Course 216: Ordinary Differential Equations

Notes by Chris Blair
These notes cover the ODEs course given in 20072008 by Dr. John Stalker.

Contents

I Solving Linear ODEs 2
1 Reduction of Order 2
2 Computing Matrix Exponentials 2
3 Higher Order Scalar ODEs 4
4 Non-constant Coefficients 4
5 Method of Wronski 5
II Stability 6
6 Non-linear ODEs 6
7 Equilibria and Stability 6
8 Linearisation 8
9 Method of Lyapunov 8

Terminology

Scalar equation A single ODE.
System of equations Several ODEs.
Order The order of an ODE is the order of the highest derivative appearing in it.
Linear / Non-linear A linear ODE is an ODE that is linear, etc.
Homogeneous / Inhomogeneous Homogeneous means no constant terms present. Inhomogeneous means constant terms are present.

Invariants An invariant of a system of ODEs is a function of the dependent and independent variables and their derivatives which is constant for any solution of the equation. They can be used to place bounds on solutions.

Part I

Solving Linear ODEs

1 Reduction of Order

- Any higher order ODE or system of ODEs can be reduced to a system of first order ODEs by introducing new variables to replace the derivatives in the original equation/system.
- For example, the third order equation

$$
c_{1} x^{\prime \prime \prime}(t)+c_{2} x^{\prime \prime}(t)+c_{3} x^{\prime}(t)+c_{4} x(t)=0
$$

can be reduced to a first order system using the following set of substitutions:

$$
x_{1}=x, x_{2}=x^{\prime}, x_{3}=x^{\prime \prime}
$$

giving:

$$
x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=-\frac{c_{4}}{c_{1}} x_{1}-\frac{c_{3}}{c_{1}} x_{2}-\frac{c_{2}}{c_{1}} x_{3}
$$

We can write this in matrix form:

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\frac{c_{4}}{c_{1}} & -\frac{c_{3}}{c_{1}} & -\frac{c_{2}}{c_{1}}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

- Hence, any ODE or system of ODEs can be written in the following matrix form:

$$
\vec{x}^{\prime}(t)=A(t) \vec{x}(t)
$$

which has solution:

$$
\vec{x}(t)=\exp (t A) \vec{x}(0)
$$

2 Computing Matrix Exponentials

- The exponential of the matrix $t A$ is given by:

$$
\exp (t A)=\sum_{n=0}^{\infty} \frac{1}{n!} t^{n} A^{n}
$$

- For a diagonal matrix,

$$
\exp \left(\begin{array}{cccc}
a & 0 & \ldots & 0 \\
0 & b & \ldots & 0 \\
\vdots & & \ddots & \\
0 & \ldots & 0 & n
\end{array}\right)=\left(\begin{array}{cccc}
\exp (a) & 0 & \ldots & 0 \\
0 & \exp (b) & \ldots & 0 \\
\vdots & & \ddots & \\
0 & \ldots & 0 & \exp (n)
\end{array}\right)
$$

- Given two matrices A and B then

$$
\exp (A+B)=\exp (A) \exp (B)
$$

if $A B=B A$. Note that any scalar multiple of the identity commutes with all matrices.

- 2 by 2 Matrices

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
\frac{a+d}{2} & 0 \\
0 & \frac{a+d}{2}
\end{array}\right)+\left(\begin{array}{cc}
\frac{a-d}{2} & b \\
c & \frac{d-a}{2}
\end{array}\right)=B+C
$$

and we have $B C=C B$ so that $\exp (B+C)=\exp B \exp C$. Letting $\mu=\frac{a+d}{2}$, we then have

$$
\begin{gathered}
\exp (t A)=\exp (t B) \exp (t C) \\
\Rightarrow \exp (t A)=\left(\begin{array}{cc}
\exp (\mu t) & 0 \\
0 & \exp (\mu t)
\end{array}\right) \exp (t C)
\end{gathered}
$$

Now, the discriminant Δ of A is

$$
\Delta=(\operatorname{tr} A)^{2}-4 \operatorname{det} A
$$

and $C^{2}=\frac{\Delta}{4} I$. This leads to three cases:
i) $\Delta=0$, then

$$
\exp (t C)=I+t C
$$

ii) $\Delta<0$, then

$$
\exp (t C)=\cos \left(\frac{t \sqrt{-\Delta}}{2}\right) I+\frac{\sin \left(\frac{t \sqrt{-\Delta}}{2}\right)}{\frac{\sqrt{-\Delta}}{2}} C
$$

iii) $\Delta>0$, then

$$
\exp (t C)=\cosh \left(\frac{t \sqrt{\Delta}}{2}\right) I+\frac{\sinh \left(\frac{t \sqrt{\Delta}}{2}\right)}{\frac{\sqrt{\Delta}}{2}} C
$$

- $n \times n$ Matrices

Every n by n matrix A is similar to its Jordan form J, which can be written as the sum of a diagonal and a nilpotent matrix, $J=D+N$. We have

$$
\begin{gathered}
A=P J P^{-1} \\
\Rightarrow \exp (t A)=P \exp (t J) P^{-1} \\
\Rightarrow \exp (t A)=P \exp (t D) \exp (t N) P^{-1}
\end{gathered}
$$

The Jordan form J has the eigenvalues of A on the diagonal, and some ones below the diagonal, depending on whether the eigenvalues are distinct. The columns of the matrix P are the eigenvectors of A. The entries of P can also be found once you know J, using $A P=P J$.
The exponential of the nilpotent matrix N is computed directly using the exponential formula.
Note that in the case of a higher order scalar equation, we only need the first row of P, as we are just looking for $x(t)$.

3 Higher Order Scalar ODEs

- Consider a higher order scalar ODE,

$$
c_{n} \frac{d^{n} x}{d t^{n}}+\ldots+c_{2} \frac{d^{2} x}{d t^{2}}+c_{1} \frac{d x}{d t}+c_{0} x=0
$$

which we can write as

$$
p\left(\frac{d}{d t}\right) x=0
$$

where p is the polynomial

$$
p(s)=c_{n} s^{n}+\ldots+c_{2} s^{2}+c_{1} s+c_{0}=0
$$

which has roots λ_{i}.

- A basis for the solution space is then

$$
\left\{\exp \left(\lambda_{1} t\right), t \exp \left(\lambda_{1} t\right), \ldots, t^{r_{1}-1} \exp \left(\lambda_{1} t\right), \ldots, \exp \left(\lambda_{k} t\right), \ldots, t^{r_{k}-1} \exp \left(\lambda_{k} t\right)\right\}
$$

where the λ_{i} are the individual roots of the equation and r_{i} is the multiplicity of the $i^{t h}$ root.

- In the inhomogeneous case, we have $p\left(\frac{d}{d t}\right) x=f$, and have the special case where f itself satisfies some differential equation $q\left(\frac{d}{d t}\right) f=0$. Hence

$$
q\left(\frac{d}{d t}\right) p\left(\frac{d}{d t}\right) x=0
$$

and we can form a basis for the solution space using the roots of $r(s)=q(s) p(s)$. It is then possible to evaluate the coefficients of the particular solution to the inhomogeneous equation by evaluating $p\left(\frac{d}{d t}\right) x=f$

4 Non-constant Coefficients

- Homogeneous Scalar Equations

The homogeneous equation

$$
x^{\prime}(t)=a(t) x(t)
$$

has unique solution:

$$
x(t)=x(0) \exp \left(\int_{0}^{t} a(s) d s\right)
$$

- Inhomogeneous Scalar Equations

The inhomogeneous equation

$$
x^{\prime}(t)=a(t) x(t)+f(t)
$$

has unique solution:

$$
x(t)=x(0) \exp \left(\int_{0}^{t} a(s) d s\right)+\int_{0}^{t} \exp \left(\int_{s}^{t} a(r) d r\right) f(s) d s
$$

- Systems

The equation

$$
\vec{x}^{\prime}(t)=A(t) \vec{x}(t)+\vec{f}(t)
$$

has unique solution:

$$
\vec{x}(t)=W(t) \vec{x}(0)+\int_{0}^{t} W(t) W^{-1}(s) \vec{f}(s) d s
$$

where $W(t)$ satisfies the matrix initial value problem

$$
W^{\prime}(t)=A(t) W(t), \quad W(0)=I
$$

5 Method of Wronski

- Consider a second order scalar linear homogeneous ODE:

$$
\begin{equation*}
p(t) x^{\prime \prime}(t)+q(t) x^{\prime}(t)+r(t) x(t)=0 \tag{1}
\end{equation*}
$$

which has a two-dimensional solution space.

- We define

$$
w(t)=x_{1}(t) x_{2}^{\prime}(t)-x_{1}^{\prime}(t) x_{2}(t)
$$

giving
$p(t) w^{\prime}(t)+q(t) w(t)=x_{1}(t)\left[p(t) x_{2}^{\prime \prime}(t)+q(t) x_{2}^{\prime}(t)+r(t) x_{2}(t)\right]-x_{2}(t)\left[p(t) x_{1}^{\prime \prime}(t)+q(t) x_{1}^{\prime}(t)+r(t) x_{1}(t)\right]$
so if x_{1}, x_{2} solve (1) then $w(t)$ solves

$$
\begin{equation*}
p(t) w^{\prime}(t)+q(t) w(t)=0 \tag{2}
\end{equation*}
$$

- Hence, if we have x_{1} a solution to (1) and w a solution to (2), we can then find x_{2} such that x_{2} is a solution to (1), and is linearly independent to x_{1}.
- Then, given (1) and x_{1} :

$$
w(t)=w(0) \exp \left(-\int_{0}^{t} \frac{q(s)}{p(s)} d s\right)
$$

and as $\frac{d}{d t}\left(\frac{x_{2}(t)}{x_{1}(t)}\right)=\frac{w(t)}{x_{1}^{2}(t)}$,

$$
\frac{x_{2}(t)}{x_{1}(t)}=\frac{x_{2}(0)}{x_{1}(0)}+\int_{0}^{t} \frac{w(s)}{x_{1}(s)^{2}} d s
$$

- The general solution is then any linear combination of x_{1} and x_{2} :

$$
x(t)=c_{1} x(t)+c_{2} x_{2}(t)
$$

Part II

Stability

6 Non-linear ODEs

- Non-linear ODEs

A non-linear ODE is of the form

$$
\vec{x}^{\prime}(t)=\vec{F}(\vec{x}(t), t)
$$

- Autonomous Systems

An autonomous system is of the form

$$
\vec{x}^{\prime}(t)=\vec{F}(\vec{x}(t))
$$

7 Equilibria and Stability

- Equilibria

An equilibrium of an autonomous system $\vec{x}^{\prime}(t)=\vec{F}(\vec{x}(t))$ is a \vec{c} such that

$$
\vec{F}(\vec{c})=0
$$

i.e. the equilibria of a system are the zeros of \vec{F}.

- Stability

An equilibrium \vec{c} is said to be stable if $\forall \varepsilon>0, \exists \delta>0$ such that if

$$
\|\vec{x}(0)-\vec{c}\| \leq \delta
$$

then

$$
\|\vec{x}(t)-\vec{c}\| \leq \varepsilon
$$

for all positive t.

- Asymptotic Stability

An equilibrium \vec{c} is said to be asymptotically stable if $\exists \delta>0$ such that

$$
\|\vec{x}(0)-\vec{c}\| \leq \delta \Rightarrow \lim _{t \rightarrow \infty} \vec{x}(t)=\vec{c}
$$

- Strict Stability

An equilibrium \vec{c} is said to be strictly stable if it is both stable and asymptotically stable.

- Stability and Invariants

If \vec{c} is an equilibrium of an anomous system and E is a continuously differentiable invariant of the system which has a strict local minimum at \vec{c}, then \vec{c} is stable but not asymptotically stable.

- Stability of Linear Constant Coefficient First Order Systems

These are systems

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

with solution

$$
\vec{x}(t)=\exp (t A) \vec{x}(0)=P \exp (t J) P^{-1} \vec{x}(0)
$$

$\overrightarrow{0}$ is always an equilibrium, and each equilibrium is stable/asymptotically stable if and only if $\overrightarrow{0}$ is stable/asymptotically stable.

We can determine the stability of the system by considering the real parts of the eigenvalues of A :

Real Parts	Stable	Asymptotically Stable
all <0	Yes	Yes
all ≤ 0, geometric multiplicity $=$ algebraic multiplicity for all imaginary eigenvalues	Yes	No
all ≤ 0, geometric multiplicity < algebraic multiplicity for some imaginary eigenvalue	No	No
some >0	No	No

In the 2 by 2 case, then if trace $A<0$ and $\operatorname{det} A \geq 0$, then $\overrightarrow{0}$ is strictly stable. If trace $A \leq 0$ and $\operatorname{det} A \geq 0$ then $\overrightarrow{0}$ is stable. Otherwise it is not stable or asymptotically stable. In the scalar high order case where $p\left(\frac{d}{d t}\right) x=0, p(s)$ a polynomial, if all roots of $p(s)=0$ have negative real parts, then we have strict stability. If all roots have non-positive real parts, and all imaginary roots have multiplicity one, then we have stability but not strict stability. Otherwise, neither stability nor asymptotic stability.

8 Linearisation

- The linearisation of an autonomous system $\vec{x}^{\prime}(t)=\vec{F}(\vec{x}(t))$ about an equilibrium \vec{c} is the matrix A defined by

$$
a_{j k}=\frac{\partial F_{j}}{\partial x_{k}}(\vec{c})
$$

- If all eigenvalues of A have negative real parts, then \vec{c} is strictly stable.
- If some eigenvalue of A has positive real part, then \vec{c} is neither stable nor asymptotically stable.
- Otherwise, we learn nothing.

9 Method of Lyapunov

- Lyapunov Function

A Lyapunov function for the equilibrium \vec{c} of an autonomous system is a continuously differentiable function V with a strict local minimum at \vec{c} such that

$$
\sum_{j} \frac{\partial V}{\partial x_{j}} F_{j} \leq 0
$$

- Strict Lyapunov Function

A strict Lyapunov function is a Lyapunov function satisfying

$$
\sum_{j} \frac{\partial V}{\partial x_{j}} F_{j} \leq-r[V(\vec{x})-V(\vec{c})]
$$

for some positive r.

- An equilibrium \vec{c} is stable if it admits a Lyapunov function, and strictly stable if it admits a strict Lyapunov function.

