16.323 Lecture 11

Estimators/Observers

e Bryson
e Gelb — Optimal Estimation
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Estimators/Observers

e Problem: So far we have assumed that we have full access to the
state x(¢) when we designed our controllers.

— Most often all of this information is not available.

— And certainly there is usually error in our knowledge of x.

e Usually can only feedback information that is developed from the sen-
sors measurements.

— Could try “output feedback” u= Kx = u= Ky
— But this is type of controller is hard to design.

e Alternative approach: Develop a replica of the dynamic system that
provides an “estimate” of the system states based on the measured
output of the system.

e New plan: called a “separation principle”
1. Develop estimate of x(t), called x(?).

2. Then switch from u = —Kx(t) to u = —Kx(t).

e Two key questions:
— How do we find x()7

— Will this new plan work? (yes, and very well)
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e Assume that the system model is of the form:

x = Ax+ Bu, x(0) unknown
y = C)x
where

— A, B, and C,, are known — possibly time-varying, but that is sup-
pressed here.

— u(t) is known

— Measurable outputs are y(t¢) from C,, # I

e Goal: Develop a dynamic system whose state
X(t) = x(t)

for all time t > 0. Two primary approaches:
— Open-loop.
— Closed-loop.
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e Given that we know the plant matrices and the inputs, we can just

perform a simulation that runs in parallel with the system
x(t) = A% + Bu(t)
— Then x(t) = x(t) V t provided that x(0) = x(0)

e Major Problem: We do not know x(0)

System A.B,C, y(?)
= x(t)

:>
/
~
~

Observer A,B,C),
= X(t)

e To analyze this case, start with:

x(t) = Ax(t) + Bu(t)
x(t) = Ax(t)+ Bu(t)

e Define the estimation error: x(t) = x(t) — x(t).
— Now want x(¢) = 0 V ¢, but is this realistic?
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e Subtract to get:
d

Clx-X) = Ax-%) = X(f) = AX

which has the solution
%(t) = e2'%(0)

— Gives the estimation error in terms of the initial error.

e Does this guarantee that x =0 V ¢7?
Or even that x — 0 as t — oo? (which is a more realistic goal).

— Response is fine if X(0) = 0. But what if x(0) # 07?

o If Astable, then z — 0 ast — o0, but the dynamics of the estimation
error are completely determined by the open-loop dynamics of the
system (eigenvalues of A).

— Could be very slow.

— No obvious way to modify the estimation error dynamics.

e Open-loop estimation does not seem to be a very good idea.
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e Obvious fix to problem: use the additional information available:

— How well does the estimated output match the measured output?
Compare: y = C)x with y=C)x
—Thenformy =y -y =C,x

System A,B.C, y(t)
— x(t)
u(t)
o) . ,

Observer A,B,C), y(t)
— X(t)

e Approach: Feedback 7 to improve our estimate of the state. Basic
form of the estimator is:

x(t) = Ax(t)+ Bu(t) +|Ly ()
y(t) = Cyx(t)

where L is a user selectable gain matrix.

e Analysis:
X=%—X = |[Ax+ Bu| — [AXx+ Bu+ L(y — y)|
= A(x —x) — L(Cx — Cyx)
= Ax— LOx% = (A— LC,)%
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e So the closed-loop estimation error dynamics are now

x = (A — LC,)x with solution X(t) = e~ F%W x(0)

e Bottom line: Can select the gain L to attempt to improve the
convergence of the estimation error (and/or speed it up).

— But now must worry about observability of the system model.

e Note the similarity:
— Regulator Problem: pick K for A— BK
& Choose K € R (SISO) such that the closed-loop poles

det(s] — A+ BK) = ®.(s)

are in the desired locations.
— Estimator Problem: pick L for A — LC),
& Choose L € R™ ! (SISO) such that the closed-loop poles

det(s] — A+ LC,) = D,(s)

are in the desired locations.

— These problems are obviously very similar — in fact they are called
dual problems.
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Estimation Gain Design

e For regulation, concerned with controllability of [A, B], = For con-
trollable system, can place eigenvalues of A— BK arbitrarily.

e For estimation, concerned with observability of [A4, C,|, = For ob-
servable system, can place eigenvalues of A— LC, arbitrarily.

e Test using the observability matrix (SISO case):

Cy
C,A
rank M, = rank CyA2 =n

OyAn—l

e Procedure for selecting L similar to that used for regulator design.
— Note: poles of (A — LC,) and (A — LC,)" are identical.
— Also have that (A — LC,)" = A" — CJ L"
— So designing L’ for this transposed system looks like a standard
regulator problem (A — BK') where

A = AT
B = Cg
K = L7

So we can use K, = acker(A",C),P), L=K/

e Note that the estimator equivalent of Ackermann’s formula is that

L= (s)M;" [0 -~ 0 1]

o
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Estimator Example 11-1

e Simple system (see page 11-21)
[ —1 15
1 =2
¢, =[10], D=0

A =

— Assume that the initial conditions are not well known.
— System stable, but A\ (A) = —0.18
— Test observability:

k[ C’y ] . 1 0
ran — ran
CyA —1 15

e Use open and closed-loop estimators. Since the initial conditions are

not well known, use z(0) = [ 8 ]

e Open-loop estimator:

Ax + Bu
= Cyx

-
I

<>
|

e C(losed-loop estimator:

A

X = Ax+ Bu+ Ly =Ax+ Bu+ L(y — y)
= (A-LCy)x+ Bu+ Ly
y = Cx
— Dynamic system with poles \;(A — LC,) that takes the measured
plant outputs as an input and generates an estimate of x.
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e Typically simulate both systems together for simplicity

e Open-loop case:

x = Ax+ Bu
y Cyx
X Ax + Bu
y = Cx

N A 0| x N B I x(0)
x| |oAallx B ’ x(0)
HEIH
y 0G| LX

e Closed-loop case:
= Ax + Bu

x = (A—-LCy)x+ Bu+ LC/x
N x B X+ B
x| X B

e Example uses a strong u(t) to shake things up

A 0
LC, A-LC,

16.323 11-9

[u
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Figure 2: Closed-loop estimator.
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Spr 2006 16.323 11-11

Estimator Poles?

e Location heuristics for poles still apply — use Bessel, ITAE, ...

— Main difference: probably want to make the estimator faster than
you intend to make the regulator — should enhance the control,
which is based on x(%).

— ROT: Factor of 2-3 in the time constant (w,, associated with the
regulator poles.

e Note: When designing a regulator, were concerned with “bandwidth”
of the control getting too high = often results in control commands
that saturate the actuators and/or change rapidly.

e Different concerns for the estimator:
— Loop closed inside computer, so saturation not a problem.

— However, the measurements y are often “noisy”, and we need to be
careful how we use them to develop our state estimates.

= High bandwidth estimators tend to accentuate the effect of sens-
ing noise in the estimate.
— State estimates tend to “track” the measurements, which are fluc-
tuating randomly due to the noise.

= Low bandwidth estimators have lower gains and tend to rely more
heavily on the plant model
— Essentially an open-loop estimator — tends to ignore the measure-
ments and just uses the plant model.




Spr 2006 16.323 11-12

Optimal Estimator

e Can also develop an optimal estimator for this type of system.

— Given the duality of the regulator and estimator seen so far, would
expect to see close connection between the optimal estimator and
the optimal regulator (LQR)

o Key step is to balance the effect of the various types of random noise
in the system on the estimator:
x = Ax+ Bu+ B,w
y = Cx+v
— w: “process noise’ — models uncertainty in the system model.

— v: “sensor noise” — models uncertainty in the measurements.

e Typically assume that w(t) and v(t) are
— Zero mean: E[w(t)] =0
— Gaussian white random noises: no correlation between the noise at
one time instant and another

Elw(t)w(t2)'] =Ruuw(t1)6(t1 —ta) = w(t) ~ N(0, Ryw)
E{V(tl)V(tg)T} :Rm,(tl)é(tl — tg) = V( ) N(O va)
E[W(tl)V(tg)T} =()

e Goal: develop an estimator X(¢) which is a linear function of the
measurements y(7) (0 < 7 < t) and minimizes the function

E [(x(t) — x(t))(x(t) — x(t))"]

which is the covariance for the estimation error.
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e Solution is a closed-loop estimator
x(t) = Ax + L(t)(y(t) — C,x(t))
where L(t) = Q(t)C, R, and Q(t) > 0 solves
Q =AQ+ QA" + B,R,,Bl, — QC, R, C,Q
— Note that 2(0) and Q(0) are known

— Differential equation for () solved forward in time.

— This is the filter form of the differential matrix Riccati equation for
the error covariance.

e Called Kalman-Bucy Filter - linear quadratic estimator (LQE)

e Note that an increase in () corresponds to increased uncertainty
in the state estimate. () has several contributions:

— AQ + QAT is the homogeneous part
— Bwang increase due to the process measurements

— QCyTR;UlC’yQ decrease due to measurements

e The estimator gain is L(t) = Q(t)C, R,
— If the uncertainty about the state is high, then @) is large, and so
the innovation y — C,X is weighted heavily (L T)

— If the measurements are very accurate R,, |, then the measure-
ments are heavily weighted




e With noise in the system, the model is of the form:

x=Ax+Bu+B,w, y=Cx+vVv
— And the estimator is of the form:

x=Ax+Bu+Lly-y), y=Cx

e Analysis: in this case:

X = X—x=[Ax+ Bu+ B,w| — [Ax+ Bu+ L(y — y)]
= Ax—x)—- L(Cx—Cyx)+ B,w — Lv

= Ax - LCx+ B,w — Lv

= (A— LC,)x+ B,w — Lv

e This equation of the estimation error explicitly shows the conflict in
the estimator design process. Must balance between:

— Speed of the estimator decay rate, which is governed by \;(A—LC,)

— Impact of the sensing noise v through the gain L

e Fast state reconstruction requires rapid decay rate (typically requires
a large L), but that tends to magnify the effect of v on the estimation
process.

— The effect of the process noise is always there, but the choice of L
will tend to mitigate/accentuate the effect of v on x(%).

e Kalman Filter provides an optimal balance between the two con-
flicting problems for a given “size” of the process and sensing noises.
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e Assume that
1. R,, >0, Ry >0

2. All plant dynamics are constant in time
3. |A, C,] detectable
4. [A, By] stabilizable

e Then, as with the LQR problem, the covariance of the LQE quickly
settles down to a constant (), independent of )(0), as t — 0o where

Ast + QSSAT + BwawBZ; - stchv_vlcsts =0

— Stabilizable/detectable gives a unique Qs > 0
— Qqs > 0 iff [A, B,] controllable
— L = QSSCJR;J

o If (), exists, the steady state filter

x(t) = AX+ Lu(y(t) — C,x(t)
= (A — Ly,Cx(t) + Lysy(t)

is asymptotically stable iff (1)—(4) above hold.
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e Given that x = (A — LC,)x + Ly

e Consider a scalar system, and take the Laplace transform of both sides

to get:
X(s) L
Y(s) sI—(A-LC)

e This is the transfer function from the “measurement”’ to the “esti-

mated state”
— It looks like a low-pass filter.

e Clearly, by lowering R,,, and thus increasing L, we are pushing out

the pole.
— DC gain asymptotes to 1/C; as L — o0

Scalar TF from Y to \hat X for larger L

T T T T

T T

Increasing L

Ihat X /Y|

_
O‘
T

10_ n 1 n 1 n 1y n 1y n 1y 111y
= 0 1 2 3 5 6
10 10 10 10 10

Freq (rad/sec)




e Lightly Damped Harmonic Oscillator

BENIEEEE

and y = x1 + v, where R, =1 and R,, = .

— Can sense the position state of the oscillator, but want to develop
an estimator to reconstruct the velocity state.

e Symmetric root locus exists for the optimal estimator. Can find
location of the optimal poles using a SRL based on the TF

-1
s —1 0 1 N(s)
Gyu(s) =110 = =
wls) =10 Lg S ] Rz
— SRL for the closed-loop poles \;(A — LC') of the estimator which
are the LHP roots of:

wa
R’UU

— Pick sign to ensure that there are no poles on the jw-axis (other

D(s)D(—s) + N(s)N(—=s) =0

than for a gain of zero)

— So we must find the LHP roots of
1 1
[s° +wi] [(—9)” +wi] + - = (s*+wp)” + —=0

Symmetric root locus
15 T T T T T T T T T

Real Axis
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e Note that as » — 0 (clean sensor), the estimator poles tend to oo

16.323 11-18

along the £45 deg asymptotes, so the poles are approximately

14+
S X
T

e (Can use these estimate pole locations in acker, to get that
(To 1] 20 17 2 c 1o
([T T T
\ —wg 0 \/F —w% 0 r C'A 1
R [[10]]‘1[01 2
EET TRy ITRY NI 8l ER
e Given L, A, and C, we can develop the estimator transfer function

=  D.(s)

5 2 2
=8 +—=5s+-=0

Vrooor

from the measurement y to the x5

A ) 1 )
2 _ [01]<sl— [ 02]’ v 2772] [10]) lziﬁ
Y —wj 0 WO r W
| 2 ¢! 2
S A R
| ;S P
[ s 1 2 1
= [0 1] =2 g4 2 lz_ﬁuﬂ 24 2g 42
| Jr r 0 NG r
B f%—i—(s—i—%)(%—w%) s — \/Tw]
B 52+%3+% 32+%3+%

Filter zero asymptotes to s = 0 as r — 0 and the two poles — oo
Resulting estimator looks like a “band-limited” differentiator.

— This was expected because we measure position and want to esti-
mate velocity.

— Frequency band over which we are willing to perform the differenti-
ation determined by the “relative cleanliness” of the measurements.

(el \]

|
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Vel sens to Pos state, sen noise r=0.01

16.323 11-19

Vel sens to Pos state, sen noise r=0.0001
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Figure 3: Bandlimited differentiation of the position measurement from LQE: r =

1072 r=10% r=10"% and r = 1078
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Final Thoughts

e Note that the feedback gain L in the estimator only stabilizes the
estimation error.

— If the system is unstable, then the state estimates will also go to
0o, with zero error from the actual states.

e Estimation is an important concept of its own.
— Not always just “part of the control system”

— Critical issue for guidance and navigation system

e More complete discussion requires that we study stochastic processes
and optimization theory.

e Estimation is all about which do you trust more: your mea-
surements or your model.

e Strong duality between LQR and LQE problems

A - AT
B — C'yT
C., — Bl
R.. — R
RUU — RUU
Kt) — L'(ty—1)
Plt) — Qt;—t)
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Basic Estimator (exampl.m) (See page 11-8)

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51

% Examples of estimator performance

% Jonathan How, MIT

% 16.333 Fall 2005

%

% plant dynamics

%

a=[-1 1.5;1 -2];b=[1 0]’;c=[1 0];d=0;

%

% estimator gain calc

%

l=place(a’,c’,[-3 -4]);1=1"

%

% plant initial cond

xo=[-.5;-1];

% extimator initial cond

xe=[0 0]’;

t=[0:.1:10];

%

% inputs

%

u=0;u=[ones(15,1) ;-ones(15,1) ;ones(15,1) /2;-ones(15,1) /2;zeros(41,1)];
%
% open-loop extimator

%

A_ol=[a zeros(size(a));zeros(size(a)) al;
B_ol=[b;b];

C_ol=[c zeros(size(c));zeros(size(c)) cl;
D_ol=zeros(2,1);

%

% closed-loop extimator

%

A_cl=[a zeros(size(a));l*c a-1*c];B_cl=[b;b];
C_cl=[c zeros(size(c));zeros(size(c)) cl;D_cl=zeros(2,1);

[y_cl,x_cl]l=1sim(A_cl,B_cl,C_cl,D_cl,u,t, [xo;xel);
[y_ol,x_0l]=1sim(A_ol,B_ol,C_ol,D_ol,u,t, [x0;xel);

figure(1) ;clf;subplot(211)

plot(t,x_cl(:,[1 2]),t,x_cl(:,[3 4]),’--’,’LineWidth’,2);axis([0 4 -1 1]);
title(’Closed-loop estimator’);ylabel(’states’);xlabel(’time’)
text(.25,-.4,°x_1%);text(.5,-.55,’x_2") ;subplot(212)

plot(t,x_cl(:,[1 2])-x_cl(:,[3 4]),’LineWidth’,2)

Y%setlines;

axis([0 4 -1 1]);grid on

ylabel(’estimation error’);xlabel(’time’)

figure(2) ;clf;subplot(211)

plot(t,x_o1(:,[1 2]),t,x_01(:,[3 4]),’--’,’LineWidth’,2);axis([0 4 -1 1])
title(’Open loop estimator’);ylabel(’states’);xlabel(’time’)
text(.25,-.4,°x_1%);text(.5,-.55,’x_2") ;subplot(212)

plot(t,x_ol(:,[1 2])-x_ol(:,[3 4]),’LineWidth’,2)

%setlines;

axis([0 4 -1 1]);grid on

ylabel(’estimation error’);xlabel(’time’)

print -depsc -f1 estll.eps; jpdf(’estll’)
print -depsc -f2 estl2.eps; jpdf(’est12’)




Spr 2006 16.323 11-22

Filter Interpretation

1%

2 % Simple LQE example showing SRL
s % 16.323 Spring 2006

4 % Jonathan How

5 h

6 a=[0 1;-4 0];

7 c¢=[1 0]; % pos sensor

s ¢2=[0 1]; % vel state out

9 f=logspace(-3,3,500);

11 r=1le-2;

12 l=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*al)*[0 1]°

13 [nn,dd]=ss2tf(a-1*c,1,c2,0); % to the vel estimate

14 g=freqresp(nn,dd,f*j);

15 [r roots(nn)]

16 figure(1)

17 subplot(211)

18 loglog(f,abs(g))

19 %hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[le4 le-4 le-4 le4 1le4]’,’c’);hold off
20 xlabel(’Freq (rad/sec)’)

21 ylabel(’Mag’)

22 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])
23 axis([le-3 1e3 le-4 1le4])

24  subplot(212)

25  semilogx(f,unwrap(angle(g))*180/pi)

26  xlabel(’Freq (rad/sec)’)

27 ylabel(’Phase (deg)’)

28 axis([le-3 1e3 0 200])

30 figure(2)

31 r=1e-4;

32 l=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*al)*[0 1]’

33 [nn,dd]=ss2tf(a-1*c,1,c2,0); % to the vel estimate

34 g=freqresp(nn,dd,f*j);

35 [r roots(nn)]

36  subplot(211)

37 loglog(f,abs(g))

38 %hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[led le-4 le-4 1ed 1e4]’,’c’);hold off
39 xlabel(’Freq (rad/sec)’)

40  ylabel(’Mag’)

41 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])
42 axis([le-3 1e3 le-4 1le4d])

43 subplot(212)

44  semilogx(f,unwrap(angle(g))*180/pi)

45  xlabel(’Freq (rad/sec)’)

46 ylabel(’Phase (deg)’)

47 ‘%bode(nn,dd);

48 axis([1le-3 1e3 0 200])

50 figure(3)

51 r=1e-6;

52 1=polyvalm([1 2/sqrt(r) 2/r]l,a)*inv([c;c*al)*[0 1]’

53 [nn,dd]=ss2tf(a-1*c,1,c2,0); % to the vel estimate

54 g=freqresp(nn,dd,f*j);

55 [r roots(mn)]

56  subplot(211)

57 loglog(f,abs(g))

58  %hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[led4 le-4 le-4 1led 1le4]’,’c’);hold off
59 xlabel(’Freq (rad/sec)’)

60 ylabel(’Mag’)

61 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])
62 axis([le-3 1le3 1le-4 1le4])

63  subplot(212)

64 semilogx(f,unwrap(angle(g))*180/pi)

65 xlabel(’Freq (rad/sec)’)

66 ylabel(’Phase (deg)’)

67  Y%bode(nn,dd);
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68 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])
690 axis([le-3 1e3 0 200])

70

71 figure(4)

72 r=1e-8;

73 1=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*al)*[0 1]’

74 [nn,dd]=ss2tf(a-1*c,1,c2,0); % to the vel estimate

75 g=freqresp(nn,dd,f*j);

76 [r roots(nn)]

77 subplot(211)

78 loglog(f,abs(g))

79 %hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[led4 le-4 le-4 1led 1le4]’,’c’);hold off
so  xlabel(’Freq (rad/sec)’)

81 ylabel(’Mag’)

82 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])
s3 axis([le-3 1e3 le-4 1le4d])

84 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])
85  subplot(212)

86  semilogx (f,unwrap(angle(g))*180/pi)

s7 xlabel(’Freq (rad/sec)’)

88  ylabel(’Phase (deg)’)

89  %bode(nn,dd);

90 axis([le-3 1e3 0 200])

92 print -depsc -f1 filtl.eps; jpdf (°’filtl’)
93 print -depsc -f2 filt2.eps;jpdf (’£ilt2’)
94 print -depsc -f3 filt3.eps;jpdf(’£ilt3’)
95  print -depsc -f4 filt4.eps;jpdf (’filt4’)




