Individual Project 2

Model of Fishing in Plauer Lake

A mathematical model of trout fishing in Plauer Lake is considered.
The differential equation

$$
\begin{equation*}
d x / d t=(1-x) x-c \tag{1}
\end{equation*}
$$

describes utilization of the fish population, where $x(t)$ is the proportion of the maximum possible amount of fish in the lake (when there was no fishing) and t is time. The constant parameter $\boldsymbol{c > 0}$ is the proportion of the fish population allowed for fishing. It characterises the allowed rate of the fishing-ground (intensity) and is called a quota. Choosing the values of the parameter \boldsymbol{c} is an important factor of the control of the fish population.

Questions:

1) Solve equation (1). Separating the variables and completing the perfect square of the quadratic you will get 3 different solutions for different values of parameter c:
a) $0<c<\frac{1}{4}$
b) $c=\frac{1}{4}$
c) $c>\frac{1}{4}$.

You can leave the solutions in an implicit form, that is not making $x(t)$ the subject.
2) Find the number of equilibrium solutions equation (1) depending on the value of parameter c , that is solve the equation:

$$
\mathrm{dx} / \mathrm{dt}=\mathbf{0} \quad \text { or } \quad-\mathrm{x}^{2}+\mathrm{x}-\mathrm{c}=\mathbf{0} .
$$

3) Draw direction fields and integral curves using Omnigraph or Matlab or Mathematica or Maple or any other program for the following values of parameter c:
a) $c=\frac{1}{6}$
b) $c=\frac{1}{4}$
c) $c=\frac{1}{3}$

In each case a), b) and c) draw 10 integral curves for the following values of the initial condition $x(0)$: $0.1 ; 0.2 ; 0.3 ; 0.4 ; 0.5 ; 0.6 ; 0.7 ; 0.8 ; 0.9 ; 1$.

State whether each equilibrium is stable or unstable.
4) Interpret the equilibrium solutions by giving recommendation about permitted quotas for fishing.

