Project 1.4
 Separable Equations and the Logistic Equation

If a separable differential equation is written in the form $f(y) d y=g(x) d x$, then its general solution can be written in the form

$$
\int f(y) d y=\int g(x) d x+C
$$

Thus the solution of a separable differential equation reduces to the evaluation of two indefinite integrals. Hence it is tempting to use a computer algebra system such as Maple or Mathematica that can compute such integrals symbolically.

We illustrate this approach using the logistic differential equation

$$
\begin{equation*}
\frac{d x}{d t}=a x-b x^{2} \tag{1}
\end{equation*}
$$

that models a population $x(t)$ with births (per unit of time) proportional to x and deaths proportional to x^{2}. If $a=0.01$ and $b=0.0001$, for instance, Eq. (1) is

$$
\begin{equation*}
\frac{d x}{d t}=0.01 x-0.0001 x^{2}=\frac{x}{10000}(100-x) \tag{2}
\end{equation*}
$$

Separation of variables leads to

$$
\begin{equation*}
\int \frac{d x}{x(100-x)}=\int \frac{d t}{10000}=\frac{t}{10000}+C . \tag{3}
\end{equation*}
$$

Any computer algebra system gives a result of the form

$$
\begin{equation*}
\frac{1}{100} \ln (x)-\frac{1}{100}(x-100)=\frac{t}{10000}+C \tag{4}
\end{equation*}
$$

You can now apply the initial condition $x(0)=x_{0}$, combine logarithms, and finally exponentiate in order to solve (4) for the particular solution

$$
\begin{equation*}
x(t)=\frac{100 x_{0} e^{t / 100}}{100-x_{0}+x_{0} e^{t / 100}} \tag{5}
\end{equation*}
$$

of (2). The direction field and solution curves shown in Fig. 1.4.11 in the text suggest that, whatever is the initial value x_{0}, the solution $x(t) \rightarrow 100$ as $t \rightarrow \infty$. Can you use (5) to verify this conjecture?

The sections that follow illustrate the use of Maple, Mathematica, and MATLAB to carry out the procedure outlined above. You might warm up for the investigation below by applying a computer algebra system to solve Problems 1-28 in Section 1.4 of the text.

Investigation

For your own personal logistic equation, take $a=m / n$ and $b=1 / n$ in (1), with m and n being the largest two distinct digits (in either order) in you student ID number.
(i) First generate a slope field for your differential equation and include a sufficient number of solution curves that you can see what happens to the population as $t \rightarrow \infty$. State your inference plainly.
(ii) Next, use a computer algebra system to solve the differential equation symbolically, and use the symbolic solution to find the limit of $x(t)$ as $t \rightarrow \infty$. Was your graphically-based inference correct?
(iii) Finally, state and solve a numerical problem using the symbolic solution. For instance, how long does it take x to grow from a selected initial value x_{0} to a given target value x_{1} ?

Using Maple

First we integrate both sides of our separated differential equation as in Eq. (3).

$$
\begin{aligned}
& \text { soln }:=\operatorname{int}(1 /(\mathbf{x *}(100-\mathbf{x})), \mathbf{x})=\operatorname{int}(1 / 10000, \mathrm{t})+\mathrm{C} ; \\
& \operatorname{soln}:=\frac{1}{100} \ln (x)-\frac{1}{100} \ln (-100+x)=\operatorname{int}(1 / 10000, t)+C
\end{aligned}
$$

Then we apply the initial condition $x(0)=x 0$ to find the constant C.

$$
\begin{aligned}
& \text { C }:=\text { solve }(\text { subs }(\mathbf{x}=\mathbf{x} 0, \mathrm{t}=0, \text { soln }), \mathrm{C}) ; \\
& \qquad C:=\frac{1}{100} \ln (x 0)-\frac{1}{100} \ln (-100+x 0)
\end{aligned}
$$

We substitute this value of C and simplify.

$$
\begin{aligned}
& \text { soln }:=\text { simplify }(100 * \text { soln }) ; \\
& \qquad \text { soln }:=\ln (x)-\ln (-100+x)=\frac{1}{100} t+\ln (x 0)-\ln (-100+x 0)
\end{aligned}
$$

Next we exponentiate both sides of this equation.

$$
\begin{aligned}
& \text { soln }:=\text { simplify }(\exp (\operatorname{lns}(\%))=\exp (\operatorname{rhs}(\%))) ; \\
& \operatorname{soln}:=\frac{x}{-100+x}=\frac{e^{\left(\frac{1}{100} t\right)} x 0}{-100+x 0}
\end{aligned}
$$

Finally we solve explicitly for x as a function of t,

$$
\begin{aligned}
& \mathbf{x}(\mathrm{t})=\text { solve(soln, } \mathbf{x}) ; \\
& \qquad x(t)=100 \frac{e^{\left(\frac{1}{100} t\right)} x 0}{100-x 0+e^{\left(\frac{1}{100} t\right)} x 0}
\end{aligned}
$$

as in Eq. (5) above.

Using Mathematica

First we integrate both sides of our separated differential equation as in Eq. (3).

```
soln =
Integrate [1/(x(100-x)),x] == Integrate [1/10000,t] + c
log(x)
```

Then we apply the initial condition $x(0)=x 0$ to find the constant c.

$$
\begin{aligned}
& c=\text { First }[\text { soln } / \cdot\{t->0, x->x 0\}] \\
& \frac{\log (x 0)}{100}-\frac{1}{100} \log (x 0-100)
\end{aligned}
$$

We substitute this value of c and simplify.

```
soln =
Expand[100*First[soln]] == Expand[100*Last[soln]]
log(x)-\operatorname{log}(x-100)== \frac{t}{100}-\operatorname{log}(x0-100)+\frac{1}{100}\operatorname{log}(x0)
```

Next we exponentiate both sides of this equation.

```
soln =
Exp[First[soln]] == Exp[Last[soln]] // Simplify
```

$$
\frac{x}{x-100}=\frac{e^{t / 100} x 0}{x 0-100}
$$

Finally we solve explicitly for x as a function of t,

$$
\begin{aligned}
& \text { soln }=\text { Solve }[\text { soln, } \mathbf{x}] ; \\
& \left\{\left\{x \rightarrow \frac{100 e^{t / 100} x 0}{e^{t / 100} x 0-x 0+100}\right\}\right\} \\
& \mathbf{x}=\text { First }[\mathbf{x} / . \text { soln] } \\
& \frac{100 e^{t / 100} x 0}{e^{t / 100} x 0-x 0+100}
\end{aligned}
$$

as in Eq. (5) above.

Using MATLAB

Here we solve the logistic equation in (2) using the MATLAB "symbolic toolbox" interface to the Maple kernel. We begin by separating variables and integrating each side of the resulting equation. However, it is more convenient now to work with "everything on one side of the equation", as in

$$
\int \frac{d x}{x(100-x)}-\int \frac{d t}{10000}-C=0
$$

So we start by "declaring" our symbolic variables and evaluating the two integrals in this equation.

```
syms x t C
soln = int(1/(x*(100-x)),x) - int(1/10000, t) - C
soln =
1/100*log(x)-1/100*log(-100+x)-1/10000*t-C
```

We are actually thinking here of the equation soln $=0$, but the right-hand side zero is suppressed throughout. It simplifies the equation a bit by multiplying through by 100 .

```
soln = 100*soln
soln =
log(x)-log(-100+x)-1/100*t-100*C
```

Then we apply the initial condition $x(0)=x 0$ to find the constant C.

```
soln0 = subs(soln, {t,x}, {0,'x0'})
soln0 =
log(x0)-log(-100+x0)-100*C
C = solve(soln0, C)
C =
1/100*log(x0)-1/100*log(-100+x0)
```

We substitute this value of C simply by evaluating the present implicit solution.

```
soln = eval(soln)
soln =
log(x)-\operatorname{log}(-100+x)-1/100*t-log(x0)+\operatorname{log}(-100+x0)
```

Finally we solve explicitly for x as a function of t,

```
x = solve(soln, x);
pretty(x)
```

```
        \(x 0 \exp (1 / 100 t)\)
100 ------------------------------
    \(100-x 0+x 0 \exp (1 / 100 t)\)
```

as in Eq. (5) above.

