
8. Solving ODEs in MATLAB

This is one of the most important chapters in this manual. Here we will describe how to use
MATLAB’s built-in numerical solvers to find approximate solutions to almost any system of differential
equations. At this point readers might be thinking, “I’ve got dfield6 and pplane6 and I’m all set. I
don’t need to know anything further about numerical solvers.” Unfortunately, this would be far from the
truth. For example, how would we handle a system modeling a driven, damped oscillator such as

x′
1 = x2,

x′
2 = −2x1 − 3x2 + cos t.

(8.1)

System (8.1) is not autonomous! Pplane6 can only handle autonomous systems. Furthermore, how
would we handle a system such as

x′
1 = x1 + 2x2,

x′
2 = −x3 − x4,

x′
3 = x1 + x3 + x4,

x′
4 = −2x2 − x4.

(8.2)

The right-hand sides of system (8.2) do not explicitly involve the independent variable t , so the system
is autonomous. However, system (8.2) is not planar! Pplane6 can only handle autonomous systems
of two first order differential equations (planar systems).

Finally, in addition to handling systems of differential equations that are neither planar nor au-
tonomous, we have to develop some sense of trust in the output of numerical solvers. How accurate are
they?

MATLAB’s ODE Suite

A new suite of ODE solvers was introduced with version 5 of MATLAB. The suite now contains the
seven solvers ode23, ode45, ode113, ode15s, ode23s, ode23t, and ode23tb. We will spend most of
our time discussing the general purpose solver ode45. We will also briefly discuss ode15s, an excellent
solver for stiff systems. Although we will not discuss the other solvers, it is important to realize that the
calling syntax is the same for each solver in MATLAB’s suite. In the next chapter, we will discuss the
MATLAB function odesolve, which puts a graphical user interface around the MATLAB solvers.

In addition to being very powerful, MATLAB’s numerical solvers are easy to use, as you will soon
discover. The methods described herein are used regularly by engineers and scientists, and are available
in any version of MATLAB. The student who learns the techniques described here will find them useful
in many later circumstances.

The ode45 solver uses a variable step Runge-Kutta procedure. Six derivative evaluations are used
to calculate an approximation of order five, and then another of order four. These are compared to come
up with an estimate of the error being made at the current step. It is required that this estimated error at
any step should be less than a predetermined amount. This predetermined amount can be changed using
two tolerance parameters, and a very high degree of accuracy can be required of the solver. We will
discuss this later in this chapter. For most of the uses in this Manual the default values of the tolerance
parameters will provide sufficient accuracy, and we will first discuss the use of the solver with its default
settings.
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Single First Order Differential Equations

We are looking at an initial value problem of the form x′ = f (t, x), with x(t0) = x0. The calling
syntax for using ode45 to find an approximate solution is ode45(odefcn,tspan,x0), where odefcn
calls for a functional evaluation of f (t, x), tspan=[t0,tfinal] is a vector containing the initial and
final times, and x0 is the x-value of the initial condition.

Example 1. Use ode45 to plot the solution of the initial value problem

x′ = cos t

2x − 2
, x(0) = 3, (8.3)

on the interval [0, 2π ].

Note that equation (8.3) is in normal form x′ = f (t, x), where f (t, x) = cos t/(2x − 2). From the
data we have tspan = [0,2*pi] and x0 = 3. We need to encode the odefcn. Open your editor and
create an ODE function M-file with the contents

function xprime = ch8examp1(t,x)
xprime = cos(t)/(2*x - 2);

Save the file as ch8examp1.m. Notice that f (0, 2) = cos 0/(2 · 2 − 2) = 1/2 and

>> ch8examp1(0,2)
ans =

0.5000

so the M-file gives the correct answer. If your output does not match ours, check your function code for
errors. If you still have difficulty, revisit Chapter 4, especially the discussion of the MATLAB path.

You can get a fast plot of the solution by executing ode45(@ch8examp1,[0,2*pi],3).1 Notice
that we did not specify any outputs. This causes ode45 to plot the solution. Usually you will want the
output in order to analyze it and treat it in your own way. The following code should produce an image
similar to that shown in Figure 8.1.

>> [t,x] = ode45(@ch8examp1,[0,2*pi],3);
>> plot(t,x)
>> title('The solution of x''=cos(t)/(2x - 2), with x(0) = 3.')
>> xlabel('t'), ylabel('x'), grid

The output of the ode45 command consists of a column vector t, containing the t-values at which the
solution was computed, and a column vector x containing the computed x-values.2

1 If you are using a version of MATLAB prior to version 6.0, the calling sequence should be
ode45(’ch8examp1’,[0,2*pi],3). We discussed this issue in Chapter 4. There are other differ-
ences in the syntax to be used with MATLAB’s ODE solvers between version 6 and prior versions. We
will emphasize the version 6 usage. For systems without parameters, users of older versions of MATLAB
need only replace the function handles by the function names between single quotes. As further differ-
ences arise, we will explain them, but if you are using an older version, you should execute help ode45
to be sure of the correct syntax.

2 To see the output from the ode45 routine execute [t,x].
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Figure 8.1. The solution of the initial value
problem in Example 1.

Figure 8.2. The solution of the initial value
problem in Example 2.

Using inline functions. If you do not want to save your work, the easiest way to encode the needed
odefcn is to create the inline function

>> f = inline('cos(t)/(2*x - 2)','t','x')
f =

Inline function:
f(t,x) = cos(t)/(2*x - 2)

We notice that f (0, 2) = 1/2, and

>> f(0,2)
ans =

0.5000

so it seems to be working correctly. The command ode45(f,[0,2*pi],3) 3 will plot the solution in
a figure window, with the computed points plotted as circles. Try it yourself. If you want to save the
computed data, execute [t,x] = ode45(f,[0,2*pi],3);.

Function M-File Drivers and Subfunctions4

In Chapter 4 we explained how to use function M-files to ease the process of doing computations
and creating reproducible graphics. This technique is especially useful when using ODE solvers, as the
next example will illustrate.

Example 2. Use ode45 to plot the solution of the initial value problem

dx

dt
= et cos x, x(0) = 0, (8.4)

3 Notice that we use just f when we are using an inline function. Function handles and single quotes
are not needed.

4 Subfunctions were introduced in version 6 of MATLAB and are not available in earlier versions.
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on the interval [0, 4]. Plot the computed points in a distinctive marker style as well as the curve connecting
them.

We will put all of the commands into a function M-file, with the odefcn as a subfunction. We will
also plot the computed points with dots to make them visible. Create the file

function ch8examp2
close all
[t,x] = ode45(@dfile,[0,4],0);
plot(t,x,'.-')
xlabel('t'), ylabel('x')
title('Solution of x'' = e^t cos x with x(0) = 0')

function xprime = dfile(t,x)
xprime = exp(t)*cos(x);

and save it as ch8examp2.m. Executing ch8examp2 will create Figure 8.2. Notice in Figure 8.2 that
the computed points start out close to each other and then spread out for a while before becoming really
close to each other as t gets larger than 3. This illustrates the fact that ode45 is a variable step solver.

The file ch8examp2 is a function M-file which serves as a master routine or driver, with the ODE
function defined as a subfunction. Subfunctions are available only within the function where they are
defined. Notice that ch8examp2 cannot be a script M-file, since subfunctions are allowed only in function
M-files.

There are several advantages to using subfunctions inside master functions in this way. Once you
have written the master file for a particular purpose, it is easy to reproduce the result. It puts everything
involved with a problem in one file. This file can be given a suggestive name, as we did here, to make
it easy to interpret later. With all of the commands in one file, it is relatively easy to make changes and
correct errors. Furthermore, once you have written one such file, additional ones might well be simple
modifications of the first. Frequently, all that is needed is to change the values of the various properties.
This applies to the ODE subfunction as well. There is really no need to give this subfunction a distinctive
name. Call it dfile, or just f. Since the subfunction is available only within the master function it does
not matter if it has the same name in every such file. Finally, notice that it is not really more work to
produce the file than to to execute the original commands.

Systems of First Order Equations

Actually, systems are no harder to handle using ode45 than are single equations. Consider the
following system of n first order differential equations:

x′
1 = f1(t, x1, x2, . . . , xn),

x′
2 = f2(t, x1, x2, . . . , xn),

...

x′
n = fn(t, x1, x2, . . . , xn).

(8.5)

108



System (8.5) can be written in the vector form

⎡

⎢

⎢

⎣

x1
x2
...

xn

⎤

⎥

⎥

⎦

′

=

⎡

⎢

⎢

⎣

x′
1

x′
2
...

x′
n

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

f1(t, [x1, x2, . . . , xn]T )

f2(t, [x1, x2, . . . , xn]T )
...

fn(t, [x1, x2, . . . , xn]T )

⎤

⎥

⎥

⎦

(8.6)

If we define the vector x = [x1, x2, . . . , xn]T , system (8.6) becomes

x′ =

⎡

⎢

⎢

⎣

f1(t, x)

f2(t, x)
...

fn(t, x)

⎤

⎥

⎥

⎦

. (8.7)

Finally, if we define F(t, x) = [f1(t, x), f2(t, x), . . . , fn(t, x)]T , then system (8.7) can be written as

x′ = F(t, x), (8.8)

which, most importantly, has a form identical to the single first order differential equation, x′ = f (t, x),
used in Example 1. Consequently, if function xprime=F(t,x) is the first line of a function ODE
file, it is extremely important that you understand that x is a vector5 with entries x(1), x(2),..., x(n).
Confused? Perhaps a few examples will clear the waters.

Example 3. Use ode45 to solve the initial value problem

x′
1 = x2 − x2

1 ,

x′
2 = −x1 − 2x1x2,

(8.9)

on the interval [0, 10], with initial conditions x1(0) = 0 and x2(0) = 1.

We can write system (8.9) as the vector equation
[

x1
x2

]′
=
[

x2 − x2
1−x1 − 2x1x2

]

. (8.10)

If we set F(t, [x1, x2]T ) = [

x2 − x2
1 , −x1 − 2x1x2

]T
and x = [x1, x2]T , then system (8.10) takes the

form x′ = F(t, x). The key thing to realize is the fact that x = [x1, x2]T is a vector with two components,
x1 and x2. Similarly, x′ = [x1

′, x2
′]T is also a vector with two components, x1

′ and x2
′.

Open your editor and create the following ODE file6.

function xprime = F(t,x)
xprime = zeros(2,1); %The output must be a column vector
xprime(1) = x(2) - x(1)^2;
xprime(2) = -x(1) - 2*x(1)*x(2);

5 In MATLAB, if x=[2;4;6;8], then x(1)=2, x(2)=4, x(3)=6, and x(4)=8.
6 Even though this system is autonomous, the ODE suite does not permit you to write the first line of

the ODE file without the t variable as in function xprime=F(x). If you did, you would receive lots
of error messages.
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Save the file as F.m. The line xprime = zeros(2,1) initializes xprime, creating a column vector with
two rows and 1 column. Each of its entries is a zero. Note that the next two lines of the ODE file duplicate
exactly what you see in system (8.9).

Even though we write x = [x1, x2]T in the narrative, it is extremely important that you understand
that x is a column vector; that is,

x =
[

x1
x2

]

.

Therefore, the variable x in the ODE file is also a column vector.

As always, it is an excellent idea to test that your function ODE file is working properly before
continuing. Because F(t, [x1, x2]T ) = [x2 − x2

1 , −x1 − 2x1x2]T , we have that F(2, [3, 4]T ) = [4 −
32, −3 − 2(3)(4)]T = [−5, −27]T . Test this result at the MATLAB prompt.

>> F(2,[3;4])
ans =

-5
-27

Notice that the function F(t,x) expects two inputs, a scalar t and a column vector x. We used t = 2
and x = [3;4]. Because this system is autonomous and independent of t , the command F(5,[3;4])
should also produce [-5;-27]. Try it!

Before we call ode45, we must establish the initial condition. Recall that the initial conditions for
system (8.9) were given as x1(0) = 0 and x2(0) = 1. Consequently, our initial condition vector will be

x(0) =
[

x1(0)

x2(0)

]

=
[

0
1

]

.

Of course, this is a column vector, so we use x0 = [0;1] or x0 = [0, 1]'. Then

>> [t,x] = ode45(@F,[0,10],[0;1]);

computes the solution.7

Typing whos at the MATLAB prompt yields8

>> whos
Name Size Bytes Class

t 77x1 616 double array
x 77x2 1232 double array

Note that t and x both have 77 rows. Each row in the solution array x corresponds to a time in the same
row of the column vector t. The matrix x has two columns. The first column of x contains the solution

7 If you are working with version 5 of MATLAB, execute [t,x]=ode45(’F’,[0,10],[0;1])
instead.

8 You may have more variables in your workspace than the number shown here. In addition the
number of rows in t and x may differ from system to system.
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for x1, while the second column of x contains the solution x2. Typing [t,x] at the MATLAB prompt and
viewing the resulting output will help make this connection9.

Given a column vector v and a matrix Awhich have the same number of rows, the MATLAB command
plot(v,A) will produce a plot of each column of the matrix A versus the vector v.10 Consequently, the
command plot(t,x) should produce a plot of each column of the matrix x versus the vector t. The
following commands were used to produce the plots of x1 versus t and x2 versus t in Figure 8.3.

>> plot(t,x)
>> title('x_1'' = x_2 - x_1^2 and x_2'' = -x_1 - 2x_1x_2')
>> xlabel('t'), ylabel('x_1 and x_2')
>> legend('x_1','x_2'), grid

Since we are limited to black and white in this Manual, the different colors of the curves are not available,
so we changed the curve for x2 to a dotted linestyle. To do this we clicked the mouse button near the x2
curve and selected Edit→Current Object Properties .... We then made the change of line style in the
Editor.
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Figure 8.3. plot(t,x) plots both compo-
nents of the solution.

Figure 8.4. plot(t,x(:,1)) plots the
first component of the solution.

If only the first component of the solution is wanted, enter plot(t,x(:,1)). The colon in the
notation x(:,1) indicates11 that we want all rows, and the 1 indicates that we want the first column. The
result is shown in Figure 8.4. Similarly, if only the second component is wanted, enter plot(t,x(:,2)).
This is an example of the very sophisticated indexing options available in MATLAB. It is also possible to
plot the components of the solution against each other with the commands

>> plot(x(:,1),x(:,2))
>> title('x_1'' = x_2-x_1^2 and x_2'' = -x_1-2x_1x_2')
>> xlabel('x_1'), ylabel('x_2'), grid

9 For example, note that the time values in the vector t run from 0 through 10, as they should.
10 Execute help plot to see a complete description of what the plot command is capable of.
11 Some MATLAB users pronounce the notation x(:,1) as “x, all rows, first column.”
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Figure 8.5. Phase plane plot of the solution. Figure 8.6. 3D plot of the solution.

The result is called a phase plane plot, and it is shown in Figure 8.5.

Another way to present the solution to the system graphically is in a three dimensional plot, where
both components of the solution are plotted as separate variables against the independent variable t .
MATLAB does this using the command plot3. For example, enter plot3(t,x(:,1),x(:,2)) to see
the plot with t along the x-axis, and the two components of the solution along the y-axis and z-axis,
respectively. Alternatively, enter plot3(x(:,1),x(:,2),t) to see the solution with t along the z-axis,
and the two components of the solution along the x-axis and y-axis, respectively. The result of this
command is shown in Figure 8.6. The three dimensional graph can be rotated by first selecting the
rotation icon in the toolbar, and then clicking and dragging on the figure.

Solving systems with eul, rk2, and rk4. These solvers, introduced in Chapter 5, can also be used to
solve systems. The syntax for doing so is not too different from that used with ode45. For example, to
solve the system in (8.9) with eul, we use the command

>> [t,x] = eul(@F,[0,10],[0;1],h);

where h is the chosen step size. To use a different solver it is only necessary to replace eul with the rk2
or rk4. Thus, the only difference between using one of these solvers and ode45 is that it is necessary to
add the step size as an additional parameter.

Second Order Differential Equations

To solve a single second order differential equation it is necessary to replace it with the equivalent
first order system. For the equation

y′′ = f (t, y, y′), (8.11)

we set x1 = y, and x2 = y′. Then x = [x1, x2]T is a solution to the first order system

x′
1 = x2,

x′
2 = f (t, x1, x2).

(8.12)
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Conversely, if x = [x1, x2]T is a solution of the system in (8.12), we set y = x1. Then we have
y′ = x′

1 = x2, and y′′ = x′
2 = f (t, x1, x2) = f (t, y, y′). Hence y is a solution of the equation in (8.11).

Example 4. Plot the solution of the initial value problem

y′′ + yy′ + y = 0, y(0) = 0, y′(0) = 1, (8.13)

on the interval [0, 10].

First, solve the equation in (8.13) for y′′.
y′′ = −yy′ − y (8.14)

Introduce new variables for y and y′.
x1 = y and x2 = y′ (8.15)

Then we have by (8.14) and (8.15),

x1
′ = y′ = x2, and x2

′ = y′′ = −yy′ − y = −x1x2 − x1,

or, more simply,
x′

1 = x2,

x′
2 = −x1x2 − x1.

(8.16)

If we let

F(t, [x1, x2]T ) =
[

x2
−x1x2 − x1

]

(8.17)

and x = [x1, x2]T , then x′ = [x1
′, x2

′]T and system (8.16) takes the form x′ = F(t, x).

Let’s address this example by putting everything into one master file. This file could be

function ch8examp4
[t,x] = ode45(@dfile,[0,10],[0;1]);
plot(t,x(:,1))
title('y'''' + yy'' + y = 0, y(0) = 0, y''(0) = 1')
xlabel('t'), ylabel('y'), grid

function xprime = dfile(t,x)
xprime = zeros(2,1);
xprime(1) = x(2);
xprime(2) = -x(1)*x(2) - x(1);

Save the file as ch8examp4.m. When we execute ch8examp4 we get Figure 8.7.

Let’s examine the file ch8examp4. First notice that the subfunction dfile is the ODE file, and
implements the function F defined in (8.17). According to (8.13), the initial condition is

x(0) =
[

x1(0)

x2(0)

]

=
[

y(0)

y′(0)

]

=
[

0
1

]

.

Hence the second line inch8examp4 callsode45on the equation defined in the subfunction with the proper
initial conditions. It is important to note that the original question called for a solution of y′′+yy′+y = 0.
Recall from (8.15) that y = x1. Consequently, the plot command in ch8examp4 will plot y versus t ,
as shown in Figure 8.7. If we replace the plot command with plot(x(:,1),x(:,2)) we will get a
phase-plane plot like that in Figure 8.8.
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Figure 8.8. Phase-plane plot of the solu-
tion.

The Lorenz System and Passing Parameters

The solvers in MATLAB can solve first order systems containing as many equations as you like.
As an example we will solve the Lorenz system. This is a system of three equations published in 1963
by the meteorologist and mathematician E. N. Lorenz. It represents a simplified model for atmospheric
turbulence beneath a thunderhead. The equations are

x′ = −ax + ay,

y′ = rx − y − xz,

z′ = −bz + xy,

(8.18)

where a, b, and r are positive constants.

We could proceed with the variables x, y, and z, but to make things a bit simpler, set u1 = x, u2 = y,
and u3 = z. With these substitutions, system (8.18) takes the following vector form.

[

u1
u2
u3

]′
=
[ −au1 + au2

ru1 − u2 − u1u3
−bu3 + u1u2

]

(8.19)

If we let F(t, [u1, u2, u3]T ) = [−au1 + au2, ru1 − u2 − u1u3, −bu3 + u1u2]T and u = [u1, u2, u3]T ,
then u′ = [u1

′, u2
′, u3

′]T and system (8.19) takes the form u′ = F(t, u), prompting one to write the ODE
file as follows.

function uprime = F(t,u)
uprime = zeros(3,1);
uprime(1) = -a*u(1) + a*u(2);
uprime(2) = r*u(1) - u(2) - u(1)*u(3);
uprime(3) = -b*u(3) + u(1)*u(2);

However, there is a big problem with this ODE file. MATLAB executes its functions, including those
defined in function M-files, in separate workspaces disjoint from the command window workspace and
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from the workspaces of other functions. The variables defined in one workspace are not available in
another unless they are passed to it explicitly. The impact of this is that we will have to pass the
parameters a, b, and r from the command window to the function ODE file.

One way to do this is to rewrite the ODE file as12

function uprime = lor1(t,u,a,b,r)
uprime = zeros(3,1);
uprime(1) = -a*u(1) + a*u(2);
uprime(2) = r*u(1) - u(2) - u(1)*u(3);
uprime(3) = -b*u(3) + u(1)*u(2);

We’ve decided to name our function lor1 instead of F, so we must save the file as lor1.m13.

We will use a = 10, b = 8/3, r = 28, and the initial condition

u(0) =
[

u1(0)

u2(0)

u3(0)

]

=
[ 1

2
3

]

.

The commands14

>> [t,u] = ode45(@lor1,[0,7],[1;2;3],[],10,8/3,28);
>> plot(t,u)
>> title('A solution to the Lorenz system')
>> xlabel('t'), ylabel('x, y, and z')
>> legend('x','y','z'), grid

should produce an image similar to that in Figure 8.9. 15 Notice the use of [] as an entry in the ode45
command. This is just a place holder. This place in the order of entries is reserved for options. We will
explain these later.

Global Variables. There is another way of passing variables to function M-files that you might find more
to your liking. This is the use of global variables. The only hard thing about the use of global variables
is to remember that they must be declared in the both the command window and in the function M-file.
Here is an example.

12 In version 5 of MATLAB the first line of this file must read
function uprime = lor1(t,u,flag,a,b,r). Notice the input flag.

13 It would be natural to name this file lorenz.m, but there is already an M-file in the MATLAB
directory tree with that name. If you enter lorenz at the MATLAB prompt you will see a solution to the
Lorenz system (8.18) displayed in a very attractive manner.

14 In version 5 of MATLAB you must invoke the solver in the first line using the syntax
[t,u]=ode45(’lor1’, [0,7],[1;2;3],[],10,8/3,28);.

15 The linestyles have been changed in Figure 8.9 to compensate for the unavailability of color.
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Figure 8.9. A solution to the Lorenz system.

First change the function ODE file to

function uprime = lor2(t,u)
global A B R
uprime = zeros(3,1);
uprime(1) = -A*u(1) + A*u(2);
uprime(2) = R*u(1) - u(2) - u(1)*u(3);
uprime(3) = -B*u(3) + u(1)*u(2);

Save this second version as lor2.m. The second line declares the parameters to be global variables.
Notice that we are using uppercase names for global variables. This is good practice, but is not required.

Next, we declare the global variables in the command window and initialize them

>> global A B R
>> A = 10; B = 8/3; R = 28;

The global variables A, B, and R are now available in both the command window and in the workspace of
the ODE file. You can find the numerical solution of the Lorenz system with the command16

>> [t,u] = ode45(@lor2,[0,7],[1;2;3]);

Eliminating Transient Behavior.

In many mechanical and electrical systems we experience transient behavior. This involves behavior
that is present when the system starts, but dies out quickly in time, leaving only a fairly regular steady-
state behavior. In Figure 8.9 there appears to be transient behavior until about t = 1, and then things seem

16 In version 5 of MATLAB use [t,u] = ode45(’lor2’,[0,7],[1;2;3]).
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to settle down. To examine the situation more closely, let’s compute the solution over a longer period,
say 0 ≤ t ≤ 100, and then plot the part corresponding to t > 10 in three dimensions. We would also
like to allow for randomly chosen initial values in order to see if the steady-state behavior is somehow
independent of the initial conditions.

This is easily accomplished. The hardest part is choosing the initial conditions, and we can use
the MATLAB command rand for this. If you use help rand you will see that rand produces random
numbers in the range [0, 1]. We want each component of our initial conditions to be randomly chosen
from the interval [−50, 50]. It is necessary to scale the output from rand to this interval. The command
u0 = 100*(rand(3,1) - 0.5) will do the job.

Since we will want to repeat our experiment several times, we will put everything, including the
ODE file, into a master function M-file named loren.m. We will use global variables initialized in both
the master file and the subfunction. Including formatting commands, our file is

function loren

global A B R
A = 10; B = 8/3; R = 28;
u0 = 100*(rand(3,1) - 0.5);
[t,u] = ode45(@lor2,[0,100],u0);
N = find(t>10);
v = u(N,:);
plot3(v(:,1),v(:,2),v(:,3))
title('The Lorenz attractor')
xlabel('x'), ylabel('y'), zlabel('z')
grid, shg

function uprime = lor2(t,u)
global A B R
uprime = zeros(3,1);
uprime(1) = -A*u(1) + A*u(2);
uprime(2) = R*u(1) - u(2) - u(1)*u(3);
uprime(3) = -B*u(3) + u(1)*u(2);

Further explanation is necessary. First, the command N = find(t>10); produces a list of the
indices of those elements of t which satisfy t > 10. Then v = u(N,:); produces a matrix containing
the rows of u with indices in N. The result is that v consists of only those solution points corresponding to
t > 10, and the resulting plot represents the long time behaviour of the solution after the transient effects
are gone.

Now, every time we execute loren we get a result very like Figure 8.10. The object in this figure is
an approximation of the Lorenz attractor. The Lorenz system, with this particular choice of parameters,
has the property that any solution, no matter what its initial point, is attracted to this rather complicated,
butterfly-shaped, set. We will return to this in the exercises. There we will also examine the Lorenz
system for different values of the parameters.

Click on the rotate icon in the toolbar, and click and drag the mouse in the axes in Figure 8.10 to
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Figure 8.10. The Lorenz attractor.

rotate the axes to a different view of the Lorenz attractor. If the animation is unbearably slow, go back
and repeat the commands for the construction of the Lorenz attractor, only use a smaller time interval,
say [0, 20].

For an animated plot, add the line figure(1) after the first function statement, and the line

comet3(v(:,1),v(:,2),v(:,3))

immediately before the plot command.

Improving Accuracy

It has been mentioned before that ode45 chooses its own step size in order to achieve a predetermined
level of accuracy. Although the default level is sufficient for many problems, sometimes it will be
necessary to improve that “predetermined level of accuracy.”

The accuracy is controlled by the user by defining two optional inputs to ode45, and the other solvers.
These are the relative tolerance, RelTol, and the absolute tolerance,AbsTol. If yk is the computed solution
at step k, then each component of the solution is required to satisfy its own error restriction. This means
that we consider an estimated error vector, which has a component for every component of yk , and it is
required that for each j , the j th component of the error vector satisfy

|estimated error k
j | ≤ tolerancej , (8.20)

where
tolerancej = max(|yk

j | × RelTol, AbsTolj ). (8.21)

A little algebra discloses that

tolerancej =
{

AbsTolj , if |yk
j | ≤ AbsTolj /RelTol,

|yk
j | × RelTol, otherwise.

(8.22)
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Thus the relative tolerance controls the tolerance unless |yk
j | is relatively small, where “relatively small”

means |yk
j | ≤ AbsTolj /RelTol.

Notice that the relative tolerance is a number, but the absolute tolerance is a vector quantity, with
a component for each equation in the system being solved. This allows the user to set the tolerance
differently for different components of the solution. The default values for RelTol is 10−3, and AbsTol
is a vector, each component of which is 10−6. It is also possible to use a single number for the absolute
tolerance, if the same tolerance will work for each component.

Choosing the Tolerances. The philosophy behind the use of the two tolerances is that the relative
tolerance should bound the estimated error by a certain fraction of the size of the computed quantity
yk
j for most values of that quantity. The absolute tolerance should come into play only for values of yk

j

which are small in comparison to the range of values that yk
j assumes. This is to prevent the routine from

trying too hard if the computed quantity turns out to be very small at some steps. For example, with the
defaults of RelTol = 10−3 and AbsTol = 10−6, we have tolerancej = AbsTolj only when |yk

j | ≤ 10−3.

Let’s talk about choosing the relative tolerance first. This is the easier case since we are simply
talking about the number of significant digits we want in the answer. For example, the default relative
tolerance is 10−3, or 0.1%. In an ideal world this will ensure that the first three digits of the computed
answer will be correct. If we want five significant digits we should choose 10−5, or 0.001%.

It would be nice if things were as simple as these considerations make them seem. Unfortunately
the inequalities in (8.20), (8.21), and (8.22) at best control the errors made at an individual step. These
errors propagate, and errors made at an early step can propagate to something much larger. In fact, the
errors can propagate exponentially. The upshot is that over long time periods computational solutions
can develop serious inaccuracies. It is usually a good idea is to introduce a safety factor into your choice
of tolerances. For example if you really want three significant digits, it might be good to choose the
relative tolerance smaller than 10−3, say 10−5. Even then it is imperative that you check your answer
with what you expect and reduce the tolerance even further if it seems to be called for. (See Example 5.)

To choose the absolute tolerance vector, remember that the philosophy is that the tolerance should
be equal to the absolute tolerance only when the computed value yk

j is small relative to the range of

values of that component. Suppose that we expect that |yk
j | ≤ Mj at all computed points. Then we might

demand that AbsTol dominate the tolerance only when |yk
j | ≤ 10−3 × Mj . From (8.22) we see that we

want AbsTolj /RelTol = 10−3 × Mj , so we set

AbsTolj = 10−3 × Mj × RelTol. (8.23)

Admittedly, it is usually impossible to know Mj before the solution is computed. However, one gains
information about this as one studies the solution. Of course the factor of 10−3 can be replaced by a
smaller or larger number if the situation at hand merits it.

Let’s use these considerations to decide what tolerances to use for the Lorenz equations. Since we
are only going to plot the solution, two place accuracy along the entire solution should be sufficient.
Thus, the default relative tolerance of 10−3 would seem to be sufficient, but if we use a safety factor of
10−2 we get a relative tolerance of 10−5. If we were to compute over longer periods of time, we might
want to choose a smaller value, but without examining the computed results a relative tolerance smaller
than 10−5 does not seem justified.
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To choose the absolute tolerance vector, we notice from Figures 8.9 and 8.10 that the normal ranges
of the components are |x| ≤ 20, |y| ≤ 30, and |z| ≤ 40. Hence according to (8.23), we should choose

AbsTol1 ≤ 10−3 × 20 × 10−3 = 2 × 10−5,

AbsTol2 ≤ 10−3 × 30 × 10−3 = 3 × 10−5,

AbsTol3 ≤ 10−3 × 40 × 10−3 = 4 × 10−5.

We see that the default absolute tolerance of 10−6 for each seems to be adequate.

In our approach to choosing tolerances everything depends on choosing the relative tolerance. From
our earlier discussion this seems simple enough. However, there are situations in which more accuracy
may be required than appears on the surface. Suppose, for example, that it is the difference of two
components of the solution which is really important. To be more specific, suppose we compute a
solution y, and what we are really interested in is y1 − y2, the difference of the first two components
of y. Suppose in addition that y1 and y2 are very close to each other. Suppose in fact that we know
they will always agree in the first 6 digits. If we set the relative tolerance to 10−7, then in an ideal
world we will get 7 significant digits for y1 and y2. For example we might get y1 = 1234569 ∗ ∗ ∗ ∗ ∗
and y2 = 1234563 ∗ ∗ ∗ ∗ ∗ , where the asterisks indicate digits that are not known accurately. Then
y1 − y2 = 6 ∗ ∗ ∗ ∗ ∗ , so we only know 1 significant digit in the quantity we are really interested in.
Consequently to get more significant digits in y1 − y2 we have to choose a smaller relative tolerance. To
get 3 significant digits we need 10−9, or with a suitable safety factor, 10−11.

Using the Tolerances in the Solvers. Having chosen our tolerances, how do we use them in ode45
and the other MATLAB solvers? These solvers have many options, many more than we will describe in
this book. All of the options are input into the solver using an options vector. Suppose, for example,
that we wanted to solve the Lorenz system with relative tolerance 10−5 and absolute tolerance vector
[10−8, 10−7, 10−7]. We build the options vector with the command odeset, and then enter it as a
parameter to ode45. If we use the first version of the Lorenz ODE file, lor1.m, then the needed
commands are

>> options = odeset('RelTol',1e-5,'AbsTol',[1e-8 1e-7 1e-7]);
>> [t,u] = ode45(@lor1,[0,100],[1;2;3],options,10,8/3,28);

If the run takes inordinately long, try a shorter time span, say [0,20] instead of [0,100]. Notice
that the syntax used with ode45 is exactly the same as was used earlier for the Lorenz system, except
that we have inserted the parameter options between the initial conditions and the parameters sent to
the routine.

If you wish to use global variables, then use the second version of the Lorenz ODE file, lor2, with

>> options = odeset('RelTol',1e-5,'AbsTol',[1e-8 1e-7 1e-7]);
>> [t,u] = ode45(@lor2,[0,100],[1;2;3],options);

Again, this assumes that you have declared the global variables and initialized them.

An experimental approach to choosing the relative tolerance. Perhaps the best way to choose the
relative tolerance is illustrated by the next example.
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Example 5. The initial value problem17

y′′ + 0.1y′ + sin y = cos t with y(0) = 0 and y′(0) = 2

models a forced damped pendulum. Use ode45 to solve the problem over the interval [0, 150].

The homogeneous problem has stable equilibria where y is an integer multiple of 2π and y′ = 0.
The relatively large initial velocity, and the driving force can lead to erratic behavior. Small computing
errors can lead to incorrect solutions, as we will see. The problem is to choose an appropriate relative
tolerance for ode45.

This time we will take an experimental approach to the problem. We will solve the problem with
a tolerance reltol, and then solve it again with tolerance reltol/10. We will compare the two
solutions graphically, and only when they are sufficiently close will we be satisfied. The function M-file
borrelli.m will do this for us.

function borrelli(reltol)
close all
tspan = [0,150];
velocity = 2; position = 0;
color = 'r';
hold on
for kk = 1:2
opts = odeset('RelTol',reltol);
[t,y]=ode45(@dfile,tspan,[position;velocity],opts);
plot(t,y(:,1),'-','color',color)
reltol = reltol/10;
color = 'k';

end
hold off
xlabel('t'), ylabel('y')
title('y'''' + 0.1y'' + sin(y) = cos(t), y(0)=0, y''(0)=2')
set(gca,'YTick',-2*pi:2*pi:6*pi,...

'YTickLabel',{'-2pi','0','2pi','4pi','6pi'},...
'YGrid','on')

function yprime=dfile(t,y)
yprime=zeros(2,1);
yprime(1) = y(2);
yprime(2) = -sin(y(1)) - 0.1*y(2) + cos(t);

The file needs some explanation. The command close all closes all figures, and allows the routine
to start with a clean slate each time it is used. Use this command with care, since it may close a figure

17 For more about this example, see Robert Borrelli, Courtney Coleman Computers, Lies, and the
Fishing Season, College Math Journal Volume 25, Number 5 (1994) and John Hubbard, The Forced
Damped Pendulum: Chaos, Complication, and Control The American Mathematical Monthly (October
1999)
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that you want to use later. The for loop computes and plots the solution twice. The first time it uses
the input reltol and plots the curve in red. The second time through it uses reltol/10 and plots the
curve in black. We will be able to easily compare the graphs and we will consider the input reltol to be
successful if very little of the red curve shows through the black curve. Finally, the set command sets
the ticks on the y-axis to be multiples of π .

We first execute borrelli(1e-3). Remember that 10−3 is the default relative tolerance for ode45.
The result is shown in Figure 8.11. The solutions agree pretty well up to about t = 25 and then
diverge dramatically. Clearly the default relative tolerance is not sufficiently small. When we execute
borrelli(1e-4) we get Figure 8.12. This time the curves overlap, so using a relative tolerance of 10−4

will do an adequate job, although 10−5 would be a more conservative choice.
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Figure 8.11. The solutions with relative
tolerances 10−3 (solid) and 10−4 (dashed).

Figure 8.12. The solutions with relative
tolerances 10−4 (solid) and 10−5 (dashed)
overlap.

Example 5 illustrates a procedure that should be followed whenever you compute the solution to a
system of differential equations over a relatively long interval. Compare the results with a chosen relative
tolerance and with that divided by 10. Reduce the relative tolerance until the two solutions agree. Only
then can you have confidence in your solution.

Behavior Near Discontinuities

Any numerical method will run into difficulties where the equation and/or the solution to the equation
has a point of discontinuity, and ode45 is no exception. There are at least three possible outcomes when
ode45 meets a discontinuity.

1. ode45 can integrate right through a discontinuity in the equation or the solution, not even realizing
it is there. In this case the accuracy of the result is highly doubtful, especially in that range beyond
the discontinuity. This phenomenon will happen, for example, with the initial value problem
x′ = (x + 3t2)/t , with initial value x(−1) = 1 on the interval [−1, 1]. Another example is
x′ = t/(x + 1), with x(−2) = 0 on the interval [−2, −3/2].

2. ode45 can find the discontinuity and report it with a warning. This is usually the sign that there is

122



a discontinuity in the solution. An example of this is x′ = x2, with x(0) = 1 on the interval [0, 2].
The solution is x(t) = 1/(1 − t), which has a singularity at t = 1. When asked to solve this initial
value problem, ode45 responds with

Warning: Failure at t=9.999694e-001. Unable to meet integration
tolerances without reducing the step size below the smallest
value allowed (3.552605e-015) at time t.

One very nice thing about ode45 is that if this happens, the output up to the point where the routine
stops is made available. For example, if you execute [t,w] = ode45('gizmo',[0,3.4],[0;
1; 2]);, and the computation stops because a step size is called for which is smaller than the
minimum allowed, then the variables t and w will contain the results of the computation up to that
point.

3. ode45 can choose smaller and smaller step sizes upon the approach to a discontinuity and go on
calculating for a very long time — hours in some cases. For cases like this, it is important for
the user to know how to stop a calculation in MATLAB. On most computers the combination of
the control key and C depressed simultaneously will do the trick. An example is x′ = t/(x + 1),
with x(−10) = 2 on the interval [−10, −5]. Many stiff equations and systems will also require
an inordinate solution time using ode45.

Stiff Equations

Solutions to differential equations often have components which are varying at different rates. If
these rates differ by a couple of orders of magnitude, the equations are called stiff. Stiff equations will
not arise very often in this manual, but we will say a word about them in case you should have to deal
with one. We will also put some examples in the exercises.

The equation x′ = et cos x from Example 2 is stiff over relatively large time intervals, simply
because the factor et gets very large. To see what this does to ode45, execute

>> f = inline('exp(t)*cos(x)','t','x');
>> ode45(f,[0,10],0)

Since we have not required any output from ode45, it will plot the solution as it computes it. You will
notice that the speed of the plot slows up dramatically as t increases. When you are tired of waiting
for the solution to end, click on the Stop button on the lower left of the figure window. This very
slow computation is the typical response of ode45 to a stiff equation or system. The fast reaction rate,
measured in this case by the factor et , requires ode45 to take extremely small steps, and therefore a long
time to complete the solution.

The MATLAB suite of ode solvers contains four routines, ode15s, ode23s, ode23t, and ode23tb,
which are designed to solve stiff equations. ode15s is the first of these to try. To see what it does in this
case, execute

>> ode15s(f,[0,10],0)

Since it is designed specifically for stiff systems, it completes its work in seconds. Notice that the calling
syntax for ode15s is identical to that of ode45. This is a feature of all of the solvers in the ODE suite.
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Another example of a stiff system is the van der Pol system

x′ = y,

y′ = −x + µ(1 − x2)y,

when the parameter µ is very large, say µ = 1000.

But how do we tell if a system is stiff? It is often obvious from the physical situation being modeled
that there are components of the solution which vary at rates that are significantly different, and therefore
the system is stiff. Sometimes the presence of a large parameter in the equations is a tip off that the system
is stiff. However, there is no general rule that allows us to recognize stiff systems. A good operational
rule is to try to solve using ode45. If that fails, or is very slow, try ode15s.

Other Possibilities

The MATLAB ODE Suite consists of a very powerful group of solvers. We have only touched the
surface of the options available to control them, and the variations of the ways in which they can be used.
To mention just a few, it is possible to modify the output of the solver so that the solution is automatically
plotted in the way the user desires. It is also possible to get the solvers to detect events. For example the
3-body problem of the sun, earth, and moon can be modeled by a system of 12 ODEs, and the solver can
be set up to automatically detect the times of eclipses of the sun and moon.

A very nice description of the ODE Suite appears in Using MATLAB, which is part of the MATLAB
documentation. You should be able to find it by entering helpdesk at the MATLAB prompt. After the
MATLAB Help Desk opens, click on Using MATLAB, then on Mathematics, and finally on Differential
Equations.

A more technical paper dealing the the ODE Suite is also available from the Online Manuals list. It
is written by Larry Shampine and Mark Reichelt, who built the Suite.

Exercises

In Exercises 1 – 3 we will deal with the differential equation y ′ = −2y + 2 cos t sin 2t . In preparation create the
function M-file

function yprime = steady(t,y)

yprime = -2*y+2*cos(t).*sin(2*t);

and save the file as steady.m.

1. MATLAB’s solvers are able to handle multiple initial conditionsfor single first order equations. To do so we
fake ode45 into assuming that we are solving a system consisting of the same equation repeated for each
initial condition. For this purpose it is only necessary to make the function ODE file array smart, as we have
for steady.m.

a) To solve the equation y ′ = −2y + 2 cos t sin 2t , for initial conditions y(0) = −5, y(0) = −4,. . . ,
y(0) = 5, enter the code [t,y] = ode45(@steady,[0,30],-5:5);.

b) Graph the solutions with plot(t,y) and note that each solution approaches a periodic steady-state
solution.

c) Repeat parts a) and b) with time spans [0, 10] and [0, 2π ] to get a closer look at the convergence to
the steady-state solution.
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2. Another nice feature of MATLAB’s solvers is the ability to output solutions at specified times. This is
useful when you want to compare two functions at specified time points or place the output from mul-
tiple calls to ode45 in a matrix, where it is required that the rows have equal length. Enter [t,y] =

ode45(@steady,0:.25:3,1);, then enter [t,y]. This should clarify what is going on.

3. MATLAB’s solvers can automatically plot solutions as they are computed. All you need to do is leave off the
output variables when calling the solver. Try ode45('steady',[0,30],-5:5).

In Exercises 4 – 7, plot the solutions to all of the initial value problems on one figure. Choose a solution interval
starting at t = 0 that well illustrates any steady-state phenomena that you see. Exercise 1 might be helpful.

4. y ′ + 4y = 2 cos t + sin 4t , with y(0) = −5, −4, . . . , 5.

5. y ′ + 4y = t2, with y(0) = −9, −8, −7, −1, 1, 7, 8, 9.

6. x ′ = cos t − x3, with x(0) = −3, −2, . . . , 3.

7. x ′ + x + x3 = cos2 t, with x(0) = −3, −2, . . . , 3.

8. Separate variables and find an explicit solution of x ′ = t/(1 + x), x(0) = 1.

a) Use ode45 to find the numerical solution of the initial value problem on the interval [0, 3]. Store the
solution in the variables t and x_ode45.

b) Use the explicit solution to find exact solution values at each point in the vector t obtained in part a).
Store the results in the variable x_exact. Compare the solutions graphically with plot(t, x_exact,

t, x_ode45,'r.'). Obtain a printout with a legend.

c) For a finer graphical image of the error plot x_exact - x_ode45 versus t in a new figure. Pay special
attention to the dimensions on the y-axis.

In Exercises 9 – 12, write a function ODE file for the system. Solve the initial value problem using ode45. Provide
plots of x1 versus t , x2 versus t , and x2 versus x1 on the time interval provided. See Exercises 1 – 6 in Chapter 7 for
a nice method to arrange these plots.

9. x1
′ = x2 and x2

′ = (1 − x1
2)x2 − x1, with x1(0) = 0 and x2(0) = 4 on [0, 10].

10. x1
′ = x2 and x2

′ = −25x1 + 2 sin 4t , with x1(0) = 0 and x2(0) = 2 on [0, 2π ].

11. x1
′ = (x2 + x1/5)(1 − x2

1 ) and x2
′ = −x1(1 − x2

2 ), with x1(0) = 0.8 and x2(0) = 0 on [0, 30].

12. x1
′ = x2 and x2

′ = −x1 + x2(1 − 3x2
1 − 3x2

2 ), with x1(0) = 0.2 and x2(0) = 0.2 on [0, 20].

13. The built-in plotting routines of MATLAB’s solvers were illustrated in Exercise 3. They work equally well
with systems. For example, create

function yprime = heart(t,y)

yprime = zeros(2,1);

yprime(1) = y(2);

yprime(2) = -16*y(1)+4*sin(2*t);

and save as heart.m.

a) Enter ode45(@heart,[0,2*pi],[0;2]) and note that MATLAB dynamically plots both y1 and y2

versus t .

b) To change the output routine, enter options = odeset('OutputFcn','odephas2'), followed by
ode45(@heart,[0,2*pi],[0;2],options). Note that MATLAB dynamically plots y2 versus y1 in
the phase plane.

14. Use the technique of Example 4 to change the initial value problem yy ′′ − (y ′)2 −y2 = 0, y(0) = 1, y ′(0) =
−1 to a system with initial conditions. Use ode45 to create a plot of y versus t .

15. An unforced spring-mass system with no damping can be modeled by the equation y ′′ + ky = 0, where k
is the spring constant. However, suppose that the spring loses elasticity with time. A possible model for
an “aging” spring-mass system is y ′′ + 2e−0.12t y = 0. Suppose that the spring is stretched two units from
equilibrium and released from rest. Use the technique of Example 4 to plot a solution of y versus t on the
time interval [0, 100].
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16. The equation x ′′ = ax ′ − b(x ′)3 − kx was devised by Lord Rayleigh to model the motion of the reed in a
clarinet. With a = 5, b = 4, and k = 5, solve this equation numerically with initial conditions x(0) = A, and
x ′(0) = 0 over the interval [0, 10] for the three choices A = 0.5, 1, and 2. Use MATLAB’s hold command
to prepare both time plots and phase plane plots containing the solutions to all three initial value problems
superimposed. Describe the relationship that you see between the three solutions.

17. Consider the forced, damped oscillator y ′′+0.05y ′+36y = sin 6.3t , with initial conditions y(0) = 5, y ′(0) =
0. Use the technique of Example 4 to transform the equation to system of first order ODEs, write and save
the odefile as osc.m, and solve the system with the command [t,x] = ode45(@osc,[0,100],[5;0]);.

a) The command plot3(x(:,1),x(:,2),t) provides a three dimensional plot with time on the vertical
axis.

b) The command close all, comet3(x(:,1),x(:,2),t) provides an animated view of the result in
part a).

18. Consider the forced, undamped oscillator modeled by the equation y ′′ + ω0
2y = 2 cos ωt . The parameter

ω0 is the natural frequency of the unforced system y ′′ + ω0
2y = 0. Write an ODE function M-file for this

equation with natural frequency ω0 = 2, and the driving frequency ω passed as a parameter.

a) If the driving frequency nearly matches the natural frequency, then a phenomenon called beats occurs.
As an example, solve the equation using ode45 with y(0) = 0 and y ′(0) = 0 over the interval [0, 60π ]
with ω = 1.9.

b) If the driving frequency matches the natural frequency, then a phenomenon called resonance occurs.
As an example, solve the equation using ode45 with y(0) = 0 and y ′(0) = 0 over the interval [0, 60π ]
with ω = 2.

c) Use the plot3 and comet3 commands, as described in Exercise 17, to create three dimensional plots
of the output in parts a) and b).

19. Harmonic motion. An unforced, damped oscillator is modeled by the equation

my ′′ + cy ′ + ky = 0,

where m is the mass, c is the damping constant, and k is the spring constant. Write the equation as a system
of first order ODEs and create a function ODE file that allows the passing of parameters m, c, and k. In each
of the following cases compute the solution with initial conditions y(0) = 1, and y ′(0) = 0 over the interval
[0, 20]. Prepare both a plot of y versus t and a phase plane plot of y ′ versus y.

a) (No damping) m = 1, c = 0, and k = 16.

b) (Under damping) m = 1, c = 2, and k = 16.

c) (Critical damping) m = 1, c = 8, and k = 16.

d) (Over damping) m = 1, c = 10, and k = 16.

20. The system

ε
dx

dt
= x(1 − x) − (x − q)

(q + x)
f z,

dz

dt
= x − z,

models a chemical reaction called an oregonator. Suppose that ε = 10−2 and q = 9 × 10−5. Put the system
into normal form and write an ODE function M-file for the system that passes f as a parameter. The idea is
to vary the parameter f and note its affect on the solution of the oregonator model. We will use the initial
conditions x(0) = 0.2 and y(0) = 0.2 and the solution interval [0, 50].

a) Use ode45 to solve the system with f = 1/4. This should provide no difficulties.

b) Use ode45 to solve the system with f = 1. This should set off all kinds of warning messages.

c) Try to improve the accuracy with options = odeset('RelTol',1e-6) and using options as the
options parameter in ode45. You should find that this slows computation to a crawl as the system is
very stiff.
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d) The secret is to use ode15s instead of ode45. Then you can note the oscillations in the reaction.

21. Consider the three-dimensional oregonator model

dx

dt
= qy − xy + x(1 − x)

ε
,

dy

dt
= −qy − xy + f z

ε′ ,

dz

dt
= x − z.

Set ε = 10−2, ε′ = 2.5 × 10−5, and q = 9 × 10−5. Set up an ODE file that will allow the passing of the
parameter f . Slowly increase the parameter f from a low of 0 to a high of 1 until you clearly see the system
oscillating on the interval [0, 50] with initial conditions x(0) = 0.2, y(0) = 0.2, and z(0) = 0.2. You might
want to read the comments in Exercise 20. Also, you’ll want to experiment with plot, zoom, and semilogy

to best determine how to highlight the oscillation in all three components.

22. The system
m1x

′′ = −k1x + k2(y − x),

m2y
′′ = −k2(y − x),

models a coupled oscillator. Imagine a spring (with spring constant k1) attached to a hook in the ceiling.
Mass m1 is attached to the spring, and a second spring (with spring constant k2) is attached to the bottom of
mass m1. If a second mass, m2, is attached to the second spring, you have a coupled oscillator, where x and
y represent the displacements of masses m1 and m2 from their respective equilibrium positions.

If you set x1 = x, x2 = x ′, x3 = y, and x4 = y ′, you can show that

x1
′ = x2,

x2
′ = − k1

m1
x1 + k2

m1
(x3 − x1),

x3
′ = x4,

x4
′ = − k2

m2
(x3 − x1).

Assume k1 = k2 = 2 and m1 = m2 = 1. Create an ODE file and name it couple.m. Suppose that the first
mass is displaced upward two units, the second downward two units, and both masses are released from rest.
Plot the position of each mass versus time.

23. In the 1920’s, the Italian mathematician Umberto Volterra proposed the following mathematical model of a
predator-prey situation to explain why, during the first World War, a larger percentage of the catch of Italian
fishermen consisted of sharks and other fish eating fish than was true both before and after the war. Let x(t)
denote the population of the prey, and let y(t) denote the population of the predators.

In the absence of the predators, the prey population would have a birth rate greater than its death rate, and
consequently would grow according to the exponential model of population growth, i.e. the growth rate of
the population would be proportional to the population itself. The presence of the predator population has the
effect of reducing the growth rate, and this reduction depends on the number of encounters between individuals
of the two species. Since it is reasonable to assume that the number of such encounters is proportional to the
number of individuals of each population, the reduction in the growth rate is also proportional to the product
of the two populations, i.e., there are constants a and b such that

x ′ = a x − b x y. (8.24)

Since the predator population depends on the prey population for its food supply it is natural to assume that
in the absence of the prey population, the predator population would actually decrease, i.e. the growth rate
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would be negative. Furthermore the (negative) growth rate is proportional to the population. The presence
of the prey population would provide a source of food, so it would increase the growth rate of the predator
species. By the same reasoning used for the prey species, this increase would be proportional to the product
of the two populations. Thus, there are constants c and d such that

y ′ = −c y + d x y. (8.25)

a) A typical example would be with the constants given by a = 0.4, b = 0.01, c = 0.3, and d = 0.005.
Start with initial conditions x1(0) = 50 and x2(0) = 30, and compute the solution to (8.22) and (8.23)
over the interval [0, 100]. Prepare both a time plot and a phase plane plot.

After Volterra had obtained his model of the predator-prey populations, he improved it to include the effect of
“fishing,” or more generally of a removal of individuals of the two populations which does not discriminate
between the two species. The effect would be a reduction in the growth rate for each of the populations
by an amount which is proportional to the individual populations. Furthermore, if the removal is truly
indiscriminate, the proportionality constant will be the same in each case. Thus, the model in equations
(8.22) and (8.23) must be changed to

x ′ =a x − b x y − e x,

y ′ = − c y + d x y − e y,
(8.26)

where e is another constant.

b) To see the effect of indiscriminate reduction, compute the solutions to the system in (8.24) when e = 0,
0.01, 0.02, 0.03, and 0.04, and the other constants are the same as they were in part a). Plot the five
solutions on the same phase plane, and label them properly.

c) Can you use the plot you constructed in part b) to explain why the fishermen caught more sharks
during World War I? You can assume that because of the war they did less fishing.

Student Projects

The following problems are quite involved, with multiple parts, and thus are good candidates for individual
or group student projects.

1. The Non-linear Spring and Duffing’s Equation.

A more accurate description of the motion of a spring is given by Duffing’s equation

my ′′ + cy ′ + ky + ly3 = F(t).

Here m is the mass , c is the damping constant, k is the spring constant, and l is an additional constant which
reflects the “strength” of the spring. Hard springs satisfy l > 0, and soft springs satisfy l < 0. As usual, F(t)
represents the external force.

Duffing’s equation cannot be solved analytically, but we can obtain approximate solutions numerically in
order to examine the effect of the additional term ly3 on the solutions to the equation. For the following
exercises, assume that m = 1 kg, that the spring constant k = 16 N/m, and that the damping constant is c = 1
kg/sec. The external force is assumed to be of the form F(t) = A cos(ωt), measured in Newtons, where ω
is the frequency of the driving force. The natural frequency of the spring is ω0 = √

k/m = 4 rad/sec.

a) Let l = 0 and A = 10. Compute the solution with initial conditions y(0) = 1, and y ′(0) = 0 on the
interval [0, 20], with ω = 3.5 rad/sec. Print out a graph of this solution. Notice that the steady-state
part of the solution dominates the transient part when t is large.

b) With l = 0 and A = 10, we want to compute the amplitude of the steady-state solution. The amplitude
is the maximum of the values of |y(t)|. Because we want the amplitude of the steady-state oscillation,
we only want to allow large values of t , say t > 15. This will allow the transient part of the solution
to decay. To compute this number in MATLAB, do the following. Suppose that Y is the vector of
y-values, and T is the vector of corresponding values of t . At the MATLAB prompt type

max(abs(Y.*(T>15)))
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Your answer will be a good approximation to the amplitude of the steady-state solution.

Why is this true? The expression (T>15) yields a vector the same size as T, and an element of this
vector will be 1 if the corresponding element of T is larger than 15 and 0 otherwise. Thus Y.*(T>15)
is a vector the same size as T or Y with all of the values corresponding to t ≤ 15 set to 0, and the other
values of Y left unchanged. Hence, the maximum of the absolute values of this vector is just what we
want.

Set up a script M-file that will allow you to do the above process repeatedly. For example, if the
derivative M-file for Duffing’s equation is called duff.m, the script M-file could be

[t,y] = ode45(@duff'0,20,[1,0]);
y = y(:,1);

amplitude = max(abs(y.*(t>15)))

Now by changing the value of ω in duff.m you can quickly compute how the amplitude changes
with ω. Do this for eight evenly spaced values of ω between 3 and 5. Use plot to make a graph of
amplitude vs. frequency. For approximately what value of ω is the amplitude the largest?

c) Set l = 1 (the case of a hard spring) and A = 10 in Duffing’s equation and repeat b). Find the value
of ω, accurate to 0.2 rad/sec, for which the amplitude reaches its maximum.

d) For the hard spring in c), set A = 40. With y(0) = y ′(0) = 0, and for eight (or more) evenly spaced
values of ω between 5 and 7 compute the magnitude of the steady-state oscillation. Plot the graph of
amplitude vs. frequency. Repeat the computation with initial conditions y(0) = 6, y ′(0) = 0, and plot
the two graphs of amplitude vs. frequency on the same figure. (The phenomenon you will observe is
called Duffing’s hysteresis.)

e) Set l = −1 and A = 10 (the case of a soft spring) in Duffing’s equation and repeat c).

2. The Lorenz System.

The purpose of this exercise is to explore the complexities displayed by the Lorenz system as the parameters
are varied. We will keep a = 10, and b = 8/3, and vary r . For each value of r , examine the behavior of the
solution with different initial conditions, and make conjectures about the limiting behavior of the solutions as
t → ∞. The solutions should be plotted in a variety of ways in order to get the information. These include
time plots, such as Figure 8.9, and phase space plots, such as Figure 8.10. In the case of phase space plots,
use the rotate3d command to capture a view of the system that provides the best visual information. You
might also use other plots, such as z versus x, etc.

Examine the Lorenz system for a couple of values of r in each of the following intervals. Describe the limiting
behavior of the solutions.

a) 0 < r < 1.

b) 1 < r < 470/19. There are two distinct cases.

c) 470/19 < r < 130. The case done in the text. This is a region of chaotic behavior of the solutions.

d) 150 < r < 165. Things settle down somewhat.

e) 215 < r < 280. Things settle down even more.

3. Motion Near the Lagrange Points.

Consider two large spherical masses of mass M1 > M2. In the absence of other forces, these bodies will
move in elliptical orbits about their common center of mass (if it helps, think of these as the earth and the
moon). We will consider the motion of a third body (perhaps a spacecraft), with mass which is negligible in
comparison to M1 and M2, under the gravitational influence of the two larger bodies. It turns out that there are
five equilibrium points for the motion of the small body relative to the two larger bodies. Three of these were
found by Euler, and are on the line connecting the two large bodies. The other two were found by Lagrange
and are called the Lagrange points. Each of these forms an equilateral triangle in the plane of motion with
the positions of the two large bodies. We are interested in the motion of the spacecraft when it starts near a
Lagrange point.
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In order to simplify the analysis, we will make some assumptions, and choose our units carefully. First we
will assume that the two large bodies move in circles, and therefore maintain a constant distance from each
other. We will take the origin of our coordinate system at the center of mass, and we will choose rotating
coordinates, so that the x-axis always contains the two large bodies. Next we choose the distance between
the large bodies to be the unit of distance, and the sum of the the two masses to be the unit of mass. Thus
M1 + M2 = 1. Finally we choose the unit of time so that a complete orbit takes 2π units; i.e., in our units, a
year is 2π units. This last choice is equivalent to taking the gravitational constant equal to 1.

With all of these choices, the fundamental parameter is the relative mass of the smaller of the two bodies

µ = M2

M1 + M2
= M2.

Then the location of M1 is (−µ, 0), and the position of M2 is (1 − µ, 0). The position of the Lagrange point
is (x0, y0) = ((1 − 2µ)/2,

√
3/2). If (x, y) is the position of the spacecraft, then the distances to M1 and M2

are r1 and r2 where
r2

1 = (x + µ)2 + y2,

r2
2 = (x − 1 + µ)2 + y2.

Finally, Newton’s equations of motion in this moving frame are

x ′′ − 2y ′ − x = −(1 − µ)(x + µ)/r3
1 − µ(x − 1 + µ)/r3

2 ,

y ′′ + 2x ′ − y = −(1 − µ)y/r3
1 − µy/r3

2 .
(8.27)

a) Find a system of four first order equations which is equivalent to system (8.25).

b) The Lagrange points are stable for 0 < µ < 1/2 − √
69/18) ≈ 0.03852, and in particular for

the earth/moon system, for which µ = 0.0122. Starting with initial conditions which are less than
1/100 unit away from the Lagrange point, compute the solution. Write x = (1 − 2µ)/2 + ξ , and
y = √

3/2 + η, so that (ξ, η) = (x, y) − (x0, y0) is the position of the spacecraft relative to the
Lagrange point. For each solution that you compute, make a plot of η vs. ξ to see the motion relative
to the Lagrange point, and a plot of y vs. x, which also includes the positions of M1 and M2 to get a
more global view of the motion.

c) Examine the range of stability by computing and plotting orbits for µ = 0.037 and µ = 0.04.

d) What is your opinion? Assuming µ is in the stable range, are the Lagrange points just stable, or are
they asymptotically stable?

e) Show that there are five equilibrium points for the system you found in a). Show that there are three
on the x-axis (the Euler points), and two Lagrange points as described above. This is an algebraic
problem of medium difficulty. It is not a computer problem unless you can figure out how to get the
Symbolic Toolbox to find the answer.

f) Show that the Euler points are always unstable. This is a hard algebraic problem.

g) Show that the Lagrange points are stable for 0 < µ < 1/2 − √
69/18) (hard). Decide whether or not

these points are asymptotically stable (extremely difficult).
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