


Анонс лекций-презентаций Майкла Соболевского

22–24 мая 2007 г.

И. В. Семушин 1

Ульяновский государственный университет, Ульяновск, ул. Л. Толстого, 42

1 SORCER: Вычислительный и мета-вычислительный Интергрид

Аннотация. Эта тема исследует сетевые вычисления с точки зрения трех основных
вычислительных платформ. Любая такая платформа состоит из виртуальных вычис-
лительных ресурсов, среды программирования, позволяющей разрабатывать сетевые
приложения, и сетевой операционной системы для исполнения пользовательских про-
грамм и облегчения процесса решения сложных задач пользователя. Обсуждаются три
платформы: вычислительная сеть, сеть для мета-вычислений и Интергрид (Интерсеть,
организатор межсетевого взаимодействия). Сервис протокол-ориентированные архи-
тектуры противопоставляются сервис объектно ориентированным архитектурам, за-
тем представляется SORCER мета-вычислительная сеть, основанная на сервис объект-
но ориентированной парадигме. В заключение объясняется, каким образом SORCER с
его корневыми сервисами и федеративной файловой системой может быть использован
либо в качестве традиционной вычислительной сети, либо как Интерсеть — некоторый
гибрид вычислительной и мета-вычислительной сети.

1. SORCER: Computing and Metacomputing Intergrid

Abstract. This paper investigates Grid computing from the point of view three basic
computing platforms. The platform consists of virtual compute resources, a programming
environment allowing for the development of grid applications, and a grid operating system
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to execute user programs and to make solving complex user problems easier. Three platforms
are discussed: compute Grid, metacompute Grid and Intergrid. Service protocol-oriented
architectures are contrasted with service object-oriented architectures, then the SORCER
metacompute Grid based on the service object-oriented paradigm is presented. Finally, we
explain how SORCER, with its core services and federated file system, can be used as a
traditional compute Grid and an Intergrid—a hybrid of compute and metacompute Grids.

2 Мета-вычисления с вызовом федеративного метода (FMI)

Аннотация. Сервис провайдеры регистрируют посредников (proxies), в том числе,
интеллектуальных посредников, путем внедрения признака подчиненности с исполь-
зованием двенадцати методов, исследованных в лаборатории SORCER. Выполнение
действий верхнего уровня означает динамическую федерацию доступных в текущий
момент времени провайдеров в сервис контекстах всех вложенных друг в друга и со-
вокупно протекающих процессов. Сервисы вызываются передачей команд о действиях
провайдерам косвенным образом — через объектных посредников, которые являют-
ся посредниками доступа, позволяющими сервис провайдерам обеспечить соблюдение
стратегии безопасности при предоставлении доступа к сервисам. Когда доступ раз-
решен, тогда операция, определенная некоторым признаком, вызывается посредством
передачи ее точной копии. Вызов федеративного метода позволяет реализовать P2P
(peer-to-peer) среду посредством интерфейса сервисов, расширенной модульной орга-
низации вызова действий (Exertions) и исполнителей действий (Exerters), а также рас-
ширяемости по проектному типу утроенной команды.

2. Metacomputing with Federated Method Invocation

Abstract. Service providers register proxies, including smart proxies, via dependency injec-
tion using twelve methods investigated in SORCER. Executing a top-level exertion means
a dynamic federation of currently available providers in the network collaboratively process
service contexts of all nested exertions. Services are invoked by passing exertions on to
providers indirectly via object proxies that are access proxies allowing for service providers
to enforce a security policy on access to services. When permission is granted, then the
operation defined by a signature is invoked by reflection. FMI allows for the P2P environment
via the Service interface, extensive modularization of Exertions and Exerters, and extensibi-
lity from the triple command design pattern.
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3 Организация посредничества сервисов с помощью внедрения признака
подчиненности

Аннотация. Улучшения в технике распределенных вычислений и технологии, кото-
рые делают это возможным, привели к значительному усовершенствованию средств
промежуточного звена, т. е. средств, находящихся между аппаратным и программным
обеспечением, — к улучшению их функциональности и качества, прежде всего, посред-
ством сетевой организации и протоколов. Однако, стиль распределенного программи-
рования остается таким же, как десять, двадцать, даже тридцать лет тому назад. Боль-
шинство программ все еще пишется строка за строкой программного кода на языке,
подобно программам на Fortran, C, C++, или Java. Эти процедурного типа програм-
мы могут рассматриваться как общие ресурсы сети и использоваться сообща по всему
миру работниками науки и образования. Однако, для этого нет отвечающих существу
дела методологий программирования, которые позволили бы эффективно пользовать-
ся этими процедурными ресурсами как неким потенциально огромным и доступным
для всех хранилищем для мета-вычислений, исключая написание программного кода
вручную — как раз то, что делалось десятилетия назад. Реализация этого потенци-
ала мета-компьютинга требует значительных усовершенствований в технологии вы-
числений. Чтобы эффективно работать в больших, распределенных средах, группы
параллельного инжиниринга нуждаются в некой сервис ориентированной методоло-
гии программирования. Нужны также: общий процесс проектирования, предметно-
независимое представление проектов и общие критерии принятия (проектных) реше-
ний. Посредничество сервисов с помощью внедрения признака подчиненности может
быть использовано для решения проблем, выдвигаемых парадигмой мета-вычислений
для комплексной распределенной высокоточной оптимизации инженерных проектов.

3. Service Proxying with Dependency Injection

Abstract. Improvements in distributed computing, and the technologies that enable them,
have led to significant improvements in middleware functionality and quality, mainly through
networking and protocols. However, the distributed programming style is the same as ten,
twenty, even thirty years ago. Most programs are still written line by line of code in languages
like Fortran, C, C++, and Java. These procedural programs can be considered as common
grid resources and shared by research and education communities worldwide. However, there
are no relevant programming methodologies to utilize efficiently these procedural resources
as a potentially vast and shared grid repository for metacomputing, except through the
manual writing of code — just as it was done decades ago. Realization of the potential
of metacomputing requires significant improvements in computing technology. To work
effectively in large, distributed environments, concurrent engineering teams need a service-
oriented programming methodology along with common design process, discipline-indepen-
dent representations of designs, and general criteria for decision making. Proxying with
dependency injection can be used to address several fundamental challenges posed by the
emerging metacomputing paradigm for complex distributed high fidelity engineering design
optimization.
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4 Jini-платформа: Модель программирования, инфраструктура и Jini ERI

Аннотация. О JINITM ТЕХНОЛОГИИ. Технология Jini — это открытая программная
архитектура, которая делает возможным связывание по сети для построения распре-
деленных систем, в высокой степени приспособленных к изменениям. Эта технология
может быть использована для создания технических систем, которые обладают способ-
ностью к масштабированию, развитию и гибкому изменению, что обычно и требуется
в средах с динамическим временем выполнения. Технология Jini первоначально со-
здавалась корпорацией Sun Microsystems и была передана в Jini CommunitySM в 1999
году. Она находится в свободном доступе и продвигается членами Сообщества Jini че-
рез открытый Jini Community Decision Process. Эта лекция может быть полезна в том
смысле, что позволит понять, почему и как JINITM TECHNOLOGY используется в
SORCER для управления динамическими федерациями сервисов.

4. Jini Platform: Programing Model, Infrastructure, Jini ERI

Abstract. ABOUT JINITM TECHNOLOGY. Jini technology is an open software architec-
ture that enables Java dynamic networking for building distributed systems that are highly
adaptive to change. It can be used to create technology systems that are scalable, evolvable,
and flexible, as typically required in dynamic runtime environments. Jini technology was
originally created by Sun Microsystems, and was contributed by Sun to the Jini Community-
SM in 1999. It is freely available and is advanced by members of the Jini Community through
the open Jini Community Decision Process. This lecture might be useful to understand why
and how JINITM TECHNOLOGY is used in SORCER to manage dynamic federations of
services.
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Abstract— This paper investigates Grid computing from the 
point of view three basic computing platforms. The platform 
consists of virtual compute resources, a programming 
environment allowing for the development of grid applications, 
and a grid operating system to execute user programs and to 
make solving complex user problems easier.  Three platforms are 
discussed: compute Grid, metacompute Grid and Intergrid. 
Service protocol-oriented architectures are contrasted with 
service object-oriented architectures, then the SORCER 
metacompute Grid based on the service object-oriented 
paradigm is presented. Finally, we explain how SORCER, with 
its core services and federated file system, can be used as a 
traditional compute Grid and an Intergrid—a hybrid of compute 
and metacompute Grids. 

I. INTRODUCTION 
The term “Grid computing” originated in the early 1990s as 

a metaphor for making computer power as easy to access as 
an electric power grid. Today there are many definitions of 
Grid computing with a varying focus on architectures, 
resource management, access, virtualization, provisioning, 
and sharing between heterogeneous compute domains. Thus, 
diverse compute resources across different administrative 
domains form a Grid for the shared and coordinated use of 
resources in dynamic, distributed, and virtual computing 
federations [8]. Therefore, the Grid requires a platform that 
describes some sort of framework to allow software to run 
utilizing virtual federations. These federations are dynamic 
subsets of departmental Grids, enterprise Grids, and global 
Grids, which allow programs to run. Different platforms of 
Grids can be distinguished along with corresponding types of 
virtual federations. However, in order to make any Grid-based 
computing possible, computational modules have to be 
defined in terms of platform data, operations, and relevant 
control strategies. For a Grid program, the control strategy is a 
plan for achieving the desired results by applying the platform 
operations to the data in the required sequence, leveraging the 
dynamically federating resources.  We can distinguish three 
generic Grid platforms, which are considered below. 

Each programming language reflects a relevant abstraction, 
and usually the type and quality of the abstraction implies the 
complexity of problems we are able to solve. For example, a 
procedural language provides an abstraction of an underlying 
machine language. An executable file represents a computing 
component whose content is meant to be interpreted as a 
program by the underlying platform. A request can be 
submitted to a Grid resource broker to execute a program in a 
particular way, e.g, parallelizing it and collocating it 
dynamically to the right processors in the Grid. That can be 

done, for example, with the Nimrod-G [22] Grid resource 
broker scheduler or the Condor-G [4], [38] high-throughput 
scheduler. Both rely on Globus/GRAM [8] (Grid Resource 
Allocation and Management) protocol. In this type of grid, 
called a compute Grid, executable files are moved around the 
Grid to form virtual federations of required processors. This 
approach is reminiscent of batch processing a series of 
programs ("jobs") on a computer without human interaction in 
the era when operating systems were not yet developed. 

A Grid programming language is the abstraction of 
hierarchically organized networked processors running a Grid 
computing program—metaprogram—that makes decisions 
about programs such as when and how to run them. Nowadays 
the same computing module abstraction is usually applied to a 
Grid computing module as is applied to single computer 
module while they are structurally completely different 
entities. Most Grid modules are still written as monolithic 
programs using compiled languages such as FORTRAN, C, 
C++, Java, and scripting languages such as Perl and Python. 
The current trend is to have these programs and scripts define 
Grid computational modules. Thus, most Grid computing 
modules are developed using the same abstractions and, in 
principle, run the same way on the Grid as on a single 
processor. There are presently no Grid programming 
methodologies to deploy a metaprogram that will dynamically 
federate all needed resources in the Grid according to a 
control strategy using some Grid algorithmic logic. Applying 
the same programming abstractions to the Grid as to a single 
computer does not foster transitioning from the current phase 
of early Grid adopters to public recognition, and then to mass 
adoption phases. 

The reality at present is that Grid resources are still very 
difficult for most users to access, and that detailed 
programming must be carried out by the user through 
command line and script execution to carefully tailor jobs on 
each end to the resources on which they will run or for the 
data structure that they will access.  This produces frustration 
on the part of the user, delays in adoption of Grid techniques, 
and a multiplicity of specialized “grid-aware” tools that are 
not, in fact, aware of each other that defeat the basic purpose 
of the Grid. 

Instead of moving executable files around the Grid, we can 
autonomically provision the corresponding computational 
components as uniform services on the Grid. All Grid services 
can be interpreted as instructions (metainstructions) of the 
metacompute Grid. Now we can submit a metaprogram in 
terms of metainstructions to the Grid platform (operating 
system) that manages a dynamic federation of service 
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providers and related resources and enables the metaprogram 
to interact with the providers according to the metaprogram 
control strategy. 

Thus, we can distinguish three types of Grids depending on 
the nature of computational components: compute Grids 
(cGrids), metacompute Grids (mcGrids), and the hybrid of the 
previous two—Intergrids (iGrids). Note that cGrid is a virtual 
federation of processors (roughly CPUs) that execute 
submitted executable files with the help of a Grid resource 
broker. However, a mcGrid is a federation of service 
providers managed by the mcGrid operating system. Thus, the 
latter approach requires a metaprogramming methodology 
while in the former case the conventional procedural 
programming languages are used. The hybrid of both cGrid 
and mcGrid abstractions allows for iGrid to execute both 
programs and metaprograms as depicted in Fig. 1. 

One of the first mcGrids was developed under the 
sponsorship of the National Institute for Standards and 
Technology (NIST)—the Federated Intelligent Product 
Environment (FIPER) [7], [25], [28], [29]. The goal of FIPER 
is to form a federation of distributed services that provide 
engineering data, applications and tools on a network. A 
highly flexible software architecture had been developed 
(1999-2003), in which engineering tools like computer-aided 
design (CAD), computer-aided engineering (CAE), product 
data management (PDM), optimization, cost modeling, etc., 
act as federating service providers and service requestors. The 
Service-Oriented Computing Environment (SORCER) [35], 
[31], [34], [33], [1] builds on top of FIPER to introduce a 
metacomputing operating system with all basic services 
necessary, including a federated file system, to support 

service-oriented programming. It provides an integrated 
solution for complex metacomputing systems. 

The paper is organized as follows. Section II provides a 
brief description of a service-oriented architecture used in 
Grid computing with a related discussion of distribution 
transparency; Section III describes the SORCER 
metacomputing philosophy and mcGrid; Section IV describes 
SORCER cGrid, Section V the metacomputing file system, 
and Section VI SORCER iGrid; Section VII provides 
concluding remarks. 

II. SOA = SPOA + SOOA 
Various definitions of a Service-Oriented Architecture 

(SOA) leave a lot of room for interpretation. Nowadays SOA 
becomes the leading architectural approach to most Grid 
developments. In general terms, SOA is a software 
architecture using loosely coupled software services that 
integrates them into a distributed computing system by means 
of service-oriented programming. Service providers in the 
SOA environment are made available as independent service 
components that can be accessed without a priori knowledge 
of their underlying platform or implementation. While the 
client-server architecture separates a client from a server, 
SOA introduces a third component, a service registry. In SOA, 
the client is referred to as a service requestor and the server as 
a service provider. The provider is responsible for deploying a 
service on the network, publishing its service to one or more 
registries, and allowing requestors to bind and execute the 
service. Providers advertise their availability on the network; 
registries intercept these announcements and add published 
services. The requestor looks up a service by sending queries 
to registries and making selections from the available services. 
Queries generally contain search criteria related to the service 
name/type and quality of service. Registries facilitate 
searching by storing the service representation and making it 
available to requestors. Requestors and providers can use 
discovery and join protocols to locate registries and then 
publish or acquire services on the network. We can distinguish 
the service object-oriented architectures (SOOA), where 
providers, requestors, and proxies are network objects, from 
service protocol oriented architectures (SPOA), where a 
communication protocol is fixed and known beforehand by 
the provider and requestor. Using SPOA, a requestor can use 
this fixed protocol and a service description obtained from a 
service registry to create a proxy for binding to the service 
provider and for remote communication over the fixed 
protocol.  In SPOA a service is usually identified by a name. 
If a service provider registers its service description by name, 
the requestors have to know the name of the service 
beforehand. 

In SOOA (see Fig. 2), a proxy—an object implementing 
the same service interfaces as its service provider—is 
registered with the registries and it is always ready for use by 
requestors. Thus, the service provider publishes the proxy as 
the active surrogate object with a codebase annotation, e.g., 

Fig. 1 Three types of Grids: compute grid, metacompute grid, and 
Intergrid. Platform layers: P1 resources, P2 resource management, P3 
programming environment. A cybernode provides a lightweight dynamic 
virtual processor, turning heterogeneous compute resources into 
homogeneous services available to the metacomputing OS [22]. 
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URLs to the code defining proxy behavior (RMI and Jini ERI 
[5]). In SPOA, by contrast, a passive service description is 

registered (e.g., an XML document in WSDL for Web/Globus 
services [21], [37], or an interface description in IDL for 
CORBA); the requestor then has to generate the proxy (a stub 
forwarding calls to a provider) based on a service description 
and the fixed communication protocol (e.g., SOAP in 
Web/Globus services, IIOP in CORBA [26]). This is referred 
to as a bind operation. The binding operation is not needed in 
SOOA since the requestor holds the active surrogate object 
obtained from the registry. 

Web services and Globus services cannot change the 
communication protocol between requestors and providers 
while the SOOA approach is protocol neutral [41]. In SOOA, 
the way an object proxy communicates with a provider is 
established by the contract between the provider and its 
published proxy and defined by the provider implementation. 
The proxy’s requestor does not need to know who implements 
the interface or how it is implemented. So-called smart 
proxies (Jini ERI) grant access to local and remote resources. 
They can also communicate with multiple providers on the 
network regardless of who originally registered the proxy, 
thus separate providers on the network can implement 
different parts of the smart proxy interface. Communication 
protocols may also vary, and a single smart proxy can also 
talk over multiple protocols including application specific 
protocols.  

SPOA and SOOA differ in their method of discovering the 
service registry. SORCER uses dynamic discovery protocols 
to locate available registries (lookup services) as defined in 
the Jini architecture [14]. Neither the requestor who is looking 
up a proxy by its interfaces nor the provider registering a 
proxy needs to know specific locations. In SPOA, however, 
the requestor and provider usually do need to know the 
explicit location of the service registry—e.g., a URL for RMI 
registry, a URL for UDDI registry, an IP address of a COS 

Name Server—to open a static connection and find or register 
a service. In deployment of Web and Globus services, a UDDI 
registry is sometimes even omitted (WSDL descriptions are 
shared via files outside of the system); in SOOA, lookup 
services are mandatory due to the dynamic nature of objects 
identified by service types. Interactions in SPOA are more like 
client-server connections (e.g., HTTP, SOAP, IIOP) in many 
cases with no need to use service registries at all. 

Crucial to the success of SOOA is interface 
standardization. Services are identified by interfaces (service 
types); the exact identity of the service provider is not crucial 
to the architecture. As long as services adhere to a given set of 
rules (common interfaces), they can collaborate to execute 
published operations, provided the requestor is authorized to 
do so.  

Let’s emphasize the major distinction between SOOA and 
SPOA: in SOOA, a proxy is created and always owned by the 
service provider, but in SPOA, the requestor creates and owns 
a proxy which has to meet the requirements of the protocol 
that the provider and requestor agreed upon a priori. Thus, in 
SPOA the protocol is always a generic one, reduced to a 
common denominator—one size fits all—that leads to 
inefficient network communication in some cases. In SOOA, 
each provider can decide on the most efficient protocol(s) 
needed for a particular distributed application. 

Service providers in SOOA can be considered as 
independent network objects finding each other via a service 
registry using object types (interfaces) and communicating 
through message passing. A collection of these object sending 
and receiving messages—the only way these objects 
communicate with one another—looks very much like a 
service object-oriented distributed system.  

Do you remember the eight fallacies of network 
computing[6]? We cannot just take an object-oriented 
program developed without distribution in mind and make it a 
distributed system, ignoring the unpredictable network 
behavior. Most RPC systems, except Jini [14], hide the 
network behavior and try to transform local communication 
into remote communication by creating distribution 
transparency based on a local assumption of what the network 
might be. However, every single distributed object cannot do 
that in a uniform way as the network is a distributed system 
and cannot be represented completely within a single entity.  

The network is dynamic, can’t be constant, and introduces 
latency for remote invocations. Network latency also depends 
on potential failure handling and recovery mechanisms, so we 
cannot assume that a local invocation is similar to remote 
invocation. Thus, complete transparency distribution—by 
making calls on distributed objects as though they were 
local—is impossible to achieve in practice. The distribution is 
simply not just an object-oriented implementation of a single 
distributed object; it’s a metasystemic issue in object-oriented 
distributed programming. In that context Web/Globus service 
define distributed objects, but do not have anything common 
with object-oriented distributed systems. 

Fig. 2 Service object-oriented architecture 
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Exertion-based programming [31], [29] was introduced to 
handle the metasystemic distribution in SORCER by using 
indirect remote method invocation with no service provider 
explicitly specified in a network request called an exertion. 
Specific infrastructure objects support exertion-oriented 
programming. That infrastructure defines SORCER’s 
distributed object modularity, extensibility, and reuse of 
service-oriented components consistent with the relevant 
metacomputing granularity and dependency injection—key 
features of object-oriented distributed programming that are 
usually missing in SPOA programming environments. 

III. SORCER METACOMPUTING GRID 
SORCER is a federated service-to-service (S2S) 

metacomputing environment that treats service providers as 
network objects with well-defined semantics of a federated 
service object-oriented architecture (FSOOA).  It is based on 
Jini semantics of services [14] in the network and the Jini 
programming model [5] with explicit leases, distributed events, 
transactions, and discovery/join protocols. While Jini [15], [16] 
focuses on service management in a networked environment, 
SORCR is focused on exertion-oriented programming and the 
execution environment for exertions.  

As described in Section II, SOOA consists of three major 
types of network objects: providers, requestors, and registries. 
The provider is responsible for deploying the service on the 
network, publishing its service to one or more registries, and 
allowing requestors to access its service. Providers advertise 
their availability on the network; registries intercept these 
announcements and cache proxy objects to the provider 
services. The requestor looks up proxies by sending queries to 
registries and making selections from the available service 
types. Queries generally contain search criteria related to the 
type and quality of service. Registries facilitate searching by 
storing proxy objects of services and making them available to 
requestors. Providers use discovery/join protocols to publish 
services on the network, requestors use discovery/join 
protocols to obtain service proxies on the network. SORCER 
uses Jini discovery/join protocols to implement its FSOOA.  

In SOOA, a service provider is an object that accepts 

remote messages from service requestors to execute an item of 
work. These messages are called service exertions. An 
exertion encapsulates service data, operations, and control 
strategy. A task exertion is an elementary service request, a 
kind of elementary remote instruction (elementary statement) 
executed by a single service provider or a small-scale 
federation. A composite exertion called a job exertion is 
defined hierarchically in terms of tasks and other jobs, a kind 
of network procedure executed by a large-scale federation. 
The executing exertion is a service-oriented program that is 
dynamically bound to all needed and currently available 
service providers on the network. This collection of providers 
identified in runtime is called an exertion federation. This 
federation is also called an exertion space. While this sounds 
similar to the object-oriented paradigm, it really isn’t. In the 
object-oriented paradigm, the object space is a program itself; 
here the exertion space is the execution environment for the 
exertion that is a service-oriented distributed program. This 
changes the programming paradigm completely. In the former 
case the object space is hosted by a single computer, but in the 
latter case the service providers are hosted by the network of 
computers. 

The overlay network of service providers is called the 
service provider grid and an exertion federation is called a 
virtual metacomputer. The metainstruction set of the 
metacomputer consists of all operations offered by all service 
providers in the grid. Thus, a service-oriented program is 
composed of metainstructions with its own service-oriented 
control strategy and service context [42] representing the 
metaprogram parameters. Service signatures specify 
metainstructions in SORCER. Each signature primarily is 
defined by a service type (interface name), operation in that 
interface, and a set of attributes. Three types of signatures are 
distinguished: PROCESS, PREPROCESS, and 
POSTPROCESS. A PROCESS signature—only one allowed 
per exertion—defines the dynamic late binding to a provider 
that implements the signature’s interface. The service context 
describes the data that tasks and jobs work on. Exertion-
oriented programs (metaprograms) can be created 
interactively [32] and allow for a dynamic federation to 
transparently coordinate their execution within the grid. The 
exertion federation can be interactively monitored and 
exertions debugged during execution [34], [20]. Please note 
that these metacomputing concepts are defined differently in 
classical grid computing where a job is just an executing 
process for a submitted executable code with no federation 
being formed for the executable. 

In a federated service environment, the system is not made 
up of just a single service, but the cooperation of many 
services. A service exertion may consist of hierarchically 
nested exertions that require different service types. A service 
can be broken down into small component services instead of 
being one monolithic all-in-one service. These smaller 
component services—treated as virtual metacomputer 
instructions—can then be distributed among different hosts to 

Fig. 3 SORCER layered platform, where P1 resources, P2 resource 
management, P3 programming environment 
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allow for reusability, scalability, reliability, and load 
balancing. 

Each SORCER provider (peer) implementing the common 
Servicer interface, offers services to other peers [31] on the 
object-oriented overlay network. These services are exposed 
indirectly by methods in well-known public remote interfaces 
and considered as elementary (tasks) or compound (jobs) 
statements of the FSOOA. Requestors do not need to know 
the exact location of a provider beforehand; they can find it 
dynamically by discovering service registries (lookup 
services) and then looking up a needed service implementing 
required service types. 

Despite the fact that every Servicer can accept any exertion, 
Servicers have well defined roles in the SORCER S2S 
platform (see Figure 3): 
a) Taskers – process service tasks  
b) Jobbers – process service jobs 
c) Contexters – provide service contexts for APPEND 

Signatures 
d) FileStorers – provide access to federated file system 

providers [33], [1], [2], [39] 
e) Catalogers – Servicer registries 
f) Persisters – persist service contexts, tasks, and jobs to be 

reused for interactive exertion-based programming 
g) Spacers – manage exertion spaces shared across Servicers 

for space-based computing [9] 
h) Relayers – gateway providers; transform exertions to native 

representation, for example integration with Web services 
and JXTA 

i) Autenticators, Authorizers, Policers, KeyStorers – provide 
support for service-oriented security 

j) Auditors, Reporters, Loggers – support for accountability, 
reporting and logging 

k) Griders, Callers, Methoders – support conventional grid 
computing (in cGrids) 

l) Generic ServiceTasker and ServiceJobber implementations 
are used to configure domain specific providers via 
dependency injection—configuration files for smart 
proxying and embedding business objects, called service 
beans, into service providers. 
An exertion can be created interactively [32] or 

programmatically (using SORCER APIs), and its execution 
can be monitored and debugged [34], [20] in the overlay 
service network via service user interfaces (Service UI [40]) 
attached to providers and  installed on the fly by service 
browsers [13]. Service providers do not have mutual 
associations prior to the execution of an exertion; they come 
together dynamically (federate) for all nested tasks and jobs in 
the exertion. Domain specific providers within the federation, 
or task peers called Taskers, execute service tasks. Jobs are 
coordinated by rendezvous peers: a Jobber or Spacer, two of 
the SORCER core services (see Fig. 3 for details), of the 
SORCER platform. However, a job can be sent to any service 
provider (peer). A peer that is not a Jobber type is responsible 
for forwarding the job to an available job peer in the SORCER 

grid and returning results to the requestor. Thus implicitly, 
any peer can handle any job or task. Once the job execution is 
complete, the federation dissolves and the providers disperse 
to seek other exertions to join. 

An Exertion is invoked by calling on its exert method. The 
SORCER API defines the following three related operations:  
1. Exertion.exert(Transaction):Exertion - join the federation 
2. Servicer.service(Exertion, Transaction):Exertion – request a 

service in the federation initiated by the receiver 

3. Exerter.exert(Exertion, Transaction):Exertion – execute the 
component exertion by the target provider in the federation 

This Triple Command pattern [31], [12] defines various 
implementations of these interfaces: Exertion (metaprogram), 
Servicer (generic peer provider), and Exerter (service provider 
exerting a particular type of Exertion). This approach allows 
for the P2P environment [23] via the Servicer interface, 
extensive modularization of Exertions and Exerters, and 
extensibility from the triple design pattern so requestors can 
submit any service-oriented programs (exertions) they want 
with or without transactional semantics. The triple Command 
Pattern is used as follows: 
1. An exertion can be invoked by calling 

Exertion.exert(Transaction). The Exertion.exert operation 
implemented in ServiceExertion uses ServiceAccessor to 
locate in runtime the provider matching the exertion’s 
PROCESS signature .  

2. If the matching provider is found, then on its access proxy 
(which can also be a smart proxy) the 
Servicer.service(Exertion, Transaction) method is invoked.  

3. When the requestor is authenticated and authorized by the 
provider to invoke the method defined by the exertion’s 
PROCESS signature, then the provider calls its own exert 
operation: Exerter.exert(Exertion, Transaction).  

4. Exerter.exert method calls exert on either of ServiceTasker or 
ServiceJobber (depending on the type of the exertion: either 
Task or Job) that by reflection calls the method specified in 
the PROCES signature (interface and selector) of the 
exertion. All application domain methods of any 
application interface (custom Tasker interfaces) have the 
same signature: a single Context type parameter and a 
Context type return vale. Thus a custom interface looks like 
an RMI interface with the above simplification on the 
common signature for all interface methods. 

The fundamentals of exertion-oriented programming and 
SORCER federated method invocation are described in [31]. 

In Fig. 4 four use cases are presented to illustrate push vs. 
pull exertion-oriented computing. We assume that an exertion 
is a job with two component exertions executed in parallel (a 
and b). The Job exertion can be submitted directly to either 
Jobber (use cases: 1. access is PUSH, and 2. access is DROP) 
or Spacer (use cases: 3. access is PUSH, and 4. access is 
DROP) depending on the exertion’s interface defined in its 
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PROCES signature. In cases 1 and 2 the signature is Jobber 
and in cases 3 and 4 the signature is Spacer. The exertion’s 
ServicerAccessor delivers the right service proxy, either for a 
Jobber or Spacer. Depending on the access type of the parent 
exertion, all the component exertions are pushed to relevant 
providers according to their signatures (case 1 and 3), or 
dropped into the exertion space by the Jobber (case 2) and 
Spacer (case 4). In the cases 2 and 4, the component exertions 
are pulled from the exertion space by providers matching their 
signatures as soon as they are available to do any processing 
(case 2 and 4). Thus Spacers provide efficient load balancing 
for processing the exertion space. 

IV. SORCER COMPUTING GRID 
Also, SORCER supports a traditional approach to grid 

computing similar to those found in Condor [4] and Globus 
[37]. Here, instead of exertions being executed by services 
providing business logic for requested exertions, the business 
logic comes from the service requestor's executable programs 
that seek compute resources on the network.  

The cGrid-based services in the SORCER environment 
include Grider collaborating Jobber for compute grid job 
submission, and Caller and Methoder services for task 
execution [31]. Callers execute conventional programs via a 
system call as described in the Caller’s service context of the 
submitted task. Methoders download required Java code (task 
method) from requestors to process any submitted context 
accordingly with the downloaded code. In either case, the 
business logic comes from requestors; it is conventional 
executable code invoked by Callers with the standard Caller’s 
service context or mobile Java code executed by Methoders 
with any service context provided by the requestor. 

The SORCER cGrid with Methoders was used to deploy an 
algorithm called Basic Local Alignment Search Tool  
(BLAST) to compare newly discovered, unknown DNA and 
protein sequences against a large database with more than 3 
gigabytes of known sequences. BLAST (C++ code) searches 
the database for sequences that are identical or similar to the 
unknown sequence. This process enables scientists to make 
inferences about the function of the unknown sequence based 
on what is understood about the similar sequences found in 
the database. Many projects at the USDA–ARS’s Livestock 
Issues Research Unit, for example, involve as many as 10,000 
unknown sequences, each of which must be analyzed via the 
BLAST algorithm. A project involving 10,000 unknown 

sequences requires about three weeks to complete on a single 
desktop computer. The S-BLAST implemented in SORCER 
[18], a federated form of the BLAST algorithm, reduces the 
amount of time required to perform searches for large sets of 
unknown sequences. S-BLAST is comprised of BlastProvider 
(with the attached BLAST Service UI), Jobbers, Spacers, and 
Methoders. Methoders in S-BLAST download Java code (a 
service task method) that initializes a required database before 
making system call for the BLAST code. Armed with the S-
BLAST’s cGrid and 17 commodity computers, projects that 
previously took three weeks to complete can now be finished 
in less than one day. 

The SORCER cGrid with Griders, Jobbers, Spacers, and 
Callers has been successfully deployed with the Proth program 
(C code) and easy-to-use zero-install Service UIs attached to a 
Grider and the SORCER federated file system.  

V. SORCER FEDERATED FILE SYSTEM 
 
The SILENUS federated file system [1], [2] was designed 

and developed to provide data access for metaprograms. It 
complements the file store developed for FIPER [33] with the 
true P2P services. The SILENUS system itself is a collection 
of service providers that use the SORCER framework for 
communication. 

In classical client-server file systems, a heavy load may 
occur on a single file server. If multiple grid requestors try to 
access large files at the same time, the server will be 
overloaded. In a P2P architecture, every host is a client and a 
server at the same time. The load can be balanced between all 
peers if files are spread across all of them. The SORCER 
architecture splits up the functionality of the metacomputer 
into smaller service peers (Servicers), and this approach was 
applied the distributed file system as well. 

The SILENUS federated file system is comprised of several 
network services that run within the SORCER environment. 
These services include a byte store service for holding file 
data, a metadata service for holding metadata information 
about the files, several optional optimizer services, and facade 
services to assist in accessing federating services. SILENUS is 
designed so that many instances of these services can run on a 
network, and the required services will federate together to 
perform the necessary functions of a file system. SILENUS 
service can be broadly categorized into gateway components, 
data services, and management services.  

The SILENUS facade service provides a gateway service to 
the SILENUS Grid for requestors that want to use the file 
system. Since the metadata and actual file contents are stored 
by different services, there is need to coordinate 
communication between these two services. The facade 
service itself is split into a provider component, called the 
coordinator, and a smart proxy component that contains 
needed inner proxies provided dynamically by the coordinator. 
These inner proxies facilitate P2P communications for file 
upload and download between the requestor and SILENUS 
federating services like metadata and byte stores.  

Fig. 4 Push vs. Pull exertion computing 
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Core SILENUS services have been successfully deployed 
as SORCER services along with WebDAV and NFS adapters. 
The SILENUS file system scales very well with a virtual disk 
space adjusted as needed by the corresponding number of 
required byte store providers and the appropriate number of 
metadata stores required to satisfy the needs of current users 
and service requestors. The system handles several types of 
network and computer outages very well by utilizing 
disconnected operation and data synchronization mechanisms. 
It provides a number of user agents including a zero-install 
file browser (service UI) attached to the SILENUS Facade. 
This file browser with file upload and download functions is 
combined with an HTML editor and multiple viewers for 
documents in HTML, RTF, and PDF formats. Also a simpler 
version of SILENUS file browser is available for smart MIDP 
phones.  

SILENUS supports storing very large files [39] by 
providing two services: a splitter service and a tracker service. 
When a file is uploaded to the file system, the splitter service 
determines how that file should be stored. If a file is 
sufficiently large enough, the file will be split into multiple 
parts, or chunks, and stored across many byte store services. 
Once the upload is complete, a tracker service keeps a record 
of where each chunk was stored. When a user requests to 
download the full file later on, the tracker service can be 
queried to determine the location of each chunk and the file 
can be reassembled to the original form. 

VI. SORCER IGRID 
Relayers are SORCER gateway providers that transform 

exertions to native representations and vice versa. The 
following Exertion gateways have been developed: JxtaRelayer 
for JXTA, and WsRpcRelayer and WsDocRelayer for for RPC 
and document style Web services, respectively. Relayers 
exhibit native and mcGrid behavior. Some native cGrid 
providers play SORCER role (SORCER wrappers) thus, are 
available in the iGrid along with mcGrid providers. Also, 
native cGrid providers via own relayers can access iGrid 
services (bottom-up). 

The iGrid-integrating framework is depicted in Fig 5, 
where horizontal native technology grids (bottom) are 
seamlessly integrated with horizontal SORCER mcGrids via 
the SORCER operating system services. Through the use of 
open standards-based communication—Jini, Web Services, 
Globus/OGSA, and Java interoperability—iGrid leverages 
SORCER mcGrid’s SOOA with its inherent protocol, location, 
and provider implementation neutrality, along with 
architectural qualities—flexibility, scalability, and adaptability 
for Intergrid computing. 

VII. CONCLUSIONS 
A Grid is not just a collection of distributed objects; it’s the 

network of objects. From an object-oriented point of view, the 
network of objects is the problem domain of object-oriented 
distributed programming that requires relevant abstractions in 
the solution space. The SORCER architecture shares the 
features of grid systems, P2P systems and provides a platform 

for procedural programming and service-oriented 
metaprogramming. Exertion-based programming introduces 
new network abstractions with federated method invocation in 
SOOA. Service providers register proxies, including smart 
proxies, via dependency injection using twelve methods 
investigated in SORCER. Executing a top-level exertion 
means a dynamic federation of currently available providers in 
the network collaboratively process service contexts of all 
nested exertions. Services are invoked by passing exertions on 
to providers indirectly via object proxies that act as access 
proxies allowing for service providers to enforce a security 
policy on access to services. When permission is granted, then 
the operation defined by a signature is invoked by reflection. 
SORCER allows for the P2P computing via the common 
Service interface, extensive modularization of Exertions and 
Exerters, and extensibility from the triple command design 
pattern. The SORCER federated file system is modularized 
into a collection of distributed providers with multiple remote 
Façades. Façades supply uniform access points via their smart 
proxies available dynamically to file requestors. A Façade’s 
smart proxy encapsulates inner proxies to federating providers 
accessed directly (P2P) by file requestors. 

The SORCER iGrid has been successfully tested in 
multiple concurrent engineering, large-scale distributed 
applications [25], [27], [3], [10], [11], [17], [19]. Due to the 
large-scale complexity of the evolving iGrid environment, it is 
still a work in progress and continues to be refined and 
extended by the SORCER Research Group at Texas Tech 
University [35] in collaboration with Air Force Research Lab, 
WPAFB.  
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Abstract  
Six generations of RPC systems can be distinguished in-
cluding Federated Method Invocation (FMI) presented in 
this paper. Some of them—CORBA, Java RMI, and 
Web/Globus services—support distributed objects. How-
ever, creating object wrappers implementing remote inter-
faces doesn’t have a great deal to do with object-oriented 
distributed programming. Distributed objects developed 
that way are usually ill-structured with missing core object-
oriented traits: encapsulation, instantiation, inheritance, and 
network-centric messaging by ignoring the real nature of 
networking. A distributed system is not just a collection of 
distributed objects—it’s the network of objects. In particu-
lar, the object wrapping approach does not help to cope 
with network-centric messaging, invocation latency, object 
discovery, dynamic object federation, fault detection, re-
covery, partial failure, etc. The Jini™ architecture does not 
hide the network; it allows the programmer to deal with the 
network reality: leases for network resources, distributed 
events, transactions, and discovery/join protocols to form 
federations. A service-oriented architecture presented in 
this paper implements FMI to support metaprogramming. 
The triple Command pattern implantation uses Jini service 
management and Rio dynamic provisioning for managing 
the network of FMI objects. 

Categories and Subject Descriptors C.2.4 [Distributed 
Systems]: Distributed Applications, D.1.3 [Concurrent 
Programming]: Distributed Programming, D.2.11 [Soft-
ware Architectures]: Domain Specific Architectures, 
D.2.2 [Design Tools and Techniques]: Object-oriented 
design methods. 

General Terms Design, Experimentation, Languages. 

Keywords  object oriented distributed programming; serv-
ice oriented architectures; federated service object pro-
gramming, metacomputing;  

1. Introduction 
Socket-based communication forces us to design distrib-
uted applications using a read/write (input/output) inter-
face, which is not how we generally design non-distributed 
applications based on procedure call (request/response) 
communication. In 1983, Birrell and Nelson devised re-
mote procedure call (RPC) [2], a mechanism to allow pro-
grams to call procedures on other hosts. So far, six RPC 
generations can be distinguished: 
1. First generation RPCs – Sun RPC (ONC RPC) [24] and 

DCE RPC, which are language, architecture, and OS in-
dependent; 

2. Second generation RPCs – CORBA [25] and Microsoft 
DCOM-ORPC, which add distributed object support; 

3. Third generation RPC – Java RMI [21] is conceptually 
similar to the second generation but supports the seman-
tics of object invocation in different address spaces that 
are built for Java only. RMI fits cleanly into the lan-
guage with no need for standardized data representation, 
external interface definition language, and with behav-
ioral transfer that allows remote objects to perform 
operations that are determined at runtime; 

4. Fourth generation RPCs – Jini Extensible Remote Invo-
cation (Jini ERI) [20] with dynamic proxies, smart prox-
ies, network security, and with dependency injection 
defining exporters, end points, and security; 

5. Fifth generation RPCs – Web/Globus Services RPC 
[18,35] and the XML movement; 

6. Sixth generation RPC – Federated Method Invocation 
(FMI), presented in this paper, allows for network invo-
cations on multiple federating hosts (virtual metacom-
puter) in the SORCER environment [33]. 

 
All the RPC generations are based on a form of service-
oriented architecture (SOA) discussed in Section 2. How-
ever, CORBA, RMI, and Web/Globus services are in fact 
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object-oriented wrappers of network interfaces that hide 
distribution and ignore the real nature of network through 
classical abstractions of object-oriented programming using 
existing network technologies. The fact that object-oriented 
languages are used to create these object wrappers doesn’t 
mean that developed distributed objects have a great deal to 
do with object-oriented distributed programming. For ex-
ample, CORBA defines many services, and implementing 
them using distributed objects does not make them well 
structured with core object-oriented traits: encapsulation, 
instantiation, inheritance, and network-centric messaging. 
Similarly in RMI, marking objects with the Remote inter-
face does not help to cope with network-centric messaging, 
object discovery, dynamic federation, fault detection, re-
covery, partial failure, etc.  

Building on the object-oriented distributed paradigm is 
the Federated Service Object-Oriented (FSOO) paradigm 
exemplified by the Jini architecture [13] in which the net-
work objects come together on the fly to play their prede-
fined roles. In the Service-ORiented Computing 
EnviRonmet (SORCER) developed at Texas Tech Univer-
sity [33], a service provider is a remote object that accepts 
network requests—called exertions—from service request-
ors to execute an elementary item of work called a service 
task or a composite item of work called a service job. An 
exertion, either a task or job, can federate on multiple hosts 
according to its encapsulated data, operations, and control 
strategy. 

An exertion submitted to any provider in SORCER be-
comes an executing FSOO program that is dynamically 
bound to all relevant and currently available service pro-
viders on the network. The providers that dynamically par-
ticipate in this invocation are collectively called an exertion 
federation. This federation is also called a virtual meta-
computer since federating services are located on multiple 
physical compute nodes held together by the FSOO infra-
structure so that, to the individual exertion requestor, it 
looks and acts like a single computer. 

The SORCER environment provides the means to create 
interactive FSOO programs [29] and execute them using 
the SORCER runtime infrastructure presented in Section 3. 
Exertions can be created using interactive user interfaces 
downloaded on the fly from service providers. Using these 
interfaces, the user can execute and monitor the execution 
of exertions within the FSOO metacomputer. The exertions 
can be persisted for later reuse, allowing the user to quickly 
create new applications or programs on the fly in terms of 
existing exertions. 

SORCER is based on the evolution of concepts and les-
sons learned in the FIPER project [5,26,27], a $21.5 million 
program founded by NIST (National Institute of Standards 
and Technology). Initial exertion-based programming con-
cepts introduced in FIPER have been practically used in 
many concurrent engineering applications [29,8,9,16,23]. 

Academic research on exertion-oriented programming has 
been established at the SORCER Laboratory, TTU, [33] 
where twenty SORCER related research studies have been 
investigated so far [34]. The current version of FMI used in 
SORCER is described in this paper. 

The paper is organized as follows. Section 2 provides a 
brief description of a service oriented architecture with a 
related discussion of distribution transparency; Section 3 
describes the SORCER methodology; Section 4 presents 
federated method invocation; Section 5 provides conclud-
ing remarks. 

2. SOA and Distribution Transparency 
Various definitions of a Service-Oriented Architecture 

(SOA) leave a lot of room for interpretation. In general 
terms, SOA is a software architecture using loosely coupled 
software services that integrates them into a distributed 
computing system by means of service-oriented program-
ming. Service providers in the SOA environment are made 
available as independent service components that can be 
accessed without a priori knowledge of their underlying 
platform or implementation. While the client-server archi-
tecture separates a client from a server, SOA introduces a 
third component, a service registry, as illustrated in Figure 
1. In SOA, the client is referred to as a service requestor 
and the server as a service provider. The provider is re-
sponsible for deploying a service on the network, publish-
ing its service to one or more registries, and allowing 
requestors to bind and execute the service. Providers adver-
tise their availability on the network; registries intercept 
these announcements and add published services. The re-
questor looks up a service by sending queries to registries 
and making selections from the available services. Queries 
generally contain search criteria related to the service 
name/type and quality of service. Registries facilitate 
searching by storing the service representation and making 
it available to requestors. Requestors and providers can use 
discovery and join protocols to locate registries and then 
publish or acquire services on the network. We can distin-
guish the service object-oriented architectures (SOOA), 
where providers, requestors, and proxies are network ob-

Figure 1. Service oriented architecture. 
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jects, from service protocol oriented architectures (SPOA), 
where a communication protocol is fixed and known be-
forehand by the provider and requestor. Based on that pro-
tocol and a service description obtained from the service 
registry, the requestor can bind to the service provider by 
creating a proxy used for remote communication over the 
fixed protocol.  In SPOA a service is usually identified by a 
name. If a service provider registers its service description 
by name, the requestors have to know the name of the serv-
ice beforehand. 

In SOOA, a proxy—an object implementing the same 
service interfaces as its service provider—is registered with 
the registries and it is always ready for use by requestors. 
Thus, in SOOA, the service provider publishes the proxy as 
the active surrogate object with a codebase annotation, e.g., 
URLs to the code defining proxy behavior (RMI and Jini 
ERI). In SPOA, by contrast, a passive service description is 
registered (e.g., an XML document in WSDL for 
Web/Globus services, or an interface description in IDL for 
CORBA); the requestor then has to generate the proxy (a 
stub forwarding calls to a provider) based on a service de-
scription and the fixed communication protocol (e.g., 
SOAP in Web/Globus services, IIOP in Corba). This is 
referred to as a bind operation. The binding operation is not 
needed in SOOA since the requestor holds the active surro-
gate object obtained from the registry. 

Web services and Globus services cannot change the 
communication protocol between requestors and providers 
while the SOOA approach is protocol neutral [38]. In 
SOOA, how an object proxy communicates with a provider 
is established by the contract between the provider and its 
published proxy and defined by the provider implementa-
tion. The proxy’s requestor does not need to know who 
implements the interface or how it is implemented. So-
called smart proxies (Jini ERI) grant access to local and 
remote resources; they can also communicate with multiple 
providers on the network regardless of who originally reg-
istered the proxy. Thus, separate providers on the network 
can implement different parts of the smart proxy interface. 
Communication protocols may also vary, and a single 
smart proxy can also talk over multiple protocols including 
application specific protocols.  

SPOA and SOOA differ in their method of discovering 
the service registry (see Figure 1 and 2). SORCER uses 
dynamic discovery protocols to locate available registries 
(lookup services) as defined in the Jini architecture [12]. 
Neither the requestor who is looking up a proxy by its in-
terfaces nor the provider registering a proxy needs to know 
specific locations. In SPOA, however, the requestor and 
provider usually do need to know the explicit location of 
the service registry—e.g., the IP address of an ONC/RPC 
portmapper, a URL for RMI registry, a URL for UDDI 
registry, an IP address of a COS Name Server—to open a 
static connection and find or register a service. In deploy-

ment of Web and Globus services, a UDDI registry is 
sometimes even omitted (WSDL descriptions are shared 
via files outside of the system); in SOOA, lookup services 
are mandatory due to the dynamic nature of objects identi-
fied by service types. Interactions in SPOA are more like 
client-server connections (e.g., HTTP, SOAP, IIOP), in 
many cases with no need to use service registries at all. 

Crucial to the success of SOOA is interface standardiza-
tion. Services are identified by interfaces (service types); 
the exact identity of the service provider is not crucial to 
the architecture. As long as services adhere to a given set of 
rules (common interfaces), they can collaborate to execute 
published operations, provided the requestor is authorized 
to do so.  

Let’s emphasize the major distinction between SOOA 
and SPOA: in SOOA, a proxy is created and always owned 
by the service provider, but in SPOA, the requestor creates 
and owns a proxy which has to meet the requirements of 
the protocol that the provider and requestor agreed upon a 
priori. Thus, in SPOA the protocol is always a generic one, 
reduced to a common denominator—one size fits all—that 
leads to inefficient network communication in some cases. 
In SOOA, each provider can decide on the most efficient 
protocol(s) needed for a particular distributed application. 

Service providers in SOOA can be considered as inde-
pendent network objects finding each other via a service 
registry and communicating through message passing. A 
collection of these object sending and receiving mes-
sages—the only way these objects communicate with one 
another—looks very much like a service object-oriented 
distributed system.  

Do you remember the eight fallacies of network comput-
ing? [4] We cannot just take an object-oriented program 
developed without distribution in mind and make it a dis-
tributed system, ignoring the unpredictable network behav-

Figure 2. Service object-oriented architecture. 
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ior. Most RPC systems, except Jini [3], hide the network 
behavior and try to transform local communication into 
remote communication by creating distribution transpar-
ency based on a local assumption of what the network 
might be. However every single distributed object cannot 
do that in a uniform way as the network is a distributed 
system and cannot be represented completely within a sin-
gle entity.  

The network is dynamic, can’t be constant, and intro-
duces latency for remote invocations. Network latency also 
depends on potential failure handling and recovery mecha-
nisms so we cannot assume that a local invocation is simi-
lar to remote invocation. Thus complete transparency 
distribution—by making calls on distributed objects as 
though they were local—is impossible to achieve in prac-
tice. The distribution is not just an object-oriented imple-
mentation of a single distributed object; it’s a metasystemic 
issue in object-oriented distributed programming. 

Exertion-based programming was introduced [27] to 
handle the metasystemic distribution in SORCER by using 
indirect remote method invocation with no service provider 
explicitly specified in the network request (exertion). Spe-
cific infrastructure objects support exertion-oriented pro-
gramming combined with FMI. That infrastructure defines 
SORCER’s distributed object modularity, extensibility, and 
reuse of service-oriented components consistent with the 
relevant metacomputing granularity and dependency injec-
tion—key features of object-oriented distributed program-
ming that are usually missing in SPOA programming 
environments. 

3. Federated Service Object-oriented 
Computing Environmet: SORCER 
SORCER is a federated service-to-service (S2S) metacom-
puting environment that treats service providers as network 
objects with well-defined semantics of a federated service 
object-oriented architecture (FSOOA).  It is based on Jini 
semantics of services [12] in the network and Jini pro-
gramming model with explicit leases, distributed events, 
transactions, and discovery/join protocols. While Jini fo-
cuses on service management in a networked environment, 
SORCR is focused on exertion-oriented programming and 
the execution environment for exertions.  

As described in Section 2, SOOA consists of three major 
types of network objects: providers, requestors, and regis-
tries. The provider is responsible for deploying the service 
on the network, publishing its service to one or more regis-
tries, and allowing requestors to access its service. Provid-
ers advertise their availability on the network; registries 
intercept these announcements and cache proxy objects to 
the provider services. The requestor looks up proxies by 
sending queries to registries and making selections from the 
available service types. Queries generally contain search 

criteria related to the type and quality of service. Registries 
facilitate searching by storing proxy objects of services and 
making them available to requestors. Providers use discov-
ery/join protocols to publish services on the network, re-
questors use discovery/join protocols to obtain service 
proxies on the network. SORCER uses Jini discovery/join 
protocols to implement its FSOOA and FMI.  

In SOOA, a service provider is an object that accepts 
remote messages from service requestors to execute an item 
of work. These messages are called service exertions. A 
task exertion is an elementary service request, a kind of 
elementary remote instruction (elementary statement) exe-
cuted by a single service provider or a small-scale federa-
tion. A composite exertion called a job exertion is defined 
hierarchically in terms of tasks and other jobs, a kind of 
network procedure executed by a large-scale federation. 
The executing exertion is a service-oriented program that is 
dynamically bound to all needed and currently available 
service providers on the network. This collection of provid-
ers identified in runtime is called an exertion federation. 
This federation is also called an exertion space. While this 
sounds similar to the object-oriented paradigm, it really 
isn’t. In the object-oriented paradigm, the object space is a 
program itself; here the exertion space is the execution en-
vironment for the exertion that is a service-oriented distrib-
uted program. This changes the programming paradigm 
completely. In the former case the object space is hosted by 
a single computer, but in the latter case the service provid-
ers are hosted by the network of computers. 

The overlay network of service providers is called the 
service provider grid and an exertion federation is called a 
virtual metacomputer. The metainstruction set of the meta-
computer consists of all operations offered by all service 
providers in the grid. Thus, a service-oriented program is 
composed of metainstructions with its own service-oriented 
control strategy and service context representing the metap-
rogram parameters [39]. The service context describes the 
data that tasks and jobs work on. Exertion-oriented pro-
grams (metaprograms) can be created interactively [29] and 
allow for a dynamic federation to transparently coordinate 
their execution within the grid. Please note that these meta-

Figure 3. SORCER layered functional architecture. 
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computing concepts are defined differently in classical grid 
computing where a job is just an executing process for a 
submitted executable code with no federation being 
formed. 

In a federated service environment, the system is not 
made up of just a single service, but the cooperation of 
many services. A service exertion may consist of hierarchi-
cally nested exertions that require different service types. A 
service can be broken down into small component services 
instead of being one monolithic all-in-one service. These 
smaller component services—treated as virtual metacom-
puter instructions—can then be distributed among different 
hosts to allow for reusability, scalability, reliability, and 
load balancing. 

Each SORCER provider offers services to other peers 
[19] on the object-oriented overlay network. These services 
are exposed indirectly by methods in well-known public 
remote interfaces and considered as elementary (tasks) or 
compound (jobs) statements of the FSOOA [26,27]. Re-
questors do not need to know the exact location of a pro-
vider beforehand; they can find it dynamically by 
discovering service registries (lookup services) and then 
looking up a needed service implementing required service 
types. 

An exertion can be created interactively [29] or pro-
grammatically (using SORCER APIs) and their execution 
can be monitored and debugged in the overlay service net-
work [32]. Service providers do not have mutual associa-
tions prior to the execution of an exertion; they come 
together dynamically (federate) for all nested tasks and jobs 
in the exertion. Specialized providers within the federation, 
or task peers, execute service tasks. Jobs are coordinated by 
a rendezvous or job peer called a Jobber, one of SORCER 
infrastructure services [26]. However, a job can be sent to 
any service provider (peer). A peer that is not a Jobber type 
is responsible for forwarding the job to one of available job 
peers in the SORCER grid and returning results to the re-
questor. 

Thus implicitly, any peer can handle any job or task. 
Once the job execution is complete, the federation dis-
solves and the providers disperse to seek other exertions to 
join. Also, SORCER supports a traditional approach to grid 
computing similar to those found in Condor [36] and 
Globus [35]. Here, instead of exertions being executed by 
services providing business logic for requested exertions, 
the business logic comes from the service requestor's ex-
ecutable programs that seek compute resources on the net-
work.  

Grid-based services in the SORCER environment in-
clude Grider services collaborating with Jobber services for 
traditional grid job submission, and Caller and Methoder 
services for task execution [15]. Callers execute conven-
tional programs via a system call as described in the service 
context of a submitted task. Methoders download required 

Java code (task method) from requestors to process any 
submitted context accordingly with the downloaded code. 
In either case, the business logic comes from requestors; it 
is conventional executable code invoked by Callers with 
the standard Caller’s service context or mobile Java code 
executed by Methoders with any service context provided 
by the requestor. A functional layered SORCER architec-
ture is presented in Figure 3. 

4. Federated Method Invocation (FMI) 
Each programming language provides a specific computing 
abstraction. Procedural languages are abstractions of as-
sembly languages. Object-oriented languages abstract ele-
ments in the application domain that refer to “objects” as 
their representation in the corresponding solution space. 
The object-oriented distributed programming should allow 
us to describe the distributed problem in terms of the intrin-
sic unpredictable network problem instead of in terms of 
distributed objects that hide the notion of the network. 

What intrinsic distributed abstractions are defined in 
SORCER? Well, service providers are “objects”, but they 
are specific objects—they are network objects with a net-
work state, network behavior, and network type(s). There is 
still a connection to distributed objects: each service pro-
vider looks like a distribute object (compute node) in that it 
has a network state, network behavior, and network 
types(s).  Service providers act also as network peers[19]; 
they are replicated and dynamically provisioned for reli-
ability to compensate for network failures [22]. They can 
be found dynamically in runtime by type(s) they imple-
ment. They can federate for executing a specific network 
request called an exertion and perform hierarchically nested 
(component) exertions. An exertion encapsulates service 
data, operations, and control strategy. Once the exertion’s 
invocation is complete, the federation dissolves and the 
providers disperse to seek other exertions. The exertion can 
incorporate multiple nested exertions where a precedence 
relation is defined by a parent-child relationship. The same 
provider can perform multiple exertions concurrently and 
any provider that implements the matching service type can 
be selected for performing the exertion associated with this 
type. The component exertions may need to share context 
data of ancestor exertions, and the top-level exertion is 
complete only if all nested exertions are successful. 

With that very concise introduction to the abstractions of 
exertion-based programming, let’s look in detail at how 
Federated Method Invocation (FMI) is structured and how 
it works with exertions. 

4.1 Service Messaging and Exertions 

In object-oriented terminology, a message is the single 
means of passing control to an object. If the object re-
sponds to the message, it has an operation and its 
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implementation (method) for that message. The equivalent 
in procedural programming languages to a message is the 
function call. The message means neither the function as it 
is nor the signature of the function, but to send the message 
means roughly to call the function. Because object data is 
encapsulated and not directly accessible, a message is the 

only way to send data from one object to another. Each 
message specifies the name of the receiving object, the 
name (selector) of operation to be invoked, and any paever, 
in the unreliable network of objects, the receiving object 
might not be present or can go away at any time. Thus, we 
should postpone receiving object identification as late as 

Figure 4. The Exertion interface and related subset of FMI interfaces/classes: the abstract class ServiceExertion with two 
abstract subclasses: Task and Job along with FMI parameters defined by the Context interface and signatures defined by the 
Signature interface. 
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possible. Grouping related messages per one request for the 
same data set makes a lot of sense due to network invoca-
tion latency and common errors in handling. These obser-
vations lead us to service-oriented messages called 
exertions that encapsulate both multiple service signatures 
and data as a service context. In other words, an exertion 
primarily consists of one or more operations and the data 
upon which the operations should be performed. Two exer-
tion types are distinguished: elementary and composite 
exertion called service task and service job respectively 
(see Figure 4). There are two ways of invoking exertions. 
In the first case, an Exertion can be invoked by calling Exer-
tion.exert(Transaction). The second way is explained in Sub-
section 4.6.  

4.2 Service Signatures 

An exertion initiates the dynamic federation of all 
needed service providers dynamically—as late as possi-
ble—as specified by signatures of top-level and nested ex-
ertions. Thus, FMI is defined as exerting an exertion, which 
is essentially an indirect invocation of network methods 
specified by the exertion signatures and service context. 
SORCER service providers and requestors usually commu-
nicate via FMI. 

A service Signature is defined by: 
• signature name 
• service type – Java interface name 
• selector of the service operation – operation name of the 

service type (Java interface) 

• operation type –  Signature.Type: PROCESS (default), 
PREPROCESS, POSTPROCESS 

• service access type – Signature.Access; PUSH (default) 
direct binding to Jobbers or Taksers, or DROP using 
Spacer (see Figure 4) 

• priority 
• execution time flag – if  true, the execution time is re-

turned in the service context 
• notifyees – list of email addresses to notify upon com-

pleted) 
• service attributes – requestor’s attributes matching pro-

vider’s registration attributes 
An exertion can comprise of a collection of PREPRROC-
ESS and POSTPROCESS signatures, but only one PROC-
ESS signature. The PROCESS signature defines the 
binding provider for the exertion. 

4.3 Exertion Types 

A Task is the analog of a statement in conventional pro-
gramming languages—here an elementary step of the exer-
tion-oriented program. Thus, it is a minimal unit of 
structuring in exertion-oriented programming. If the pro-
vider responds to a Task, it has a method for the task's 
PROCESS signature. Other signatures associated with the 
Task provide for preprocessing and postprocessing by the 
same or federating providers. An APPEND signature pro-
vides for the context received from the provider identified 
by this signature to be appended in runtime to the task’s 
currently processed service context. Appending a service 

Figure 5. Flow control exertions, conditional IfExertion and looping WhileExertion, used in SORCER. 
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context allows a requestor to use actual data in runtime not 
available to the requestor when a task is submitted. A Task 
is the single means of passing control to a PROCESS pro-
vider. Note that a task is a batch of operations that operate 
on the same service context—a Task shared execution 
state—and all operations of the Task, as defined by signa-
tures, can be executed by the same provider or a group of 
federating providers coordinated by the PROCESS pro-
vider—the provider identified by the PROCESS signature 
of the Exertion. 

A Job is the analog of a procedure in conventional pro-
gramming languages—here a federated procedure in an 
exertion-oriented program. It is a composite of exertions 
(see Figure 4) that makeup the federated procedure. The 
following flow control exertion types define algorithmic 
logic of exertion-oriented programming: 
• Exertion 

• NullExertion 
• AsyncExertion 

• AsyncServiceExertion 
• ServiceExertion 

• ServiceTask 
• ServiceJob 
• IfExertion 
• WhileExertion 
• ForExertion 
• DoExertion 
• ThrowExertion 
• TryExertion 
• BreakExertion 

• ContinueExertion 
Currently implemented flow control Exertion types in 

SORCER are depicted in Figure 5.  

4.4 Knowledge Representation and Service Context 

The implementation of natural language knowledge defini-
tion and editing critically depends on the intricacy of trans-
lation between natural language constructs and internal 
knowledge representation structures. This is a function of 
the chosen knowledge representation method. In the per-
cept formalism, an entity of the world is treated as the im-
age given by perception, and that image is called a percept. 
A percept conceptualization is the semantic counterpart of 
the syntactic level of the knowledge description theory 
called percept calculus [30]. A service context, based on 
the percept conceptualization, is a data structure that de-
scribes service provider ontology along with related data. A 
service ontology is controlled by provider vocabulary that 
describes objects and the relations between them in a pro-
vider's namespace within a specified service domain of 
interest. A requestor submitting an exertion to a provider 
has to comply with that ontology. In the percept conceptu-
alization, attributes and their values are used as atomic con-
ceptual primitives, and complements are used as molecular 
ones. A complement is an attribute sequence (path) with a 
value at the last position. An elementary percept property 
consists of a percept subject and a set of percept comple-
ments, and usually corresponds to a simple sentence of 
natural language. 

A service context is a tree-like structure described con-
ceptually in the EBNF conceptual syntax specification as 
follows:  
1. context = [ subject  ":" ] complement { complement }. 
2. subject = element. 
3. complement = element ";". 
4. element= path [ "=" value ]. 
5. path = attribute { "/" attribute }  [  {  "<" association ">"  

}  ] [ { "/" attribute } ]. 
6. value = object. 
7. attribute = identifier. 
8. relation = domain product. 
9. association = domain tuple. 

10. product = attribute { "|" attribute }. 
11. tuple = value { "|" value }. 
12. attribute  = identifier. 
13. domain = identifier. 
14. association = identifier. 
15. identifier = letter { letter | digit }. 

 
A relation with a single attribute is called a property and is 
denoted as  attribute | attribute.  

To illustrate the idea of context, lets consider the follow-
ing context example (graphically depicted in Figure 7): 

 
laboratory/name = SORCER: university=TTU; 
university/department/name=CS; 

Figure 6. A job federation. The red line (the first from the 
left) indicates the originating FMI invocation: Exer-
tion.exert(Transaction) or Servicer.service(Exertion, Transac-
tion). The root job with component exertions is depicted 
below the provider grid (a cloud). Late bindings of all sig-
natures are indicated by dashed lines that define the job’s 
initial federation (metcomputer).  



This is a DRAFT document and work in progress. Version: 03/31/2007 

university/department/room/number=20B; 
university/department/room/phone/number=806-742-
university/department/room/phone/ext=237; 
director <person | Mike | W | Sobolewski>  

/email=sobol@cs.ttu.edu; 
 

person | firstname | initial | lastname. 
A context leaf node, or data node is where the actual 

data resides. The service context—all context paths—
denotes an application domain namespace, and a context 
model [39] is its context with data nodes appended to its 
context paths. A context path is a hierarchical name for a 
data item in a leaf node. Note that Context can be repre-
sented as an XML document—what has been done in 
SORCER for interoperability—but the power of object 
Contexts comes from the fact that any Java object can be 
naturally used as a data node. In particular exertions them-
selves can be used as data nodes and then executed and 
controlled by providers to run complex iterative programs, 
e.g., nonlinear multidisciplinary optimization [16]. 

4.5 Service-to-Service (S2S) Computing 

Tasks are usually executed by providers of the Tasker type 
(task peer). A Job contains a service context called control 
context that describes the control strategy for the Job. Dedi-
cated service providers of the Jobber type (job peer also 
called rendezvous peer), interpret and execute a job's con-
trol context in terms of the job's nested exertions accord-
ingly. A Jobber manages a shared context (shared execution 
state) for the job federation and provides a substitution for 
input context parameter mappings. A Jobber creates a fed-
eration of required service providers (Taskers and Jobbers) 
in runtime. A SORCER peer (Servicer) that is unable to 
execute an Exertion for any reason forwards the Exertion to 
any available Servicer matching the exertion’s PROCESS 
signature and returns the resulting exertion back to its re-
questor. In Figure 6, a job federation is illustrated with late 
bindings for all signatures in all component exertions. 

All SORCER service providers are service peers as they 
implement the top-level Servicer interface (see Figure 8). 
As a result, each Servicer can initiate a federation created in 
response to Servicer.service(Exertion, Transaction). Servicers 
come together to form a federation participating in execu-
tion of the same exertion. When the exertion is complete, 
Servicers leave the federation and seek a new exertion to 
join. Note that the same exertion can form a different fed-
eration for each execution due to the dynamic nature of 
looking up Servicers by their implemented custom inter-
faces. The hierarchy of SORCER Servicer types is defined 
as follows (see Figure 8, interfaces names in italic below): 
• Servicer (defines S2S) 

• Tasker  
• Jobber  
• Provider extends Remote and Monitorable 

• AdministrableProvider 
• ServiceProvider 

(implements discovery, join, and monitoring) 
• ServiceTasker 

(implements Tasker and Exerter) 
• ServiceJobber 

(implements Jobber and Exerter)) 
• Exerter (not Remote) 

ServiceAccessor uses DynamicAccessor as a naming service 
provider for FMI. The naming service provider furnishes a 
means to dynamically locate service providers on the net-
work. The SORCER ProviderAccessor implements Dynami-
cAccessor using the SORCER Cataloger service with the 
Jini Discovery and Lookup Services. 

Despite the fact that every Servicer can accept any exer-
tion, Servicers have well defined roles in SORCER S2S 
exertion-oriented programming (see Figure  3): 
a) Taskers – process service tasks  
b) Jobbers – process service jobs 
c) Contexters – provide service contexts for APPEND Sig-

natures Figure 7. Example of a service context. 

Figure 8.  FMI Servicers: Tasker and Jobber with the 
name service provider interface—DynamicAccessor. 
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d) FileStorers – provide access to federated file system 
providers [31,1] 

e) Catalogers – Servicer registries 
f) Persisters – persist service contexts, tasks, and jobs to be 

reused for interactive exertion-based programming 
g) Spacers – manage exertion spaces shared across 

Servicers for space-based computing [7] 
h) Relayers – gateway providers, transform exertions to na-

tive representation, for example integration with Web 
services and JXTA 

i) Autenticators, Authorizers, Policers, KeyStorers – pro-
vide support for service-oriented security 

j) Auditors, Reporters, Loggers – support for accountabil-
ity, reporting and logging 

k) Griders, Callers, Methoders – support conventional grid 
computing 

l) Generic ServiceTasker and ServiceJobber implementa-
tions are used to configure domain specific providers 
via dependency injection—configuration files for smart 
proxying and inserting business objects called service 
beans. 

4.6 FMI Triple Command Pattern 

Polymorphism lets us encapsulate a request—in FMI an 
exertion—then establish the signature of operation to call 
and vary the effect of calling the underlying operation by 
varying its implementation. The Command design pattern 
[10] establishes an operation signature as an interface and 
defines various implementations of the interface. In FMI, 
the following three operations are defined:  
1. Exertion.exert(Transaction):Exertion - join the federation 

2. Servicer.service(Exertion, Transaction):Exertion – request 
a service in the federation initiated by the receiver 

3. Exerter.exert(Exertion, Transaction):Exertion – execute the 
component exertion by the target provider in the federa-
tion 

The Triple Command pattern defines various implementa-
tions of these interfaces: Exertion, Servicer, and Exerter. This 
approach allows for the P2P environment [8] via the 
Servicer interface, extensive modularization of Exertions 
and Exerters, and extensibility from the triple design pattern 
so requestors can submit any service-oriented programs 
(exertions) they want with or without transactional seman-
tics. Note that both ServiceTasker and ServiceJobber are 
Servicers and Exerters (see Figure 8 for details); more pre-
cisely their proxies are remote objects of the Servicer type 
only while the provider itself (local object) is both of 
Servicer and Exerter type. 

FMI triple Command Pattern is used as follows: 
1. An exertion can be invoked by calling Exer-

tion.exert(Transaction). The Exertion.exert operation im-

plemented in ServiceExertion uses ServiceAccessor to 
locate in runtime the provider matching the exertion’s 
PROCESS signature (see Figure 8 for classes involved).  

2. If the matching provider is found, then on its access 
proxy (that can also be a smart proxy) the 
Servicer.service(Exertion, Transaction) method is invoked.  

3. When the requestor is authenticated and authorized by 
the provider to invoke the method defined by the exer-
tion’s PROCESS signature, then the provider calls its 
own exert operation: Exerter.exert(Exertion, Transaction).  

4. Exerter.exert method calls exert either of ServiceTasker or 
ServiceJobber (depending on the type of the exertion: ei-
ther Task or Job) that by reflection calls the method 
specified in the PROCES signature (interface and selec-
tor) of the exertion. All application domain methods of 
any application interface (custom Tasker interfaces) 
have the same signature: a single Context type parameter 
and a Context type return vale. Thus a custom interface 
looks like an RMI interface with the above simplifica-
tion on the common signature for all interface methods. 

In the FMI approach, a requestor can create any Exer-
tion, composed from any hierarchically nested Exertions, 
with any service provider supplied anthology. The context 
anthologies along with object proxies and their object at-
tributes are network-centric; they are part of the provider’s 
registration so can they be accessed via Cataloger or lookup 
services by any requestor on the network, e.g., service 
browsers [11] or custom service UI user agents [37] provid-
ing interactive exertion-oriented programming. In SOR-
CER, using these zero-install service UIs, the user can 
define data for downloaded ontology and create a task/job 
to be executed on the virtual metacomputer. 

Individual Providers, in particular Taskers and Jobbers, 
implement their own exert(Exertion, Transaction) methods 
according to their service semantics, in SORCER imple-
mented by ServiceTasker and ServiceJobber respectively. 
SORCER specific domain providers either subclass 
ServiceTasker or ServiceJobber, or by dependency injection 
(using Jini configuration methodology) configure either one 
with one of 12 proxying methods developed in SORCER. 
In general, many different types of taskers and jobbers  can 
be used in SORCER at the same time (currently one 
ServiceTasker and one ServiceJobber implementation exists) 
and exertions via their signatures will make appropriate 
choices as to what virtual metacomputer to run. 

Invoking an exertion, let’s say ext, is similar to invoking 
an executable program ext.exe at the command prompt. If 
we use the Tenex C shell (tcsh), invoking the program is 
equivalent to: tcsh ext.exe, i.e., passing the executable 
ext.exe to tcsh. Similarly, to invoke a metaprogram using 
FMI, in this case the exertion ext, we call ext.exert(null) if 
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no transactional semantics is required. Thus, the exertion is 
the metaprogram and the network shell at the same time, 
which might first come as a surprise, but close evaluation 
of this fact shows it to be consistent with the meaning of 
object-oriented federated programming. Here, the virtual 
metacomputer is a federation that does not exist when the 
exertion is created. Thus, the notion of the virtual meta-
computer is enclosed in the exertion exemplified by FMI. 

The observation concluding that the exertion is the 
metaprogram and the network shell at the same time brings 
us back to the distribution transparency issue discussed in 
Section 2. It might appear that Exertion objects are network 
wrappers as they hide network intrinsic unpredictable be-
havior. However, Exertions are not distributed objects, as 
do not implement any remote interfaces; they are local ob-
jects. Servicers are distributed objects and there are many 
types of Servicers addressing different aspects of network-
ing. The network intrinsic unpredictable network behavior 
is addressed by the SORCER object-oriented distributed 
infrastructure: Taskers, Jobbers, Catalogers, Spacers, File-
Storers, Authenticators, Authorizers, Policers, etc. The 
Servicer-based infrastructure facilitates exertion-oriented 
programming and metaprograms execution using presented 
FMI and allows for constructing reliable object oriented 
distributed systems from unreliable distribute components - 
Servicers. 

5. Conclusions 
A distributed system is not just a collection of distributed 
objects—it’s the network of objects. From an object-
oriented point of view, the network of objects is the prob-
lem domain of object-oriented distributed programming 
that requires relevant abstractions in the solution space. The 
exertion-based programming introduces new network ab-
stractions with federated method invocation in SOOA. 
Service providers register proxies, including smart proxies, 
via dependency injection using twelve methods investi-
gated in SORCER. Executing a top-level exertion means a 
dynamic federation of currently available providers in the 
network collaboratively process service contexts of all 
nested exertions. Services are invoked by passing exertions 
on to providers indirectly via object proxies that are access 
proxies allowing for service providers to enforce a security 
policy on access to services. When permission is granted, 
then the operation defined by a signature is invoked by 
reflection. FMI allows for the P2P environment via the 
Service interface, extensive modularization of Exertions and 
Exerters, and extensibility from the triple command design 
pattern. The presented FMI has been successfully tested in 
multiple concurrent engineering, large-scale distributed 
applications. 
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SOOA - Network Centricity
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Proxy Types

1. Static proxy – created explicitly before it is used (rmic)
2. Dynamic proxy – no need to create it statically in advance (RMI vs. 

Jini ERI)
3. Remote proxy – shields the requestor object from the fact that the 

underlying object is remote
4. Access (protection) proxy – enforces a security policy on access to a 

service or data-providing object (Sevicer)
5. Façades – a façade grants access to multiple underlying objects 

(Servicer + AdminProxy + server)
6. Virtual proxy – performs lazy initialization of expensive back-ends 

(Service UI – UIDesrcriptor)
7. Smart proxy - grants access to local (fat) and remote resources
8. Bootstrap proxy – trusted proxy, created from local codebase (proxy 

verification)
9. Hybrid proxy – combination of the above types
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Intergrid
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The Runtime Environment

• SORCER (Eclipse) workspace
• Jini services (usually available on the network) 

– Lookup service (reggie)
– JavaSpace (outrigger)
– Transaction Manager (mahalo)
– Event Mailbox (mercury)
– Lease Renewal (norm)
– Lookup Discovery (fiddler)

• Webster (HTTP class server) - iGrid/bin/webster/bin
• Service browser (Inca X) - iGrid/bin/incax/bin
• SORCER services - iGrid/bin/sorcer/bin
• Custom services - iGrid/bin/<serviceName>/bin
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Proxying with
Dependency Injection

• smartProxy
• server
• serverType
• serverExporter
• beans

inner outer

server serverType

no exporter exporter

provider
proxy

proxysmartProxy

proxy

Twelve cases 
studied
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Providers Implementing 
Remote Interfaces

JRMP
Stub

JERI
Proxy

JRMP
Stub

Provider = Server
Direct calls can be forbidden with indirect service calls

Servicer#service(Exertion):Exertion

subclas of
ServiceProvider

1

or



Mike Sobolewski11

ArithmeticImpl Implements 
ArithmeticRemote

Adder Subtractor Multiplier Divider

Arithmetic

Remote

ArithmeticRemote

Arythmometer ArithmeticProviderImpl

ServiceProvider

uses

JRMP
Stub

JERI
Proxy

or

ArithmeticProviderImpl_Stub

jeri and jrmp
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Providers with Service Beans 

JERI
Proxy

Provider =  ServiceProvider + beans;
bean - implements service methods in its exposed (not Remote) 

interfaces.
Beans are not servers, they are not exported.

JERI
Proxy

ServiceProvider

2
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Service Beans

beans = new String[] { 
"sorcer.arithmetic.AdderImpl", 
"sorcer.arithmetic.SubtractorImpl", 
"sorcer.arithmetic.MultiplierImpl", 
"sorcer.arithmetic.DividerImpl" }; 

Adder Subtractor Multiplier Divider

AdderImpl SubtractorImpl MultiplierImpl DividerImpl

ServiceProvider

JERI
Proxy

beans
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Providers with Exported Servers 

Server
Proxy

Provider = ServiceProvider + server;
server and serverExporter entries defined, and

server is not Partner type

Server
Proxy Server

ServiceProvider

3
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RemoteArithmometer
Implements ArithmeticRemote

// RMI object
server = new RemoteArithmometer();
// exported with
serverExporter = new JrmpExporter(0);

Adder Subtractor Multiplier Divider

Arithmetic

Arythmometer

Remote

ArithmeticRemote

RemoteArythmometer

ServiceProvider

Server
Proxy

RemoteArythmometer_Stub

server
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Providers with 
Exported Partnership Servers

Server
Proxy

Provider = ServiceProvider + server;
server and serverExporter entries defined, and

server implements Partner

Server

ServiceProvider

Server
Proxy

Admin
Proxy

Prv
Proxy

4

getPartner()
getAdmin()
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RemoteArithmometer Implements 
ArithmeticRemote and
Partnership

// RMI object
server = new PartnerArithmometer();
// exported with
serverExporter = new JrmpExporter(0);

Adder Subtractor Multiplier Divider

Arithmetic

Arythmometer

ServiceProvider

Remote

ArithmeticRemote

RemoteArythmometer

PartnerArythmometer

Server
Proxy

PartnerArythmometer_Stub

RemotePartner

Outer Partner

Servicer

Remote

Administrable

partner

Partnership
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Providers 
with not Exported Servers

Provider = ServiceProvider + server;
server entry defined; no serverExporter entries defined, and

server is not Partner type

ServiceProvider

5

Prv
Proxy

Server
Proxy

Server

Registering
Provider
(Partner)
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RemoteArithmometer Implements 
ArithmeticRemote,
not Exported

// RMI service type
serverType = “sorcer.arithmetic.RemoteArithmometer”;
// exported with
//serverExporter = new JrmpExporter(0);

Adder Subtractor Multiplier Divider

Arithmetic

Arythmometer

Remote

ArithmeticRemote

RemoteArythmometer

ServiceProvider

Prv
Proxy

uses
RemoteArythmometer_Proxy



Mike Sobolewski20

Smart Proxies – Fat Proxy

Smart
Proxy

Provider = ServiceProvider + smartProxy;
requestor invokes local calls only;

smartProxy is not Partnership type, and
ServiceProvider maintains the proxy registration.

ServiceProvider

6

Smart
Proxy

Smart
Proxy

Registering
Provider
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Arithmometer Implements 
Arithmetic (no Remote)

Adder Subtractor Multiplier Divider

Arithmetic

Arythmometer ServiceProvider

smartProxy = new Arithmometer();

Smart
Proxy

fat
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Outer Smart Proxies

Smart
Proxy

ServiceProvider

Provider = ServiceProvider + smartProxy
Requestor invokes local calls only;

smartProxy implements Partnership, and
ServiceProvider maintains the proxy registration.

7

Smart
Proxy

Smart
Proxy Semismart Proxies

Admin
Proxy

Prv
Proxy

Registering
Provider -

Partner
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SemismartArithmometer
Implements Outer

Arythmometer

ServiceProvider

smartProxy = new SemismartArithmometer();

SemismartArythmometer

Smart
Proxy

semismart

Outer Partner

ServicerAdministrable

Partnership
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Smart Proxies 
with Exported Servers

Provider = ServiceProvider + smartProxy + server;
server and serverExporter entries defined, and

server is not Partnership type;
smartProxy implements Partnership, and

ServiceProvider maintains the smartProxy registration.

Server
Proxy Server

ServiceProvider

8

Smart
Proxy

Smart
Proxy

Admin
Proxy
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SmartArithmometer Implements 
Averager

Arythmometer

ServiceProvider

smartProxy = new SmartArithmometer();
server = new AveragerImpl();
serverExporter = new JrmpExporter(0);

Partner

SemismartArythmometer

SmartArythmometer

AveragerImpl_Stub

uses

AveragerImpl

Averager
Smart
Proxy Remote

smart
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Smart Proxies 
with Partnership Servers 

Smart
Proxy

ServiceProvider

Smart
Proxy

Provider = ServiceProvider + smartProxy + server;
requestor invokes local calls only;

server and serverExporter entries defined, and
server implements Partnership
smartProxy implements Outer, and

ServiceProvider maintains the smartProxy registration.
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SmartArithmometer Implements 
Averager, Averager Implements
Partnership

Arythmometer

ServiceProvider

smartProxy = new SmartArithmometer();

server = new PartnerAveragerImpl();

serverExporter = new JrmpExporter(0);

Outer

SemismartArythmometer

SmartArythmometer

Partner

PartnerAveragerImpl_Stub

uses

AveragerImpl

Averager

PartnerAveragerImpl

Smart
Proxy Remote

smart-partner
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Server

Smart Proxies 
with not Exported Servers

Provider = ServiceProvider + smartProxy + server;
server entry defined; no serverExporter entries defined, and

server is Partnership type;
smartProxy implements Outer, and

ServiceProvider maintains the smartProxy registration.

ServiceProvider
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RemoteArithmometer Implements 
ArithmeticRemote,
not Exported

smartProxy = new SemismartArithmometer();
// RMI service type
serverType = “sorcer.arithmetic.RemoteArithmometer”;
// exported with
//serverExporter = new JrmpExporter(0);

Arythmometer

ServiceProvider

Outer

SemismartArythmometer

Partner

PartnerAveragerImpl_Stub

uses

AveragerImpl

Averager

PartnerAveragerImpl

uses

Smart
Proxy
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Proxying with Taskers

tasker

Smart
Proxy

ServiceProvider
implements Tasker

Tasker
Proxy

Tasker
Proxy

Tasker

Tasker Task (ArithmeticTask)
Tasker Method (ArithmeticMethod)

Tasker executes inserted Tasker Method

11
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Proxying with Callers

caller

Smart
Proxy

ServiceProvider
implements Caller

Caller
Proxy

Caller
Proxy

Caller

Callers make a context-based system call

Caller Task with CallerContext

12
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Caller Service Context

String

src/bin/bytecode/callx
array attribute<attribute name>[ ]

URI

caller

call

cmd dir

envp[ ]
in[ ] out[ ]

program

compiler

win/linux/unix

src[ ] bin[ ]

exec type

x

lib[ ]

parameters

arg[ ]load lib[ ]

isOveritable



Mike Sobolewski33

SORCER Research Domain

• Service-Oriented Programming
• Service-Oriented Computing Environment
• Service-Oriented Programming Development 

Tools
• Service-Federated Assurance and Security
• Self-Aware Service Federations
• Autonomic Service Federations
• Service Federated Intergrids
• Metacomputing Service-Oriented MAO 
• SORCER Theses

http://sorcer.cs.ttu.edu/theses/index.html


Mike Sobolewski



Grid interactive service-oriented programming environment 

R.M. Kolonay 
Air Force Research Laboratory, WPAFB  OH 

M. Sobolewski  
Texas Tech University, Lubbock  TX 

 
 

 
 

 

ABSTRACT: Improvements in distributed computing, and the technologies that enable them, have led to sig-
nificant improvements in middleware functionality and quality, mainly through networking and protocols. 
However, the distributed programming style has changed little over the years. Most programs are still written 
line per line of code in languages like C, C++, and Java.  These conventional programs that can provide grid 
operations and grid data can be considered as common grid resources and shared by research and education 
communities worldwide. However, there are no relevant programming methodologies to utilize efficiently 
these shared service providers as a potentially vast grid repository, except through the manual writing of code. 
Realization of the potential of grid computing requires significant improvements in grid programming meth-
odologies. The Grid Interactive Service-Oriented (GISO) methodology is presented that provides a program-
ming environment with development tools that permit interactive (point-and-click), true grid programming, 
thus permitting the different elements of programming to be stored, reused, aggregated, and executed with a 
level of concurrency and grid-level control strategy not achievable in the conventional programming lan-
guages. 

1 INTRODUCTION 
From the beginning of networked computing, the 
desire has existed to develop protocols and methods 
that facilitate the ability of people and automatic 
processes across different computers to share infor-
mation and knowledge across heterogeneous sys-
tems.  As ARPANET (Postel and Sunshine 1981) 
began through the involvement of the NSF (Postel & 
Reynolds 1987, Lynch & Rose 1992) to evolve into 
the Internet for general use, the steady stream of 
ideas became a flood of techniques to submit, con-
trol, and schedule jobs across distributed systems 
(Lee 1992).  The latest in these ideas is the grid 
(Foster 2002, Kesselman et al. 2002, Tuecke et al. 
2002, Foster et al. 2001), to be used by a wide vari-
ety of different users in a non-hierarchical manner to 
provide access to powerful aggregates of resources 
(Foster & Kesselman 1999), Grimshaw, & Wulf 
1997).  Grids, in the ideal, are intended to be ac-
cessed for computation, data storage and distribu-
tion, and visualization and display, among other ap-
plications without consideration for the specific 
nature of the hardware and underlying operating sys-
tems on the resources on which these jobs are car-
ried out (Smarr 1997, NRC 1993). 

The reality at present, however, is that grid re-
sources are still very difficult for most users to ac-
cess, and that detailed programming must be carried 

out by the user through command line and script 
execution to carefully tailor jobs on each end to the 
resources on which they will run, or for the data 
structure that they will access.  This produces frus-
tration on the part of the user, delays in adoption of 
grid techniques, and a multiplicity of specialized 
“grid-aware” tools that are not, in fact, aware of 
each other that defeat the basic purpose of the grid. 
The need for further improvements in grid comput-
ing is clear, and requires significant further im-
provements in grid programming technology.  By 
inspection of the above paradigm, it is clear that in-
cremental improvements in the scripts and submis-
sion techniques will not suffice.  A new grid 
interactive service-oriented (GISO) integrated 
development environment (IDE) that is based on 
evolution of the concepts and lessons learned in the 
FIPER project (Sobolewski 2002, Lapinski & Sobo-
lewski 2002), Röhl et al. 2000), a $21.5 million pro-
gram founded by the United States National Institute 
of Standards and Technology (NIST), is presented. 
It provides an environment that will permit true in-
teractive click-and-drag grid programming through 
the manipulation of graphical elements that repre-
sent object-oriented grid resources, thus permitting 
the different elements of grid program to store, re-
use, aggregate, and execute with a level of concur-
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rency and grid-level control strategy not achievable 
in the conventional programming languages.  

The presented GISO programming approach is 
characterized as follows: 

1. Service-oriented grid programming is 
achieved by applying the object-oriented 
concepts directly to the grid as a repository 
of network objects (method and context 
providers) 

2. Service-oriented execution infrastructure 
enabling dynamic federations of grid pro-
viders to execute service-oriented pro-
grams 

3. Provisioning and deploying grid objects 
with an autonomic behavior, enabling grid 
objects to be instantiated and managed on 
compute resources available through the 
grid using an adaptive quality of service 
model 

4. An open, web-based environment in which 
existing proprietary applications and ana-
lytical packages are integrated through 
Java-based wrappers that handle grid proc-
esses and data distributed across different 
locations. 

2 GISO CONCEPTUAL FRAMEWORK 
Building on the object-oriented paradigm the ser-
vice-oriented paradigm, in which the objects are dis-
tributed, or more precisely they are network objects 
and play some predefined roles. A service provider 
is an object that accepts messages from service re-
questors to execute an item of work – a task. The 
task object is a service request – a kind of elemen-
tary grid instruction executed by a service provider. 
A service jobber is a specialized service provider 
that executes a job – a compound request in terms of 
tasks and other jobs. The job object is a service-
oriented program that is dynamically bound to all 
relevant and currently available service providers on 
the grid. This collection of grid providers dynami-
cally identified by a jobber is called a job federation. 
This federation is also called a job space. While this 
sounds similar to the object-oriented paradigm, it 
really isn’t. In the object-oriented paradigm the ob-
ject space is a program itself; here the job space is 
the execution environment for the job itself and the 
job is a service-oriented program. This changes the 
game completely. In the former case the object space 
is a virtual computer, but in the latter case the job 
space is the virtual network. This virtual network or 
grid federation is the jobs’ execution environment 
and the job object is a service-oriented program. In 
other words, we apply the object-oriented concepts 
directly to the grid in the service-oriented manner. 

The GISO framework is built on the top of the 
FIPER Technology (Kolonay  et al. 2002) middle-
ware. The GISO environment provides the means to 
create interactive service-oriented programs and 
execute them without writing a line of source code. 
Jobs and tasks are created using web-based user in-
terfaces. Also via web-based interfaces the user can 
execute and monitor the execution of jobs or tasks. 
The jobs and tasks are persisted for later reuse. This 
feature allows the user quickly to create new appli-
cations or programs on the fly in terms of existing 
tasks and jobs. 
In all, GISO development tools provide (see Figure 
1) accessibility through web-centric architecture; 
self-manageability using federated grids, scalability 
via network centricity, and adaptability with the 
power of mobile code inserted for execution through 

service providers. 
Figure 1.  GISO layered architecture 

 
In this paper the focus is on the GISO program-

ming and developed tools identified in Figure 1. 

3  GISO PROGRAMMING AND 
DEVELOPMENT TOOLS 

The peer-to-peer (P2P) service-oriented framework 
presented targets multiparty grid transactions. A col-
lection of all registered service providers (active and 
inactive) is called a service grid. A nested transac-
tion is composed of a federation of providers that 
come together for completing a transaction. A trans-
action consists of a set of tasks with specific prece-
dence relationships. When performing a nested 
transaction, be it either a banking transaction or an 
engineering analysis, there are three basic compo-
nents that can be identified. These are; the process 
or series of steps that must be executed to complete 
the transaction, a specification of the action to be 
taken in each step of the process, and the informa-
tion/data associated with each step in the process 
(both input and output). Within FIPER the program 
objects that represent the components of a nested 
transaction are FiperExertions (FiperJob and Fiper-
Task), FiperMethod, and FiperContext. The basic 
work unit within the FIPER programming environ-
ment is an exertion. Each exertion contains a Fiper-
Method and a FiperContext object. The Fiper-
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Method specifies what action that is to be taken in a 
given step in the process.   The FiperContext con-
tains all the data the FiperMetod operates on or gen-
erates. The FiperContext also holds attributes for the 
data much like MIME types that identify the appli-
cation(s) the data  
is associated with, its format (text, binary etc.), and 
other user defined modifiers. A FiperJob defines the 
process. It consists of one or more exertions, the 
execution strategy for the process (sequential, paral-
lel, looping and conditionals), and the map-
ping/relationship of data between exertions. The hi-
erarchy of these classes is shown in Figure 2. It is 
worth nothing that recursion of FiperJobs is sup-
ported. That is any of the FiperTasks within a Fiper 
Job can be a FiperJob itself.  

The relationship between the FIPER program ob-
jects and the general description of a nested transac-
tion is as follows; a FiperJob represents the process, 
the FiperMethod represents the action, and a Fiper-
Context represents the data/information. The Fiper-
Task acts as a container holding the FiperMethod 
and FiperContext creating the basic unit of work that 
is passed between various service providers.  

 
 

As an example of a nested transaction in the 
FIPER Environment consider the following engi-
neering application, the mechanical analysis of a gas 
turbine component. The component, a turbine blade 
is shown in Figure 3. The process of performing a 
mechanical analysis consists of the following ac-
tions; generate solid geometry, descretize the ge-
ometry into a finite element model (FEM), apply 
boundary conditions to FEM, apply materials to 
FEM, and solve the FEM for structural stresses. The 
necessary input data for each action and the resulting 
output data are shown in Figure 4. Also depicted in 
Figure 4 is the association between the three compo-
nents of a nested transaction and the FIPER program 
objects.  

To create the necessary program objects (Fiper-
Context, FiperMethod, FiperTask, and FiperJob) for 
a nested transaction in the FIPER environment a col-
lection of web browser user agents has been devel-
oped.  It is not necessary to use these user agents 
for the development and execution of a FiperJob.  
Any standalone application can perform program-
matically the same steps to create the necessary ob-

jects and act as a service requestor to submit the 

FiperJob for execution.  The following sections il-
lustrate the usage of the web user agents to create 
and execute the necessary FIPER program objects to 
perform the mechanical analysis of the turbine 
blade. Figure 5 shows the Fiper launcher page once 
logged into the Fiper environment. Here it can be 

Figure 4.  Process for the Mechanical Analysis of 
a Turbine Blade 

Figure 2.         Figure 3. 
Program Object Hierarchy  Turbine Blade Geometry 

Figure 5. FIPER Launcher and New Context Dia-
logue
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seen that there are separate selections for the above 
described program objects, FiperContext, FiperTask, 
and FiperJob.  The FiperMethod object is created 
within the FiperTask menu selection. 

3.1 Context Editor 
 
The Context Editor allows the end-user to specify 
the data or references to the data along with attrib-
utes associated with the data.  When creating a new 
context the end-user is presented with the dialog that 
requires the following fields. The Name and De-
scription fields are user defined, the Domain and 
Subdomain are selected from a drop down menu. 
The Access field is a company internal access classi-
fication and the Export Control box indicates if the 
data is export controlled. The ACL button produces 
an Access Control List (ACL) dialogue that allows 
the end-user to assign read, write, and execute per-
missions on this program object based on userid or 
role. Once the end-user completes the New Context 
Dialogue and selects OK the Context Editor then 
appears. Figure 6 shows the Context Editor along 
with the context for the first action or task in the 
Turbine Mechanical Analysis Job represented in 

Figure 4.  
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Figure 6 also illustrates that the FiperContext is a 
tree structure with Context Nodes and Data Nodes. 
The Data Nodes are further identified as either input 
">" or output "<".  The editor allows the end-user 
the ability to create, edit, or delete Context Nodes 
and Data Nodes in the FiperContext. 

3.2 FiperTask Editor 
From the Fiper launcher in Figure 5 the end-user se-

lects Task, New, and completes the New Task Dia-
log  to gain access to the Task Editor shown . 

Recalling that the FiperTask is the fundamental 
building block or work unit in the FIPER Environ-
ment which contains the action and data for a nested 
transaction (reference Figure 4), the Methods field 
represents the action and the Context field repre-
sents the data. To view/edit more detail on theses 
fields the end user selects “Update Content” which 
produces an editor (see Figure 7). Figure 7 shows 
the definition of the FiperMethod and the Context 

that is used for the selected task, Generate Solid 
Shank.  The fields Interface, Command, Provider, 
and Method Type define the Method.  The Inter-
face and the Provider are used as the attributes to lo-
cate a service within the environment with the cur-
rent implementation. The context for this task is the 
CAD Model Context presented in Figure 6. Once all 
the actions/FiperTasks have been defined for a given 
process/FiperJob the FiperJob itself can then be con-
structed. 

3.3 FiperJob Editor 

Figure 8 illustrates the creation of the FiperJob 
represented in Figure 4. It contains all the tasks,  
Generate Solid Shank, Mesh Shank, Apply Bound-
ary Conditions, Apply Materials, and Perform Stress 
Analysis. 
Figure 8. FiperJob Editor 
 

The Job Editor lists all FiperTasks associated 
with the job along with the FiperTask’s Name and 
FiperMethod Attribute information (Provider Name 
and requested provider’s type - interface).  The 
Task and Job Editor features allow the end user to 
add additional FiperTasks or FiperJobs by either 
browsing existing program objects or creating new 

Figure 7. FiperTask, FiperMethod and FiperContext Edi-
tor  

Figure 6.  FiperContext Editor 



objects on the fly. The Job Editor features also en-
able the specification of the Control Context and the 
JobContext. The ControlContext specifies the flow 
and method of execution of the FiperJob. The final 
step before a FiperJob can be executed is to define 
the flow of data between tasks in the job. This is 
done using the JobContext dialog, which can be in-
voked from the Job Editor features on the Job Editor 
Dialog in Figure 8. 

The FiperJob Context dialog for the Turbine 
Analysis Job is shown in Figure 9.  Here the Job is 
shown with each task and the context for each task 
in a hierarchical tree structure.  The data flow from 
one task to the other is defined by dragging one 
Fiper DataNode onto another Fiper DataNode. In 
Figure 16 this has occurred by dragging the Auto-
Shank Output Solid Shank Node contained in Task0 
onto the Solid Shank unnamed Fiper DataNode in 
Task1. 

 
Figure 9.  Fiper JobContext Dialog  
 
Once the data flow has been defined in the JobCon-
text the FiperJob is now ready for execution. To 
submit the job to the Fiper Environment the Run Job 
button is selected in the Job Editor (Figure 8). A 
typical engineering analysis or design job could take 
anywhere from a few hours up to several days or 
even weeks. With jobs running this long it is critical 
that the end-user have access to the status of the job 
and control over the job as it executes. This is the 
function of the Job Monitor. 
 

3.4 FiperJob Monitor 
 
The most critical capability that GISO programming 
will need from an end-users perspective is the ability 

to interact with the process/FiperJob once it has been 
submitted to the environment. Using a GISO IDE 
will require a cultural change within the end-user 
community.  Today's state of practice is that typical 
designers and analysts execute single standalone ap-
plications either on their desktop or submit the runs 
to a major shared resource  (MSR) computing envi-
ronment. In either case the end-user is executing ap-
plications individually and if a failure occurs they 
know at least which application the failure occurred 
within. Also, when running locally or in a MSR the 
end-user usually has some or all control over the 
running application and can closely monitor the pro-
gress of the execution by monitoring log files and or 
output files from the application.  In the GISO IDE 
the end-user is now combining many application to 
perform a nested transaction and submitting the exe-
cution of the nested transaction to the network, 
which could easily take days or weeks to complete. 
In the GISO IDE the end-user may have no idea 
where the execution is taking place and worse will 
have no feedback as to the state of progress of the 
process. In the GISO IDE the end-user surrenders all 
control to the environment, a precarious proposition 
for a designer who is accustomed to having com-
plete control of the applications they are running. 
With these facts in mind a few essential functional-
ities are identified for GISO programming that are 
necessary for end-user to accept such a working en-
vironment.  The end-user must be able to monitor 
the progress of the process and obtain intermediate 
results from a given task. The end-user must be able 
to control the process once it is submitted to the en-
vironment by stopping, suspending, or terminating 
the process. For a suspended GISO program the end-
user must be able to edit not only the data within the 
process but also the process itself by adding or delet-
ing tasks. After any edits to the data or process the 
end-user must be able to resume the process from 
any task within the process not necessarily the task 
the process was suspended at. If the process fails the 
end-user must obtain meaningful information that 
specifies where the failure occurred and what action 
needs to be taken to correct the problem.  This last 
requirement puts a significant burden on the service 
provider developers to properly trap exceptions and 
translate them into meaningful information for the 
end-user. 
In the FIPER Environment the monitoring/client 
process interaction is done using the Job Monitor. 
Figure 10 shows the Turbine Analysis Job running 
in the Job Monitor. The Job Monitor can be viewed 
as an "interactive debugger for program objects or 
services on the network". The Job Monitor shows 
the progress of the process (green complete, 
green/yellow running, red failed, yellow suspended). 
It also displays intermediate information from a task 
(by viewing the job context) if the provider returns 
such information. The client is also able to stop, 
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suspend, step and resume a running job. In addition, 
for a given suspended or completed job, the client 
has access to a drop down menu that allows full edit 
capability of the data in the job or the job/process it-
self.  Data can be changed, tasks can be ed-
ited/added/deleted and the job resumed from any 
task. 

4 CONCLUDING REMARKS 

In the GISO approach object-oriented concepts are 
applied to the network and grid-oriented programs. 
A job is a service-oriented program executed in a 
federated service-oriented environment across mul-
tiple virtual organizations. Jobs are created using 
friendly, interactive web-based graphical interfaces. 
Jini connection technology from Sun Microsystems 
enables federated, platform independent, real world 
grids. It allows us to create GISO programs that 
process a whole aircraft engine as a virtual object-
oriented product control structure that can be ma-
nipulated by multidisciplinary teams as network-
centric, active, evolving product. New shared pro-
grams and engineering applications can be assem-
bled as needed on the fly by integrating new capa-
bilities into existing workflows, systems, devices 
and applications. The presented web-centric GISO 
IDE reduces the costs of solving business problems 
as well as of establishing and maintaining online 
business relationships. Services are provided by 
shared low cost, easy to develop service providers 
and are integrated into the core business of an enter-
prise. An experimental version of presented ap-
proach was successfully deployed at GE Aircraft 
Engines.  
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Abstract  

The concept of a federation of distributed devices 
on a network which enter the federation through a 
process of "discover" and "join", by which they register 
with a service request broker and publish the services 
which they perform is applied to engineering software 
tools. A highly flexible computer architecture is 
developed, leveraging emerging web technologies like 
Sun Microsystems' JiniTM, RMI, JavaSpaces, in which 
engineering software tools like CAD, CAE, PDM, 
optimization, cost modeling, etc. act as distributed 
service providers and service requestors. The individual 
services communicate via so-called context models, 
which are abstractions of the master model data of a 
particular product. A human user interacts with the 
framework through a thin client like a web browser from 
anywhere in the world, where proper security measures 
to prevent unauthorized access to proprietary data is 
maintained. The paradigm of the CAD Master Model is 
extended with the introduction of the Intelligent Master 
Model (IMM), which, in addition to the what, captures 
the why and how of a design through the use of 
knowledge-based engineering tools. An initial example, 
the mechanical analysis of a turbine engine blade, is 
implemented. 

Introduction 

Turbine engine development is a highly coupled 
multidisciplinary process. In a market with ever 
increasing demands in terms of life cycle cost, 
environmental aspects (noise, emissions, and fuel 
consumption), and performance, the availability of 
accurate analytical tools during the design process is a 
given and ceases to be a discriminator between the 
various competitors1,2. It is, therefore, the application of 
these tools and their automated interaction in a robust 

computational environment, which may decide over 
success or failure of a specific project through reduction 
of design cycle time and avoidance of costly rework 
because of availability of high-fidelity information earlier 
in the design process. At the same time, especially in a 
multi-national company, design increasingly takes place 
at spatially distributed locations, potentially all over the 
world, where all participants in the design process need 
constant real-time access to all relevant up-to-date 
product information. In light of these challenges, GE has 
teamed with Engineous Software, BFGoodrich, Parker 
Hannifin, Ohio Aerospace Institute, and Ohio and 
Stanford  Universites in a four-year effort to develop a 
“Federated Intelligent Product EnviRonment” (FIPER) 
under the sponsorship of the National Institute for 
Standards and Technology-Advanced Technology 
Program (NIST-ATPTM), see Figure 1. FIPER strives to 
“drastically reduce design cycle time, and time-to-market 
by intelligently automating elements of the design 
process in a linked, associative environment, thereby 
providing true concurrency between design and 
manufacturing. This will enable distributed design of 
robust and optimized products within an advanced 
integrated web-based environment”3. 

The Intelligent Master Model  

FIPER draws extensively on GE Aircraft Engines’ 
Common Geometry Strategy, the Linked Model 
Environment (LME) and top-down Product Control 
Structure (PCS)4 (Figure 2) using Unigraphics5 (UG) 
WAVE functionality, but tries to extend these efforts 
with the capture of designer’s knowledge in Knowledge 
Based Engineering (KBE) systems to create the 
“Intelligent Master Model” (IMM). In the following 
paragraphs, we will give a brief overview over the 
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Common Geometry Strategy and the terms introduced 
above.

Figure 1: The FIPER Project 

 

Figure 2: Product Control Structure 

GEAE Common Geometry Strategy The GEAE Common Geometry initiative started four 
years ago as a logical extension to Productivity Tools 
which had been under development since the early 
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nineties. It was realized that merely automating what 
was essentially a serial process had limitations and a 
fundamental paradigm shift was required. Bottom-up 
design may be optimal from a part perspective but does 
not necessarily lead to optimal system design. As 
initially conceived, the GEAE Common Geometry 
strategy objective was to make a single geometric 
representation common to all product creation activities 
from product concept through preliminary and detail 
design to manufacturing and services. However, to fully 
exploit the concept, knowledge has to be fused with 
feature-based parametric CAD (Figure 3), an 
environment linking CAD to engineering analysis, the 
LME (Figure 4) and a PCS to render it an Intelligent 
Master Model. This permits a top-down approach to 
design which permits system level requirements to flow 
down to drive the design. The IMM is a major 
enhancement to the master model concept, elevating the 
functionality of today’s CAD systems to a new level. 

 

Figure 3: The Master Model Supports Feature-Based 
Modeling for Design and Manufacturing 

 

 

Figure 4: Linked Model Environment 

The PCS allows top-down control of the design. It 
enables the lead engineer to lay out the overall system 
configuration and control changes in a top-down 
fashion. It facilitates what-if analysis at the conceptual, 
preliminary, and detailed design levels by allowing the 
designer to make parametric changes in the overall 
system layout and space allocation to evaluate one 
configuration versus another. Common Geometry refers 
to the notion that all disciplines involved in the design 

and manufacturing process have access to and use the 
same (evolving) geometric representation of the 
product. Realizing that different disciplinary engineering 
design and analysis tools require geometry at different 
levels of detail, the concept of a “context model” was 
introduced. The context model represents a disciplinary 
context -specific, yet fully associative, “view” of the 
master model geometry. Feature suppression is 
extensively used in context models. For example, a bolt 
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hole, which is important for the stress analyst, may not 
be required for a thermal analysis and therefore be 
suppressed in the thermal context model. Another 
context or “view” of the bolt hole are the manufacturing 
processes and cost to produce it. These context models 
are then linked to the respective disciplinary analysis 
tools, e.g. FEA, CFD, cost, producibility, etc, in the LME 
, see Figure 4. 

System Level Layout with Integrated Design (SOLID) 

The pilot projects to evaluate IMM functionality 
were described in Reference 4. To demonstrate the top-
down design approach, a compressor was built using 
the feature based parametric CAD and WAVE 
functionality in Unigraphics. The following year this 
was extended to a full core engine comprising a 
compressor, combustor and high pressure turbine. The 
resulting model was called SOLID (System Level Layout 
with Integrated Design). Several lessons were learned 
during the pilot which were incorporated not only in the 
SOLID core but in Unigraphics enhanced functionality. 
The SOLID core is shown in Figure 5. 

 

Figure 5: Complete Engine Core Model  

Knowledge Based Engineering 

 KBE is a technology that allows an engineer to 
create a product model based on rules that capture the 
methodology used to design, configure, and assemble 
products. KBE facilitates the capture of the intent 
behind the product design by representing the why and 
how, in addition to the what of a design, see Figure 6. 
The knowledge captured could include everything from 
high-level, non-geometric engineering rules, 
manufacturing constraints, dependencies and 
relationships to parametric geometry definition. The 
geometric description is only one view of the 
information associated with the total product model. 

Links can also be established to standard parts 
catalogs, material databases, analysis tools, empirical 
knowledge, and design handbooks. Effectively, one can 
house, and ultimately archive, corporate design 
practices as well as design and manufacturing 
engineers’ expertise which can then be used by non-
experts in a consistent manner to produce correct-first-
time designs. Once the product model has been created, 
it can be used to rapidly create a new instance of the 
design when the product specifications change. In 
addition, various outputs, including analysis context 
models, etc. would be automatically created. 

 

Figure 6: Knowledge-Based Engineering Extends the 
Master Model Concept 

In the FIPER environment KBE is being used to 
intelligently modify the PCS, drive changes to 
parameters that define cross-sections and features and 
thereby intelligently scale a complete aircraft engine or 
components of the engine. To accomplish this, the 
approach being used within the Unigraphics system is 
to imbed the KBE language IntentTM,6 to drive 
generative and variational design. While variational 
design creates a new design by intelligently scaling an 
existing design, generative design creates a new design 
based on a set of rules without the use of existing 
geometry. Rules management is also being addressed 
by incorporating them in a Product Data Management 
(PDM) system so that they are well documented, 
categorized and easily searchable. 

Another use of KBE that is being pursued is for the 
formulation and execution of the MultiDisciplinary 
Optimization (MDO) problem. Here knowledge will be 
used to guide the decomposition of the overall 
optimization problem into smaller, more manageable, 
sub-problems, and to integrate the solutions of the sub-
problems into an overall system level design. 

The initial approach to KBE was the encapsulation 
of rules about the product in the form of the XESS 
spreadsheet functionality contained within Unigraphics. 
These spreadsheets are linked to the geometry such 
that design rules and practices are parameterized to 
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drive geometry. In addition external analysis codes such 
as those used for engine disk design can be executed. 
Thus an increase in airflow through the compressor 
would initiate an aerodynamic resizing of blades and 
vanes, resulting in a blade and platform resizing 
combined with disk redesign. Upon initiation of the 
UG/WAVE update, the whole compressor would rubber 
band to accommodate the increased airflow. 

It was realized there that were limitations to the 
utilization of spreadsheets to capture the knowledge 
required to accomplish intelligent scaling of the engine 
core. GEAE evaluated several KBE packages to find the 
desired functionality. In the meantime Unigraphics 
Solutions entered into an agreement with Heide 
Corporation to integrate their IntentTM software into 
Unigraphics as "UG Knowledge Fusion". The reason for 
this is that for complex products the number of rules 
gets large very quickly and consequently difficult to 
manage. There are two types of KBE rules, Generative 
and Checking. Generative rules would for example 
change the number of stages in the compressor from 9 
to 7 stages whereas the Checking rules would check 
that the disk bore stress and burst margin conform to 
design practices and run the appropriate codes to 
validate this requirement.  

FIPER Architecture 

Fundamental to the FIPER project is its web-based 
distributed software architecture. FIPER federates 
processes, tools, methods, documents, or knowledge 
bases and data into a dynamic, distributed Intelligent 
Master Model with its underlying services. Some 
services are generic (for example optimization 
algorithms, or knowledge-based systems), and thus, are 
not associated with a particular IMM context but are 
globally available within FIPER. Members of a 
federation agree on basic notions of administration, 
identification, and policy. The resulting federation 
provides the simplicity of access, ease of administration 
and support for sharing services provided by a large 
monolithic system, while retaining the flexibility, and 
control provided by a plug-and-play environment.  

FIPER supports three centricities and deploys three 
neutralities. FIPER’s three centricities are network 
centricity, service centricity, and web centricity. FIPER 
is composed of various service providers; any of these 
can come and go and the system can respond to 
changes in its environment in a reliable way (network 
centricity). The services connected to FIPER discover 
each other and cooperate in a distributed environment 
(service centricity). Users can request to use multiple 
services and check the status of their submissions in 

different locations through HTTP portal with thin web 
clients (web centricity). 

The three neutralities FIPER deploys are location 
neutrality, protocol neutrality, and implementation 
neutrality, Figure 7. Services need not be co-located; 
they are discovered and joined, which simplifies 
management of the entire software environment 
(location neutrality). In addition, the way clients 
communicate with a service provider is not essential. A 
service proxy can use any protocol, for example, Remote 
Method Invocation (RMI), IIOP or even a plain socket 
communication. Clients are not aware of what protocols 
are used and where the implementations reside (protocol 
neutrality). Furthermore, the clients who use the FIPER 
services do not need to know what languages are used 
and how a service is implemented (implementation 
neutrality). In all, FIPER provides accessibility through 
web centric architecture, self-manageability using 
federated services, scalability via network centricity, 
and adaptability with the power of plugging-and-
playing capability. 

Proxy ProxyClient Service
Provider

FIPER
Federation of Services

Proxy

discover
and join

register
and publish

protocol

(protocol 
neutrality)

(location
neutrality)

(implementation
neutrality)

Figure 7: FIPER's Three Neutralities 

FIPER’s federated architecture is based on Java and 
Sun’s emerging JiniTM software system (Figure 8). The 
overall goal is to turn the network into a flexible, easily 
administered tool on which resources can be found by 
humans or computational clients. The JiniTM system 
consists of: 

1. A set of components that provides the infrastructure 
for federating services in a distributed environment 

2. A programming model that supports the production 
of reliable distributed environment 

3. The functionality to register services and resolve 
service requests  
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Java and the emerging JiniTM technology are at the 
heart of this technology. Services are found and 
resolved through a “lookup” service (Figure 8). New 
services are added to the look-up service by a process 
called discovery and join. When plugged into the 
environment, the service first uses a discovery protocol 
to locate an appropriate lookup service and then joins, 
or registers, with the lookup service. Services can 
communicate with any other generic service in the entire 
federated product space. In the case of FIPER, this is 
achieved by an IMM context, user, or service posting a 
need which is resolved by a lookup service. The lookup 
service connects the requesting entity to an entity that 
has the functionality to supply the service. Figure 8 
illustrates this in a given space with four services; CAD, 
KBE, Optimization and Robust Design, and the 
Simulation Engine. Each service provider must be Java 
wrapped in order to join the federation, but it can have 
its own framework of execution. A service could be 
based on RMI, CORBA, Java Native Interface (JNI), 

Microsoft COM/DCOM, or even simple socket 
connection. 

Clients define and submit their jobs via web 
browsers. A FIPER service manager then dispatches 
each job into tasks. These tasks can be executed 
sequentially, in parallel, or combination of both in the 
FIPER environment, depending on their input/output 
data dependency. If a parallel strategy is chosen, tasks 
are dropped into spaces (by using JavaSpaces, for 
example) for distributed computation. Each service 
provider agent, if present, picks up appropriate tasks 
and generates results back to the spaces. On the other 
hand, FIPER provides a service catalog for direct task 
execution. The catalog discovers all FIPER services and 
maintains a list of currently active ones. Appropriate 
registered service providers will then be selected to 
perform tasks. Finally, a service manager collects all the 
outputs and informs the FIPER notification manager 
about the outcome. The results are presented to the 
clients when they request. 

 

Figure 8: Web-Based FIPER Architecture 

This environment promotes concurrency and 
ensures that current and consistent information is 
employed throughout the distributed system. The 
dynamic nature of this approach allows services to be 
added (for example, support for an additional CAD 
system) or withdrawn from a federation at any time. The 
federated environment enables transparent 
communication between the globally distributed IMM 
contexts and services, thus providing the means to 
solve distributed complex tasks such as intelligent 
scaling of entire systems (e.g., an aircraft engine) and 
MDO problems. 

Engineering Services 

The basic premise of FIPER is that everything is on 
the network and everything on the network is viewed as 
a service. With this in mind FIPER can contain any 
“service” needed to support a product throughout its 
life cycle. For example, services for customer 
requirements, design, manufacture, sales, distribution, 
maintenance,  and disposal can all be supported by 
FIPER. For the purpose of the NIST project FIPER will 
focus on the services necessary for the design and 
manufacture of a product. Specifically the domains of 
Design for Six Sigma (DFSS)/MDO, CAD/KBE, 
Engineering Analysis & Sensitivities, Pre/Post 
processing, and Data Repositories will be addressed. 
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This is illustrated in Figure 9. For an initial application 
the services required for the mechanical analysis of an 
aircraft turbine component will be developed. These 
services consist of associative parametric solid 
geometry modeling, meshing, boundary/initial condition 
application, and analysis solution. Although all of these 
services could potentially be provided by one 
monolithic system, this is rarely the case in today’s 

design environment. Tools for these different services 
are selected based on many varying criteria ranging 
from “best in class” to corporate mandate.  Figure 10 
shows the relationship of these services. Although a 
very simple case, it can be used to demonstrate the 
FIPER “service” paradigm in a distributed 
heterogeneous computing environment. 

MDO

Approximation 
RSM

DFSS

CAD =  UG, in-house

KBE

System Level / PD Level 
In-house

Mechanical Analysis 
ANSYS, NASTRAN

LIFE = SIESTA,
            other 

Thermal = in-house, 
PThermal, ANSYS

AERO = APNASA, in-house 
Boundary Layer Code

Producibility 
QPATS

Cost 
$COMPEAT

Meshing = ANSYS, ICEMCFD, 
                 SIESTA, PATRAN

Mapping 
SIESTA

Optimization

DET  = SOLID, AS, MS, LLS, 
ISOBLADE, Tool Verification

FIPER 
Data
Access

DFSS/MDO CAD/KBE Engineering Analysis Pre/Post Processing

Post 
Processing

 
Figure 9: Services Package Diagram  
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Service: Assoc. Param. Solid Modeling
Provider: UG/Open API
Computer: HP WS
Location: Evendale, OH

Service: Meshing
Provider: Patran
Computer: Sun ultra5
Location: Schenectady, NY

Service: Boundary Condition Application
Provider: GEAE SIESTA
Computer: HP WS
Location: Evendale, OH

Service: Mechanical Analysis
Provider: ANSYS
Computer: SGI origin
Location: Schenectady, NY

 

Figure 10: Analysis Flow Chart 

Parametric Solid Geometry Service 

This service generates the necessary solid 
geometry that  will be meshed and analyzed. In this 
example the provider for this is a Unigraphics User 
Function (UFUNC) program that requires an initial seed 
part and a parametric data file as input. With these 
inputs the program constructs a three-dimensional solid 
of the component and associates attributes or “tags” 
with various geometric entities (surfaces, edges, etc.).  
These tags will be identifiable and used by other 
services in the system such as meshing and boundary 
condition application. The UG UFUNC program is 
“wrapped” as a FIPER service and deployed on a Unix 
workstation in a remote location.  

Meshing Service 

The meshing service discretizes a given 
component. As input, it requires a geometric entity and 
some information describing a strategy for meshing the 
supplied geometry. The meshing strategy contains 
information such as mesh seeding parameters and 
element types. These attributes are mapped to the 
geometry via the associated geometric tags. For the 
present case MSC PATRAN7 is the service provider. A 
wrapper is written for PATRAN that  takes the meshing 
strategy information and generates PATRAN PCL. With 
the PCL the wrapper invokes PATRAN which in turn 
produces a mesh for the  given geometry. The service 

exports the meshed geometry in the form of a PATRAN 
neutral file. As shown in Figure 10, the meshing service 
resides on a local Unix work station. It is worthwhile to 
note that all the geometric tags that were created in the 
solid geometry service are transferred onto the 
descritized geometry. Thus, the tags can continue to be 
used to identify particular attributes of the model. These 
will  be available to other services. 

Boundary Condition Application 

The boundary condition service applies a set of 
boundary conditions to a given meshed geometry or 
group of geometries. It requires as input a descritized 
geometry (PATRAN neutral file is one acceptable 
format)  and information describing the boundary 
conditions to be applied (specified displacements, 
temperatures, etc.). Here, a GEAE in-house application 
called SIESTA is the service provider. SIESTA is 
wrapped as a FIPER service and published at a remote 
Unix workstation. The wrapper accepts as input a 
PATRAN neutral file and generic boundary condition 
information. The wrapper  produces SIESTA native 
commands that apply the specified boundary conditions 
to the meshed model.  As in the case of the meshing the 
geometric tags are utilized to associate boundary 
conditions to particular geometric features. The output 
from this service is in a form suitable for a particular 
engineering analysis application such as ANSYS®,8 

Analysis Solution 

Once the model has been meshed, boundary 
conditions applied, and materials selected, the model is 
ready for solution. This service takes the specified input 
and invokes the appropriate solver on the model. In the 
current study ANSYS® is wrapped as a FIPER service. 
The wrapper takes as input an ANSYS® input file and 
simply issues a system call which executes ANSYS®. 
The results of the service are returned in the form of 
VRML (Virtual Reality Modeling Language) files that 
summarize the results. The ANSYS® service is located 
on a local high end compute server.  

Use Cases 

In order to determine the required functionality of 
FIPER, a set of  use cases was developed. The use 
cases were divided into three major categories: System 
level analysis/design, sub-system analysis/design, and 
component analysis/design. FIPER should be flexible 
enough to handle requirements in all these regions. The 
use cases are represented by use case diagrams and 
sequence diagrams. Standard terminology as specified 
in the Unified Modeling Language (UML)9 is used. A 
use case diagram and a sequence diagram for the 
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mechanical analysis of a turbine component is shown in 
Figures 11 and 12.  

Analyst

UG/UFUNC

ANSYS

SIESTA

PATRAN

 Mechanical Analysis

Use Case Diagram

 

Figure 11: Use Case Diagram 

Analyst FIPER UG/UFUNC  proxy PAT proxy SIETA proxy     ANSYS proxy

system requests mechanical from ANSYS proxy

ANSYS requests PREP7

User
requests
stress

Patran requests tagged solid part

Siesta requests tagged meshed  part

Analysis results returned

 
Figure 12: Sequence Diagram for Turbine Mechanical 

Analysis  

The system level use cases focus on the 
“intelligent scaling” of a given system, for example an 
entire gas turbine engine. Intelligent scaling refers to the 
resizing of the system based on the use of a KBE 
system. The KBE contains rules ranging from standard 
design practices, simple empirical equations,  to the 
invocation of high-end engineering analysis codes. 
Once the system level resizing is complete, FIPER 
should support the ability to “zoom” in on a given 
component or subsystem and perform a detailed 
analysis to verify the results produced by the intelligent 
scaling. The sub-system use cases address a collection 
of components and employ preliminary level analysis 
applications along with some detailed analysis level 
applications. These use cases also include the use of 
formal optimization techniques to aid in performing 
robust and optimal design. 

The last class of use cases,  component level 
analysis/design, addresses the requirements for 
performing MDO/robust design with high fidelity 
analysis codes such as FEM and CFD.  

Outlook  

The material presented in this paper represents the 
first six months of work into a four-year research 
contract. While a lot of effort has been put into 
developing the architecture, defining the Intelligent 
Master Model, and setting up a suite of use cases 
representing typical problems encountered in turbine 
engine development, a number of technical risks still 
remains. Web technology is developing rapidly, but so 
far the engineering community has leveraged very little 
of these emerging tools. Sun's JiniTM technology was 
intended for distributed hardware devices, not software, 
yet conceptually there is no reason why it should not be 
applicable in this type of environment. 

The example presented, the turbine blade 
mechanical analysis, is the first use case - and FIPER 
demonstration that - is currently being implemented. 
Over the next three years, these use cases will be 
expanded to cover the range from component to 
subsystem and system level design, analysis, and 
optimization, up to the intelligent scaling of a complete 
turbine engine core. 

If the project is successful, it will constitute a 
complete paradigm shift in the use of engineering 
software. The authors anticipate to keep the scientific 
community informed about the progress of the work 
through subsequent publications and conference 
presentations. 
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Evolution of Computing

From servers …

NO

Service-to-Service

… to network
objectsPeer-to-Peer

• virtual overlay network
• interactive SOP
• federated SOC
• secure
• self-healing
• autonomic
• heterogeneous

Web-based computing

Client-server silos
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Waves of Network Computing



Network is Not Enough

We need to confront Deutsch’s 
Eight Fallacies of the Network

1. The network is reliable

2. Latency is zero 

3. Bandwidth is infinite 

4. The network is secure

5. Topology doesn't change 

6. There is one administrator 

7. Transport cost is zero

8. The network is homogeneous



End-to-End Computing

Java is the glue that enables end-to-end computing



Java™ Technology
Leads the Way…

New application development by language ( Soundview TG, 2001) 



Devices vs. Profiles 



From Wired to Wireless

Wireless devices overtake the Internet (2001 Motorola Inc.) 

M

[12/2003] 

Global Mobile 
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Analogue Users 34m

US Mobile users 140m

Global GSM users 870m

Global CDMA 
Users
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Total European 
users

320m

#1 Mobile Country China (200m)

#1 GSM Country China (195m)

#1 SMS Country Philippines



SORCER Vision

Service

Service

Service

Build new services

Convert legacy apps to 
dynamic SORCER services 
(J2EE™ technology)

Assemble SORCER services 
together (RMI, Jini, Rio, 
JXTA, WS technologies)

Create modern clients 
accessing services

Service

Service

Federated S2S 
environment to ... 

The computer is the service grid that exposes services to clients AWAT
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SORCER Paradigm

Ansys SolveAnsys Solve

SORCER Service: An entity that publishes (by attributes) functioSORCER Service: An entity that publishes (by attributes) functional capabilities on the network. (Mesh, Thermal Analysis, Print,nal capabilities on the network. (Mesh, Thermal Analysis, Print, etc..)etc..)

GeometryGeometry MeshMesh
MaterialsMaterials

BCBC

••Clients Request Services from the NetworkClients Request Services from the Network
-- DOE ServicesDOE Services
-- Analysis ServicesAnalysis Services
-- Optimization ServicesOptimization Services

•• Clients may not care where or who supplies the servicesClients may not care where or who supplies the services

The Network is a Virtual Computer that Exposes Services to ClienThe Network is a Virtual Computer that Exposes Services to Clients AWATts AWAT



Nozzle Combustor CAD/IO B2B

IKS

4. Perform modal analysis

2. Request for nozzle validation

1. Update combustor PCS

3. Check for nozzle insertion

5. Perform CFD blow analysis

(UG) (ProE)

(Blow Analysis)



SORCER’s 3Cs

• Service  Centricity  - Federation of services 

• Network Centricity  - N-1, 1-1, 1-N, N-C 
(Services discover each other) 

• Web Centricity  - HTTP Portal with thin web 
clients

Applying OO techniques to the network



Shrinking Programs

• OLE - One Large Executable

• Shared Libraries

• Share classes

• Mobile Code

Program units becoming smaller and mobile



Change Over Time

• Needs of the system evolve faster than the 
system

• Many decisions implemented in runtime

• It’s less about knowing and more about 
not knowing

Access to a network 
with reconnection to the network



Interface vs. Implementation

• Interfaces are forever

• Implementation is for now, can change

• Mobile code allow multiple 
implementations

Requestors need to know a service interface; 
what not how



Architecture Qualities

• Accessibility - Web centricity

• Manageability - Federated services 

• Scalability, Reliability - Network Centricity

• Adaptability - Mobile Code

Services appear as network objects 
identified by type



Real Distributed Objects

Requestor Provider



Provider Discovery and Join 

DiscoveryDiscovery

A Service Provider Seeks a Lookup ServiceA Service Provider Seeks a Lookup Service

ClientClient ServiceService
ProviderProvider

Service AttrService Attributesibutes
Service PrService Pr

LookupLookup
ServiceService

A Service Provider Registers with Lookup ServiceA Service Provider Registers with Lookup Service

& Join& Join

Service AttributesService Attributes
Service ProxyService Proxy

oxyoxy



Requestor Discovery and Lookup 

A Client Seeks a Lookup Service &A Client Seeks a Lookup Service &

DiscoveryDiscovery

Service AttributesService Attributes

ClientClient ServiceService
ProviderProvider

LookupLookup
ServiceService

Service ProxyService Proxy

Service AttributesService Attributes
Service ProxyService Proxy

Client Receives a Copy of the Service ProxyClient Receives a Copy of the Service Proxy

& Communicate& Communicate

Client Interacts Directly with Service ProviderClient Interacts Directly with Service Provider

, Lookup, Lookup

a Service with the Specified Attributesa Service with the Specified Attributes

Service AttributesService AttributesService AttributesService Attributes



Service-to-Service (S2S) 
Network objects

HTML/XML

HTTP

App Server

HTTP

DBMS

…Provider1 Providern

Client1

Object Registry/
Lookup Service

P1 Pn…P0

P0

P1

Pn

… Clientm

P1 Pn

P1

Providerp

Pp

Pp Pp

service



What does it mean to be a service?

A service is an act of requesting a 
service(Exertion)operation from a service provider.

Service
Provider

Service 
Requestor

service(exertion)

ServiceInterface1 , ServiceInterfacei…,

signature1 , signaturek…,
Impl1

operation1 , operationl…,

If accepted 

then
exertion.exert();

else
forward to a relevant 

service provider



Clusters, Federations, Exertions

Compute 
resource 

management grid

Dynamic QoS 
provisioning grid

Self-organized 
service providers 
allocated to best 

resource

Exertions
SO Programs

Compute 
resource



Vertical iGrid Grids

CybernodesCybernodes –– iGrid.meshiGrid.mesh

Service Providers Service Providers –– iGrid.gridiGrid.grid

Exertions Exertions –– iGrid.spaceiGrid.space

Computing Devices Computing Devices –– iGrid.netiGrid.net

SORCER.coreSORCER.core

SORCER.gridSORCER.grid

SS Beans SS Beans –– iGrid.fieldiGrid.field

iGrid.grid – service providers including services from 
technology (horizontal) grids
SORCER.core – SORCER infrastructure service providers
SORCER.grid – SORCER domain specific service providers



SORCER Functional Architecture

CME LayerCME LayerFile StoreFile Store

Web CME User AgentsWeb CME User Agents

RequestorRequestor

J2EE, Jini, Rio, GAppJ2EE, Jini, Rio, J2EE, Jini, Rio, GAppGApp

Federated Service ProviderFederated Service Provider
Service Provider, Exertion Dispatchers, Proxy, 

Service Bean, Data Accessor, ProviderAccessor

Infrastructure Service Providers (SORCER.core)
Jobber, Spacer, Cataloger, Provisioner, Persister, Tasker, Caller,
FileStorer, Notifier, Reporter, Monitor, Profiler, Securer, Auditor

Infrastructure Service Providers (Infrastructure Service Providers (SORCER.coreSORCER.core))
Jobber, Spacer, Cataloger, Provisioner, Persister, Tasker, Caller,
FileStorer, Notifier, Reporter, Monitor, Profiler, Securer, Auditor

PersistencePersistence
LayerLayer

StaticStatic
BootstrappingBootstrapping

Service Joiner

ExtraportalExtraportalIntraportalIntraportalService UIsService UIs

Utilities and TemplatesUtilities and Templates



Mobile Devices Support

HotSpot CVM KVM Card VM

Java 2
Enterprise

Edition
Java 2

Standard
Edition

J2ME CDC

Handheld
Profile

MID
Profile

Smart
Card

Profile
J2ME CLDC

TV
Profile

Foundation
Profile

RMI
Profile

TV
Profile

Personal
Profile

TV
Profile

Car
ProfileAuto 

ProfileAuto
Profile



Surrogate Services

Jini Capable Machine

Surrogate Host

Private 
Protocol

HTTP/HTTPS

Exported Service
Other 

Exported 
Service

Inter-connect 
Specific Code

SORCER.grid



Mr. X

Provide Service 

SORCER
service

Service Oriented 
Program

Jobber

Deploy Calendar Service

Request

Request

D
ep

lo
y 

C
al

en
da

r S
er

vi
ce

Get m
e Calendar o

f M
r. X

Service UI

Request

SORCER.grid

Surrogate Client

SORCER Calendar Service Created

Mr X se
rvic

e

Interaction Using Private Protocol
Deployed SORCER SUROGATE 
Service



Grid Dispatcher UI

• Choose the Application to run (For example Proth)

• Specify the Job Size for the jobs

• Set the Arguments, Attributes and Executables for the 
application



Arguments UI

• Specify Arguments, Input Files, Output Files for the Application

• Can be added above or below the selected option

• Can be reordered according to user’s requirement (Up, Down, Delete 
buttons)



Executables  - Windows

• Specify Windows Executables and Library Files

• The files can be dynamically downloaded from File Store



Communication across sGrids



Ravi Malladi
SORCER LAB
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