
Course 216: Ordinary Differential Equations

Notes by Chris Blair

These notes cover the ODEs course given in 2007-
2008 by Dr. John Stalker.

Contents

I Solving Linear ODEs 2

1 Reduction of Order 2

2 Computing Matrix Exponentials 2

3 Higher Order Scalar ODEs 4

4 Non-constant Coefficients 4

5 Method of Wronski 5

II Stability 6

6 Non-linear ODEs 6

7 Equilibria and Stability 6

8 Linearisation 8

9 Method of Lyapunov 8

Terminology

Scalar equation A single ODE.

System of equations Several ODEs.

Order The order of an ODE is the order of the highest derivative appearing in it.

Linear / Non-linear A linear ODE is an ODE that is linear, etc.

Homogeneous / Inhomogeneous Homogeneous means no constant terms present. Inhomo-
geneous means constant terms are present.
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Invariants An invariant of a system of ODEs is a function of the dependent and independent
variables and their derivatives which is constant for any solution of the equation. They can be
used to place bounds on solutions.

Part I

Solving Linear ODEs

1 Reduction of Order

• Any higher order ODE or system of ODEs can be reduced to a system of first order ODEs
by introducing new variables to replace the derivatives in the original equation/system.

• For example, the third order equation

c1x
′′′(t) + c2x

′′(t) + c3x
′(t) + c4x(t) = 0

can be reduced to a first order system using the following set of substitutions:

x1 = x, x2 = x′, x3 = x′′

giving:
x′1 = x2, x′2 = x3, x′3 = −c4

c1
x1 −

c3

c1
x2 −

c2

c1
x3

We can write this in matrix form: x′1
x′2
x′3

 =

 0 1 0
0 0 1
− c4

c1
− c3

c1
− c2

c1

  x1

x2

x3


• Hence, any ODE or system of ODEs can be written in the following matrix form:

~x′(t) = A(t)~x(t)

which has solution:
~x(t) = exp(tA) ~x(0)

2 Computing Matrix Exponentials

• The exponential of the matrix tA is given by:

exp(tA) =
∞∑

n=0

1
n!

tnAn

• For a diagonal matrix,

exp


a 0 . . . 0
0 b . . . 0
...

. . .
0 . . . 0 n

 =


exp(a) 0 . . . 0

0 exp(b) . . . 0
...

. . .
0 . . . 0 exp(n)
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• Given two matrices A and B then

exp(A + B) = exp(A)exp(B)

if AB = BA. Note that any scalar multiple of the identity commutes with all matrices.

• 2 by 2 Matrices

A =
(

a b
c d

)
=

(
a+d
2 0
0 a+d

2

)
+

(
a−d

2 b
c d−a

2

)
= B + C

and we have BC = CB so that exp(B +C) = exp B expC. Letting µ = a+d
2 , we then have

exp(tA) = exp(tB) exp(tC)

⇒ exp(tA) =
(

exp(µt) 0
0 exp(µt)

)
exp(tC)

Now, the discriminant ∆ of A is

∆ =
(
trA

)2

− 4 detA

and C2 = ∆
4 I. This leads to three cases:

i) ∆ = 0, then
exp(tC) = I + tC

ii) ∆ < 0, then

exp(tC) = cos
( t
√
−∆
2

)
I +

sin( t
√
−∆
2 )

√
−∆
2

C

iii) ∆ > 0, then

exp(tC) = cosh
( t
√

∆
2

)
I +

sinh( t
√

∆
2 )

√
∆
2

C

• n× n Matrices

Every n by n matrix A is similar to its Jordan form J , which can be written as the sum of
a diagonal and a nilpotent matrix, J = D + N . We have

A = PJP−1

⇒ exp(tA) = P exp(tJ) P−1

⇒ exp(tA) = P exp(tD) exp(tN)P−1

The Jordan form J has the eigenvalues of A on the diagonal, and some ones below the
diagonal, depending on whether the eigenvalues are distinct. The columns of the matrix
P are the eigenvectors of A. The entries of P can also be found once you know J , using
AP = PJ .

The exponential of the nilpotent matrix N is computed directly using the exponential
formula.

Note that in the case of a higher order scalar equation, we only need the first row of P , as
we are just looking for x(t).
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3 Higher Order Scalar ODEs

• Consider a higher order scalar ODE,

cn
dnx

dtn
+ . . . + c2

d2x

dt2
+ c1

dx

dt
+ c0x = 0

which we can write as

p

(
d

dt

)
x = 0

where p is the polynomial

p(s) = cnsn + . . . + c2s
2 + c1s + c0 = 0

which has roots λi.

• A basis for the solution space is then{
exp(λ1t), t exp(λ1t), . . . , tr1−1 exp(λ1t), . . . , exp(λkt), . . . , trk−1 exp(λkt)

}
where the λi are the individual roots of the equation and ri is the multiplicity of the ith

root.

• In the inhomogeneous case, we have p( d
dt )x = f , and have the special case where f itself

satisfies some differential equation q( d
dt )f = 0. Hence

q

(
d

dt

)
p

(
d

dt

)
x = 0

and we can form a basis for the solution space using the roots of r(s) = q(s)p(s). It is
then possible to evaluate the coefficients of the particular solution to the inhomogeneous
equation by evaluating p( d

dt )x = f

4 Non-constant Coefficients

• Homogeneous Scalar Equations

The homogeneous equation

x′(t) = a(t)x(t)

has unique solution:

x(t) = x(0) exp
(∫ t

0

a(s)ds

)
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• Inhomogeneous Scalar Equations

The inhomogeneous equation
x′(t) = a(t)x(t) + f(t)

has unique solution:

x(t) = x(0) exp
(∫ t

0

a(s)ds

)
+

∫ t

0

exp
(∫ t

s

a(r)dr

)
f(s)ds

• Systems

The equation

~x′(t) = A(t)~x(t) + ~f(t)

has unique solution:

~x(t) = W (t)~x(0) +
∫ t

0

W (t)W−1(s)~f(s)ds

where W (t) satisfies the matrix initial value problem

W ′(t) = A(t)W (t), W (0) = I

5 Method of Wronski

• Consider a second order scalar linear homogeneous ODE:

p(t)x′′(t) + q(t)x′(t) + r(t)x(t) = 0 (1)

which has a two-dimensional solution space.

• We define

w(t) = x1(t)x′2(t)− x′1(t)x2(t)

giving

p(t)w′(t)+q(t)w(t) = x1(t)
[
p(t)x′′2(t)+q(t)x′2(t)+r(t)x2(t)

]
−x2(t)

[
p(t)x′′1(t)+q(t)x′1(t)+r(t)x1(t)

]
so if x1, x2 solve (1) then w(t) solves

p(t)w′(t) + q(t)w(t) = 0 (2)

• Hence, if we have x1 a solution to (1) and w a solution to (2), we can then find x2 such
that x2 is a solution to (1), and is linearly independent to x1.
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• Then, given (1) and x1:

w(t) = w(0) exp
(
−

∫ t

0

q(s)
p(s)

ds

)
and as d

dt

(
x2(t)
x1(t)

)
= w(t)

x2
1(t)

,

x2(t)
x1(t)

=
x2(0)
x1(0)

+
∫ t

0

w(s)
x1(s)2

ds

• The general solution is then any linear combination of x1 and x2:

x(t) = c1x(t) + c2x2(t)

Part II

Stability

6 Non-linear ODEs

• Non-linear ODEs

A non-linear ODE is of the form

~x′(t) = ~F
(
~x(t), t

)
• Autonomous Systems

An autonomous system is of the form

~x′(t) = ~F
(
~x(t)

)
7 Equilibria and Stability

• Equilibria

An equilibrium of an autonomous system ~x′(t) = ~F
(
~x(t)

)
is a ~c such that

~F (~c) = 0

i.e. the equilibria of a system are the zeros of ~F .

• Stability

An equilibrium ~c is said to be stable if ∀ ε > 0, ∃ δ > 0 such that if

|| ~x(0)− ~c || ≤ δ

then
|| ~x(t)− ~c || ≤ ε

for all positive t.

6



• Asymptotic Stability

An equilibrium ~c is said to be asymptotically stable if ∃ δ > 0 such that

|| ~x(0)− ~c || ≤ δ ⇒ lim
t→∞

~x(t) = ~c

• Strict Stability

An equilibrium ~c is said to be strictly stable if it is both stable and asymptotically stable.

• Stability and Invariants

If ~c is an equilibrium of an autonomous system and E is a continuously differentiable
invariant of the system which has a strict local minimum at ~c, then ~c is stable but not
asymptotically stable.

• Stability of Linear Constant Coefficient First Order Systems

These are systems

~x′(t) = A~x(t)

with solution

~x(t) = exp(tA)~x(0) = P exp(tJ)P−1~x(0)

~0 is always an equilibrium, and each equilibrium is stable/asymptotically stable if and only
if ~0 is stable/asymptotically stable.

We can determine the stability of the system by considering the real parts of the eigenvalues
of A:

Real Parts Stable Asymptotically Stable

all < 0 Yes Yes

all ≤ 0, Yes No
geometric multiplicity = algebraic multiplicity for all imaginary eigenvalues

all ≤ 0, No No
geometric multiplicity < algebraic multiplicity for some imaginary eigenvalue

some > 0 No No

In the 2 by 2 case, then if trace A < 0 and det A ≥ 0, then ~0 is strictly stable. If trace
A ≤ 0 and det A ≥ 0 then ~0 is stable. Otherwise it is not stable or asymptotically stable.

In the scalar high order case where p( d
dt )x = 0, p(s) a polynomial, if all roots of p(s) = 0

have negative real parts, then we have strict stability. If all roots have non-positive real
parts, and all imaginary roots have multiplicity one, then we have stability but not strict
stability. Otherwise, neither stability nor asymptotic stability.
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8 Linearisation

• The linearisation of an autonomous system ~x′(t) = ~F
(
~x(t)

)
about an equilibrium ~c is the

matrix A defined by

ajk =
∂Fj

∂xk
(~c)

• If all eigenvalues of A have negative real parts, then ~c is strictly stable.

• If some eigenvalue of A has positive real part, then ~c is neither stable nor asymptotically
stable.

• Otherwise, we learn nothing.

9 Method of Lyapunov

• Lyapunov Function

A Lyapunov function for the equilibrium ~c of an autonomous system is a continuously
differentiable function V with a strict local minimum at ~c such that

∑
j

∂V

∂xj
Fj ≤ 0

• Strict Lyapunov Function

A strict Lyapunov function is a Lyapunov function satisfying

∑
j

∂V

∂xj
Fj ≤ −r

[
V (~x)− V (~c)

]

for some positive r.

• An equilibrium ~c is stable if it admits a Lyapunov function, and strictly stable if it admits
a strict Lyapunov function.
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