
16.323 Lecture 11 

Estimators/Observers 

• Bryson 
• Gelb – Optimal Estimation 
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Estimators/Observers


Problem: So far we have assumed that we have full access to the • 
state x(t) when we designed our controllers. 
– Most often all of this information is not available. 

– And certainly there is usually error in our knowledge of x. 

•	 Usually can only feedback information that is developed from the sen­

sors measurements. 
ˆ– Could try “output feedback” u = Kx ⇒ u = Ky 

– But this is type of controller is hard to design. 

•	 Alternative approach: Develop a replica of the dynamic system that 
provides an “estimate” of the system states based on the measured 
output of the system. 

•	 New plan: called a “separation principle” 
1. Develop estimate of x(t), called x̂(t). 

2. Then switch from u = −Kx(t) to u = −K ̂x(t). 

•	 Two key questions: 
– How do we find x̂(t)? 

– Will this new plan work? (yes, and very well) 
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• Assume that the system model is of the form: 

ẋ = Ax + Bu , x(0) unknown 

y = Cyx 

where 
– A, B, and Cy are known – possibly time­varying, but that is sup­

pressed here.

– u(t) is known

– Measurable outputs are y(t) from Cy = I


• Goal: Develop a dynamic system whose state 

x̂(t) = x(t) 

for all time t ≥ 0. Two primary approaches:

– Open­loop.

– Closed­loop.
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•	 Given that we know the plant matrices and the inputs, we can just 

perform a simulation that runs in parallel with the system 

ˆ̇ x + Bu(t)x(t) = Aˆ

– Then ˆ	 x(0) = x(0)x(t) ≡ x(t) ∀ t provided that ˆ

•	 Major Problem: We do not know x(0) 

System A,B,Cy 

⇒ x(t) 

y(t) 
//

u(t) 

//

//
Observer A,B,Cy 

⇒ x̂(t) 

ŷ(t) 
//

•	 To analyze this case, start with: 

ẋ(t) = Ax(t) + Bu(t) 

x(t) = Aˆˆ̇ x(t) + Bu(t) 

x(t) = x(t)− ˆ•	 Define the estimation error: ˜ x(t). 
– Now want x̃(t) = 0 ∀ t, but is this realistic? 
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•	 Subtract to get: 

d 
(x − ˆ	 x) ⇒ x(t) = A˜x) = A(x − ˆ ˜̇ x 

dt

which has the solution 

x(t) = eAt ˜˜ x(0) 

– Gives the estimation error in terms of the initial error. 

•	 Does this guarantee that x̃ = 0 ∀ t?

Or even that ˜
x → 0 as t →∞? (which is a more realistic goal). 

x(0) = 0. But what if ˜– Response is fine if ˜	 x(0) = 0? 

•	 If A stable, then x̃ → 0 as t →∞, but the dynamics of the estimation 
error are completely determined by the open­loop dynamics of the 
system (eigenvalues of A). 
– Could be very slow. 

– No obvious way to modify the estimation error dynamics. 

•	 Open­loop estimation does not seem to be a very good idea. 
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•	 Obvious fix to problem: use the additional information available: 

– How well does the estimated output match the measured output? 

ˆ ˆCompare:	 y = Cyx with y = Cyx 

– Then form ỹ = y − ŷ ≡ Cy ̃x 

System A,B,Cy 

→ x(t) 

y(t) 
//

+��

��

u(t) 

//

//

L 

Observer A,B,Cy 

→ x̂(t) 

ŷ(t) 
//

− 
OO

•	 Approach: Feedback ỹ to improve our estimate of the state. Basic 
form of the estimator is: 

L˜x(t) = Aˆˆ̇	 x(t) + Bu(t) + y(t) 

ˆ ˆy(t) = Cyx(t)


where L is a user selectable gain matrix.


•	 Analysis: 

x = ẋ− ˆ̇ x + Bu + L(y − ˆ˜̇ x = [Ax + Bu]− [Aˆ y)] 

= A(x − ˆ ˆx)− L(Cx − Cyx) 

x − LCyx = (A − LCy)˜= A˜ ˜	 x 
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•	 So the closed­loop estimation error dynamics are now 

x = (A − LCy)˜ ˜ ˜˜̇	 x with solution x(t) = e(A−LCy)t x(0) 

•	 Bottom line: Can select the gain L to attempt to improve the 
convergence of the estimation error (and/or speed it up). 
– But now must worry about observability of the system model. 

•	 Note the similarity: 
– Regulator Problem: pick K for A −BK 
3 Choose K ∈ R1×n (SISO) such that the closed­loop poles 

det(sI − A + BK) = Φc(s) 

are in the desired locations. 
– Estimator Problem: pick L for A − LCy


3 Choose L ∈ Rn×1 (SISO) such that the closed­loop poles


det(sI − A + LCy) = Φo(s) 

are in the desired locations. 

– These problems are obviously very similar – in fact they are called 
dual problems. 
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Estimation Gain Design


•	 For regulation, concerned with controllability of [A, B], ⇒ For con­
trollable system, can place eigenvalues of A −BK arbitrarily. 

•	 For estimation, concerned with observability of [A, Cy], ⇒ For ob­
servable system, can place eigenvalues of A −LCy arbitrarily. 

•	 Test using the observability matrix (SISO case): ⎤⎡ 

rank M
o
 � rank


⎢⎢⎢⎢⎢⎣


Cy


CyA

A2Cy
... 

An−1Cy

⎥⎥⎥⎥⎥⎦

= n 

•	 Procedure for selecting L similar to that used for regulator design. 

– Note: poles of (A − LCy) and (A − LCy)
T are identical. 

– Also have that (A − LCy)
T = AT − Cy

TLT 

– So designing LT for this transposed system looks like a standard 
regulator problem (A −BK) where 

A AT ⇒ 
B CT 

y⇒ 
K LT ⇒ 

So we can use Ke = acker(AT, Cy
T , P ) , L ≡ Ke

T 

•	 Note that the estimator equivalent of Ackermann’s formula is that �T 
L = Φe(s)M−1 

o 0 1 0	 · · · 
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Estimator Example 11–1 

•	 Simple system (see page 11­21) � � � �	 � � −1 1.5 1	 .5 
A =	 , B = , x(0) = 

−0

1	 −2 0 −1 

Cy = 1 0 , D = 0 

–	Assume that the initial conditions are not well known. 

–	System stable, but λmax(A) = −0.18 

–	Test observability: 

Cy 1 0 
rank = rank 

CyA −1 1.5 

•	 Use open and closed­loop estimators. Since the initial conditions are 
0 

not well known, use x̂(0) = 
0 

•	 Open­loop estimator: 

ˆ̇x	 = Ax̂ + Bu 

ˆ ˆy	 = Cyx 

•	 Closed­loop estimator: 

ˆ̇ x + Bu + L˜ x + Bu + L(y − ˆx	 = Aˆ y = Aˆ y) 

= (A − LCy)x̂ + Bu + Ly 

ˆ ˆy	 = Cyx 

– Dynamic system with poles λi(A − LCy) that takes the measured 
plant outputs as an input and generates an estimate of x. 
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• Typically simulate both systems together for simplicity 

• Open­loop case: 

ẋ = Ax + Bu 

y = Cyx 

ˆ̇x = Ax̂ + Bu 

ˆ ˆy = Cyx ⎤
⎡

−0.5

−1
ẋ
 A 0 x ⎢⎢⎢⎣


⎥⎥⎥⎦

B x(0) 

= + u , = 
x̂(0)ˆ̇ x

⇒ 
x 0 A ˆ B


y
 Cy 0 x 
= 

ˆ xy 0 Cy 
ˆ

• Closed­loop case: 

ẋ = Ax + Bu 

x = (A − LCy)ˆˆ̇ x + Bu + LCyx 

ẋ
 A 0 x B 
ˆ̇

= + u 
x B

⇒ 
x LCy A − LCy 

ˆ

• Example uses a strong u(t) to shake things up 

0 
0 
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Figure 1: Open­loop estimator. Estimation error converges to zero, but very slowly.
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Figure 2: Closed­loop estimator. Convergence looks much better.
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•	 Location heuristics for poles still apply – use Bessel, ITAE, ... 
– Main difference: probably want to make the estimator faster than 

you intend to make the regulator – should enhance the control, 
which is based on x̂(t). 

– ROT: Factor of 2–3 in the time constant ζωn associated with the 
regulator poles. 

•	 Note: When designing a regulator, were concerned with “bandwidth” 
of the control getting too high ⇒ often results in control commands 
that saturate the actuators and/or change rapidly. 

Different concerns for the estimator: • 
– Loop closed inside computer, so saturation not a problem. 

– However, the measurements y are often “noisy”, and we need to be 
careful how we use them to develop our state estimates. 

⇒ High bandwidth estimators tend to accentuate the effect of sens­

ing noise in the estimate. 
– State estimates tend to “track” the measurements, which are fluc­

tuating randomly due to the noise. 

⇒ Low bandwidth estimators have lower gains and tend to rely more 
heavily on the plant model 
– Essentially an open­loop estimator – tends to ignore the measure­

ments and just uses the plant model. 
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•	 Can also develop an optimal estimator for this type of system. 

– Given the duality of the regulator and estimator seen so far, would 
expect to see close connection between the optimal estimator and 
the optimal regulator (LQR) 

•	 Key step is to balance the effect of the various types of random noise 
in the system on the estimator: 

ẋ	 = Ax + Bu + Bww 

y	 = Cyx + v 

– w: “process noise” – models uncertainty in the system model. 
– v: “sensor noise” – models uncertainty in the measurements. 

•	 Typically assume that w(t) and v(t) are 
– Zero mean: E[w(t)] = 0 

– Gaussian white random noises: no correlation between the noise at 
one time instant and another 

E[w(t1)w(t2)
T ] =Rww(t1)δ(t1 − t2) ⇒ w(t) ∼ N (0, Rww) 

E[v(t1)v(t2)
T ] =Rvv(t1)δ(t1 − t2) ⇒ v(t) ∼ N (0, Rvv) 

E[w(t1)v(t2)
T ] =0 

•	 Goal: develop an estimator x̂(t) which is a linear function of the 
measurements y(τ ) (0 ≤ τ ≤ t) and minimizes the function 

E (x(t) − ˆ	 x(t))T x(t))(x(t) − ˆ

which is the covariance for the estimation error. 
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•	 Solution is a closed­loop estimator 

x(t) = Aˆ	 ˆˆ̇ x + L(t)(y(t) − Cyx(t)) 

where L(t) = Q(t)CTR−1 and Q(t) ≥ 0 solves y	 vv 

Q̇	= AQ + QAT + BwRwwBT − QCTR−1CyQw y vv 

– Note that x̂(0) and Q(0) are known 

– Differential equation for Q solved forward in time. 

– This is the filter form of the differential matrix Riccati equation for 
the error covariance. 

•	 Called Kalman­Bucy Filter – linear quadratic estimator (LQE) 

•	 Note that an increase in Q corresponds to increased uncertainty 
in the state estimate. Q̇ has several contributions: 
– AQ + QAT is the homogeneous part


BT
– BwRww w increase due to the process measurements 

– QCTR−1CyQ decrease due to measurements y	 vv 

•	 The estimator gain is L(t) = Q(t)Cy
TR−1 

vv 

– If the uncertainty about the state is high, then Q is large, and so 
the innovation y − Cyx is weighted heavily (Lˆ	 ↑) 

– If the measurements are very accurate Rvv ↓, then the measure­

ments are heavily weighted 
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•	 With noise in the system, the model is of the form: 

ẋ = Ax + Bu + Bww , y = Cyx + v 

– And the estimator is of the form:


ˆ̇ x + Bu + L(y − ˆ ˆ ˆ
x = Aˆ	 y) , y = Cyx 

•	 Analysis: in this case: 

˙̃x = ẋ − ˙̂x = [Ax + Bu + Bww] − [Ax̂ + Bu + L(y − ŷ)] 

= A(x − x̂) − L(Cyx − Cy ̂x) + Bww − Lv 

= Ax̃ − LCy ̃x + Bww − Lv 

= (A − LCy)x̃ + Bww − Lv 

•	 This equation of the estimation error explicitly shows the conflict in 
the estimator design process. Must balance between: 
– Speed of the estimator decay rate, which is governed by λi(A−LCy) 

– Impact of the sensing noise v through the gain L 

•	 Fast state reconstruction requires rapid decay rate (typically requires 
a large L), but that tends to magnify the effect of v on the estimation 
process. 
– The effect of the process noise is always there, but the choice of L 

will tend to mitigate/accentuate the effect of v on x̃(t). 

• Kalman Filter provides an optimal balance between the two con­

flicting problems for a given “size” of the process and sensing noises. 
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Assume that • 
1.	Rvv > 0, Rww > 0 

2. All plant dynamics are constant in time 

3.	[A, Cy] detectable 

4.	[A, Bw] stabilizable 

•	 Then, as with the LQR problem, the covariance of the LQE quickly 
settles down to a constant Qss independent of Q(0), as t →∞ where 

BTAQss + QssA
T + BwRww w −QssCy

TR−1CyQss = 0 vv 

– Stabilizable/detectable gives a unique Qss ≥ 0 

– Qss > 0 iff [A, Bw] controllable


CTR−1
– Lss = Qss y vv 

•	 If Qss exists, the steady state filter 

x(t) = Aˆ	 ˆˆ̇ x + Lss(y(t) − Cyx(t)) 

= (A − LssCy)x̂(t) + Lssy(t) 

is asymptotically stable iff (1)–(4) above hold. 
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Given that ˆ̇	 x + Ly•	 x = (A − LCy)ˆ

•	 Consider a scalar system, and take the Laplace transform of both sides 
to get: 

X̂(s)	 L 
= 

Y (s) sI − (A − LCy) 

This is the transfer function from the “measurement” to the “esti­• 
mated state” 
– It looks like a low­pass filter. 

•	 Clearly, by lowering Rvv, and thus increasing L, we are pushing out 
the pole. 
– DC gain asymptotes to 1/Cy as L →∞ 
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•	 Lightly Damped Harmonic Oscillator � � � � � � � � 

ẋ1	 0 1 x1 0 
=	 + w 

ẋ2 −ω0
2 0 x2 1 

and y = x1 + v, where Rww = 1 and Rvv = r. 

– Can sense the position state of the oscillator, but want to develop 
an estimator to reconstruct the velocity state. 

•	 Symmetric root locus exists for the optimal estimator. Can find 
location of the optimal poles using a SRL based on the TF 

� � � 
s −1 

�−1 � 
0 1 N (s)

Gyw(s) = 1 0 
ω0

2 s 1
= 

s2 + ω2 = 
D(s)0 

– SRL for the closed­loop poles λi(A − LC) of the estimator which 
are the LHP roots of: 

Rww 
D(s)D(−s)± N (s)N (−s) = 0 

Rvv 

– Pick sign to ensure that there are no poles on the jω­axis (other 
than for a gain of zero) 

– So we must find the LHP roots of � � � � 1	 1 
s 2 + ω2 (−s)2 + ω2	 2+ = (s 2 + ω0

2) + = 0 0	 0 r	 r 
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•	 Note that as r → 0 (clean sensor), the estimator poles tend to ∞ 
along the ±45 deg asymptotes, so the poles are approximately 

s ≈ −1± j√ 2 2
2
Φe(s)
= s
 + s + = 0√⇒
r r r 

•	 Can use these estimate pole locations in acker, to get that ⎛� �2 � � ⎞� �−1 � �
0 1 2 0 1 2 C 0 

L	 = ⎝ + + I⎠√
r CA 12

0

2
0
−ω
 0 r −ω 0 

r − ω2 2√
2 

r 

r − ω

� �−1 � � 
0r 

r − ω2
0 

2√2
0 1 0 

= = 
2
0
−
 ω

r 
2√ 22

0 
0 1 1


2√
2 

•	 Given L, A, and C, we can develop the estimator transfer function 
from the measurement y to the x̂2 � � � � � �

r 

r − ω

−1 �

2√

2 
r 

r − ω

� �	 0 1x̂2 
0 1 sI − 1 0 +=


2
0 

2
0

y −ω 0 �−1 � 
2√
r −1 2√

2 

2√

r 

r − ω

r 

� � s +
= 0 1 

2
0 

2 s
� r �� � � s 1 1 
= 0 1 −2 

r 
2√s +
r 

2
0 

2 
r − ω 2√

2
0 

r 
2
2 + s +s r 

2√

s −
√

rω

s2 +
r 

−2 
r 

2√ +
r (
 2√

2√
r 

s +
r 

2)(r − ω2
0
)
s +
≈=
 2
 2
s2 + s +r r 

•	 Filter zero asymptotes to s = 0 as r → 0 and the two poles →∞ 

•	 Resulting estimator looks like a “band­limited” differentiator. 
– This was expected because we measure position and want to esti­

mate velocity. 

– Frequency band over which we are willing to perform the differenti­

ation determined by the “relative cleanliness” of the measurements. 

2
0
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Figure 3: Bandlimited differentiation of the position measurement from LQE: r = 
10−2 , r = 10−4 , r = 10−6, and r = 10−8 
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Final Thoughts


•	 Note that the feedback gain L in the estimator only stabilizes the 
estimation error. 
– If the system is unstable, then the state estimates will also go to 
∞, with zero error from the actual states. 

•	 Estimation is an important concept of its own. 
– Not always just “part of the control system” 

– Critical issue for guidance and navigation system 

•	 More complete discussion requires that we study stochastic processes 
and optimization theory. 

•	 Estimation is all about which do you trust more: your mea­
surements or your model. 

•	 Strong duality between LQR and LQE problems 

A	 AT → 
B	 CT 

y→ 
BTCz	 w→ 

Rzz	 Rww → 
Ruu	 Rvv → 
K(t) → LT (tf − t) 
P (t) → Q(tf − t) 
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Basic Estimator (examp1.m) (See page 11­8)


1 % Examples of estimator performance 
2 % Jonathan How, MIT 
3 % 16.333 Fall 2005 
4 % 
5 % plant dynamics 
6 % 
7 a=[­1 1.5;1 ­2];b=[1 0]’;c=[1 0];d=0; 
8 % 
9 % estimator gain calc 

10 % 
11 l=place(a’,c’,[­3 ­4]);l=l’ 
12 % 
13 % plant initial cond 
14 xo=[­.5;­1]; 
15 % extimator initial cond 
16 xe=[0 0]’; 
17 t=[0:.1:10]; 
18 % 
19 % inputs 
20 % 
21 u=0;u=[ones(15,1);­ones(15,1);ones(15,1)/2;­ones(15,1)/2;zeros(41,1)]; 
22 % 
23 % open­loop extimator 
24 % 
25 A_ol=[a zeros(size(a));zeros(size(a)) a]; 
26 B_ol=[b;b]; 
27 C_ol=[c zeros(size(c));zeros(size(c)) c]; 
28 D_ol=zeros(2,1); 
29 % 
30 % closed­loop extimator 
31 % 
32 A_cl=[a zeros(size(a));l*c a­l*c];B_cl=[b;b]; 
33 C_cl=[c zeros(size(c));zeros(size(c)) c];D_cl=zeros(2,1); 
34 

35 [y_cl,x_cl]=lsim(A_cl,B_cl,C_cl,D_cl,u,t,[xo;xe]); 
36 [y_ol,x_ol]=lsim(A_ol,B_ol,C_ol,D_ol,u,t,[xo;xe]); 
37 

38 figure(1);clf;subplot(211) 
39 plot(t,x_cl(:,[1 2]),t,x_cl(:,[3 4]),’­­’,’LineWidth’,2);axis([0 4 ­1 1]); 
40 title(’Closed­loop estimator’);ylabel(’states’);xlabel(’time’) 
41 text(.25,­.4,’x_1’);text(.5,­.55,’x_2’);subplot(212) 
42 plot(t,x_cl(:,[1 2])­x_cl(:,[3 4]),’LineWidth’,2) 
43 %setlines; 
44 axis([0 4 ­1 1]);grid on 
45 ylabel(’estimation error’);xlabel(’time’) 
46 

47 figure(2);clf;subplot(211) 
48 plot(t,x_ol(:,[1 2]),t,x_ol(:,[3 4]),’­­’,’LineWidth’,2);axis([0 4 ­1 1]) 
49 title(’Open loop estimator’);ylabel(’states’);xlabel(’time’) 
50 text(.25,­.4,’x_1’);text(.5,­.55,’x_2’);subplot(212) 
51 plot(t,x_ol(:,[1 2])­x_ol(:,[3 4]),’LineWidth’,2) 
52 %setlines; 
53 axis([0 4 ­1 1]);grid on 
54 ylabel(’estimation error’);xlabel(’time’) 
55 

56 print ­depsc ­f1 est11.eps; jpdf(’est11’) 
57 print ­depsc ­f2 est12.eps; jpdf(’est12’) 
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Filter Interpretation


%

% Simple LQE example showing SRL

% 16.323 Spring 2006

% Jonathan How

%

a=[0 1;­4 0];

c=[1 0]; % pos sensor

c2=[0 1]; % vel state out

f=logspace(­3,3,500);


r=1e­2;

l=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*a])*[0 1]’

[nn,dd]=ss2tf(a­l*c,l,c2,0); % to the vel estimate

g=freqresp(nn,dd,f*j);

[r roots(nn)]

figure(1)

subplot(211)

loglog(f,abs(g))

%hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[1e4 1e­4 1e­4 1e4 1e4]’,’c’);hold off

xlabel(’Freq (rad/sec)’)

ylabel(’Mag’)

title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

axis([1e­3 1e3 1e­4 1e4])

subplot(212)

semilogx(f,unwrap(angle(g))*180/pi)

xlabel(’Freq (rad/sec)’)

ylabel(’Phase (deg)’)

axis([1e­3 1e3 0 200])


figure(2)

r=1e­4;

l=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*a])*[0 1]’

[nn,dd]=ss2tf(a­l*c,l,c2,0); % to the vel estimate

g=freqresp(nn,dd,f*j);

[r roots(nn)]

subplot(211)

loglog(f,abs(g))

%hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[1e4 1e­4 1e­4 1e4 1e4]’,’c’);hold off

xlabel(’Freq (rad/sec)’)

ylabel(’Mag’)

title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

axis([1e­3 1e3 1e­4 1e4])

subplot(212)

semilogx(f,unwrap(angle(g))*180/pi)

xlabel(’Freq (rad/sec)’)

ylabel(’Phase (deg)’)

%bode(nn,dd);

axis([1e­3 1e3 0 200])


figure(3)

r=1e­6;

l=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*a])*[0 1]’

[nn,dd]=ss2tf(a­l*c,l,c2,0); % to the vel estimate

g=freqresp(nn,dd,f*j);

[r roots(nn)]

subplot(211)

loglog(f,abs(g))

%hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[1e4 1e­4 1e­4 1e4 1e4]’,’c’);hold off

xlabel(’Freq (rad/sec)’)

ylabel(’Mag’)

title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

axis([1e­3 1e3 1e­4 1e4])

subplot(212)

semilogx(f,unwrap(angle(g))*180/pi)

xlabel(’Freq (rad/sec)’)

ylabel(’Phase (deg)’)

%bode(nn,dd);
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68 title([’Vel sens to Pos state, sen noise r=’,num2str(r)]) 
69 axis([1e­3 1e3 0 200]) 
70 

71 figure(4) 
72 r=1e­8; 
73 l=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*a])*[0 1]’ 
74 [nn,dd]=ss2tf(a­l*c,l,c2,0); % to the vel estimate 
75 g=freqresp(nn,dd,f*j); 
76 [r roots(nn)] 
77 subplot(211) 
78 loglog(f,abs(g)) 
79 %hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[1e4 1e­4 1e­4 1e4 1e4]’,’c’);hold off 
80 xlabel(’Freq (rad/sec)’) 
81 ylabel(’Mag’) 
82 title([’Vel sens to Pos state, sen noise r=’,num2str(r)]) 
83 axis([1e­3 1e3 1e­4 1e4]) 
84 title([’Vel sens to Pos state, sen noise r=’,num2str(r)]) 
85 subplot(212) 
86 semilogx(f,unwrap(angle(g))*180/pi) 
87 xlabel(’Freq (rad/sec)’) 
88 ylabel(’Phase (deg)’) 
89 %bode(nn,dd); 
90 axis([1e­3 1e3 0 200]) 
91 

92 print ­depsc ­f1 filt1.eps; jpdf(’filt1’) 
93 print ­depsc ­f2 filt2.eps;jpdf(’filt2’) 
94 print ­depsc ­f3 filt3.eps;jpdf(’filt3’) 
95 print ­depsc ­f4 filt4.eps;jpdf(’filt4’) 


