
more frequent; in fact, Q is usually one or two when all the bands end up at
k = 0 by DOS singularity.

Also, the dimension of the symcell space significantly differs in single-
and double-wall tubes. The symcell of any single-wall carbon nanotube con-
tains a single atom, making the eigenproblem for the phonon spectra at most
12-dimensional, while the electronic eigenproblem is at most four- and 16-
dimensional in p⊥- and sp3-orbital model, respectively. On the other hand,
the number of atoms in the symcell of double-wall carbon nanotubes varies
from three (in the most symmetric tubes) to several hundreds when the trans-
lational symmetry and U -axis only are present.

2.3.3 Quantum Numbers and Selection Rules

Quantum mechanical description of the physical processes of NTs is in-
evitably related to the conservation involved laws. In general, a perturba-
tion QkmΠ with well defined quantum numbers k, m and Π (Π stands for
all appearing parities) induces interband transitions of electrons and cre-
ation/annihilation of phonons in NT. The behavior of NT is determined by
the transition probabilities, being the squares of absolute values of the matrix
elements 〈kfmfΠf ; ti| QkmΠ |kimiΠi; ti〉 (initial and final states are labelled as
i and f). Therefore, Clebsch-Gordan coefficients of NT symmetry groups [21],
as proportional to these matrix elements (by the Wigner-Eckart theorem),
give the most detailed information on the conservation laws. The selection
rules, singling out the allowed transitions, are their comprehensive form. Note
that assignation of bands and Bloch functions of NT by the complete set of
quantum numbers is inevitable for application of the selection rules.

For the vertical interband transitions induced by a perturbation with
k = 0, the quasi momentum is conserved, and the selection rules are:



54 M. Damnjanović et al.

∆k = kf − ki = 0, ∆m = mf − mi = m, ΠfΠΠi �= −1. (2.22)

In the non-vertical transitions, the rules are the same, except for the Umk-
lapp processes, when ki + k are out of the Brillouin zone and ∆m obtains an
additional term [21]. This manifests that m is not a conserved quantum num-
ber: it is related to the isogonal group (2.6), also containing rotations that
are not isolated (but only combined with translations) symmetries of NTs.
Therefore, sometimes it is plausible to use the alternative set of conserved
quantum numbers [5,18]. These helical quantum numbers [20] are the helical
momentum k̃, including linear and part of the angular momentum, and the
remaining angular momentum m̃, related to k and m as:

k̃ = k + m
2rπ

na
+ κ̃

2qπ

na
, m̃ = m mod n, (2.23)

k = k̃ − m̃
2rπ

na
+ κ

2π

a
, m = (m̃ − κp)mod q. (2.24)

The integers κ̃ and κ are introduced to provide k̃ ∈ (−qπ/na, qπ/na] and
k ∈ (−π/a, π/a], respectively, while p is the helicity (2.4).

2.3.4 Electron Bands

In the graphene layer the bonding of the carbon atoms is realized by three in-
plane hybridized sp2 orbitals, while the forth p⊥ orbital (p state perpendicular
to the plane) is responsible for the electronic properties. As mentioned before,
the curvature induced rehybridization in the tubes with a diameter larger
than 7 Å is weak, and the p⊥ approximation is sufficiently good. However, for
narrow nanotubes, the influence of the folded geometry on the atomic orbitals
is significant, and the correct dynamical model is sp3 hybridization, including
2s and three 2p carbon orbitals. As already emphasized, the simply folded
configuration is unstable, but the relaxed one retains the same symmetry.

In the tight-binding (TB) approach, each atom Ctsu contributes to the
state space by a set of orbitals | tsu; φ 〉: In the sp3 model four orbitals
(φ = 1, . . . , 4) are included, while in the p⊥-approximation φ = 1 denotes
the p⊥-orbital. Therefore, in the view of the single atom SWNT symcell, the
pulled down Hamiltonian (2.20) takes the simple form:

H↓
kmΠ =

∑
tsu

(DkmΠ)T (ltsu)
∑
φφ′

hφφ′
tsu | tsu, φ〉〈000, φ′ | ⊗1kmΠ . (2.25)

Recall that according to MGPT the first sum only runs over the carbon
atoms Ctsu interacting with the initial one C000, while the second sum is
the part of the Hamiltonian describing this interaction through the potential
matrix elements hφφ′

tsu = 〈000; φ | H | tsu; φ′ 〉. Also, the same expression
describes the pulled down overlap matrix, when instead of hφφ′

tsu pure overlaps
Sφφ′

tsu = 〈000; φ | tsu; φ′〉 are used. To proceed, additional assumptions on the
included orbitals and neighbors, as well as to the proposed interaction are
needed.
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Tight-Binding p⊥-Orbital Model

Within the p⊥ approximation with overlaps of atomic orbitals neglected,
substituting in (2.25) the form of the irreducible representations of the line
groups [18], for each m the pulled down Hamiltonian is two-dimensional [21]:

Hm(k) =
(

h0
m(k) h1∗

m (k)
h1

m(k) h0
m(k)

)
, hu

m(k) =
∑
ts

h11
tsueiψm

k (t,s) (u = 0, 1). (2.26)

This refers to the chiral tubes, while the achiral ones can be treated as a
special case with Hm(k) and H−m(k) joined into a single four dimensional
matrix. Solving the eigenproblem of (2.26), for each m two double degenerate
bands are found as discussed in Sect. 2.3.2:

ε±
m(k) = h0

m(k) ± |h1
m(k)|. (2.27)

The corresponding generalized Bloch eigenfunctions are (hk
m = Arg

(
h1

m(k)
)
):

|km; ±〉 =
∑
ts

e−iψk
m(t,s)( | ts0〉 ± eihk

m | ts1〉),
|−k,−m;±〉 =

∑
ts

eiψk
m(t,s)( | ts1〉 ± eihk

m | ts0〉).
Note again that for the achiral tubes four-fold degeneracy appears due to
ε±
m(k) = ε±

−m(k), except that the bands ε±
m(k) = ε

A/B
m (k) for m = 0, n with

the opposite vertical mirror parity remain double degenerate.
The simplest p⊥ approximation completely neglects local distortions of

graphene hexagons and includes only the first three neighbors pointed to by
u1 = u2 = u3 = 1 and

t1 = −n2

n
, t2 =

n1

n
, t3 = t1 + t2,

s1 =
2n1 + (1 + rR)n2

qR , s2 =
(1 − rR)n1 + 2n2

qR , s3 = s1 + s2.

Therefore, all the interatomic matrix elements are equal, h11
ti,si

= V ≈ −3 eV,
while h11

000 = 0. The model is analytically solvable: the pairs of m-assigned
bands are symmetrical with respect to the Fermi level:

ε±
Em

(k) = ±|V
3∑

i=1

eiψk
m(ti,si)|. (2.28)

According to (2.28), for the tubes with n1 − n3 divisible by 3, there are
bands crossing at the Fermi level EF = 0. Precisely, if R = 3, two symmetric
bands with m = nr (mod q) cross at k = 2π/3a, while for R = 1 two pairs
of bands with m = ± q

3 come together in k = 0. Apparently this implies that
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Fig. 2.5. Symmetry assigned p⊥ orbital electronic bands of SWNTs. Note Van
Hove singularities in k = 0 for the even or odd states of the U -axis, as predicted
in Sect. 2.3.2, and a large gap in the case of (5,0). The bands are assigned by
the quantum number m and in the case of the achiral tubes, by a vertical mirror
parity if defined (A for even and B for odd). The bands of the chiral tubes are
double degenerate (representations kEm); those of the achiral tubes are four-fold
(representations kGm), except the ones with well defined vertical mirror parity
(representations kEA

m or kEB
m). The edge states are singlets or doublets

such tubes are conducting (Fig. 2.5). However, Landau’s non-crossing rule
forbids this: the crossing bands are assigned by the same quantum numbers,
and any perturbation (such as neglected curvature effects) produces a small
gap [5, 22]. The exceptions are the armchair tubes: for them q = 2n, r = 1,
and R = 3, giving m = n, and the crossed bands differ in vertical mirror
parity [5, 23].

Thus, this naive model together with the non-crossing rule gives the clas-
sification of SWNTs according to their conducting properties: the armchair
tubes are conducting, the other tubes with integer (n1 − n2)/3 are quasi-
metallic with a small secondary gap less than 0.1 eV decreasing with the
tube diameter [22] as D−2. All other tubes are semiconducting, with the
gap decreasing with the tube diameter as 1/D; starting with more than 1 eV
for narrow tubes, the gap tends to the zero graphene limit [4]. Of course,
the whole model and therefore these conclusions are not applicable to ultra
narrow tubes.

The p⊥-orbital approximation may be refined by considering the inter-
atomic overlaps, and for thick enough tubes such results give reasonably
good predictions of optical properties [24]. Also, the approximation is im-
proved by including higher level neighbors. A model with 12 neighbors (three
first, six second and three third ones, Fig. 2.2), neglecting local distortions
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and overlaps effectively uses three different constants h11
tsu, one for each level

of neighbors. This model, with fitted constants, describes [25] satisfactorily
the bands near the Fermi level, obtained by density functional techniques.

Density Functional Model

As has been stressed, p⊥ approximation fails to describe electronic states
of narrow SWNTs: large curvature substantially affects hybridization, and
all sp3 carbon orbitals have to be considered. The band structure may be
satisfactorily studied only with the help of a density functional method. Ac-
cording to the exchange-correlation functional employed, several types of DF
methods are distinguished. All of them give similar stable configurations (Ta-
ble 2.1) and predict well the conductivity, while some other details of band
structure may differ significantly. The most frequently used local density
approximation [11, 26, 27] systematically overestimates the gap in semicon-
ductors, making the predictions of optical properties not completely reliable.
On the other hand, G. Seifert’s [28] density functional tight-binding (DFTB)
method applies the density functional technique to small molecules, and fits
the Hamiltonian and overlap matrix elements of (2.25) as a functions of the
interatomic distance hφφ′

(r) and Sφφ′
(r). As these functions are well trans-

ferable to compounds with the same local structure, they can be used within
the tight binding approach in studies of complex structures. Therefore, this
method is more efficient (e.g. also thin SWNTs or inorganic tubes may be
considered); possible deficiencies of the semiempirical foundation are at least
compensated for to some extent controllable parameters (enabling to fit the
experiments), and complete symmetry implementation (due to application of
the DF potential through the tight-binding calculations). However, currently
all DF methods fail to describe correctly Van der Waals systems; therefore,
these methods are not reliable for multi-wall carbon nanotubes, despite some
recent attempts to overcome this difficulty [29].

In comparison to the p⊥ orbital results, DFTB bands of narrow tubes
(see Fig. 2.6) differ substantially. In fact, the tubes (4,0), (5,0) and (4,1) are
conductive, in contrast to the p⊥ approximation based criterion. Of course,
the symmetry based general properties of band topology, such as degeneracy
and k = 0, π/a Van Hove singularities, are manifested in both models.

2.3.5 Force Constants Phonon Dispersions

There are lattice dynamics studies of NTs based on various force field models.
Since ab initio methods [30] are restricted to thin tubes, an efficient force
constant method is necessary for massive calculations enlightening general
NT properties [31]. To this end graphite force constants [32] are adjusted
kinematically and dynamically to nanotube geometry. Each pair (α, β) of
carbon atoms defines the stretching, out-of-plane and in-plane unit vectors
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Fig. 2.6. DFTB bands and DOS of narrow tubes near Fermi level EF (broken
horizontal line at 0 eV). For the tubes (4,2) and (5,1) the bands relevant for the
calculated optical interband transitions in Sect. 2.4.2 are in bold. If defined, the
z-reversal parity at k = 0 and k = π/a is indicated by ±. Note that (5,0) is
conducting

| αβ, i〉 (i = 1, 2, 3): | αβ, 1〉 points from α to β, | αβ, 2〉 is perpendicular to
|αβ, 1〉 and to the tube axis, while |αβ, 3〉 =|αβ, 1〉× |αβ, 2〉. The components
of these vectors in the tube reference frame are | αβ, 1〉 = (Sαβ

1i , Sαβ
2i , Sαβ

3i ).
These vectors and the force-constants cαβ

i are the eigenvectors and eigenvalues
of the 3 × 3 matrix Dαβ , describing the contribution of the pair (α, β) to the
dynamical matrix D of nanotube [33]: Dαβ |αβ, i〉 = cαβ

i |αβ, i〉. Therefore,
Dαβ =

∑
i cαβ

i | αβ, i 〉〈αβ, i | and its matrix elements are easily found:
Dij

αβ =
∑

p cαβ
p Sαβ

ip Sαβ
jp .

The kinematic modification provides the twisting mode exactly using the
rotational sum rule [34]:∑

β

(Rαβ1D2j
αβ − Rαβ2D1j

αβ) = 0, ∀α, j = 1, 2, 3. (2.29)

The sum runs over the relevant neighbors β of the atom α (β �= α) and Rαβi

is the Cartesian component of the vector Rαβ = Rαβ |αβ, 1〉 from α to β in
the equilibrium positions. Since Sαβ

32 = 0 because |αβ, 2〉 is orthogonal to the
tube axis, (2.29) reduces to:∑

β

Rαβ(cαβ
2 Sαβ

j2 Sαβ
33 − cαβ

3 Sαβ
j3 Sαβ

32 ) = 0, j = 1, 2, 3; ∀α.

Thus, each atom α gives two constraints on out-of-plane force constants cαβ
2 :∑

β

Rαβcαβ
2 Sαβ

12 Sαβ
33 = 0,

∑
β

Rαβcαβ
2 Sαβ

22 Sαβ
33 = 0, (2.30)
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as SWNT is a single-orbit system, MGPT calculations are reduced to the
orbit representative α = C000 only, and (2.30) imposes two conditions alto-
gether. Particularly, the force constants model [32] involves eighteen up to
the fourth level neighbors; collecting all the relevant coordinate factors and
force constants into the vectors Sα

k = (Rα1S
α1
k2 Sα1

33 , . . . , Rα18S
α18
k2 Sα18

33 ) and
cα
2 = (cα1

2 , . . . , cα18
2 ); (2.30) becomes a pair of the orthogonality conditions

cα
2 · Sα

k = 0 (k = 1, 2). These quite general conditions for any dynamical
model provide the twisting acoustic mode exactly. Thus, it is natural to
correct minimally the graphene force constants by projecting cα

2 onto the
orthocomplement of the plane defined by Sα

1 and Sα
2 .

The dynamical response to the configuration changes introduced by the
folding of a graphene plane is described along the lines of [35]. In the α-frame,
in which the z-axis coincides with the tube axis and the x-axis runs through
the atom α, the eigenbasis of Dαβ is (ϕ and ψ are cylindrical coordinates of
β and the angle between the horizontal xy-plane and the bond α-β):

|αβ, 1〉 = (− cos ψ sin
ϕ

2
, cos ψ cos

ϕ

2
, sin ψ),

|αβ, 2〉 = (cos
ϕ

2
, sin

ϕ

2
, 0), (2.31)

|αβ, 3〉 = (− sin ψ sin
ϕ

2
, sin ψ cos

ϕ

2
,− cos ψ).

Further, consider the graphene stretching, out-of-plane and in-plane unit vec-
tors after the folding: |αgβg, 1〉 is the tangent to the projection of the bond
α-β to the tube’s surface, | αgβg, 2〉 is perpendicular to the tube at α, and
|αgβg, 3〉 =|αgβg, 1〉× |αgβg, 2〉. So, in the α-frame these vectors are:

|αgβg, 1〉 =

⎛
⎝0,

cos ϕ
2 cos ψ√

1 − sin2 ϕ
2 cos2 ψ

,
sin ψ√

1 − sin2 ϕ
2 cos2 ψ

⎞
⎠ ,

|αgβg, 2〉 = (1, 0, 0), (2.32)

|αgβg, 3〉 =

⎛
⎝0,

sin ψ√
1 − sin2 ϕ

2 cos2 ψ
,− cos ϕ

2 cos ψ√
1 − sin2 ϕ

2 cos2 ψ

⎞
⎠ .

Assuming that the forces along | αgβg, i〉 (i = 1, 2, 3) are preserved in the
course of rolling, one easily finds how the required modified constants cαβ

i are
related to the original graphene ones C

αgβg

i : cαβ
i = C

αgβg

i /|〈αgβg, i | αβ, i〉|.
The expansion over sine and cosine of ϕ/2 yields:

cαβ
1 = C

αgβg

1 (2 − cos
ϕ

2
),

cαβ
2 = C

αgβg

2 (1 + sin2 ψ(1 − cos
ϕ

2
)), (2.33)

cαβ
3 = C

αgβg

3 (1 + cos2 ψ(1 − cos
ϕ

2
)).
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It turns out that the dynamical and kinematical corrections each give
similar SWNT force constants, and therefore the results [31] presented here,
obtained by both corrections, are close to that of [35], but with exactly four
acoustic modes.

2.4 Optical Absorption

Being both individual and bulk sensitive, the optical response measure-
ments [36] are, together with Raman [37] and neutron scattering and elec-
tron and X-ray diffraction, widely used as a tool for diameter and chirality
distribution analysis and for total SWNT yield estimations in macroscopic
samples.

In this section, we evaluate numerically, using the line group theoretical
methods, the optical conductivity tensor for individual SWNTs of arbitrary
geometry. We use G. Seifert’s [28] DFTB calculations as input for the POL-
Sym code. The full line group symmetry of the SWNTs is taken into account
(electron correlations and curvature effects are included) and the transition
matrix elements of the momentum operator are, within the dipole approxi-
mation, exactly calculated from the generalized Bloch eigenfunctions.

2.4.1 Conventional Nanotubes

Prediction of the polarization dependent optical absorption [38] in NTs has
been confirmed by optical ellipsometry [39], as well as by reflectivity measure-
ments [40]. In addition, polarized Raman spectroscopy on fibers of aligned
SWNTs, reflectance and absorption spectra and tensor invariant measure-
ments of the Raman active modes [41] has given evidence of strongly polar-
ized optical transitions. Anisotropy of the dielectric function has been stud-
ied in detail by S. Tasaki and coworkers [24]: a substantial optical rotatory
power and circular dichroism as well as optical activity of the NT ensemble
have been predicted. Also, polarized low-frequency optical spectra of SWNTs
bundles, within the gradient approximation and the lowest-order isotropic
model, has been calculated [42]. On the other hand, optical activity [7] and
anisotropy of absorption [43] in the isolated NTs have been inferred on the line
group symmetry arguments. Recently, polarized optical absorption in SWNTs
has been thoroughly studied within the symmetry based approach [44].

In this subsection the polarized optical conductivity of SWNTs with diam-
eters between 8 Å and 16 Å is studied. The calculations for bundled SWNTs
with mean diameter 13.6 Å assuming a Gaussian diameter distribution with
∆D =0.5 Å are carried out as well.

In the relaxation-time approximation, the interband contribution (at ab-
solute zero temperature) to the real part of the optical conductivity tensor
is (we give here only the expression for the diagonal elements as, due to the
symmetry of the tubes, the non-diagonal ones vanish [7]):
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Re σjj =
C

ω

∑
|〈kfmfΠf | ∇j |kimiΠi〉|2δ(∆ε − �ω), (2.34)

where C = 2πe2
�

2/m2
e, ∆ε = εf − εi is the energy absorbed, j denotes the

direction of the electric field applied, while the subscripts i and f refer to the
initial and the final state, respectively, and the summation runs over quantum
numbers ki, mi, Πi, kf , mf , Πf (Π represents all parities). As only two tensor
components are independent [7], we introduce the following notation: σzz =
σ‖, σxx = σyy = σ⊥. The form of the expression used is convenient for
application of the selection rules. For any orientation of the electric field,
the wave vector of the Bloch electron remains essentially unchanged in the
optical transition: the crystal momentum conservation law reads ∆k = 0.

Operator ∇‖ is reversed upon the U transformation and invariant under
all the others (0A−

0 tensor of the group LC and LZA). As for ∇x and ∇y, it is
convenient to switch to the momentum standard components ∇± = ∇x∓i∇y,
as these carry 2D space of the representation 0E1 for C and 0E

+
1 for the achiral

tubes. The dipole optical transition selection rules are now easy to deduce.
The quasi-angular momentum m selection rules depend on the direction

of the perturbing electric vector: if it is parallel to the tube axis (‖ polariza-
tion) the rule imposes ∆m = 0, while if it is orthogonal onto the z-axis (⊥
polarization) ∆m should be 1 (left circular polarization) or −1 (right circular
polarization) in order for the dipole optical transition to take place.

As for the parities (if defined), the one with respect to σv is to be preserved
while the one with respect to the U axis or to σh is to be reversed in the case
of ‖ polarization. For ⊥ polarization it is vice versa concerning the σh-parity
while no restriction is imposed onto the σv-parity.

Taking into account the selection rules and substituting
∑

k by 1
π

∫
k

dk
in (2.34) one finds:

Re σ‖ =
C

ω

∑
m

∫ π

0
Im
[ |〈km; + | ∇‖ |km; −〉|2
ε+m(k) − ε−

m(k) − �ω − iη

]
dk, (2.35)

where |km; ±〉 represent the Bloch orbitals above and below the Fermi level,
respectively, while η =0.04 eV is a phenomenological broadening that sup-
presses the height of the resonant peaks. Analogously, starting from (2.34)
it is straightforward to obtain the relation for the perpendicularly polarized
field:

Re σ⊥ =
C

ω

∑
m

∫ π

0
Im

[
|〈k, m + 1; + | ∇+ |km; −〉|2
ε+m+1(k) − ε−

m(k) − �ω − iη

+
|〈k, m − 1; + | ∇− |km; −〉|2
ε+m−1(k) − ε−

m(k) − �ω − iη

]
dk. (2.36)

Note that for A tubes ‖ transitions for m = 0, n are to be excluded as
doubly degenerate electronic bands have different vertical mirror symmetry.
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Fig. 2.7. Components of the optical conductivity tensor (solid lines) and their
JDOS approximation (dotted lines) for the (10,10)-bundle. The intensity of the
optical conductivity of the bundle is normalized to a single tube

Concerning the +/− parities, they are implicitly taken into account as sym-
metry adapted state functions are used. Namely, in spite of the systematic
strong Van Hove singularities, the ‖ transitions between the states with non-
vanishing k (but close to k = 0) are highly suppressed. This is due to the
continuity principle, since the transitions are forbidden at k = 0 by the z-
reversal symmetry. As for the ⊥ transitions, the parity selection rules are of
no importance for the A tubes.

By contrast, for Z tubes the ‖ transitions are not affected by the parities,
while the ⊥ transitions are almost entirely suppressed by them. For this type
of tubes there are no DOS peaks outside the k = 0 vicinity while the z-reversal
symmetry forbids the ⊥ absorption at k = 0. Owing to the continuity of the
matrix elements, the corresponding transition probabilities are small and the
⊥ optical spectra features are highly suppressed despite the strong Van Hove
singularities.

Concerning the C tubes, although the parities practically do not influence
the optical absorption, we find that the transition probabilities are strongly
helicity dependent: the results obtained differ considerably from those ap-
proximated by the joint density of states (JDOS).

A typical ‖ polarized absorption spectrum of the bundled SWNTs (Gaus-
sian distribution centered at D =13.6 Å with ∆D = 0.5 Å of 29 tubes com-
prising the (10,10)-bundle) is depicted in the left panel of Fig. 2.7. Note that
each tube in the bundle is weighted with a Gaussian factor, i.e. the absorption
intensity is normalized to a single tube. The first two peaks at 0.55 eV and
1.1 eV are the well-known semi-conducting tube response that scale inverse
to the tube diameter. The third feature, at 1.65 eV, scaling up also with 1/D,
comes from A tubes and from quasi-metallic Z and C ones.

The collective excitation of the π-electron system (at zero-momentum
transfer) in the tubes with the (10,10)-bundle typical diameters, we find (for
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Fig. 2.8. Highly helicity sensitive ‖ polarized absorption spectra features (in the
energy region between the well pronounced low-energy peaks and the onset of the
π-plasmon) for SWNTs (10,10), (15,4), (12,8) and (11,9) having the same diameter
D = 13.6 Å but different wrapping angle

both polarizations) at 5 eV, Fig. 2.7. Considerable anisotropy is evident al-
though the excitation is well pronounced for the ⊥ polarized electric field as
well. In the range between the low-energy inter-band transitions and the π-
plasmon excitation energy few inter-band optical absorption features appear.
As they are highly sensitive to the helicity of the particular tube (regarding
the peak positions and absorption intensities), after averaging over a bundle
they result in rather broad and weakly pronounced peaks. Their wrapping-
angle sensitiveness is illustrated in Fig. 2.8 by tubes with diameter D =13.6 Å.

The main features of the ⊥ polarized optical spectra are given in the right
panel of Fig. 2.7. These are responses from all the types of tubes within the
bundle apart from the tubes (15,3), (16,4), (15,5), (14,5), (13,5), (14,6) and
(13,7), which are practically transparent throughout the entire range for such
a polarization of the electric field.

We now turn to the inspection of the differences between the results pre-
sented here and the widely used JDOS approximated ones based on the
lowest-order isotropic TB model. For ‖ polarization the JDOS only based
results are in reasonably good agreement with more accurate calculations
(Fig. 2.9), aside from the overall absorption intensity enhancement and slight
differences regarding positions, relative intensities and shapes of peaks. These
differences seem to be more pronounced for tubes with small wrapping angle
(Z tubes and tubes close to the Z-direction) but can scarcely be noticed
when averaged over a bundle. This is illustrated in the left panel of Fig. 2.7.
On the contrary, in the case of the ⊥ polarization, the JDOS approxima-
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Fig. 2.9. ‖ component of the optical conductivity (bold line) and the JDOS ap-
proximation to it (dotted line) for SWNTs (18,0), (15,4), (10,10), (11,9)

tion leads to incorrect predictions. As is evident from the calculated spectra
for the (10,10)-bundle (Fig. 2.7, right panel), many of the absorption peaks
resulting from the JDOS approximation of the ⊥ component of the optical
conductivity tensor, do not appear in the more accurately calculated optical
spectrum. For isolated SWNTs these discrepancies are even more noticeable.
For comparison see Fig. 2.10.

The results obtained reinforce the JDOS approximation of the optical
conductivity for ‖ polarized electric field, but lead to quite different con-
clusions as far as the ⊥ component of the conductivity tensor is concerned.
The discrepancies are most prominent for thin Z tubes, but also quite sub-
stantial even when the JDOS only based results are averaged over a bundle.
We explain this by the influence of the parity selection rules on the transi-
tion probabilities, elucidating that the JDOS approximation is conceptually
incompatible with the horizontal mirror parity selection rules for dipole ab-
sorption processes in achiral SWNTs. Namely, although very little weight is
associated with the horizontal mirror parity states (as this parity is well de-
fined only for a finite number of high symmetry states) due to the continuity
principle (which cannot be included within the JDOS approximation), if the
transition is not permitted at k = 0 the transitions between the nearby states
with general, nonvanishing k are not very likely to occur. As all the bands
of the achiral tubes are zero sloped at k = 0, this means that the JDOS
approximation [43] to the optical absorption spectrum of the achiral NT can-
not be entirely reliable. Especially not for the Z tubes as all their DOS Van
Hove singularities show up in the k = 0 vicinity. In general, horizontal mirror
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Fig. 2.10. ⊥ component of the optical conductivity (bold line) and the JDOS
approximation to it (dotted line) for SWNTs (18,0), (15,4), (10,10), (11,9)

symmetry suppresses a vast number (all but two) of the perpendicularly po-
larized optical transitions in the Z tubes and all the parallel transitions close
to k = 0 in the A tubes. Since the number of bands enlarges with diameter
and they become zero sloped over larger k = 0 vicinity, the horizontal mirror
parity influence on the interband transitions is diminished for thicker tubes.
In contrast, the U parity does not affect the optical transitions in the chiral
SWNTs.

2.4.2 Template Grown Nanotubes

Soon after the discovery of carbon nanotubes, the existence of narrow tubes
was predicted [45]. Recent calculations confirmed [11] that SWNTs that have
been synthesized inside channels of zeolite AlPO4 (AFI) crystal [46], if iso-
lated, should be energetically stable. The diameter of the zeolite-grown tubes
is determined to be 4.2±0.2 Å, while 7.3 Å is the inner diameter of the chan-
nels of the AFI crystal, adjacent centers of which are 13.7 Å distant [47, 48].
Such a highly defined geometry of the sample makes it easier to carry out the
measurements of the electro-optical properties of the zeolite-grown tubes and
gives measurements closer to the theoretical models. On the basis of the opti-
cal absorption measurements and ab initio electronic band structure calcula-
tions, the NTs (5,0), (3,3) and (4,2) were suggested to be zeolite-grown [47].
More recently, several full DFLD calculations of the optical properties of these
three tubes have been reported [26, 27, 49]. Quite recently symmetry based
calculations of the optical absorption in narrow NTs has been performed [50].
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Here we study the polarized optical absorption of NTs (5,0), (4,2), (3,3)
and (5,1), in energy region 0-6 eV. The method applied is conceptually the
same as the one described in the previous subsection where the SWNTs
that are thicker than icosahedral C60 are treated. Only here, instead a single
2p⊥ orbital (per carbon atom), we take the basis set {2s, 2px, 2py, 2p⊥},
thus taking into account σ − π hybridization. Also, we adopt the symmetry
maintaining DFTB optimized configuration given in Table 2.1. An analogous
optimization procedure was originally suggested by Cabria et al. [11], and we
have used those results in [50]. This gives us an opportunity to compare the
results of the full DFLD [11, 26, 27, 49] and the combined DFLD/DFTB [50]
approaches to the full DFTB results here presented.

The considered SWNTs are of uniform thickness while their symmetry and
chirality are quite diverse. As for the achiral NTs, symmetry of the zig-zag
one, (5,0), is described by the line group L105/mcm, which is a product of the
screw axis T 1

10 and the point group D5h. The isogonal point group is D10h and
it is not a subgroup of the symmetry group L105/mcm. (Recall that SWNT
symmetry groups are non-symmorphic [7].) Line group L63/mcm = T 1

6 D3h
describes the symmetry of the armchair tube (3,3), while D6h is the isogonal
point group. Concerning the remaining two chiral tubes, (4,2) and (5,1),
the screw axis group of each tube is T 9

28 and T 51
62 . Thus, the isogonal point

groups are D28 and D62, while the symmetry groups are L282222 = T 9
28 D2

and L624522 = T 51
62 D1.

In Fig. 2.6 the calculated electronic dispersions and the corresponding
state density are depicted. The achiral tubes are found to be metallic, while
(4,2) and (5,1) are indirect gap semiconductors (∼ 0.76 eV and ∼ 0.66 eV,
respectively). Due to the σ∗-π∗ hybridization the double-degenerate m = 5
electronic band with well defined vertical mirror parity (Fig. 2.6a) is lowered
below the Fermi level, converting the (5,0) tube from a semiconductor (within
a simple TB method that includes nearest-neighbor 2p⊥-2p⊥ interaction only)
to a metal. Interestingly, the electronic DOS at the Fermi level in the (5,0)
turns out to be larger than that in the (3,3) NT.

In Fig. 2.11, the optical conductivity spectra for the light polarized paral-
lelly to the NT axis is depicted. There are two strong peaks at 1 eV and 2.4 eV
and a weaker one at 1.5 eV for the tube (5,0). These peaks are due to the
inter-band transitions (Fig. 2.6a): kG4 → kG4, kEA

5 → kEA
5 and kG3 → kG3.

Here kGm and kEA
m denote four-fold and double degenerate electronic bands

(below and above the Fermi level) which, at k = 0, end in double-degenerate
states (transforming as 0E

±
m) and non-degenerate states (0A±

m), respectively.
Thus, the transitions at the Γ point are 0E

−
4 → 0E

+
4 and 0E

+
3 → 0E

−
3 in

the line group notation or E4u → E4g and E3u → E3g in the isogonal point
group notation. Since the polar vector along the tube axis transforms as the
0A

−
0 (A2u) tensor, the parities of the edge states favor these transitions [44].

Consequently, intense absorption at these particular energies is expected. On
the other hand, edge states of both kEA

5 bands, 0A
−
5 and 0A

+
5 (i.e. B2 and
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Fig. 2.11. Real part of the optical conductivity for incoming light polarized parallel
to the NT axis

B1), fall below the Fermi level, Fig. 2.6. The peak at 2 eV is due to the (5,1)
tube inter-band transitions kE21 → kE21 (Fig. 2.6). The peaks beyond the
visible absorptions, at 3.5 eV, at 4.5 eV and at 4.4 eV come from the tubes
(3,3), (4,2) and (5,1) due to the dipole transitions kG2 → kG2, kE3 → kE3,
and kE31 → kE31, respectively. The tube (4,2) also absorbs at 1.9 eV and at
2.5 eV. These peaks are attributed to the transitions: kE−10 → kE−10 and
kE−11 → kE−11 (Fig. 2.6b).

The absorption measurements of the tubes encased in a porous zeolite [47]
show a sharp peak at 1.37 eV with a shoulder at 1.19 eV and two broad bands
centered at 2.1 eV and 3.1 eV. Although zeolite AlPO4 is transparent from the
near infrared to the ultraviolet, it might affect the electro-optical properties
of the NTs inside its channels. Recent full DFT calculations [49] show that
generally, the AFI crystal has a real effect on the electronic structure and
optical absorption spectra of the NTs inside its channels (some of the peaks
were blue-shifted and some red-shifted after tube-crystal interaction was in-
cluded). Also, many-electron effects are included only through the DFTB
input data, thus not taking into account influence of the excitonic effects [51]
on the optical properties of NTs. Hence, only a qualitative comparison of
our results of the experiment can be made. We find the calculated intense
lowest energy optical transition, due to (5,0), at 1 eV, while the shoulder be-
low it can be attributed to the transition in (5,1) (Note that the diameter of
the (5,1) tube in the ideal cylindrical structure is 4.36 Å.). The first broad
band can be interpreted by a convolution of the calculated absorption peaks:
1.9 eV, 2.5 eV of (4,2), 2 eV of (5,1) and 2.4 eV of (5,0). The second broad
band might correspond to the convolution of the (3,3) and (5,1) tube optical
response at 3.5 eV.
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Table 2.3. Representations of the acoustic (T, L and W for transversal, longitu-
dinal and twisting), radial-breathing (R), high-energy (H), IR and Raman active
modes of SWNTs. IR and Raman activities are indicated by R and I, with the
superscripts showing corresponding polarization of incident (and scattered) light.
Contribution to the symmetric and antisymmetric part of the Raman tensor is em-
phasized by [R] and {R}. The total number of IR and Raman active-modes assigned
by the representation is on the right.

Chiral Zig-zag Armchair
0A

+
0 RH [R]‖‖ [R]⊥⊥ 3 0A

+
0 RH [R]‖‖ [R]⊥⊥ 2 0A

+
0 RH [R]‖‖ [R]⊥⊥ 2

0A
−
0 LW I‖ {R}⊥⊥ 1 0A

−
0 L I‖ 1 0A

−
0 L I‖ 1

0B
+
0 W 0B

+
0 W {R}⊥⊥ 1

0E1 T I⊥ R‖⊥ R⊥‖ 5 0E
+
1 T I⊥ 2 0E

+
1 T I⊥ 3

0E
−
1 R‖⊥ R⊥‖ 3 0E

−
1 R‖⊥ R⊥‖ 2

0E2 [R]⊥⊥ 6 0E
+
2 [R]⊥⊥ 3 0E

+
2 [R]⊥⊥ 4

2.5 Phonons

Along the lines prescribed in Sect. 2.3.1 the full symmetry implemented cal-
culation of phonon dispersions within described dynamical models is carried
out for single- and double-wall NTs of various chiralities and diameters. This
enables one to study various related properties, among which sound velocity,
specific heat and optical scattering are selected for their comparability with
standard experiments. In general, in each of these analyses the underlying
physical process singles out some characteristic vibrational modes.

2.5.1 Infinite SWNTs

The dynamical matrix D is constructed from the adjusted graphene force
constants as it discussed in Sect. 2.3.5. It takes the role of the Hamiltonian,
and within MGPT it is easily diagonalized, due to the fact that the symcell
contains a single atom, making the dimension of the eigenproblem at most 12.
The symmetry is in this case represented by the dynamical representation D;
its decomposition into irreducible components [7] shows the number of modes
assigned by any set of quantum numbers. This gives a quick, although very
rough, insight to Raman [53], infra red (IR) or other properties. In Table 2.3
the quantum numbers of the relevant modes are given as the labels of the
corresponding irreducible representations.

Acoustic Branches: Sound Velocity and Heat Capacity

The acoustic modes, being rigid body translations and coaxial twisting of
SWNT, transform like polar vector and axial angular momentum under the
symmetry operations. Longitudinal acoustic (LA) and twisting (TW) modes
are nondegenerate, with the same momenta quantum numbers k = m = 0
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Fig. 2.12. Left: phonon dispersions and the corresponding density of states of the
(5,5) tube. Right: high energy bands with overbending (upper panel) and, in the
lower panel, acoustic and radial breathing branches in the Γ point region

and U parity ΠU = −1; they differ only in the achiral tubes due to the mirror
planes: ΠLA

h = −ΠTW
h = −1 and ΠLA

v = −ΠTW
v = +1. On the other hand,

the x and y components, combined by the rotations of SWNT, give two de-
generate transversal acoustic (TA) modes, characterized by k = 0. Instead of
the Cartesian components, SAB is formed by the linear combinations corre-
sponding to m = ±1: e.g. for linear momentum one gets p± = (px ∓ i py)/2.
As for the parities, ΠU = Πv = 0 and Πh = +1.

All the acoustic branches are linear in k near the Γ point (Fig. 2.12), with
the almost tube independent slopes equal to the sound velocities [31,32,35]:
vTA = 9.41 km/s, vLA = 20.37 km/s, vTW = 14.98 km/s. The analogy with
the graphene TA branch is used in the literature [54,55] to propose quadratic
k-dependence of the nanotube TA branch. To clarify the question connected
to the specific heat, the graphene and SWNT acoustic branches are interre-
lated. Close to the Γ point the TA graphene acoustic branch is quadratic,
while the other two (degenerate) are linear in the wave vector, as clearly ex-
plained in [56]. In the folding procedure, the degenerated in-plane translations
(graphene LA modes along and perpendicular to the chiral vector) become
TW and LA acoustic modes of a SWNT. Simultaneously, the graphene TA
mode obviously turns into the homogeneous oscillations of the tube diameter,
i.e. the radial breathing (RB) mode. Therefore, by analogy with the graphene,
in the nanotube one expects linear LA and TW and a quadratic RB branch.
Indeed, as discussed in Sect. 2.3.2, the totally symmetric RB mode (thus
ΠU = +1) must be of Van Hove type singularity for all the SWNTs types,
which implies that the corresponding band is quadratic in k near k = 0 (see
Fig. 2.12). Note that two degenerate nanotube TA modes are not related to
the graphene acoustic modes.
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Fig. 2.13. Left: heat capacity Cph dependence on temperature for tubes with
diameters D from 2.8 Å to 20.5 Å (225 tubes from (2,2) to (24,4)). The broadening
of the curve is due to the variations in Cph with the tube diameters being depicted
for various temperatures in the upper inset. The high temperature limit is visible
in the lower inset. Right: heat capacities for four tubes with the same diameter
D = 13.6 Å coincide at all temperatures: the central (log-log plot) and upper panels
show that at low temperatures Cph is linear in T , the overall behavior is in the lower
panel

Using phonon dispersions and densities of phonon states [57,58], the spe-
cific heat of SWNTs may be calculated. Theoretical predictions of the spe-
cific heat of some particular isolated SWNT [54, 57, 59] are in reasonably
good agreement with the heat capacity measurements on nanotube bun-
dles [58,60,61]. On the other hand, a fine dependence of this quantity on the
nanotube parameters has been found [31] by calculations on many SWNTs
in a wide range of diameters and chiralities, Fig. 2.13.

Below the temperature To = �ωo
min/6kB , where ωo

min is the minimal fre-
quency of optical modes, only the acoustic modes contribute to the SWNT
specific heat [54, 58]. It is found that To depends on the tube diameter (in
Å) as To = (7.2 + 0.05D + 1.045D2)−1103 K. The lowest optical branch is
assigned by m = 2. It starts at k = 0 with Raman active modes and attains
its minimum ωo

min at ko, which rapidly decreases with the tube diameter and
depends on chirality (e.g. for achiral tubes ko = 0). At low temperatures
specific heat is linear in T ; the temperature range of the linear regime gets
narrower when the tube diameter increases, yielding continuous crossover to
the graphene T 2 dependence.

In Fig. 2.13 the calculated specific heat temperature dependence up to
300 K for 225 SWNTs is presented. It nicely matches the measured values [60].
Notable broadening of the curve with the temperature indicates slight dif-
ferences in Cph of various tubes at higher temperatures. However, this weak
diameter dependence is completely saturated for considerably thin tubes (up-
per inset). The high-temperature limit of 3kB/m agrees reasonably well with
the expected value for the carbon systems [58, 60]. The chirality shows no
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signature in the specific heat of the tubes, as clearly illustrated in the right
panel: the tubes (10,10), (12,8), (15,4) and (11,9), with the same diameter
D = 13.6 Å but different chiral angle, have the same specific heat.

Infra Red Activity

Infra red activity is determined by the exciting phonons in the electrical field.
Within the dipole approximation [62], the perturbation operator is reduced
to the projection e · p of the total ionic momentum to the polarization vec-
tor e of the incoming electric field. Consequently, linear momenta quantum
numbers single out IR active modes. As discussed above k = 0, while other
quantum numbers depend on the field polarization: parallel to the tube axis
field (involving pz momentum) m = 0, ΠU = Πh = −1, Πv = +1, and for
the perpendicular linear and circular polarizations (relating px and py and
the standard components p±) m = 1, ΠU = Πv = 0, Πh = +1. Excluding
acoustic modes, for chiral tubes there are six IR active modes, out of which
only one with m = 0 is active under the parallel polarization of the light
and all the others (m = 1) under the perpendicular (either linear or circular)
polarization of the light. It is important to note that the armchair configura-
tion has no active modes for the parallel polarization, unlike the zig-zag case
where there is one such mode. Perpendicularly (or xy-circularly) polarized
light may activate three (two) modes in the armchair (zig-zag) tubes.

Raman Spectra

In the first order Raman scattering in the incoming field Ei, exciting electrons
induces in the target polarization P described by the Raman (polarizability)
tensor R as P = REi. This way the ionic system is affected indirectly, i.e.
phonons are created at the cost of the partial deexcitation of the electrons.
The residual excitation energy is emitted as the scattered field Es. The tran-
sition probabilities are determined by the component Ris = eiRes of the
Raman tensor corresponding to the incoming and scattered light polariza-
tions. In general, as a second rank polar tensor, these components carry the
quantum numbers k = 0, m = 0,±1,±2, and only the corresponding phonons
participate in the scattering. Which of them will be excited depends on the
polarizations ei and es, as discussed below and outlined in Table 2.3.

The most relevant symmetric Raman tensor [R] besides the isotropic (to-
tally symmetric) component with m = 0, ΠU = Πv = Πh = +1 includes
anisotropic components with m = 1, ΠU = Πv = 0, Πh = −1 and m = 2,
ΠU = Πv = 0, Πh = +1. Totally symmetric phonons are activated if both
polarizations are parallel, ei = es. These modes are one radial breathing,
and two (chiral tubes) or one (achiral) high energy (HE) modes. Anisotropic
m = 1 modes are excited for the crossed polarizations, ei⊥es, and m = 2
phonons are created if the polarizations are perpendicular mutually (or left-
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and right-hand circular) and to the tube axis. Altogether, this gives 14 for
chiral tubes and 8 for achiral tubes with Raman active modes [7, 53].

For the chiral systems [63], as well as in the resonant scattering, which is
known to be important in SWNTs [64], the antisymmetric part {R} of the
Raman tensor may be important. Only one of its components is specifically
antisymmetric (Table 2.3), with quantum numbers differing from those listed
for [R]; even this component is absent for zig-zag tubes. It is characterized by
m = 0, ΠU = −1 for chiral tubes, and additionally by Πv = −1, Πh = +1 for
armchair tubes. The modes are activated by mutually parallel polarizations
perpendicular to the tube. The components with m = 1, ΠU = Πv = 0,
Πh = −1 are excited for the crossed polarizations, as well as for the symmetric
components with the same assignation.

In the Raman measurements [52] on carbon nanotubes the most empha-
sized peaks are observed at the frequencies of the totally symmetric vibra-
tions: besides the low energy (up to 700 cm−1) radial breathing mode, also
a high energy (below 1600 cm−1) one is activated. Except for ultra narrow
tubes, RB frequency is chirality independent, but directly reflects the diame-
ter of the tube, which is widely used in the sample characterization by Raman
measurements. The fit of the results for 1280 tubes gives (for ω in cm−1 and
D in Å):

ωRB = 2243/D; (2.37)

Some deviations from this law are noted for ultra narrow tubes. Two HE
modes of chiral tubes have frequencies depending both on the chirality and
diameter:

ωZ
HE = 1588 +

59.8 cos 6θ

D2 , ωA
HE = 1588 − 757.6 cos θ

D2 − 1069.9 cos θ

D4 .

(2.38)

In achiral tubes there is a single totally symmetric high-energy mode (Ta-
ble 2.3). Their frequencies are also given by (2.38): while ωZ

HE gives the zig-zag
HE mode for the chiral angle θ = 0, the armchair HE mode is obtained from
ωA

HE for θ = 30◦.
Usually it is assumed that the RB mode has only radial components,

while the HE mode is circumferal in armchair tubes and longitudinal in zig-
zag tubes (thus, in chiral tubes one is considered as circumferal and the other
one as longitudinal). However, symmetry in general forbids only circumferal
components in zig-zag tubes and longitudinal ones in the armchair cases. This
is confirmed by precise numerical calculations [31]: the RB small longitudinal
component depends on the chiral angle θ and decreases with the tube di-
ameter D. Indeed, in the armchair tubes, as the atoms are in the horizontal
mirror planes, σh even (parity +) and odd modes (−) have vanishing lon-
gitudinal and horizontal components, respectively, i.e. vibrations are either
perpendicular or parallel to the tube axis. Analogously, in zig-zag tubes the
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Fig. 2.14. Overbending ∆E and its maximum position k̃0 as a function of the
chiral angle θ for the 754 SWNTs (among 1280 tubes with diameters within 2.8–
50.0 Å, those with maximal D for given θ are selected). The data are precisely fitted
by the given expressions

atoms are in the vertical mirror planes; thus the σv-even (A) displacements
are in these planes, while the odd ones (B) are circumferal. In addition to
these symmetry constraints, HE mode(s) are perpendicular to the RB modes.
Note that Πh = ±1 characterizes all k = 0 modes, while Πv = ±1 is realized
along the whole bands with m = 0, n.

In contrast to almost all covalent solids, the graphite phonon branch cor-
responding to the longitudinal high energy optic mode at the Γ point has a
local minimum. This feature is usually referred to as “overbending”, since the
local maxima appear outside the Γ point inside Brillouin zone. The analogous
property of the SWNT phonon dispersions [31] is essential for the theoret-
ical interpretation [64] of the dependence of the first-order Raman peak’s
position and double-peak structure of the high-energy mode (≈ 1600 cm−1)
on the laser excitation energy. Namely, these features are attributed to the
double-resonant process coming from the phonon modes out of the Γ point.
In the view of the generally quite weak dispersion around k = 0, the exci-
tation energy dependence is expected to be very sensitive to the vibrational
spectra details. In particular, the accurate theoretical investigation may help
the experimental sample characterization of the SWNTs. Indeed, from the
Raman measurements the slope of the excitation energy dependence of the
high-energy mode frequency can be obtained, while the quantum theory of
the double resonant scattering relates this dependence to the overbending po-
sition k0, its absolute value ∆E = E(k0) − E(0) and slope, and the phonon
eigenvectors (which can be easily calculated for any SWNT).

The overbending is analyzed (Fig. 2.14) for a large number of SWNTs of
all chiralities and diameters up to 50 Å. The overbending maximum is found
for the band assigned by m̃ = 0, at the helical wave vector k̃0 depending on
the tube chirality. Quantum numbers k and m are readily found by (2.23) for
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each SWNT, despite somewhat cumbersome general expression; e.g. only for
the achiral tubes m = 0. The absolute value ∆E is strongly chirality depen-
dent, while for a fixed chiral angle, although it decreases with the diameter, it
rapidly saturates for the very thin tubes, showing no further diameter depen-
dence. Thus, the maximal overbending of 11.5 cm−1 is in the zig-zag tubes
and the minimal (6.50 cm−1) in the armchair tubes.

2.5.2 Commensurate Double-Wall Nanotubes

The Dynamical Matrix and Its Reduction

Counting firstly the atoms of the wall W, and after that the atoms of W′,
the dynamical matrix obtains the block structure

D = D0
WW′ + D′

WW′ , D0
WW′ =

(D0
W 0
0 D0

W′

)
, D′

WW′ =
(

dWW′ DWW′

DW′W dWW′

)
.

(2.39)

Here, DWW′ consists of the submatrices Dαβ′ comprising the intralayer cou-
pling, as well as the transposed matrix DW′W; D0

W and D0
W′ are the dynamical

matrices of the isolated walls. Finally, dWW′ (and analogously dW′W) is the
interlayer coupling dependent diagonal matrix; in the view of the transla-
tional sum rules for isolated and coupled walls, D0

αα = −∑β(�=α) Dαβ and
Dαα = D0

αα − dαα, its elements are dαα = −∑β′ Dαβ′ .
Assuming the intralayer interaction unaffected, the same force constants

model (Sect. 2.3.5) as for SWNTs is used. The interlayer submatrices are
derived from the potential (2.14) in the Hessian form:

Dαβ′ =
∂2v(rα − r′

β)

∂xα
i ∂xβ′

j

. (2.40)

The dynamical matrix is invariant under the symmetries of DWCN, which
is used to facilitate the diagonalization. If DWCN is incommensurate, then
it has point group symmetry, and its finiteness prevents efficient reduction;
therefore, only finite tubes, with at most a few hundred atoms, can be nu-
merically studied. On the contrary, infinite line groups enable consideration
of perfect infinite commensurate DWCNs. Therefore, the results presented
obtained by the methods described in Sect. 2.3.1 refer to CDWNTs. Recall
that the symcell of the DWNT contains many atoms, in contrast to SWNTs
generated by a single atom. This is a consequence of greatly reduced roto-
translational symmetry (in comparison to SWNTs), and therefore the range
of m usually consists only of the special values 0 and Q/2; the correspond-
ing states are even or odd in z-reversal parities. As discussed in Sect. 2.3.2,
this is manifested as a large number of singularities in the density of states
(Fig. 2.15).
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Perturbative Interpretation

One of the main common characteristics of CDWCN phonon bands is nicely
illustrated by the example of (5,5)@(10,10) in Fig. 2.16; it is notable that
the branches of W@W′ resemble the union of branches of W and W′, which
would be obtained in the case of noninteracting walls. This is a consequence
of the considerably lower interlayer interaction (2.14), in comparison to the
intralayer force constants field. Accordingly, the elements of submatrices Dαβ′

are much less than those of Dαβ (unless α = β), and may be considered as
a perturbation to the dynamical matrix of the noninteracting walls. This
invokes fruitful interpretation of CDWNT modes in terms of the modes of
the isolated layers [54,65].

Fig. 2.16. Phonon bands of (5, 5)@(10, 10) (right), (5, 5) (left, gray) and (10, 10)
(left, black). The differences between the union of the phonon branches of (5, 5)
and (10, 10) and the phonon branches of CDWCN (5, 5)@(10, 10) decrease with
frequency (from 102 cm−1 for RL modes, to 10−3 cm−1 for the HE modes)
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Obviously, in view of (2.39) the interlayer interaction matrix D′
WW′ is a

perturbation of the noninteracting wall dynamical matrix D0
WW′ . In the basis

{| a〉, | a′〉} (a and a′ enumerate modes of W and W′) of the normal modes
of noninteracting walls D0

WW′ is diagonal, with eigen energies ω2
a and ω2

a′ ,
while the perturbation retains the same structure. However, the off-diagonal
matrix elements κaa′ =

√
m〈a | D′

WW′ |a′〉√m′ take the role of the coupling
of the two oscillatory modes | a〉 and | a′ 〉. Recall that the normal mode
basis is weighted by the square roots of the length mass densities (2.7) of
the walls: m = cD and m′ = cD′. If modes | a〉 and | a′ 〉 are not coupled
to the others, the corresponding two-dimensional submatrix of DWW′ can
be diagonalized independently of the rest of DWW′ . This submatrix is the
dynamical matrix [65] of the two oscillators with frequencies ω2

a and ω2
a′ , and

masses m′ and m, coupled by the oscillator with force constant κaa′ :

Daa′ =
(

ω2
a − κaa′/m κaa′/

√
mm′

κaa′/
√

mm′ ω2
a′ − κaa′/m′

)
. (2.41)

Hence, the modes of the two coupled isolated walls become two DWNT modes
with frequencies

Ω2
± =

1
2

[
ω2

a + ω2
a′ +

κa′a

µ+
±
√

(ω2
a − ω2

a′)2 + 2
κa′a

µ−
(ω2

a − ω2
a′) +

κ2
a′a
µ2

+

]
, (2.42)

where µ± = m′m/(m ± m′). The higher frequency Ω+ corresponds to the
out-of-phase oscillations of the walls and Ω− to the in-phase ones. Note again
that this simple approach is plausible only for the pairs of modes negligibly
mixed with other modes, and such pairs may be singled out by symmetry. In
fact, the interaction potential is invariant under all the symmetries of both
walls, as obvious from (2.11), and further elucidated in Sect. 2.6. Therefore,
the modes with the same quantum numbers are coupled much more strongly
than differently assigned modes. Accordingly, the perturbative interpretation
is plausible for the pairs of equally assigned modes, with frequencies well
separated from the other modes with the same quantum numbers. Further,
as the interaction field is effectively averaged in the rapid oscillations and
thus partly cancelled, the coupling of low frequency modes is in general more
intensive.

Rigid Layer Modes

The acoustic modes are equally assigned in all achiral SWNTs by mutually
different quantum numbers. Since their zero frequency is much less than the
other modes of same assignation, the pairs of LA, TA and TW modes are
suitable for perturbative analysis. Hence, substituting ωa = ωa′ = 0 in (2.42)
one finds
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Ω− = 0, Ω+(D) =

√
2κ

c

D + ∆/2
D(D + ∆)

, (2.43)

i.e. one acoustic and one low frequency optic DWNT mode for each SWNT
acoustic pair. In both modes the layers vibrate as rigid bodies, in-phase in
the acoustic and out-of-phase in the optic mode. Therefore, the out-of-phase
vibrations are rigid-layer modes (Fig. 2.15), transversal (TRL), longitudinal
(LRL) and twisting (TWRL), in correspondence to their in-phase TA, LA
and TW counterparts.

The branches starting at k = 0 with acoustic modes are twofold, except
that the TA branch is fourfold for ZZ and AA CDWNTs (other tubes have
two close TA branches). These bands are linear in k near k = 0, with the
slope almost independent of the tube (the differences are less than 1%) and
close to that for SWNTs, giving the sound velocities vTA = 9.54 km s−1,
vLA = 20.64 km s−1 and vTW = 15.18 km s−1.

The coupling constant κ is itself a function of the tube diameter and the
interlayer distance. The number of interacting atoms per unit length increases
with D, yielding an increase in κ as well. Proposing a polynomial function
κ(D), it turns out that for LRL and TWRL modes the first order polynomial
fits the numerical data well [66], while for TRL modes a quadratic term must
be added. Thus, with the convenient form κ(D) = cω2

∞(δ0 +D+γD2)/2, the
rigid layer frequencies are:

Ω+(D) = ω∞

√
(D + δ0 + γD2)(D + ∆/2)

D(D + ∆)
. (2.44)

The model is clearly justified by Fig. 2.17 comparing the numerical results to
the analytic form (2.44) with the parameters given in Table 2.4 (assuming

Fig. 2.17. Rigid layer mode frequencies vs. DWNT diameter. The solid lines are
fitted curves
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Table 2.4. Fitting parameters for RL modes (see (2.44) and Fig. 2.17).

(n, 0)@(n + 9, 0), ∆ = 7 Å (n, n)@(n + 5, n + 5), ∆ = 6.78 Å
ω∞ δ0 γ ω∞ δ0 γ

LRL 34.7 -4.00 0 37.4 -4.00 0
TWRL 33.8 1.33 0 36.0 1.33 0
TRL 62.5 -4.67 -0.0068 61.7 -4.39 -0.006

frequency in cm−1 and the interior-wall diameter in Å). Additional verifica-
tion may be found in the large D limit, when the graphene values should be
reproduced. Then LRL and TWRL modes become two degenerate A point
(kz = π/c, kx = ky = 0) modes of graphite [67], describing rigid out-of-phase
vibrations (in two perpendicular directions) of the adjacent graphite layers.
Indeed, as γ = 0, for both modes and for both types of achiral DWNTs
Ω+(∞) = ω∞ = 35 cm−1, matching the singled out graphite frequency. Note
that this matching is dominantly due to symmetry. As discussed in detail in
Sect. 2.6, symmetry completely determines the patterns of wall-wall interac-
tion, particularly the periodicity and this way its slopes in Φ and Z around
stable configuration. This yields correct experimental frequencies for graphite
as the large D DWNT limit, despite the fact that the Lenard-Jones potential
used is assumed to be too smooth to describe directly out-of-phase rigid-layer
modes of the adjacent graphite layers.

These results may be of experimental interest, since TRL and LRL modes
are IR active (TWRL is also IR active for tubes with at least one chiral wall),
and correspond to the density of state singularities (Fig. 2.15).

The rigid layer modes influence the low temperature heat capacity. In
fact, if there were no interlayer interaction, the DWNT heat capacity would
be equal to that of the walls, as an average of almost the same quantities.
However, the coupling of the walls’ acoustic modes (altogether eight modes)
produces only four DWNT acoustic modes, while another four become opti-
cal. Therefore, the heat capacity is close to that of the layers, except in the
low temperature region, contributed by the acoustic branches only, where
it is significantly lowered (Fig. 2.18). This agrees nicely with the available
experimental data [58,68].

Breathing-Like and High-Energy Modes

The same arguments as for the acoustic modes of the layers justify perturba-
tive interpretation for the totally symmetric (k = m = 0, even in all parities)
radial breathing and high-energy modes (Fig. 2.19), being mutually well sep-
arated by frequency. The frequencies of the resulting [65] in-phase and out-of-
phase breathing-like (BL) modes are found by substituting frequencies (2.37)
in (2.42). The numerical results [66], well fitted by κBL = −246404+38799D,
are in accordance with earlier predictions [54] and match the experimen-
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Fig. 2.18. Heat capacity of double wall tubes AA5, ZZ9 (8,2)@(16,4) and their
SWNT constituents in the low temperature regime, and up to 300 K (inset)

tal results [69–71]. As for the high energy branches, it is known from mea-
surements that they hardly differ from those of SWNT. Also, the difference
not greater than 10−3 cm−1 is found numerically. Fit by (2.42) with isolated
wall frequencies (2.38) gives coupling constants κZZ

HE = −25875 + 6528D and
κAA

HE = 9329 + 6307D.

Fig. 2.19. Rigid layer (left) and breathing-like and high-energy (right) frequencies
vs. DWNT diameter. The solid lines are fitted curves. Inset: comparison of the
calculated and the experimental results [71]
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2.6 Symmetry Breaks Friction: Super-Slippery Walls

The symmetry of double-wall nanotubes gives a profound insight to the inter-
layer interaction, as well as an efficient way to estimate it. Such analysis
clarifies the main characteristics of this potential: while in general it is quite
weak, a variety of the potential shapes may be created by the appropriate
choice of the chirality and length of the walls. Therefore, DWNTs are perfect
bearings, and attractive candidates for nano-electromechanical devices [14,
72].

2.6.1 Symmetry and Interaction

To enlighten symmetry properties of the interwall interaction potential
V (Φ, Z), at first Eq. (2.11) is rewritten as the sum

V (Φ, Z) =
∑

t′s′u′
Vin(r′

t′s′u′) (2.45)

of the energy of the outer wall atoms in the potential created by the inner
wall:

Vin(r) =
∑
tsu

v(rtsu, r). (2.46)

This form manifests that Vin is invariant under the inner tube symmetry
group. Therefore it can be expanded over the basis of invariant functions:

Vin(r) =
∑

M≥0,ω

αM
ω (D′)CM

ω (ϕ, z). (2.47)

Here, the basis consists of the functions CM
ω (ϕ, z) = cos(Mϕ + 2πωz); ro-

tational and screw axis invariance, respectively, restricts [73] nonnegative
integers M and real numbers ω by:

M = 0 (mod n), Mr + ωna = 0 (mod q). (2.48)

Due to the summation in (2.45), the total potential V (Φ, Z) is also invariant
under the outer wall symmetries, and therefore under all the transformations
generated by the symmetries of both walls. Consequently, to V (Φ, Z) con-
tribute only the terms of (2.47) subdued to the additional restrictions of the
form (2.48), but with the outer wall parameters q′, r′, n′ and a′. Taking this
into account, the summation in (2.45) is easily performed; the total potential
per atom of an infinitely long DWNT is:

v∞(Φ, Z) = 2
∑′′

M≥0,ω

αM
|ω| cos(MΦ + 2πωZ) cos(Mϕ000 + 2πωz000). (2.49)
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The double prime indicates two pairs of restrictions (2.48), imposed by the
roto-translational symmetries of the walls on M and ω.

Mutually commuting roto-translational transformations of the walls to-
gether generate the breaking group LR

B [13]. Note that if walls did not inter-
act, the system would be invariant under any pair of independently performed
symmetries of the walls, i.e. under the product group LR

W × LR
W′ . Hence, the

interaction itself imposes the symmetry breaking from the product to the
intersection (2.12). Denoting by |L| the number of transformations in L, the
symmetries of the noninteracting and interacting walls are related by:

|LR
WW′ ||LR

B| = |LR
W||LR

W′ |. (2.50)

Thus, while the roto-translational symmetry of the DWNT is highly reduced
in comparison to that of the walls, the breaking group, being the symmetry
group of the interaction potential (2.49), is much greater. Particularly, the
periods AB and 2π/NB (along Z and Φ, respectively) of the interaction poten-
tial decrease with the periods A and 2π/N of DWNT. For the commensurate
DWNTs, the breaking group is the line group [13]:

LR
B = T RB

QB
(AB)CNB , (2.51)

with the parameters (compare to (2.13) for Q, N and A):

NB = nn′
N

√
q̃q̃′

GCD( r′ân−râ′n′
N ,

√
q̃q̃′)

, QB = qq′

GCD(q,q′) , AB = aa′
AN

QBQ
qq′ ,

RB
GCD(q,q′) = (r′âq−râ′q′)â′φ(â)+rq′â′

ââ′ (mod GCD(Nq̃q̃′, r′âq − râ′q′)).

By convention, RB is the (unique) solution of the last equation, which is co-
prime with QB and less than QB. In the incommensurate case the breaking
group is:

LR
B = CQBT (0). (2.52)

Here, T (0) is the translational group generated by the incommensurate peri-
ods a and a′, i.e. including the translations for ta + t′a′ for all the integers t
and t′. This is the quasi-continual group, as for any real x and arbitrary small
ε, there are t and t′ such that |ta + t′a′ − x| ≤ ε. Therefore, the invariance
of V (Φ, Z) under the group T (0), in view with its physically indispensable
continuity, implies that it is constant along Z. In fact, incommensurate tubes
can be viewed as the limiting case: A = ∞, thus AB = 0, while due to the
Z independence, the (fractional) translations do not affect the potential and
QB takes the role of NB.

It is clear from the definition of the breaking group that two pairs (2.48)
(one for each wall) of conditions on M and ω are equivalent to the single such
pair with the breaking group parameters QB, RB, NB and AB. As the break-
ing group is quite large with respect to the single-wall symmetry, this implies
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that most of the terms in (2.46) do not contribute to the interaction V (Φ, Z),
meaning that the inter-shell friction is in general quite low. In addition, the
rotational and translational breaking independently give rough insight to the
interaction potential: large NB leaves only high M terms in (2.49), as well as
small AB allows only large ω terms. Together with the natural assumption
that the amplitudes αM

|ω| rapidly decrease with M and ω (being justified nu-
merically [73]), this means that large rotational and translational breaking
are manifested as slow varying potential along Φ and Z, respectively. Numer-
ical calculations [14, 15, 74, 75] and recent experiments [76, 77] confirm this
theoretical prediction; particularly, the static friction has been estimated [77]
to be lower than 6 · 10−15 N/Å2.

As remarked in Sect. 2.2.2, most DWNTs are incommensurate (even
99.5% of the ones studied), with Z independent interaction potential. Also
in commensurate cases breaking is large, and despite several highly sym-
metric CDWNTs, potential is almost constant along one of the coordi-
nates. Therefore, for nanomechanical applications it is interesting to con-
sider DWNTs with one finite layer, providing additional variety of potential
patterns. The summation over the atoms in (2.11) is slightly modified to in-
clude only m outer wall monomers (the outer wall length is n′a′(m − 1)/q′):
t′ = 0, 1, . . . , m−1, while all possible values of u′ and s′ are allowed as before.
After performing this summation, the total interaction per atom is:

vm(Φ, Z) = 2
∑′′

M≥0,ω

αM
ω cos(MΦ + 2πωZ)

× cos(Mϕ0 + 2πωz0)
sin(πm r′M+n′a′ω

q′ )

m sin(π r′M+n′a′ω
q′ )

. (2.53)

Now the double prime restricts the summation to the solutions of the system:

M = 0 (mod n); M = 0 (mod n′); Mr + ωna = 0 (mod q). (2.54)

The horizontal U axis of the receiver wall is in the middle of the ring with
Φm = Φ+ 2πr′

q′
m−1

2 and Zm = Z + n′a′
q′

m−1
2 (the infinite tube U axis at (Φ, Z)

is no longer a symmetry, as the monomers are above it only). In comparison to
the infinite case, there is no restriction imposed on M and ω by the other wall
screw-axis. Consequently, the potential vm(Φ, Z) can be viewed as v∞(Φ, Z)
superposed to vfin

m (Φ, Z) comprising the damped (factor 1/m) oscillations.
Also, a resonant effect is observed from (2.53): whenever m is a multiple of
q′A/n′a′ the dumping term vanishes.

2.6.2 Numerical Results

Several pairwise potentials are used in the literature for calculating the
interlayer interaction [14, 15, 74, 75]. This has caused quantitative differ-
ences of the results: e.g. for the energy barrier of the relative sliding of the
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walls in (5, 5)@(10, 10) Charlier and Michenaud got 0.52 meV/atom (longi-
tudinal) and 0.23 meV/atom (circumferal), and Palser 0.295 meV/atom and
0.085 meV/atom. Nevertheless, there is agreement that the relative sliding of
two nested tubes is easy.

Here we discuss potential barriers calculated with the pairwise potential
of the Van der Waals type (2.14). Except for a few highly symmetric achiral
DWNTs, qualitatively the same results are obtained with another poten-
tial [15,73] taking care of π-bonding. The amplitudes αM

ω are derived by fast
Fourier transform of the potential Vin. The interior tube is, long at least 100 Å
(at least 40 elementary cells); the potential is scanned on the grid of 41 × 41
points for ϕ and z at the radius of the outer-wall. The constant term α0

0 is
set to zero while the numerical error of the calculated interaction potential
is estimated to be 10−10 meV.

The patterns shown in Fig. 2.20 illustrate the variety of potential shapes
of DWNTs with infinite walls. There are basically two different patterns
of the interaction potential. Firstly, “horizontal stripes” appear in all the
studied commensurate DWNT with achiral walls, with the exception of
(5, 5)@(10, 10); in fact, due to the high incompatibility of the rotational sym-
metries of the layers with larger diameters, the calculated potential is almost
Φ independent. Secondly, “vertical stripes” enabling super-slippery sliding
along Z are typical for the incommensurate tubes. A large number of com-
mensurate tubes interact negligibly within the numerical precision, due to
the symmetries of the highly incompatible layers, which is manifested as a
perfectly flat potential surface.

Additional potential shapes appear in DWNTs with a finite outer wall
(Fig. 2.21). Note that, depending on the chirality of the layers, the easiest
sliding is allowed along helices with angles varying from −90◦ to 90◦. Also,
there are sharply defined minima or maxima. From (2.53) it is clear that
a change in the length of the outer wall may result in a different pattern,
due to m-dependance of vfin

m (Φ, Z). Also, the larger barrier reported [14] for
the tubes (5, 5)@(15, 4) and (9, 0)@(15, 4) can be easily explained: the tube
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Fig. 2.20. Density plot of V (Φ, Z) for infinite (5,5)@(10,10), (9,0)@(18,0) and
(12,0)@(12,12) (Φ and Z/a are along the vertical horizontal and vertical axes)
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Fig. 2.22. Corrugation per atom as a function of m for several DWNTs with the
outer wall made of m monomers

(15, 4), without rotational symmetry, does not restrict the values of M , and
consequently vfin

m (Φ, Z) contains all the ω �= 0 terms, including those with
significant amplitudes αM

ω .
To get a better insight into the possible “low energy cost motions” the

corrugation for several tubes is calculated (Fig. 2.22). The resonant effect is
clearly visible. For the (11, 2)@(12, 12) tube q′A/n′a′ = 14, and whenever m
is a multiple of 14 the corrugation per atom drops to its limiting m = ∞
value. For achiral commensurate DWNTs this effect is more pronounced, as
it occurs for each even m.
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