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Abstract

The objective of this document is to provide an oportunity to ex-
plore different basic numerical algorithms interactively.
This very document determines the precision of computation, demon-
strates 2D and 3D vector calculus, solves systems of linear equations,
invertes matrices, presents some numerical constants, evaluates user
specified functions, exhibits the evaluation of elementary functions
with their inverse functions (exponential, logarithmic, trigonometric
and hyperbolic functions), introduces CORDIC algorithms, approxi-
mates zeroes and integrals, and solves first order ordinary differential
equations numerically.



1 Introduction

The objective of this document is to offer insight into some basic numerical
algorithms by providing opportunities to run these algorithms, investigate
their performance, compare different algorithms for the same purpose, solve
little problems etc.

1.1 Conventions and Usage

In the following, generally:
click|=|, to execute an operation or evaluate a function;
click|Operation|, to clear arguments or results,

type input into |InPut -fields

read output from |Output or |Output -fields

The screen layout aims at presenting — in screen filling mode, i.e. window-
width (Cntrl-2) for Acrobat Reader and page-width (Cntrl-3) for Acrobat

Writer — all for an algorithm relevant information on one page/screen.



1.2 Precision

The relative precision of computatimﬂ v is computed by

epsilon=1.0;
while (1.0+epsilon>1.0) epsilon/=2;
nu=2*epsilon;

For JavaScript holds

JS precision| vV =

Ex. Precision of JavaScript computations in number of decimal digits?

1.3 Floating Point Arithmetic

Due to the limited precision of computation certain laws of arithmetic hold

no longer, e.g. associativity

a
b:

CcC =

99999999999

-99999999999

0.000005

(a+b)+c=a+(b+c)

(a+0b)+c=
a+ (b+c)=

reset||Add

Ex. Compute the relative error!

I Contrary to JavaScript or Java applets computer algebra packages like Mathematica,
Maple or MuPad compute with any user specified precision.
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1.4 Floating Point Arithmetic with Given Precision

The precision of JavaScript computations is quite high. To demonstrate
the effects of limited precision, now the number of decimal digits in the
representation of floating point numbers can be specified.

Arguments and results represented with JavaScript precision

4 — |999999 b — |-999000 ¢ — [0.001

a+b= (a+0b)+c=

b+c= at+ (b+c)=

p = # decimal digits =|3 [test] [random| [reset] |Add|

Arguments and results represented by p decimal digits

E:

C =

S

a+b)+c=

/~

(@+0)=
(b+e) =

+ (b+¢)

>
I

QI

Ex. Representation of input numbers? relative error for different p 7



2 Vector Calculus

2.1 Operations on Vectors in the Plane

2.1.1 Scalar Multiples ca of Vectors @ in the Plane

| Rt ) H ( )

2.1.2 Addition ad + b of Vectors in the Plane

( ) 1 )= ( )

2.1.3 Scalar Product @- b of Vectors in the Plane

=l =14

=,

Ex.: Determine the angle /(d,b) between the vectors @ = g(l, 1) and b =
(v/3 —2,1). Use section .

2.1.4 Length or Modulus |d| of Vectors in the Plane

reset | ( | D | E |

Ex.: Normalize vectors like d = ?(1, 1) orb=(v3-2,1). Use section



2.2 Operations on Vectors in Space

2.2.1 Scalar Multiples ca of Vectors d in Space

2.2.2 Addition @+ b of Vectors in Space

I I I
I |+ | | I
I | I | I

2.2.3 Scalar Product @ - b of Vectors in Space

2.2.4 Length or Modulus |d| of Vectors in Space

reset I I I

2.2.5 Vector Product @ x b of Vectors in Space

I I I
I | I1x] | | I
I | I | I

Ex.: Verify: €, €, and €, are orthonormal.

Ex.: Construct a "unit cube’ with vertices in 0 and */?g(l, 1,1).



3 Systems of Linear Equations

Systems of linear equations are given by AZ = b. For a demonstration we
will use only 3 x 3 coefficient matrices A, namely systems of three linear
equations in three unknowns. We will compare Gauf’ elimination method
with and without pivotisation and the Gauf3-Seidel method.



3.1 Gauf}’ Elimination Method

Specify coefficient matrix A and the vector b on the right hand side: A

AT =Alzs | =b= || |
xs3 | |

L L

reset test random save A and b
eliminate xy then eliminate x-
solve x3 solve o solve 1
("M | testwise cp.
Hence, = |z | = | | 5 . 71
AZ mit b
T3 | |
Ax = R~ =D, origi-
nal vector on right hand side, and with original coefficient matrix A=
with |A| =

Ex.: Precision?” Conditions for solvability? Underdetermined systems of
linear equations?



3.2 Gauf}’ Elimination Method with Pivotisation

not yet implemented



3.3 Stifel’s Method — SLE & Matrix Inversion

Stifel’s Method solves the quadratic system of linear equations AZ¥ = b by
solving one equation after another for one unknown after another and sub-
stituting this expression for the unknown into the other equations thereby
exchanging unknowns by constants. Essentially, Ax = b is solved by inverting
the coefficient matrix A so that = A~1b.

Exchanges are performed in the following form. The so called cellar row
holds intermediate results to be reused.

T i) Ce T e T
bl a1 12 c. Q15 e Q1n
bi a1 (075} Ce % . (077
br—1 ap—11 0p-12 ... QApn-15 ... Qn-1n
bn | am Ap2 oo Qpj .. Qpp
cellar —

b; against x; is exchanged by the following procedure:

prepare pivot = a;;; for (k # j) cellar[k] = —a;/pivot;

exchange a;; = 1/pivot; for (k #1) ay; /= pivot;
for (k #j) ap;=tmpl[k];
for (u#1) for (V#j) au *+= ayj*tmplv];

Ex.: Check the invariance of column vector on the left of the form = Matrix
times transposed row vector top of form.
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reset test random save A
lb_1] | [ || |
lb_2| | || || |
b_3| | || || |
cetar | | [ || |
;gﬂ(:ljci‘ fill cellar 1<—T1 1<—T2 1<—T3 r
274 click:  set other elements 9 <_Tl 9 <_T2 9 j A;/lejll }; E
3rd Cl'iCk: set pivot‘ column 4_T1 <_T2 j
4% click: set pivot row 3« |3+ 13
AA =

Ex.: Precision? Impact of different order of exchanges?
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3.4 Gauf}-Seidel Method

Assuming that all main diagonal elements of the coeffizient matrix are not
zero, i.e. a; # 0 for i = 1,...,n, then the equations AZ¥ = b can be solved
for the unknowns on the main diagonal

Ty = L (51 — Q1272 — Cl13333)

all
Ty = % (52 — a1l — a23$3)
T3 = Gas (53 — azi1ry — a32x2)
Using
xﬁk“) = a%l (b1 - auxgk) - a1396;(>,k)
xg/mtl) _ é by — amxgk“) B G%xgk)
xék—i—l) _ é by — aglxgk—i-l) _ a32$g~c+1))

and specifying a start vector £ a solution #*) is inserted and improved on

the basis of already improved components. In this way £*) is transformed
into Z*+1),

The method converges if for example — after reordering — the main diagonal
element dominate the other elements in the corresponding row, i.e. |a;| >

S0y lag| fori=1,... n.
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Specify coeffizient matrix A and vector b on the right hand side: A=

-

AT=Alzy | =b=| | |
T3 | |
0 |
start vector 7@ = [ [0 ||, Al =
0 |
reset test random convergence?’
k= k41=
0 | o |
i® = [0 | ) = | o |
o | 0 |
update z; next step
update s A ~ §
update x3
Af(k—i—l) _ ~

Ex.: Dependance on the start vector? Convergence speed?

Ex.: Compare the direct (Gaufl) and the iterative (GauB-Seidel) method!
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4 Some Constants

e = T =
In 2= In 10 =
log 2 = log 10 =
72 - 3 -

get constants

Ex.: Compare the built in constants with the computed values of suitable
functions in section [Bl
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5 Evaluation of Functions

Any function can be evaluated which is specified by an algebraic expression
consisting of the elementary functions chi, pow, sqrt, exp, 1n, sin, cos, tan,
cot, arcsin, arccos, arctan, arccot, sinh, cosh, tanh, coth, arsinh,
arcosh, artanh, arcoth and the constants e and pi (written in exactly
this way) — functions of the one independent variable x. The characteristic
function chi(x,a,b) is defined by x[.5(x) = {[1) Z:ois’[caj o with a < b. Any
constant expression using the above mentioned functions and constants is

allowed for the argument x also.

flz) =
le. f(:C) =
)= test

Ex.: Compute sin(z) and cos(z) for © = 30°,45° 607, ... specifying and
evaluating suitable functions sin and cos.

Ex.: Evaluate in degrees arctan(x) for z = 1,v/3, .. ..

Ex.: Evaluate functions like arsinh(z) or arcosh(x) for x =0,1,....

sin(x)

Ex.: What happens to Smxﬁ for 0 < x < 1 when determining lim, .
7
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6 Elementary Functions with Inverse

6.1 Exponential Function and Logarithm

6.1.1 Exponential Function

exp( ) =
—In(

6.1.2 Logarithm
In( ) =

=exp(

Ex.: Compute €€ for ¢ > 0 and Ine? for any real d.
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6.2 Trigonometric Functions
with their Inverse Functions

6.2.1 Sine and Arc Sine

. Arcus degree -
sin(] I V=
I | = arcsin(
Graph
6.2.2 Cosine and Arc Cosine
Arcus degree .
cos (] I V=
I | = arccos(
Graphl
6.2.3 Tangent and Arc Tangent
Arcus degree _
tan(| I V=
I | = arctan(

Craph

6.2.4 Cotangent and Arc Cotangent

co t ( rcus degree ) —

I | arccot(

Graph
Ex.: Werte fiir 0,7/6,7/4,7/3 und 7 /2, Periodizizit, Symmetrie

Ex.: sinz ~ z, cosz ~ 1, tanz ~ x fir |z| < 1,
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6.3 Hyperbolic Functions
with their Inverse Functions

6.3.1 Hyperbolic Sine

sinh( ) =

—arsinh(

Graph
6.3.2 Hyperbolic Cosine

cosh( ) =

—arcosh(

Graph
6.3.3 Hyperbolic Tangent

tanh( ) =

—artanh(

Graph
6.3.4 Hyperbolic Cotangent

coth( ) =

—arcoth(

Graph
Ex.: Determine asymptotic lines of tanh and coth! Which problems are
encountered for artanh(tanh(z)) and for arcoth(coth(z)) resp.?
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Ex.: Implementations of sinh, cosh, tanh and coth are straight forward.
textbook/online search: How to implement the inverse functions arsinh, ar-
cosh, artanh and arcoth if only the logarithm 1n and the square root sqrt
are available?
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7 CORDIC — Evaluation of Elementary Func-
tions in Hardware

CORDIC' is the acronym of "CQOordinate Rotation DIgital Computer”. The
CORDIC algorithms compute some elementary functions by nearly only fast
operations, namely additions (adds) and multiplications by powers of two
(shifts).

Therefore, CORDIC algorithms are very well suited for implementations in
(fixed point) hardware.

Rotation of vectors in the (complex) plane by the angle ¢ and the origin as
fix point it given by

'\  [cosp —sing)\ (z\ [(xcosg —ysing s [T ytane
y' )  \sing cosy y)  \xsinp+ycosp 14 Y+ xtan
Especially for ¢ = 4 arctan(27) and hence for tan ¢ = +27 holds
x’ ~ cos rF27y\ 1 rF270y
) 14 y+27z) 1422 \yt27x

Except for the multiplication by the scalar \/W the rotation by arctan 2
can be computed by adds and shifts alone. Sequencing such rotations gives

Tn+1 _ 1 T + 2 Yi\ _ 1 1 :F2 i
Yn+1 V14272 \yi £27" 2, V14272 \£27 1 Yi
o 1 —6;27° L 1 —6;_12~ 1)
TV g2t 1 V2260 \ §;_12- (=1 1
1 1 =527t 1 —5,2% (=,
V22 | 6,271 1 V0 | §,20 1 Yo

B n 1 =527 B 1 =627 (=,
= Il g 2701 g”H 6;27" 1 Yo

where §; = +1 indicates the direction of the i" rotation and the algorithms
gain g, 18

lim g, = lim ~ 1.6467602581210654

o= I e = o = i 1T e

Ex.: Formulate the results above using the addition theorems for sine and
cosine alone.
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7.1 Trigonometric Functions
(circular m = 1, rotating)

The vectors z; = <x1> with z, = €, approximate the vector g (Z?j g), if the

Yi
rotation by ¢ is approximated by a sequence of rotations by 4 arctan 2.
The following algorithm approximates sin ¢ and cos ¢ for ¢ given in radians
with |¢| < 7. arctan(k) is to be implemented by a table look up.

// return (cos(phi),sin(phi))
g=1.6467602581210654; k=1; // k=2""
x=1; y=0; /] & = (x,y)
do {

kk=k; if (phi<0) kk=-k;

tmpx=x-kk*y; tmpy=y+kk*x;

x=tmpx; y=tmpy; phi-=arctan(kk); k/=2;
} while (abs(phi)>epsilon);
return (x/g,y/g); // return (cosq,siny)

Ex.: Design the look up table for atan(kk) !

Ex.: What systematic error has to be tolerated if one wants to avoid multi-
plications except for the last two divisions by ¢ 7
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Math.cos, Math.sin and Math.tan are the library functions provided by
JavaScript. Input 'symbolic’ ¢ € [-5,5] =~ [-1.57,1.57], e.g. pi/5, 0.5 or
arcsin(0.5).

symbolic ¢ = | | | get o and evaluate library functions
& — 0.00001 | o=

o] ) (] 5

Pn = | | Yn | |

gain, = | | ltest] |next| |cont| [reset]

gajnoo — 1.6467602581210654 |C0mpute gainool
T / gaing, = Un / gaing, =
Math.cos(yp) = Math.sin(yp) =
yn/xn = xn/yn =
Math.tan(yp) = 1/Math.tan(p) =

Ex.: Which precision is gained in each step of the CORDIC algorithm?

Ex.: What does happen when applying this version of the CORDIC-algo-
rithm to arguments like 7 7 Which are the other critical arguments?
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7.2 Inverse Trigonometric Functions
(circular m = 1, vectoring)

In order to compute ¢ = arcsin(arg), the unit vector €, is rotated until the
y-coordinate of the rotated vector becomes arg. Then arccos(arg) can be

computed by
arccos(arg) = § — arcsin(arg)

2
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Math.acos, Math.asin and Math.atan are the library functions provided by
JavaScript. Of course, valid ’symbolic’ arguments of arcus sine and arcus
cosine are in [—1, 1], e.g. sin(0.5) or sqrt(3)/2.

symb.arg = | get arg and evaluate library functions
£ — |0.00001 arg = |
test next|  |cont] reset
gainoo = 1.6467602581210654 |Compute gainool
n = | Zp =
gain,, = Math.asin(arg) =
X, = %— Zp =
Vi = 5—Math.asin(arg) =
n=| | o =
gain, = Math.atan(arg) =
X, = 5= Zn =
Vn = 5—Math.atan(arg) =

7.3 Transforming Polar to Cartesian Coordinates

By the simultaneous computation of sine and cosine, the polar-coordinates
(r,¢) of a vector can be transformed to the Cartesian coordinates (z,y) =
r(cos p,sin ) by rotating the Cartesian start vector (r,0) to become the
target vector r(cos ¢, sin ).

7.4 Transforming Cartesian to Polar Coordinates

In order to transform Cartesian coordinates (x,y) to polar coordinates (r, ¢)
both r = /22 4+ y* and ¢ = arctan £ are to be computed: the CORDIC al-
gorithm to compute the arctangent produces both when it totates the start
vector (x,y) to become the Cartesian vector (r,0). Because length is pre-
served this implies r = /2% + y?. The rotation angle is ¢ = arctan £.
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7.5 Hyperbolic Functions
(hyperbolic m = —1, rotating)

Rotation of the (complex) plane is based on the addition theorems of sine and
cosine. For the hyperbolic functions sinh and cosh there hold the following
(corresponding) addition theorems

cosh(r £y) = cosh(x)cosh(y) £ sinh(zx) sinh(y)
sinh(z +y) = sinh(z)cosh(y) £ cosh(z) sinh(y)

These theorems allow to evaluate cosh a and sinha for a given argument «a
by a sequence of "hyperbolic’ rotations

cosh(x £y)\ ([ coshy =sinhy) (cosha) L 1 +tanhy) [coshzx

sinh(z +y)/  \+sinhy coshy sinhz ) — MY + tanhy 1 sinh x
using suitable y = artanh 2~ or tanhy = 27 these rotations can be per-
formed by shifts and adds only.

<cosh(miy)> _ coshartanh2i< 1 :|:2> (Coshm>

sinh(z £+ y) +£27 1 sinh x
B 1 1 +£2 cosh x
/1 o\ 2701 sinh

where Coslhy = COShzoihgsmhz \/1 —tanh®y fiir y = 4+ artanh 2~ implies
cosh(#+ artanh 27%) = ﬁ

To evaluate cosh a and sinh a at the same time, a has to be represented as sum
a = Y. d;artanh 2% of suitable 'rotation angles’ £ artanh2~% and ’rotation
directions’ d; € {1, —1}. Starting with cosh0 = 1 and sinh 0 = 0, cosh a and
sinh a are computed as sequence of such ’rotations’

(o) T (a5 ) (0) =T (4a ) (0)

The gain g of the algorithmus is

1
H m JE&%*JE&H V=
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g=0.6; k=1; // k=27"
x=1; y=0; // € = (x,y)
do {
kk=k; if (phi<0) kk=-k;
tmpx=x+kk*y; tmpy=y+kk*x;
x=tmpx; y=tmpy; arg-=artanh(kk); k/=2;
} while (abs(arg)>epsilon);
return (x/g,y/g); // return (cosh(arg),sinh(arg))

Ex.: Design the look up table for artanh (kk) !

Ex.: What systematic error has to be tolerated if one wants to avoid multi-
plications except for the last two divisions by ¢ 7

26



cosh, sinh, tanh, coth and Math.exp are (locally) existing library func-

tions.
symbolic @ = |get a and evaluate library functions
¢ — |0.00001 a = |
n=| | [z (] 5
a(n) = Yn | |
gain(n) = test lnext| cont
gain(oo) = compute gain(oo) reset
cosh(a) = sinh(a) =
T, /gain(co) = Yn/gain(oco) =
tanh(a) = coth(a) =
yn/xn = xn/yn =
Math.exp(a) =
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7.6 Exponential Function and Other Hyperbolic Func-
tions
(hyperbolic m = —1, rotating)

As in the case of the trigonometric functions, and due to

sinh z cosh x
and cothx = —
cosh zx sinh z

and expz = sinhx 4 coshx

the hyperbolic functions tanh and coth as well as the exponential function
exp(x) are easily computed by the CORDIC algorithms.

7.7 Logarithm and Square Root
(hyperbolic m = —1, vectoring)

Inz_ —In+/z —1 _
Because tanh In /2 = VeV = gflfg = % and thus

r—1

Inz = 2 artanh
T+

there is an CORDIC algorithm to evaluate the logarithm.

To compute /1 = \/(r+i)2—(r—i)2 let z, = 7"—1—%, Yo = ’I"—i and
1

1
« = artanh —%

= artanh z—o so that

1
4

. Y . Y
r,cosha — y,sinha = x,coshartanh 2% — y, sinh artanh =2
Lo Lo
1 e

= Zo > — Yo 2

1_ 4 1_ 4

x2 2

2 2
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7.8 Multiplication (linear m = 0, rotating)

Finally, there is a CORDIC-version of simple (fixed or floating point) multi-
plication.

€ = |0'00001 Lo :l | Zo = | |

|
n=] | (z.) (] 5 e
Zn — | | Un N | | Lo 2o
T2y = | - |test] next| lcont lreset

7.9 Division (linear m = 0, vectoring)

Finally, there is a CORDIC-version of simple (fixed or floating point) divi-
sion.
¢ — |0.00001

yozl |ZE0:| |

|
= | g;n>_<| /)_)(x)
Yo/ To =| | ltest]  [next] |cont] [reset]
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7.10 CORDIC-Algorithms unified

CORDIC-algorithms of type rotating and vectoring in the three modi linear
(m = 0), circular (m = 1) and hyperbolic (m = —1) can be represented in a
common way and thus together can be implemented efficiently. The following
table gives the details.

rotating z, — 0
k1 = 2k — Op€p

vectoring ¥, — 0
Yk+1 = Yk OkEr

mode m O = sgn 2, Op = — sgn s
m=0 multiplication x, z, division, 2, =0
x x

ep =27 n 1 0\ [z, T o Tk ( 0) — ( °>
g=1 M=o <5k o=k 1) o) 7 \a,z Yo 0

where 2z, — y,/7,

] ) inverse trigonometric, z, = 0

m=1 trigonometric

€, = arctan 27F
n
g = IIj_ocoseg

n 1 —0:, 277\ (g COS 2,
k=0 <5k 2k 1 ) (O) - (sin zo>

o g 0

o (1) = 3 (V75,7 %)

where z; — arctan ¥
(o}

m=—1
€, = artanh 2%
g = I1;_,cosheg

hyperbolic
n 1 —0,27%\ (g cosh z,
Hio <5k ok 1 ) (0) -~ <sinh %

)

inverse hyperbolic, z, = 0

(2 _ .2
HZ:O T, (%) - é ( %0 y0>
Yo

where z; — artanh ¥
O

// return (cos(phi),sin(phi))
g=1.6467602581210654; k=1; // k=2""

x=1; y=0;
do {

/] & = (x,y)

kk=k; if (phi<0) kk=-k;

tmpx=x-kk*y; tmpy=y+kk*x;

x=tmpx; y=tmpy; phi-=arctan(kk); k/=2;
} while (abs(phi)>epsilon);
return (x/g,y/g); // return (cos,sinp)
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8 Computation of Zeroes

The numerical determination of zeroes is indispensable if the zeroes of the
first derivative of some function cannot determined analytically in order to
compute for example extreme values of that function.

For example, this is the case for higher order polynomials.
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8.1 Computation of Zeroes per Intervall Bisection

The field for the functions values is deliberately scaled "too small” because in
this method only the signs of function values are relevant:

A start intervall [a,b] with the invariant f(a)f(b) < 0 is bisected by its
middle point m = (a+0b)/2. It is substituted by its right or left half intervall
satisfying the invariant.

flz) = get J

(a) = la, b]
( b) — halbieren

test reset

Ex.: Termination critera? start intervall?

Ex.: Compute extrema of functions.
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8.2 Computation of Zeroes per regula falsi

The start intervall [a,b] with the invariant f(a)f(b) < 0 is devided by the
zetom =a— f (a)m of the secant line. It is substituted by the right
or left intervall satisfying the invariant.

flz) = get f
ie. f(z) =

a = f(a) = regula
h = f(b) — falsi

test reset

Ex.: Termination critera? comparison to interval subdivision?

Ex.: Compute extrema of functions.
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8.3 Computation of Zeroes per Newton Method

It is assumed that the conditions for convergence of the Newton-Raphson

method are fulfilled: the zero is approximated by the zeroes =, = =, — J{,((ZT;))

of the tangent line in (2, f(z,)).

flx) = get f
ie. f(x)=
fz) = get
ie. fl(z) =

Tp = f(@pn) = Newton

T = Tyl — Tp = test

n=>20 f(xn): m

Ex.: Compute v/2, /3, V/5, T, /4 and the like.
Ex.: Compute extrema of functions.

Ex.: Termination critera? Comparison to regula falsi?
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9 Integration

Numerical integration for | ;’ f(x) dx is alast resort if there is no antiderivative
in closed form.

To determine the complexity of the competing methods the number of eval-
uations of the function to be integrated is used.
9.1 Integration per Trapezoidal Rule

The integral is approximated by the sum of the areas of certain trapezoids.

flz) = gt f
ie. f(.’E) =
a= b= fg f(ﬂ?) dx ~ [n —

Trapez

n= #(f(x))= [In = I | =

Ex.: Compute known integrals like [j sinx dx or [ 272 dx etc.

Ex.: Termination critera? Optimisation by doubling instead of incrementing
n?
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9.2 Integration per Simpson Rule

The function to be integrated is approximated piecewise by parabolas. The
sum of the integrals of these parabolas then approximates the integral.

n (even) is incremented by 2.

flx) = et/
i.e. f(x) =
a= b= fff f(x)dz ~ I, =

Simpson

Ex.: Compute integrals of second degree polynomials. Why is the approxi-
mation correct for each n 7

Ex.: Compute integrals like [f < dz etc.

Ex.: Comparison with the trapezoidal rule? Generalisations?
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10 1% Order Ordinary Differential Equations

The methods of Euler, Heun, Euler-Cauchy and Runge-Kutta show how first
order ordinary differential equations are solved numerically. Of course, this
is relevant if there is no known analytical solution in closed form.

Given the first order inital value problem

y = f(x,y) with y(z,) = yo |

To solve such a problem, the function f(x,y), the initial condition, z, and
Yo, as well as the number n of increments have to be specified in order to
approximate the function value ¥y, = y(x,) in z,. Then, the results of the
different methods can be compared. If the exact solution y = y(x) is available
the quality of these results can be assessed.

The test button saves to input the differential equation y’ = y with initial
condition y(0) = 1 and solution y(x) = e*.

Some classical methods to solve differential equations numerically are pre-
sented, namely the methods of Euler, Heun, Euler-Cauchy and the classical
version of the Runge-Kutta method.

10.1 Euler-Method

The Euler-method approximates the function by the tangent line in the ar-
gument computed at last:

y(l’iﬂ) R Yir1 =Y T hf(l"i, yi) with y(%) = Yo

10.2 Heun-Method

The Heun Method is a predictor-corrector method: ¥, is computed by the
secant line through (z,, y,,) whose slope is the average (corrected) of the slope
in z, and an slope f(x,11,Ynt1) 0 (Tpi1,Yns1) (predicted):

h )
y(l’iﬂ) R Yir1 =Y + §<f(1’i, yz) + f(l’iﬂ, Yi + hf(%, yz))) with y(xo):yo
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10.3 Euler-Cauchy-Method

The Euler-Cauchy-Method uses an approximation of the slope of the tangent
line in the midpoint x,41/2 = (%xn + Xpy1) of [xn, Tpia],
hence y(xn+1/2> N Yn+1/2 = YUn + %f(xm yn)

h )
Y(@it1) R Yigr = Y + b [(@ig1)2, 0 + §f($u yi))) with y(z,) = o

10.4 Runge-Kutta-Method

The classical Runge-Kutta method approximates the unknown function y(z)

in x; by a secant line whose slope is the weighted sum of the four slopes ¥/

—/ =/ —/
at i, Uity /o and Yit1/2 at Tip1/0 as well as ;. at zi41.

Yier = Yit+ %(y; + 237§+1/2 + 2372+1/2 + Uit where
yi =@ w) Yierp = flrit 5,9 + 5v0)
?jg+1/2 = f(z; + %, v+ %g£+1/2) ?£+1 = flzithy+ h§;+1/2)
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10.5 Interactive Synopsis of these Methods

get f

y(e) = get Y
ie. y(2) =
T 0 Euler Yy =
Yo = |1 Heun Yy =
Ty =11 Euler-Cauchy Yy =
n=\1 Runge-Kutta iy =
exact y(.fl?) = ’y( ) =
test step repeat reset

Ex.: Experiment with ¢ = cosx and y(0) = 0 or ¥/ = zy and y(0) = 1 or

the like.

Ex.: Compare the different methods by their complexity in terms of number

of evaluations of f(z,v).
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10.6 Systems
of Ordinary First Order Differential Equations

The methods of the previous sections can be applied to systems of ordinary
first order differential equations also. The default example is the development

of predator and prey populations in time.

nyi

40



A Graphs of Elementary Functions

A.1 Exponential Function and Logarithm

A

Ex.: Label the ticks and check functions properties.
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A.2 Sine and Cosine

sin(z)

Y/
v

cos(x)

sinl  [cos

Ex.: Label the ticks and check functions properties.
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A.3 Tangent and Cotangent

cot(z) tan(x)
tan(x)
/.
/
tan(x)
cot(x)
ffanl [cofl

Ex.: Label the ticks and check functions properties.
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A.4 Hyperbolic Sine and Hyperbolic Cosine

A

cosh(z) 1]

v

sinh(z) T

Ex.: Label the ticks and check functions properties.
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A.5 Hyperbolic Tangent and Hyperbolic Cotangent

v

lcothl
Ex.: Label the ticks and check functions properties.
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