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Preface

This book is about constrained optimization. It begins with a thorough treatment
of linear programming and proceeds to convex analysis, network flows, integer pro-
gramming, quadratic programming, and convex optimization. Along the way, dynamic
programming and the linear complementarity problem are touched on as well.

The book aims to be a first introduction to the subject. Specific examples and
concrete algorithms precede more abstract topics. Nevertheless, topics covered a
developed in some depth, a large number of numerical examples are worked out il
detail, and many recent topics are included, most notably interior-point methods. The
exercises at the end of each chapter both illustrate the theory and, in some cases, exte
it.

Prerequisites.The book is divided into four parts. The first two parts assume a
background only in linear algebra. For the last two parts, some knowledge of multi-
variate calculus is necessary. In particular, the student should know how to use La
grange multipliers to solve simple calculus problems in 2 and 3 dimensions.

Associated softwardt is good to be able to solve small problems by hand, but the
problems one encounters in practice are large, requiring a computer for their solution
Therefore, to fully appreciate the subject, one needs to solve large (practical) prob
lems on a computer. An important feature of this book is that it comes with software
implementing the major algorithms described herein. At the time of writing, software
for the following five algorithms is available:

The two-phase simplex method as shown in Figurg 6.1.

The self-dual simplex method as shown in Fidure 7.1.

The path-following method as shown in Figlire 17.1.

The homogeneous self-dual method as shown in F[guré 21.1.

The long-step homogeneous self-dual method as described in Exercise 21.4

The programs that implement these algorithms are written in C and can be easily
compiled on most hardware platforms. Students/instructors are encouraged to insta
and compile these programs on their local hardware. Great pains have been taken
make the source code for these programs readable (see Appéndix A). In particular, th
names of the variables in the programs are consistent with the notation of this book.
There are two ways to run these programs. The first is to prepare the input in ¢
standard computer-file format, called MPS format, and to run the program using suct

xiii



Xiv PREFACE

afile as input. The advantage of this input format is that there is an archive of problems
stored in this format, called the NETLIB suite, that one can download and use imme-
diately (a link to the NETLIB suite can be found at the web site mentioned below).
But, this format is somewhat archaic and, in particular, it is not easy to create these
files by hand. Therefore, the programs can also be run from within a problem model-
ing system called AMPL. AMPL allows one to describe mathematical programming
problems using an easy to read, yet concise, algebraic notation. To run the prograrr
within AMPL, one simply tells AMPL the name of the solver-program before asking
that a problem be solved. The text that describes AMPL, (Foureret al| 1993), make:
an excellent companion to this book. It includes a discussion of many practical linear
programming problems. It also has lots of exercises to hone the modeling skills of the
student.

Several interesting computer projects can be suggested. Here are a few sugge
tions regarding the simplex codes:

e Incorporate the partial pricing strategy (see Sedtiph 8.7) into the two-phase
simplex method and compare it with full pricing.

e Incorporate the steepest-edge pivot rule (see Sgcfidn 8.8) into the two-phas
simplex method and compare it with the largest-coefficient rule.

¢ Modify the code for either variant of the simplex method so that it can treat
bounds and ranges implicitly (see Chajpfer 9), and compare the performance
with the explicit treatment of the supplied codes.

e Implement a “warm-start” capability so that the sensitivity analyses dis-
cussed in Chaptéf 7 can be done.

e Extend the simplex codes to be able to handle integer programming prob-
lems using the branch-and-bound method described in Chapter 22.

As for the interior-point codes, one could try some of the following projects:

e Modify the code for the path-following algorithm so that it implements the
affine-scaling method (see Chaygte} 20), and then compare the two methods

¢ Modify the code for the path-following method so that it can treat bounds
and ranges implicitly (see Section|I9.3), and compare the performance agair
the explicit treatment in the given code.

e Modify the code for the path-following method to implement the higher-
order method described in Exercjse 17.5. Compare.

e Extend the path-following code to solve quadratic programming problems
using the algorithm shown in Figure 2B.3.

e Further extend the code so that it can solve convex optimization problems
using the algorithm shown in Figure Zj.2.

And, perhaps the most interesting project of all:

e Compare the simplex codes against the interior-point code and decide for
yourself which algorithm is better on specific families of problems.



PREFACE XV

The software implementing the various algorithms was developed using consisten

data structures and so making fair comparisons should be straightforward. The soft

ware can be downloaded from the following web site:
http://www.princeton.eduérvdb/LPbook/

If, in the future, further codes relating to this text are developed (for example, a self-

dual network simplex code), they will be made available through this web site.
Features.Here are some other features that distinguish this book from others:

e The development of the simplex method leads to Dantzig’s parametric self-
dual method. A randomized variant of this method is shown to be immune
to the travails of degeneracy.

e The book gives a balanced treatment to both the traditional simplex method
and the newer interior-point methods. The notation and analysis is devel-
oped to be consistent across the methods. As a result, the self-dual simple
method emerges as the variant of the simplex method with most connections
to interior-point methods.

e From the beginning and consistently throughout the book, linear program-
ming problems are formulated symmetric form By highlighting symme-
try throughout, it is hoped that the reader will more fully understand and
appreciate duality theory.

¢ By slightly changing the right-hand side in the Klee—Minty problem, we are
able to write down an explicit dictionary for each vertex of the Klee—Minty
problem and thereby uncover (as a homework problem) a simple, elegant
argument why the Klee-Minty problem requirg’s — 1 pivots to solve.

e The chapter on regression includes an analysis of the expected number o
pivots required by the self-dual variant of the simplex method. This analysis
is supported by an empirical study.

e There is an extensive treatment of modern interior-point methods, including
the primal—-dual method, the affine-scaling method, and the self-dual path-
following method.

¢ |n addition to the traditional applications, which come mostly from business
and economics, the book features other important applications such as the
optimal design of truss-like structures ahd-regression.

Exercises on the Well.here is always a need for fresh exercises. Hence, | have
created and plan to maintain a growing archive of exercises specifically created for us
in conjunction with this book. This archive is accessible from the book’s web site:

http://www.princeton.edu/rvdb/LPbook/

The problems in the archive are arranged according to the chapters of this book an
use notation consistent with that developed herein.

Advice on solving the exercisedome problems are routine while others are fairly
challenging. Answers to some of the problems are given at the back of the book. Ir
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Xvi PREFACE

general, the advice given to me by Leonard Gross (when | was a student) should hel
even on the hard problem&llow your nose

Audience. This book evolved from lecture notes developed for my introduc-
tory graduate course in linear programming as well as my upper-level undergradu:
ate course. A reasonable undergraduate syllabus would cover essentially all[gf Part
(Simplex Method and Duality), the first two chapters of Part 2 (Network Flows and
Applications), and the first chapter of PpJt 4 (Integer Programming). At the gradu-
ate level, the syllabus should depend on the preparation of the students. For a wel
prepared class, one could cover the material in Parts L]and 2 fairly quickly and ther
spend more time on Pafts 3 (Interior-Point Methods)[gnd 4 (Extensions).

Dependenciedn general, Par{g 2 apdl 3 are completely independent of each other.
Both depend, however, on the material in Part 1. The first Chapter ifi |Part 4 (Intege
Programming) depends only on material from Part 1, whereas the remaining chapter
build on Parf B material.

AcknowledgmentsMy interest in linear programming was sparked by Robert
Garfinkel when we shared an office at Bell Labs. | would like to thank him for
his constant encouragement, advice, and support. This book benefited greatly fror
the thoughtful comments and suggestions of David Bernstein and Michael Todd. |
would also like to thank the following colleagues for their help: Ronny Ben-Tal, Leslie
Hall, Yoshi Ikura, Victor Klee, Irvin Lustig, Avi Mandelbaum, Marc Meketon, Narcis
Nabona, James Orlin, Andrzej Ruszczynski, and Henry Wolkowicz. | would like to
thank Gary Folven at Kluwer and Fred Hillier, the series editor, for encouraging me to
undertake this project. | would like to thank my students for finding many typos and
occasionally more serious errors: John Gilmartin, Jacinta Warnie, Stephen Woolbert
Lucia Wu, and Bing Yang My thanks to Erhan Cinlar for the many times he offered
advice on questions of style. | hope this book reflects positively on his advice. Finally,
I would like to acknowledge the support of the National Science Foundation and the
Air Force Office of Scientific Research for supporting me while writing this book. In
a time of declining resources, | am especially grateful for their support.

Robert J. Vanderbei
September, 1996



Preface to 2nd Edition

For the 2nd edition, many new exercises have been added. Also | have workec
hard to develop online tools to aid in learning the simplex method and duality theory.
These online tools can be found on the book’s web page:

http://www.princeton.edu/rvdb/LPbook/

and are mentioned at appropriate places in the text. Besides the learning tools, | hay
created several online exercises. These exercises use randomly generated proble
and therefore represent a virtually unlimited collection of “routine” exercises that can
be used to test basic understanding. Pointers to these online exercises are included
the exercises sections at appropriate points.

Some other notable changes include:

e The chapter on network flows has been completely rewritten. Hopefully, the
new version is an improvement on the original.

e Two different fonts are now used to distinguish between the set of basic
indices and the basis matrix.

e The first edition placed great emphasis on the symmetry between the primal
and the dual (the negative transpose property). The second edition carrie:
this further with a discussion of the relationship between the basic and non-
basic matrices3 and N as they appear in the primal and in the dual. We
show that, even though these matrices differ (they even have different di-
mensions)B~! N in the dual is the negative transpose of the corresponding
matrix in the primal.

¢ Inthe chapters devoted to the simplex method in matrix notation, the collec-
tion of variablesy, 2o, . . ., 20, Y1, Y2, - - ., Y WaS replaced, in the first edi-
tion, with the single array of variables, yo, . .., yn+m. This caused great
confusion as the variablg in the original notation was changedgg, ; in
the new notation. For the second edition, | have changed the notation for the
single array to:1, 22, . . ., Zntm-

e A number of figures have been added to the chapters on convex analysis an
on network flow problems.

Xvii
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Xviii PREFACE TO 2ND EDITION

e The algorithm refered to as the primal-dual simplex method in the first edi-
tion has been renamed the parametric self-dual simplex method in accor-
dance with prior standard usage.

e The last chapter, on convex optimization, has been extended with a discus
sion of merit functions and their use in shortenning steps to make some
otherwise nonconvergent problems converge.

AcknowledgmentsMany readers have sent corrections and suggestions for im-
provement. Many of the corrections were incorporated into earlier reprintings. Only
those that affected pagination were accrued to this new edition. Even though | cannc
now remember everyone who wrote, | am grateful to them all. Some sent comment:

that had significant impact. They were Hande Benson, Eric Denardo, Sudhakar Man
dapati, Michael Overton, and Jos Sturm.

Robert J. Vanderbei
December, 2000
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Basic Theory—The Simplex Method
and Duality



We all love to instruct, though we can teach only
what is not worth knowing— J. Austen



CHAPTER 1

Introduction

This book is mostly about a subject called Linear Programming. Before defining
what we mean, in general, by a linear programming problem, let us describe a few
practical real-world problems that serve to motivate and at least vaguely to define thi:
subject.

1. Managing a Production Facility

Consider a production facility for a manufacturing company. The facility is ca-
pable of producing a variety of products that, for simplicity, we shall enumerate as
1,2,...,n. These products are constructed/manufactured/produced out of certain rav
materials. Let us assume that theresardifferent raw materials, which again we shall
simply enumerate ak 2,...,m. The decisions involved in managing/operating this
facility are complicated and arise dynamically as market conditions evolve around it.
However, to describe a simple, fairly realistic optimization problem, we shall consider
a particular snapshot of the dynamic evolution. At this specific point in time, the fa-
cility has, for each raw material= 1,2,...,m, a known amount, sal;, on hand.
Furthermore, each raw material has at this moment in time a known unit market value
We shall denote the unit value of thith raw material byp,.

In addition, each product is made from known amounts of the various raw materi-
als. That is, producing one unit of prodyctequires a certain known amount, say
units, of raw material. Also, thejth final product can be sold at the known prevailing
market price obr; dollars per unit.

Throughout this section we make an important assumption:

The production facility is small relative to the market as a whole
and therefore cannot through its actions alter the prevailing market
value of its raw materials, nor can it affect the prevailing market
price for its products.

We shall consider two optimization problems related to the efficient operation of

this facility (later, in Chaptgr]5, we shall see that these two problems are in fact closely
related to each other).

1.1. Production Manager as Optimist. The first problem we wish to consider
is the one faced by the company’s production manager. It is the problem of how to use



4 1. INTRODUCTION

the raw materials on hand. Let us assume that she decides to produngs of the

jth product,j = 1,2,...,n. The revenue associated with the production of one unit
of productj is o;. But there is also a cost of raw materials that must be considered.
The cost of producing one unit of produgcis . , p;a;;. Therefore, the net revenue
associated with the production of one unit is the difference between the revenue an
the cost. Since the net revenue plays an important role in our model, we introduce
notation for it by setting

m

Cj =05 — E Piij, j:1,2,...,n.
i=1

Now, the net revenue corresponding to the productiary einits of producy is simply
¢jz;, and the total net revenue is

(11) ZCjLUj.
j=1

The production planner’s goal is to maximize this quantity. However, there are con-
straints on the production levels that she can assign. For example, each productic
quantityz; must be nonnegative, and so she has the constraint

(1.2) xz; >0, i=12,...,n.

Secondly, she can't produce more product than she has raw material for. The amou
of raw material consumed by a given production schedul?z1 a;;x;, and so she
must adhere to the following constraints:

(13) Zaijxj §bz i:1,2,...,m.
j=1

To summarize, the production manager’s job is to determine production vajues
j=1,2,...,n, so as to maximizqg (1.1) subject to the constraints givef by (1.2) and
(I33). This optimization problem is an example of a linear programming problem.
This particular example is often called thesource allocation problem

1.2. Comptroller as Pessimist.In another office at the production facility sits
an executive called the comptroller. The comptroller’s problem (among others) is to
assign a value to the raw materials on hand. These values are needed for accountil
and planning purposes to determine tost of inventory There are rules about how
these values can be set. The most important such rule (and the only one relevant to o
discussion) is the following:
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The company must be willing to sell the raw materials should an
outside firm offer to buy them at a price consistent with these val-
ues.

Let w; denote the assigned unit value of thle raw material; = 1,2,...,m.
That is, these are the numbers that the comptroller must determindoStrappor-
tunity costof havingb; units of raw materiat on hand ish;w;, and so the total lost
opportunity cost is

=1

The comptroller’s goal is to minimize this lost opportunity cost (to make the financial
statements look as good as possible). But again, there are constraints. First of all, ea
assigned unit value); must be no less than the prevailing unit market valyesince

if it were less an outsider would buy the company’s raw material at a price lower than
pi, contradicting the assumption thatis the prevailing market price. That is,

(1.5) w; > Pi, 1=1,2,...,m.

Similarly,

(1.6) Zwiaij > 0j, i=12...,n.
i=1

To see why, suppose that the opposite inequality holds for some specific pyoduct
Then an outsider could buy raw materials from the company, produce prpdard

sell it at a lower price than the prevailing market price. This contradicts the assumptior
thato; is the prevailing market price, which cannot be lowered by the actions of the
company we are studying. Minimizing (1.4) subject to the constraints given By (1.5)
and [1.6) is a linear programming problem. It takes on a slightly simpler form if we
make a change of variables by letting

Yi = W; — P, 1=1,2,...,m.

In words,y; is the increase in the unit value of raw matefia¢presenting the “mark-

up” the company would charge should it wish simply to act as a reseller and sell raw
materials back to the market. In terms of these variables, the comptroller’'s problem i
to minimize

m
> by
i=1
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subject to

m

Zyiaijzcj? j:1727"'7n
i=1

and
y; >0, i=1,2,...,m.

Note that we've dropped a term, ", b;p;, from the objective. It is a constant (the
market value of the raw materials), and so, while it affects the value of the function
being minimized, it does not have any impact on the actual optimal values of the
variables (whose determination is the comptroller’s main interest).

2. The Linear Programming Problem

In the two examples given above, there have been variables whose values are to |
decided in some optimal fashion. These variables are referrediecason variables
They are usually written as

In linear programming, the objective is always to maximize or to minimize some linear
function of these decision variables

(=c1x1 + Cc2x2 + -+ + Cpp.

This function is called thebjective function It often seems that real-world prob-
lems are most naturally formulated as minimizations (since real-world planners al-
ways seem to be pessimists), but when discussing mathematics it is usually nicer t
work with maximization problems. Of course, converting from one to the other is triv-
ial both from the modeler’s viewpoint (either minimize cost or maximize profit) and
from the analyst’s viewpoint (either maximizeor minimize —¢). Since this book is
primarily about the mathematics of linear programming, we shall usually consider our
aim one of maximizing the objective function.

In addition to the objective function, the examples also had constraints. Some
of these constraints were really simple, such as the requirement that some decisic
variable be nonnegative. Others were more involved. But in all cases the constraint
consisted of either an equality or an inequality associated with some linear combina
tion of the decision variables:

|
S

121 + a2 + - - 4 Aply

Y
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It is easy to convert constraints from one form to another. For example, an in-
equality constraint
a121 + agxo + -+ apty, <b

can be converted to an equality constraint by adding a nonnegative vatial¥ajch
we call aslack variable

a1r1 + agxo + -+ apr, +w =>=, w > 0.
On the other hand, an equality constraint
a1r1 +agxo + -+ apry, =b
can be converted to inequality form by introducing two inequality constraints:

121 + as®a + -+ apTy < b

ai1x1 + asxs + -+ apx, > b,

Hence, in some sense, there is no a priori preference for how one poses the constrair
(as long as they are linear, of course). However, we shall also see that, from a matt
ematical point of view, there is a preferred presentation. It is to pose the inequalities
as less-thans and to stipulate that all the decision variables be nonnegative. Hence, t
linear programming problem as we shall study it can be formulated as follows:

maximize cix1+ Coxo+ -+ Cpln
SUbjeCt to aj1xy + a12T2 + -+ A1nTn S bl

2121 + A2%T2 + -+ ATy < b

Am1T1 + GmaT2 + - -+ AmnTn S bm

L1, T2, ... xnz 0.

We shall refer to linear programs formulated this way as linear prograstaumaard
form. We shall always use: to denote the number of constraints, antb denote the
number of decision variables.

A proposal of specific values for the decision variables is calledlation A
solution (z1,xo, ..., 2,) is calledfeasibleif it satisfies all of the constraints. It is
calledoptimalif in addition it attains the desired maximum. Some problems are just
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simply infeasible, as the following example illustrates:

maximize 5z +4xo
subjectto  x1+ x2< 2
72.%1 - 2.%2 S -9

T, xQZ 0.

Indeed, the second constraint implies thatt+ x5 > 4.5, which contradicts the first
constraint. If a problem has no feasible solution, then the problem itself is called
infeasible

At the other extreme from infeasible problems, one finds unbounded problems.
A problem isunboundedf it has feasible solutions with arbitrarily large objective
values. For example, consider

maximize x; —4xs
subjectto —2z; + zo < -1
—r] — 209 < =2

Ty, r2 > 0.

Here, we could set- to zero and let:; be arbitrarily large. As long as; is greater
than2 the solution will be feasible, and as it gets large the objective function does too.
Hence, the problem is unbounded. In addition to finding optimal solutions to linear
programming problems, we shall also be interested in detecting when a problem i
infeasible or unbounded.

Exercises

1.1 A steel company must decide how to allocate next week’s time on a rolling
mill, which is a machine that takes unfinished slabs of steel as input and can
produce either of two semi-finished products: bands and coils. The mill's
two products come off the rolling line at different rates:

Bands 200 tons/hr
Coils 140 tons/hr .
They also produce different profits:
Bands $ 25/ton
Coils  $30/ton .

Based on currently booked orders, the following upper bounds are placed or
the amount of each product to produce:
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Bands 6000 tons
Coils 4000 tons .

Given that there are 40 hours of production time available this week, the
problem is to decide how many tons of bands and how many tons of coils
should be produced to yield the greatest profit. Formulate this problem as a
linear programming problem. Can you solve this problem by inspection?

1.2 A small airline, Ivy Air, flies between three cities: Ithaca, Newark, and
Boston. They offer several flights but, for this problem, let us focus on
the Friday afternoon flight that departs from Ithaca, stops in Newark, and
continues to Boston. There are three types of passengers:

(a) Those traveling from Ithaca to Newark.

(b) Those traveling from Newark to Boston.

(c) Those traveling from Ithaca to Boston.

The aircraft is a small commuter plane that seats 30 passengers. The airlin
offers three fare classes:

(a) Y class: full coach.

(b) B class: nonrefundable.

(c) M class: nonrefundable, 3-week advanced purchase.

Ticket prices, which are largely determined by external influences (i.e., com-
petitors), have been set and advertised as follows:

‘Ithaca—Newark Newark—Boston Ithaca—Boston

Y 300 160 360
B 220 130 280
M 100 80 140

Based on past experience, demand forecasters at Ivy Air have determinec
the following upper bounds on the number of potential customers in each of
the 9 possible origin-destination/fare-class combinations:

Ithaca—Newark Newark—Boston Ithaca—Boston
Y 4 8 3
B 8 13 10
M 22 20 18

The goal is to decide how many tickets from each oftlbeigin/destination/fare-
class combinations to sell. The constraints are that the plane cannot be
overbooked on either of the two legs of the flight and that the number of
tickets made available cannot exceed the forecasted maximum demand. Th
objective is to maximize the revenue. Formulate this problem as a linear
programming problem.
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1.3 Suppose thaY” is a random variable taking on one:x@known values:
A1,02, ..., 0p-
Suppose we know thaf either has distributiop given by
PY =a;) =p;
or it has distributiony given by
P(Y = a;) = g;.

Of course, the numbers;, ; = 1,2,...,n are nonnegative and sum to
one. The same is true for thg’s. Based on a single observation Bf
we wish to guess whether it has distributipror distributionq. That is,
for each possible outcome;, we will assert with probabilityc; that the
distribution isp and with probabilityl —x; that the distribution ig. We wish
to determine the probabilities;, j = 1,2,...,n, such that the probability
of saying the distribution i when in fact it isq has probability no larger
than3, wheregs is some small positive value (such @85). Furthermore,
given this constraint, we wish to maximize the probability that we say the
distribution isp when in fact it isp. Formulate this maximization problem
as a linear programming problem.

Notes

The subject of linear programming has its roots in the study of linear inequali-
ties, which can be traced as far back as 1826 to the work of Fourier. Since then, man
mathematicians have proved special cases of the most important result in the subject-
the duality theorem The applied side of the subject got its start in 1939 when L.V.
Kantorovich noted the practical importance of a certain class of linear programming
problems and gave an algorithm for their solution—see Kantorpyich {1960). Unfortu-
nately, for several years, Kantorovich’s work was unknown in the West and unnoticed
in the East. The subject really took off in 1947 when G.B. Dantzig inventesitimglex
methodor solving the linear programming problems that arose in U.S. Air Force plan-
ning problems. The earliest published accounts of Dantzig’s work appeared in 195
(Dantzid 1953aJb). His monograph (Dantzig 1963) remains an important reference. In
the same year that Dantzig invented the simplex method, T.C. Koopmans showed the
linear programming provided the appropriate model for the analysis of classical eco.
nomic theories. In 1975, the Royal Swedish Academy of Sciences awarded the Nobe
Prize in economic science to L.V. Kantorovich and T.C. Koopmans “for their contri-
butions to the theory of optimum allocation of resources.” Apparently the academy
regarded Dantzig’s work as too mathematical for the prize in economics (and there i
no Nobel Prize in mathematics).
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The textbooks by Bradley et al. (1977), Bazaraa et/al. (1977), and Hillier &
Lieberman [(1977) are known for their extensive collections of interesting practical
applications.






CHAPTER 2

The Simplex Method

In this chapter we present the simplex method as it applies to linear programming
problems in standard form.

1. An Example

We first illustrate how the simplex method works on a specific example:

maximize 5z + 4x; + 3x3
subjectto2x; +3zo+ x3< 5
(2.2) 41 + a0 +223<11
3x1 +4x9 +223< 8
Ty, To, x3 > 0.
We start by adding so-calleslack variablesFor each of the less-than inequalities in

(2.1) we introduce a new variable that represents the difference between the right-han
side and the left-hand side. For example, for the first inequality,

2$1 + 3.’E2 + x3 < 5,
we introduce the slack variable, defined by
w1 :5—2.%‘1—3.’132—373.

It is clear then that this definition af;, together with the stipulation that; be non-
negative, is equivalent to the original constraint. We carry out this procedure for eact
of the less-than constraints to get an equivalent representation of the problem:

maximize (= 5x1 + 4o + 33
subjecttow; = 5—2x7 — 3xo — 3
(22) w2:11741’1 — flf272flf3

wg = 8 —3x1 —4xe — 223

Z1, T2, T3, w1, w2, wz> 0.

13
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Note that we have included a notatignfor the value of the objective functiobz; +
4.%2 + 3%3

The simplex method is an iterative process in which we start with a solution
x1, T2, ..., ws that satisfies the equations and nonnegativitief ifj (2.2) and then look
for a new solutiont,, zo, . . . , w3, Which is better in the sense that it has a larger ob-
jective function value:

51 + 4xo + 3T3 > Sz + 4o + 323.

We continue this process until we arrive at a solution that can’t be improved. This final
solution is then an optimal solution.

To start the iterative process, we need an initial feasible solutjioms,, . . ., ws.
For our example, this is easy. We simply set all the original variables to zero and use
the defining equations to determine the slack variables:

1 =0, 29=0, 23=0, w; =5, wy=11, w3=28.

The objective function value associated with this solutiofi is 0.

We now ask whether this solution can be improved. Since the coefficient of
is positive, if we increase the value of from zero to some positive value, we will
increase(. But as we change its value, the values of the slack variables will also
change. We must make sure that we don't let any of them go negative. Since
x3 = 0, we see thatv; = 5 — 221, and so keepinguv; nonnegative imposes the
restriction thatz; must not exceed/2. Similarly, the nonnegativity ofv, imposes
the bound thatr; < 11/4, and the nonnegativity ofv3 introduces the bound that
x1 < 8/3. Since all of these conditions must be met, we seeidhaannot be made
larger than the smallest of these bounds:< 5/2. Our new, improved solution then

is
5 1

1'2:0, LBgZO, w1:0, ’(1)2:].7 ’U}3:§.
This first step was straightforward. It is less obvious how to proceed. What made
the first step easy was the fact that we had one group of variables that were initially
zero and we had the rest explicitly expressed in terms of these. This property can b
arranged even for our new solution. Indeed, we simply must rewrite the equations ir
(2:2) in such a way that;, w2, w3, and¢ are expressed as functionsf, z2, and
x3. Thatis, the roles af; andw; must be swapped. To this end, we use the equation
for wy in (2.3) to solve forz;:

5 1 3 1
xr1 = 5 — §w1 — izg — 5.173.
The equations fotw,, w3, and¢ must also be doctored so that does not appear on

the right. The easiest way to accomplish this is to do so-catledoperationson the
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equations in[(Z]2). For example, if we take the equationipand subtract two times
the equation fokv; and then bring they; term to the right-hand side, we get

wo = 1 + 2w; + 5xs.

Performing analogous row operations fos and¢, we can rewrite the equations in

(232) as

¢(=12.5—2.5w; — 3.522 + 0.5x3
T 2.5 — 0.5w; — 1.5z5 — 0.523
we= 14+ 2wi+ 5Bxo
0.5+ 1.5wy + 0.525 — 0.52x3.

(2.3)

w3

Note that we can recover our current solution by setting the “independent” variables
to zero and using the equations to read off the values for the “dependent” variables.
Now we see that increasing; or xo will bring about adecreaseén the objective
function value, and sa3, being the only variable with a positive coefficient, is the
only independent variable that we can increase to obtain a further increase in the ok
jective function. Again, we need to determine how much this variable can be increasec
without violating the requirement that all the dependent variables remain nonnegative
This time we see that the equation fop is not affected by changes irg, but the
equations forr; andws do impose bounds, namely < 5 andzs < 1, respectively.
The latter is the tighter bound, and so the new solution is

$1:27 QUQ:O, x3:17 w1:07 w2:17 wSZO

The corresponding objective function valueis- 13.

Once again, we must determine whether it is possible to increase the objective
function further and, if so, how. Therefore, we need to write our equations with
¢, x1,we, andxz written as functions otvq, x5, andws. Solving the last equation
in (2.3) forz;, we get

I3 = 1+3U}1 +l‘2 7271/3.

Also, performing the appropriate row operations, we can elimingtieom the other
equations. The result of these operations is

C:13— w1—3x2— ws

xr1 = 2—2w1—212+ ws

(2.4)
we = 1+ 2wi + 5xo

xr3= 143wi+ x9— 2ws.
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We are now ready to begin the third iteration. The first step is to identify an
independent variable for which an increase in its value would produce a correspondin
increase in¢. But this time there is no such variable, since all the variables have
negative coefficients in the expression for This fact not only brings the simplex
method to a standstill but also proves that the current solution is optimal. The reasol
is quite simple. Since the equations [n {2.4) are completely equivalent to those in
(2:2) and, since all the variables must be nonnegative, it follows(tkat 3 for every
feasible solution. Since our current solution attains the valugpfve see that it is
indeed optimal.

1.1. Dictionaries, Bases, EtcThe systems of equatior]s (R.d), (2.3), and](2.4)
that we have encountered along the way are calietibnaries With the exception of
¢, the variables that appear on the left (i.e., the variables that we have been referrin
to as the dependent variables) are cabedic variables Those on the right (i.e., the
independent variables) are callednbasic variablesThe solutions we have obtained
by setting the nonbasic variables to zero are cdilesic feasible solutions

2. The Simplex Method

Consider the general linear programming problem presented in standard form:

n
maximize  _ c;x;
j=1
n
subjectto » “ajz; <b;  i=12,...,m
j=1
2;>0  j=1,2,....n

Our first task is to introduce slack variables and a name for the objective function
value:

n
C= Doy
i=1

(2.5) "
wi:bi—Zaijx]— i:1,2,...,m.
j=1

As we saw in our example, as the simplex method proceeds, the slack variables be
come intertwined with the original variables, and the whole collection is treated the
same. Therefore, it is at times convenient to have a notation in which the slack vari-
ables are more or less indistinguishable from the original variables. So we simply adc
them to the end of the list of-variables:

(1‘1,...,.137“101,... ;wm) = (xla-~-7xn7xn+1a- .. 7$n+7n)'
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That is, we letr,,; = w;. With this notation, we can rewritg (2.5) as

n
(= Doy
j=1

n
xn+i:bi_ E Aij T i:1,2,...,m.
Jj=1

This is the starting dictionary. As the simplex method progresses, it moves from one
dictionary to another in its search for an optimal solution. Each dictionarynhas
basic variables and nonbasic variables. Lé8 denote the collection of indices from
{1,2,...,n + m} corresponding to the basic variables, and\Netlenote the indices
corresponding to the nonbasic variables. Initially, we hate= {1,2,...,n} and

B ={n+1,n+2,...,n+ m}, but this of course changes after the first iteration.
Down the road, the current dictionary will look like this:

(= é‘f' Z CjT;
2.6 | I
( ) xi:bi—Zaijxj 1€ B.
JEN

Note that we have put bars over the coefficients to indicate that they change as th
algorithm progresses.

Within each iteration of the simplex method, exactly one variable goes from non-
basic to basic and exactly one variable goes from basic to nonbasic. We saw thi
process in our example, but let us now describe it in general.

The variable that goes from nonbasic to basic is callecetitering variable It
is chosen with the aim of increasiggthat is, one whose coefficient is positiyaick
kfrom{j € N : ¢; > 0}. Note that if this set is empty, then the current solution is
optimal. If the set consists of more than one element (as is normally the case), then w
have a choice of which element to pick. There are several possible selection criteria
some of which will be discussed in the next chapter. For now, suffice it to say that we
usually pick an index having the largest coefficient (which again could leave us with
a choice).

The variable that goes from basic to nonbasic is calledaheing variable It is
chosen to preserve nonnegativity of the current basic variables. Once we have decide
thatz;, will be the entering variable, its value will be increased from zero to a positive
value. This increase will change the values of the basic variables:

€T; = Bi — Qi Tk, 1€ B.
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We must ensure that each of these variables remains nonnegative. Hence, we requi
that

(27) b; — a;pxr > 0, 1€ B.

Of these expressions, the only ones that can go negativg iasreases are those for
which a;; is positive; the rest remain fixed or increase. Hence, we can restrict our
attention to thoseé’s for which a;; is positive. And for such ai the value ofz; at
which the expression becomes zero is

T = Ei/aik'

Since we don’t want any of these to go negative, we must rgismly to the smallest
of all of these values:
T = ielgla1£>0 bi/ .
Therefore, with a certain amount of latitude remaining, the rule for selecting the leav-
ing variable ispick ! from {i € B : a;;, > 0 andb; /a;;, is minimal.

The rule just given for selecting a leaving variable describes exactly the process
by which we use the rule in practice. That is, we look only at those variables for
which a;; is positive and among those we select one with the smallest value of the
ratio b; /a;,. There is, however, another, entirely equivalent, way to write this rule
which we will often use. To derive this alternate expression we use the convention
that0/0 = 0 and rewrite inequalitie$ (3.7) as

1

Tk

s]

zi, 1€B

O‘\‘
T

(we shall discuss shortly what happens when one of these ratios is an indeterminat
form 0/0 as well as what it means if none of the ratios are positive). Since we wish to
take the largest possible increasecjn we see that

Hence, the rule for selecting the leaving variable is as follgwisk [ from {i € B :
a;1,/b; is maxima}.

The main difference between these two ways of writing the rule is that in one we
minimize the ratio ofi;;, to b; whereas in the other we maximize the reciprocal ratio.
Of course, in the minimize formulation one must take care about the sign oftise
In the remainder of this book we will encounter these types of ratios often. We will
always write them in the maximize form since that is shorter to write, acknowledging
full well the fact that it is often more convenient, in practice, to do it the other way.
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Once the leaving-basic and entering-nonbasic variables have been selected, ti
move from the current dictionary to the new dictionary involves appropriate row oper-
ations to achieve the interchange. This step from one dictionary to the next is called «
pivot

As mentioned above, there is often more than one choice for the entering and th
leaving variables. Particular rules that make the choice unambiguous arepiatied
rules

3. Initialization

In the previous section, we presented the simplex method. However, we only
considered problems for which the right-hand sides were all nonnegative. This ensure
that the initial dictionary was feasible. In this section, we shall discuss what one need:
to do when this is not the case.

Given a linear programming problem

n
maximizech:cj
j=1
n
SUbjeCttOZaij(Ejé b; 1=1,2,...,m
j=1
z; >0 j=12,...,n,

the initial dictionary that we introduced in the preceding section was

n
(= Doy
i=1

n
wi:bi— E Qi i:1,2,...,m.
j=1

The solution associated with this dictionary is obtained by setting eathzero and
setting eachw; equal to the correspondirtg. This solution is feasible if and only

if all the right-hand sides are nonnegative. But what if they are not? We handle this
difficulty by introducing arauxiliary problemfor which

(1) afeasible dictionary is easy to find and
(2) the optimal dictionary provides a feasible dictionary for the original prob-
lem.
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The auxiliary problem is

maximize —xgq

n

SUbjeCttOZaijl’j —x9 < b; = 1,2,...,m
j=1

z; >0 j=0,1,...,n.

It is easy to give a feasible solution to this auxiliary problem. Indeed, we simply set
xz; =0,forj =1,...,n,and then pick: sufficiently large. Itis also easy to see that
the original problem has a feasible solution if and only if the auxiliary problem has
a feasible solution witlry = 0. In other words, the original problem has a feasible
solution if and only if the optimal solution to the auxiliary problem has objective value
zero.

Even though the auxiliary problem clearly has feasible solutions, we have not yet
shown that it has an easily obtained feasible dictionary. It is best to illustrate how to
obtain a feasible dictionary with an example:

maximize —2x; — x9
subjectto —x; + 2o < -1
—r] — 209 < =2
o< 1

x1, v2 > 0.
The auxiliary problem is

maximize —x
subjectto—x1 + z9 —x9 < —1
—r1 —2x9 — 19 < —2
To—a0< 1

Zo, T1, ‘TQZ 0.

Next we introduce slack variables and write down an initi&éasible dictionary

§= — Zo
w1:71+x17 SC2+ZL’0
wo =—24+x1 + 212 + 20

w3y = 1 — X2 + Xp.
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This dictionary is infeasible, but it is easy to convert it into a feasible dictionary. In
fact, all we need to do is one pivot with variahtg entering and the “most infeasible
variable,"w,, leaving the basis:

5272+$1+2$27’UJ2

wp= 1 — 3o + wo
To= 2—x1— 229+ wo
wz= 3—x1 — 3Ty + wa.

Note that we now have a feasible dictionary, so we can apply the simplex method a:
defined earlier in this chapter. For the first step, we pigko enter andv; to leave
the basis:

&=-133+ 21 — 0.67w; — 0.33w2

o= 0.33 — 0.33wq 4+ 0.33ws
zo= 1.33 —x1+ 0.67w; + 0.33w>
w3 = 2—x1+ w1y .

Now, for the second step, we piak to enter and:, to leave the basis:

§= 00—z
re =0.33 —0.33w; + 0.33wq
1 =133 — 20+ 0.67w; + 0.33w4
wg = 0.67 + 2o 4+ 0.33w; — 0.33ws.

This dictionary is optimal for the auxiliary problem. We now drepfrom the equa-
tions and reintroduce the original objective function:

(=221 — 22 = =3 —w; —ws.
Hence, the starting feasible dictionary for the original problem is
(= —3—  wi— w
T =0.33 — 0.33w; + 0.33we

1 =1.33+0.67w; + 0.33wa2
w3z = 0.67 + 0.33w; — 0.33ws.

As it turns out, this dictionary is optimal for the original problem (since the coefficients
of all the variables in the equation fqrare negative), but we can't expect to be this
lucky in general. All we normally can expect is that the dictionary so obtained will
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be feasible for the original problem, at which point we continue to apply the simplex
method until an optimal solution is reached.

The process of solving the auxiliary problem to find an initial feasible solution is
often referred to aPhase | whereas the process of going from a feasible solution to
an optimal solution is calleBhase I

4. Unboundedness

In this section, we shall discuss how to detect when the objective function value
is unbounded.

Let us now take a closer look at the “leaving variable” computatjwok / from
{i € B : a;;/b; is maxima}. We avoided the issue before, but now we must face what
to do if a denominator in one of these ratios vanishes. If the numerator is nonzero, thel
it is easy to see that the ratio should be interpreted as plus or minus infinity dependin
on the sign of the numerator. For the cas® 4, the correct convention (as we'll see
momentarily) is to take this as a zero.

What if all of the ratiosz;;, /b;, are nonpositive? In that case, none of the basic
variables will become zero as the entering variable increases. Hence, the enterin
variable can be increased indefinitely to produce an arbitrarily large objective value.
In such situations, we say that the problenumbounded For example, consider the
following dictionary:

(=5+ w3— 11
$2:5+2{E3—3$1

T4="7 —4xq

Ty = xXq.
The entering variable i3 and the ratios are
—-2/5, —0/7, 0/0.

Since none of these ratios is positive, the problem is unbounded.
In the next chapter, we will investigate what happens when some of these ratios
take the valuetoo.

5. Geometry

When the number of variables in a linear programming problem is three or less,
we can graph the set of feasible solutions together with the level sets of the objective
function. From this picture, it is usually a trivial matter to write down the optimal
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| _X1+3X2:12

xl+x2=8

3X1+2X2:22
3 F 3X1+2X2=11

FIGURE 2.1. The set of feasible solutions together with level sets
of the objective function.

solution. To illustrate, consider the following problem:

maximize 3x1 + 2x-
subjectto —x1 + 3z9 < 12
T1+ 2 8
201 — 12<10

1, x2 > 0.

Each constraint (including the nonnegativity constraints on the variables) is a half-
plane. These half-planes can be determined by first graphing the equation one obtait
by replacing the inequality with an equality and then asking whether or not some
specific point that doesn't satisfy the equality (off@n0) can be used) satisfies the
inequality constraint. The set of feasible solutions is just the intersection of these half:
planes. For the problem given above, this set is shown in F[gufe 2.1. Also shown
are two level sets of the objective function. One of them indicates points at which
the objective function value i$1. This level set passes through the middle of the
set of feasible solutions. As the objective function value increases, the correspondin
level set moves to the right. The level set corresponding to the case where the obje
tive function equal®2 is the last level set that touches the set of feasible solutions.
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Clearly, this is the maximum value of the objective function. The optimal solution is
the intersection of this level set with the set of feasible solutions. Hence, we see fron
Figure[2.1 that the optimal solution (1, z2) = (6, 2).

Exercises

Solve the following linear programming problems. If you wish, you may check
your arithmetic by using the simple online pivot tool:

campuscgi.princeton.edufvdb/JAVA/pivot/simple.htril

2.1 maximize 6x; + 8o + bxz + 9y
subjectto2zy + xo+ z3+3x4<5
1+ 30+ 23+ 224 <3

Ty, T2, T3, 1‘420

2.2 maximize2zr; + o
subjectto2x; + x5 <4
2x1 4+ 322 <3
41+ 29<5
1+ 512 <1

z1, T2 > 0.

2.3 maximize 2x1 — 6x-
subjectto—xy — 9 —x3 < —2

—_

201 — ot x3<

e

x1, To, T3 2>

2.4 maximize —x1 — 3x2 — 3
subjectto 2x; — 5z + x3< =5
21’1 — X2+ 21’5 S 4

L1, T2, T3> 0.

25 maximize xi + 3xs
subjectto —x; — x9 < -3
—r1+ 19<—1
1+ 22, < 4

z1, z2 > 0.


http://campuscgi.princeton.edu/~rvdb/JAVA/pivot/simple.html

EXERCISES

2.6 maximize x1 + 3x»
subjectto —xz; — 29 < -3
—r1+ 22< -1
1+ 2, < 2

z1, T2 > 0.

2.7 maximize x1 + 3x»
subjectto —x; — x5 < -3
—z1+ 12< -1
-1+ 29 < 2

z1, T2 > 0.

2.8 maximize 3x1 + 2x»
subjectto x; — 2z, < 1
T1— T9o< 2
200 — 19< 6
T < 5
2x1+ 12 <16
T+ 19<12
T+ 220 <21
To <10

z1, x2 > 0.

2.9 maximize 2z + 3z + 4x3
subject to — 219 — 313> -5
T1+ zo+223< 4
1+ 220+ 33 7

x1, T2, v3 > 0.

2.10 maximize 6z + 8xo + 5x3 + 94
subjectto zy 4+ xo+ z3+ x4=1

T, T2, T3, $4ZO
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2.11 minimize x1o + 8x13 + 9214 + 2293 + TTo4 + 3734

subjectto zi2+ z13+ %14 >1
—T12 + Toz+ T2 =0

—T13 — o3 + 234=0

T14 + o+ w34 <1

T19,213,--.,2T34 > 0.

2.12 Using today’s date (MMYY) for the seed value, solve 10 initially feasible
problems using the online pivot tool:

campuscgi.princeton.edufvdb/JAVA/pivot/primal.html .

2.13 Using today’s date (MMYY) for the seed value, solve 10 not necessarily
feasible problems using the online pivot tool:

campuscgi.princeton.edufvdb/JAVA/pivot/primalx0.htm| .

2.14 Consider the following dictionary:

(=3+ z,+6m,

w1 =14+ 71— T2

w2:5—2x1 —3552.

Using the largest coefficient rule to pick the entering variable, compute the
dictionary that results afteme pivot

2.15 Show that the following dictionary cannot be the optimal dictionary for any
linear programming problem in whictr; andws are the initial slack vari-
ables:

C=4—w; — 22»

=3 — 2x9

wo =14+w; — 9.

Hint: if it could, what was the original problem from whence it came?

2.16 Graph the feasible region for Exercise]2.8. Indicate on the graph the se-
guence of basic solutions produced by the simplex method.

2.17 Give an example showing that the variable that becomes basic in one itera:
tion of the simplex method can become nonbasic in the next iteration.


http://campuscgi.princeton.edu/~rvdb/JAVA/pivot/primal.html
http://campuscgi.princeton.edu/~rvdb/JAVA/pivot/primal_x0.html
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2.18 Show that the variable that becomes nonbasic in one iteration of the simplex
method cannot become basic in the next iteration.

2.19 Solve the following linear programming problem:

n
maximize Z DjT;
j=1
n
subjectto » " g;z; < 8
Jj=1
z; <1 7=12,...,n

;>0  j=12,...,n

Here, the numbers;, j = 1,2,...,n, are positive and sum to one. The
same is true of the;'s:

Furthermore (with only minor loss of generality), you may assume that

PL_P2_ _Pn
q1 q2 dn

Finally, the parametes is a small positive number. See Exerdisg 1.3 for the
motivation for this problem.

Notes

The simplex method was invented by G.B. Dantzig in 1949. His monograph
(Dantzig 1963) is the classical reference. Most texts describe the simplex method a
a sequence of pivots on a table of humbers calledsth@lex tableau Following
Chvatal (1983), we have developed the algorithm using the more memorable dictio-
nary notation.






CHAPTER 3

Degeneracy

In the previous chapter, we discussed what it means when the ratios computed t
calculate the leaving variable are all nonpositive (the problem is unbounded). In this
chapter, we take up the more delicate issue of what happens when some of the ratic
are infinite (i.e., their denominators vanish).

1. Definition of Degeneracy

We say that a dictionary idegeneratef b; vanishes for someé € B. A degen-
erate dictionary could cause difficulties for the simplex method, but it might not. For
example, the dictionary we were discussing at the end of the last chapter,

(=5+ x3— 71
To =54 2x3 — 311

1’4:7 74501

T5 = T1,

is degenerate, but it was clear that the problem was unbounded and therefore no mo
pivots were required. Furthermore, had the coefficientpfn the equation forc,
been—2 instead of2, then the simplex method would have pickedfor the leaving
variable and no difficulties would have been encountered.

Problems arise, however, when a degenerate dictionary produces degenerate pi
ots. We say that a pivot is degenerate pivoif one of the ratios in the calculation
of the leaving variable is-oo; i.e., if the numerator is positive and the denominator
vanishes. To see what happens, let's look at a few examples.

2. Two Examples of Degenerate Problems

Here is an example of a degenerate dictionary in which the pivot is also degener
ate:
C =3 - 05(51 + 2582 — 1.5w1
(31) xr3 = 1-— 051‘1 - 0.5'[1)1

Wy = xr1— To+ w1 .

29
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For this dictionary, the entering variableas and the ratios computed to determine
the leaving variable ar@ and+oco. Hence, the leaving variable is,, and the fact
that the ratio is infinite means that as sooncass increased from zero to a positive
value,w, will go negative. Thereforeg, can’t really increase. Nonetheless, it can be
reclassified from nonbasic to basic (with going the other way). Let’s look at the
result of this degenerate pivot:

C =3+ 15.’E1 — 2’[02 + 05’[01
(32) T3 = 1-— 055(}1 — 05’LU1

To = r1— W2+ w1.

Note that¢ remains unchanged at Hence, this degenerate pivot has not produced
any increase in the objective function value. Furthermore, the values of the variable:
haven't even changed: both before and after this degenerate pivot, we had

(71,72, 23, w1, w2) = (0,0,1,0,0).
But we are now representing this solution in a new way, and perhaps the next pivo
will make an improvement, or if not the next pivot perhaps the one after that. Let's see

what happens for the problem at hand. The entering variable for the next iteration is
x1 and the leaving variable is;, producing a nondegenerate pivot that leads to

C:6—3x3—2w2—w1

.’171:2—2373 — W1

372:2—2333— wa .

These two pivots illustrate what typically happens. When one reaches a degeneral
dictionary, it is usual that one or more of the subsequent pivots will be degenerate bu
that eventually a nondegenerate pivot will lead us away from these degenerate dictic
naries. While it is typical for some pivot to “break away” from the degeneracy, the
real danger is that the simplex method will make a sequence of degenerate pivots ar
eventually return to a dictionary that has appeared before, in which case the simple!
method enters an infinite loop and never finds an optimal solution. This behavior is
calledcycling

Unfortunately, under certain pivoting rules, cycling is possible. In fact, it is pos-
sible even when using one of the most popular pivoting rules:

e Choose the entering variable as the one with the largest coefficient in the
¢-row of the dictionary.

e When two or more variables compete for leaving the basis, use the one with
the smallest subscript.
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However, it is rare and exceedingly difficult to find examples of cycling. In fact, it
has been shown that if a problem has an optimal solution but cycles off-optimum, ther
the problem must involve dictionaries with at least six variables and three constraints
Here is an example that cycles:

(= 10x1 — B57xo — 9x3 — 2414
w1 = —0.5214+5.520+2.503 — 914
wy = —0.5x1 4+ 1.529 +0.523 — x4
wy=1— x1.

And here is the sequence of dictionaries the above pivot rules produce. After the firs
iteration:

C = - 20’[1)1 + 531’2 + 411’3 - 204I4
Ty = — 2wy+1llzes+ bSxrz— 18z4
Wo = wyp — 4x9— 2x3+ 8xy4

w3 =1+ 2w; —1lxs — bxrs+ 18z4.

After the second iteration:

(= —6.75w; — 13.25wy + 14.5x35 — 98x4
T = 0.75wq1 — 2.75w9 — 0.5x3 + 4wy
XTo = 0.25w; — 0.25w9 — 0.523 + 214

w3 = 1-— 075’([)1 — 132511)2 + 051’3 — 4:174.

After the third iteration:

¢= 15wy — 93wy — 2921 + 1814
T3 = 1.5wy — 5.5wy — 2x1 + 814
ro= —0.5w +2.5wy+ x1— 2124
w3y =1 - x.

After the fourth iteration:

CZ 10.511)1 — 705’(1)2 — 20.231 — 9.732
r3= — 05w+ 4.5ws+ 2x1— 4dxo
zy= — 0.25w; 4+ 1.25ws + 0.521 — 0.529

U}g:l — I .
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After the fifth iteration:

(= — 2lzs+ 24ws + 2221 — 9329
wy= — 2x3+ w4+ 4z — 8xo
Ty = 0.523 — ws — 0.521 + 1.529
wg =1 - x1.

After the sixth iteration:

(= 1021 — 5729 — 9x3 — 2414
w1 = —0.521 4+ 5.529 + 2.52x3 — 924
wo = —0.521 4+ 1.529 +0.523 — x4
wy3=1— x7.

Note that we have come back to the original dictionary, and so from here on the
simplex method simply cycles through these six dictionaries and never makes any fur
ther progress toward an optimal solution. As bad as cycling is, the following theorem
tells us that nothing worse can happen:

THEOREM3.1. If the simplex method fails to terminate, then it must cycle.

PrROOFE A dictionary is completely determined by specifying which variables are
basic and which are nonbasic. There are only

)

different possibilities. If the simplex method fails to terminate, it must visit some of
these dictionaries more than once. Hence, the algorithm cycles. d

Note that, if the simplex method cycles, then all the pivots within the cycle must
be degenerate. This is easy to see, since the objective function value never decreas
Hence, it follows that all the pivots within the cycle must have the same objective
function value, i.e., all of the these pivots must be degenerate.

In practice, degeneracy is very common. But cycling is rare. In fact, it is so rare
that most efficient implementations do not take precautions against it. Nonetheless, |
is important to know that there are variants of the simplex method that do not cycle.
This is the subject of the next two sections.

3. The Perturbation/Lexicographic Method

As we have seen, there is not just one algorithm called the simplex method. In-
stead, the simplex method is a whole family of related algorithms from which we can
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pick a specific instance by specifying what we have been referring to as pivoting rules
We have also seen that, using the most natural pivoting rules, the simplex method ca
fail to converge to an optimal solution by occasionally cycling indefinitely through a
sequence of degenerate pivots associated with a nonoptimal solution.

So this raises a natural question: are there pivoting rules for which the simplex
method will definitely either reach an optimal solution or prove that no such solution
exists? The answer to this question is yes, and we shall present two choices of suc
pivoting rules.

The first method is based on the observation that degeneracy is sort of an acciden
That is, a dictionary is degenerate if one or more ofttfevanish. Our examples have
generally used small integers for the data, and in this case it doesn’t seem too surpri:
ing that sometimes cancellations occur and we end up with a degenerate dictionan
But each right-hand side could in fact be any real number, and in the world of real
numbers the occurrence of any specific number, such as zero, seems to be quite u
likely. So how about perturbing a given problem by adding small random perturbations
independently to each of the right-hand sides? If these perturbations are small enoug
we can think of them as insignificant and hence not really changing the problem. If
they are chosen independently, then the probability of an exact cancellation is zero.

Such random perturbation schemes are used in some implementations, but whi
we have in mind as we discuss perturbation methods is something a little bit different.
Instead of using independent identically distributed random perturbations, let us con
sider using a fixed perturbation for each constraint, with the perturbation getting much
smaller on each succeeding constraint. Indeed, we introduce a small positive numbe
€1 for the first constraint and then a much smaller positive numpéor the second
constraint, etc. We write this as

0<é€n <K <K€ K e < all other data.

The idea is that each acts on an entirely different scale from all the othgs and

the data for the problem. What we mean by this is that no linear combination of the
¢;'s using coefficients that might arise in the course of the simplex method can ever
produce a number whose size is of the same order as the data in the problem. Sin
ilarly, each of the “lower down’s;’s can never “escalate” to a higher level. Hence,
cancellations can only occur on a given scale. Of course, this complete isolation o
scales can never be truly achieved in the real numbers, so instead of actually introduc
ing specific values for the;’s, we simply treat them as abstract symbols having these

scale properties.
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To illustrate what we mean, let’s look at a specific example. Consider the follow-
ing degenerate dictionary:

(= 442x1— x5

w1 =05 — T2
Wo = 721314’4132
W3 = 1 —31’2.

The first step is to introduce symbolic parameters
I0<e3 e K€

to get a perturbed problem:

(= 4 +2x1 — xo
w1 =0.54+¢€1 — X9
Wy = € —2x1 + 4o
w3 = €3+ 1 — 3xo.

This dictionary is not degenerate. The entering variablg iand the leaving variable
is unambiguouslyu,. The next dictionary is

(= 4 + e — w9+ 312
w1 =0.54+¢€1 — X9
T = 0.5¢5 — 0.5wq + 2x4
w3 = 0.5¢5 + €3 — 0.5w9 — 9.

For the next pivot, the entering variablezig and the leaving variable is3. The new
dictionary is
(= 4 + 2.5€5 + 3e3 — 2.5wy — 3ws
wy = 0.5 + €1 — 0.562 — €3 -+ 05’(1)2 —+ ws
T, = 1.5€5 4 2e3 — 1.5wy — 2wg

To = 0.5e2 + €3 — 0.5we — ws.
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This last dictionary is optimal. At this point, we simply drop the symbeliparame-
ters and get an optimal dictionary for the unperturbed problem:

CZ 4 — 2.5’11}2 — 3w3
wy =0.5+0.5w2 + ws

T — - 15’11)2 - 2w3

To = - 0.5w2 — Ws.

When treating the;’'s as symbols, the method is called tbgicographic method
Note that the lexicographic method does not affect the choice of entering variable bu
does amount to a precise prescription for the choice of leaving variable.

It turns out that the lexicographic method produces a variant of the simplex methoc
that never cycles:

THEOREM3.2. The simplex method always terminates provided that the leaving
variable is selected by the lexicographic rule.

ProoOF It suffices to show that no degenerate dictionary is ever produced. As
we've discussed before, the’'s operate on different scales and hence can'’t cancel
with each other. Therefore, we can think of th& as a collection of independent
variables. Extracting theterms from the first dictionary, we see that we start with the
following pattern:

€1

€2

€m-

And, after several pivots, theterms will form a system of linear combinations, say,

T11€1 + T12€2 ... + T1m€Em
T91€1 + T922€2 ... + Tom€m
Tm1€1 + Tm2€2 ... + Tmm€m.

Since this system of linear combinations is obtained from the original system by pivot
operations and, since pivot operations are reversible, it follows that the rank of the
two systems must be the same. Since the original system hachramle see that
every subsequent system must have rankThis means that there must be at least
one nonzera;; in every rows, which of course implies that none of the rows can be
degenerate. Hence, no dictionary can be degenerate. |



36 3. DEGENERACY

4. Bland's Rule

The second pivoting rule we shall consider is caldnd’s rule It stipulates
that both the entering and the leaving variable be selected from their respective sets ¢
choices by choosing the variahtg with the smallest index.

THEOREM 3.3. The simplex method always terminates provided that both the
entering and the leaving variable are chosen according to Bland’s rule.

The proof may look rather involved, but the reader who spends the time to under-
stand it will find the underlying elegance most rewarding.

PrROOF It suffices to show that such a variant of the simplex method never cycles.
We prove this by assuming that cycling does occur and then showing that this assumg
tion leads to a contradiction. So let's assume that cycling does occur. Without loss o
generality, we may assume that it happens from the beginningDg.eb+, ..., Di_1
denote the dictionaries through which the method cycles. That is, the simplex methoc
produces the following sequence of dictionaries:

Do, Dy,...,Dg—1,Dqg, D, ....

We say that a variable is fickle if it is in some basis and not in some other basis.
Let 2, be the fickle variable having the largest index andlletlenote a dictionary
in Dy, Dy, ..., Dy_1 in which z; leaves the basis. Again, without loss of generality
we may assume thdd? = D,. Let z, denote the corresponding entering variable.
Suppose thab is recorded as follows:

(=v+ Z cjT;
JEN
xi:bi—Zaijxj i€ B.
JEN

Sincez, is the entering variable angd is the leaving variable, we have thate N
andt € B.

Now let D* be a dictionary inDy, Ds, ..., D;_1 in which x, enters the basis.
Suppose thab* is recorded as follows:

= Y g
—
(3.3) ie
x;=bf — Z a;;r; i€ B
JEN™*
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Since all the dictionaries are degenerate, we haveuthat v, and therefore we can
write the objective function irf (3}3) as

n+m

(3.4 (=v+ Z cjy,
j=1

where we have extended the notatignto all variables (both original and slack) by
settingc; = 0 for j € B*.

Ignoring for the moment the possibility that some variables could go negative,
consider the solutions obtained by lettingincrease while holding all other variables
in \V at zero:

Ts =Y,

r; = b; — aisY, i€ B.
The objective function at this point is given by
C=v+csy.

However, using[(3]4), we see that it is also given by

(=v+ciy+ Zcf(bi — a;sy).
icB

Equating these two expressions {owe see that
(cs -+ Zﬁ%s) y = Zc’{bi.
i€B i€B

Since this equation must be an identity for evetyit follows that the coefficient
multiplying y must vanish (as must the right-hand side):

cs —Co+ E ciais = 0.
i€B

Now, the fact that:, is the entering variable iy implies that

cs > 0.
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Recall thatz; is the fickle variable with the largest index. Sincegis also fickle, we
see that < t. Sincex, is not the entering variable ib* (asx; is), we see that

c: <0.

From these last three displayed equations, we get

Zc;‘ais < 0.

ieB
Hence, there must exist an indexc B for which
(3.5) crars < 0.

Consequentlyg* # 0 andr € N*. Hence,z, is fickle and therefore < ¢. In fact,
r < t, sincecfa;s > 0. To see that this product is positive, note that both its factors
are positiveic; is positive, sincer, is the entering variable i*, anda,, is positive,
sincez; is the leaving variable ibD.

The fact that < ¢ implies thate: < 0 (otherwise, according to the smallest index
criteria,r would be the entering variable f@*). Hence,[(3.5) implies that

ars > 0.

Now, since each of the dictionaries in the cycle describe the same solution, it follows
that every fickle variable is zero in all these dictionaries (since it is clearly zero in a
dictionary in which it is nonbasic). In particular, = 0. Butin D, x,. is basic. Hence,

b, =0.

These last two displayed equations imply thatwas a candidate to be the leaving
variable in D, and sincer < t, it should have been chosen over. This is the
contradiction we have been looking for. O

5. Fundamental Theorem of Linear Programming

Now that we have a Phase | algorithm and a variant of the simplex method that
is guaranteed to terminate, we can summarize the main gist of this chapter in the
following theorem:

THEOREM 3.4. For an arbitrary linear program in standard form, the following
statements are true:

(1) If there is no optimal solution, then the problem is either infeasible or un-
bounded.

(2) If afeasible solution exists, then a basic feasible solution exists.

(3) If an optimal solution exists, then a basic optimal solution exists.
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FIGURE 3.1. The set of feasible solutions for the problem giver{by| (3.6).

PrROOF The Phase | algorithm either proves that the problem is infeasible or
produces a basic feasible solution. The Phase Il algorithm either discovers that th
problem is unbounded or finds a basic optimal solution. These statements depend,
course, on applying a variant of the simplex method that does not cycle, which we
now know to exist. a

6. Geometry

As we saw in the previous chapter, the set of feasible solutions for a problem in
two dimensions is the intersection of a number of halfplanes, i.e., a polygon. In three
dimensions, the situation is similar. Consider, for example, the following problem:

maximize x1 + 2xs + 3x3
subject tox; +2x3<3

Z1, 2, v3 > 0.

(3.6)
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The set of points satisfying; + 2z3 = 3 is a plane. The inequality; + 2z5 < 3
therefore consists of all points on one side of this plane; that is, ithHalspace

The same is true for each of the other four inequalities. The feasible set consists o
those points in space that satisfy all five inequalities, i.e., those points lying in the
intersection of these halfspaces. This set ispbighedronshown in Figuré¢ 3]1. This
polyhedron is bordered by fiiacets each facet being a portion of one of the planes
that was defined by replacing a constraint inequality with an equation. For example
the “front” facet in the figure is a portion of the plame+2x3 = 3. The facets acquire

a particularly simple description if we introduce slack variables into the problem:

w1:3—x1 —2333

w2:2 756272563.

Indeed, each facet corresponds precisely to some variable (either original or slack
vanishing. For instance, the front facet in the figure corresponds te: 0 whereas
the “left” facet corresponds to, = 0.

The correspondences can be continued. Indeed,axiggof the polyhedron cor-
responds to a pair of variables vanishing. For example, the edge lying at the interfac
of the left and the front facets in the figure corresponds to bgtk- 0 andzs = 0.

Going further yet, eackiertexof the polyhedron corresponds to three variables
vanishing. For instance, the vertex whose coordinateg i@ 1) corresponds to
wy =0, zo2 = 0, andwy = 0.

Now, let’s think about applying the simplex method to this problem. Every basic
feasible solution involves two basic variables and three nonbasic variables. Further
more, the three nonbasic variables are, by definition, zero in the basic feasible solutior
Therefore, for this example, the basic feasible solutions stand in one-to-one correspor
dence with the vertices of the polyhedron. In fact, applying the simplex method to this
problem, one discovers that the sequence of vertices visited by the algorithm is

(0,0,00 — (0,0,1) — (1,0,1) — (3,2,0).

The example we've been considering has the nice property that every vertex is
formed by the intersection of exactly three of the facets. But consider now the follow-
ing problem:

maximize x1 + 2xs + 373
subject toz; 4+ 223 <2

To + 223 <2

z1, x2, 3 > 0.

(3.7)

Algebraically, the only difference between this problem and the previous one is that
the right-hand side of the first inequality is now2anstead of a3. But look at the
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FIGURE 3.2. The set of feasible solutions for the (degenerate) prob-

lem given by [(3.]7).

polyhedron of feasible solutions shown in Fig 3.2. The vefteR, 1) is at the
intersection of four of the facets, not three as one would “normally” expect. This vertex
does not correspond to one basic feasible solution; rather, there are four degenera
basic feasible solutions, each representing it. We've seen two of them before. Indeec
dictionaries|(3]L) and (3.2) correspond to two of these degenerate dictionaries (in faci
dictionary [3.1) is the dictionary one obtains after one pivot of the simplex method
applied to problen{(3]7)).

We end by considering the geometric effect of the perturbation method for re-
solving degeneracy. By perturbing the right-hand sides, one moves the planes thz
determine the facets. If the moves are random or chosen with vastly different mag:
nitudes (all small), then one would expect that each vertex in the perturbed problen
would be determined by exactly three planes. That is, degenerate vertices from th
original problem get split into multiple nearby vertices in the perturbed problem. For
example, problen] (3]6) can be thought of as a perturbation of degenerate probler
(3-7) (the perturbation isn’t small, but it also isn't so large as to obscure the effect).
Note how the degenerate vertex in Figlurg 3.2 appears as two vertices in[Figure 3.1.
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Exercises

3.1 Solve the following linear program using the perturbation method to resolve
degeneracy:

maximize 10x; — 57w — 9x3 — 2414
subjectto0.5xy — 5.529 — 2.523 + 9x4 <0
0.521 — 1.5z — 0.523+ x4 <0
T <1

T1, T2, T3, Tq = 0.

Note: The simple pivot tool with th&exicographiclabels can be used to
check your arithmetic:

campuscgi.princeton.edufvdb/JAVA/pivot/simple.htm|

3.2 Solve the following linear program using Bland’s rule to resolve degeneracy:

maximize 10z, — 57w — 9x3 — 2424
subjectto0.5xy — 5.529 — 2.523 + 9x4 <0
0.521 — 1.5z — 0.523+ x4 <0
T <1

T1, T2, T3, Tq > 0.

3.3 Using today’s date (MMYY) for the seed value, solve 10 possibly degener-
ate problems using the online pivot tool:

campuscgi.princeton.edufvdb/JAVA/pivot/lexico.html .

3.4 Consider the linear programming problems whose right-hand sides are iden-
tically zero:

n
maximize » _ c;x;
j=1
n
subjecttoZaijxjgo 1=1,2,...,m
j=1
z; >0 j=12,...,n.

Show that eitheg; = 0 for all j is optimal or else the problem is unbounded.


http://campuscgi.princeton.edu/~rvdb/JAVA/pivot/simple.html
http://campuscgi.princeton.edu/~rvdb/JAVA/pivot/lexico.html
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3.5 Consider the following linear program:

maximize  x; + 3o
subject to —2x4 -5
0.

(AVARVAN

€

Show that this problem has feasible solutions but no vertex solutions. How
does this reconcile with the fundamental theorem of linear programming

(Theorenj 3.4)?

3.6 Suppose that a linear programming problem has the following property: its
initial dictionary is not degenerate and, when solved by the simplex method,
there is never a tie for the choice of leaving variable.

(a) Can such a problem have degenerate dictionaries? Explain.
(b) Can such a problem cycle? Explain.

3.7 Consider the following dictionary:

C:5+2$272Z3+3Z5

$6:4—2IL‘2— .’L'5+ Is

Ty=2— To+ T3— T5

T1 :6—2$2—2$3—3$5.

(a) Listall pairs(z,, z,) such thatc,. could be the entering variable amg
could be the leaving variable.

(b) Listall such pairs if the largest-coefficient rule for choosing the entering
variable is used.

(c) Listall such pairs if Bland’s rule for choosing the entering and leaving
variables is used.

Notes

The first example of cycling was given by Hoffmean (1953). The fact that any
linear programming problem that cycles must have at least six variables and thre
constraints was proved by Marshall & Suurbglle (1969).

Early proofs of the fundamental theorem of linear programming (Theprem 3.4)
were constructive, relying, as in our development, on the existence of a variant of
the simplex method that works even in the presense of degeneracy. Hence, findin
such variants occupied the attention of early researchers in linear programming. Th
perturbation methodvas first suggested by A. Orden and developed independently



44 3. DEGENERACY

by|Charnes| (1952). The essentially equivalericographic methodirst appeared in
Dantzig et al.[(1955). Theorem 8.3 was proved by Bland (1977).
For an extensive treatment of degeneracy issues see Gal (1993).



CHAPTER 4

Efficiency of the Simplex Method

In the previous chapter, we saw that the simplex method (with appropriate piv-
oting rules to guarantee no cycling) will solve any linear programming problem for
which an optimal solution exists. In this chapter, we investigate just how fast it will
solve a problem of a given size.

1. Performance Measures

Performance measures can be broadly divided into two types:

e \Worst case
e average case.

As its name implies, a worst-case analysis looks at all problems of a given “size” and
asks how much effort is needed to solve the hardest of these problems. Similarly
an average-case analysis looks at the average amount of effort, averaging over &
problems of a given size. Worst-case analyses are generally easier than average-ce
analyses. The reason is that, for worst-case analyses, one simply needs to give «
upper bound on how much effort is required and then exhibit a specific example tha
attains this bound. However, for average-case analyses, one must have a stochas
model of the space of “random linear programming problems” and then be able to
say something about the solution effort averaged over all the problems in the sampl
space. There are two serious difficulties here. The first is that it is not clear at all how
one should model the space of random problems. Secondly, given such a model, or
must be able to evaluate the amount of effort required to solve every problem in the
sample space.

Therefore, worst-case analysis is more tractable than average-case analysis, but
is also less relevant to a person who needs to solve real problems. In this chapter, w
shall give a worst-case analysis of the simplex method. Later, in CHapter 12, we shal
present results of empirical studies that indicate the average behavior over finite se
of real problems. Such studies act as a surrogate for a true average-case analysis.

2. Measuring the Size of a Problem

Before looking at worst cases, we must discuss two issues. First, how do we
specify the size of a problem? Two parameters come naturally to mindndn.

45
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Usually, we shall simply use these two numbers to characterize the size a problen
However, we should mention some drawbacks associated with this choice. First o
all, it would be preferable to use only one number to indicate size. Since the date
for a problem consist of the constraint coefficients together with the right-hand side
and objective function coefficients, perhaps we should use the total number of dat:
elements, which is roughlyin.

The productnn isn’t bad, but what if many or even most of the data elements are
zero? Wouldn't one expect such a problem to be easier to solve? Efficient implemen
tations do indeed take advantage of the presence of lots of zeros, and so an analy:s
should also account for this. Hence, a good measure might be simply the numbe
of nonzero data elements. This would definitely be an improvement, but one can gc
further. On a computer, floating-point numbers are all the same size and can be mu
tiplied in the same amount of time. But if a person is to solve a problem by hand (or
use unlimited precision computation on a computer), then certainly multipRarxy
7 is a lot easier than multiplying3453.2352 by 86833.245643. So perhaps the best
measure of a problem'’s size is not the number of data elements, but the actual numb
of bits needed to store all the data on a computer. This measure is popular among mo
computer scientists and is usually denoted’by

However, with a little further abstraction, the size of the ddtajs seen to be
ambiguous. As we saw in Chapfgr 1, real-world problems, while generally large and
sparse, usually can be described quite simply and involve only a small amount of true
input data that gets greatly expanded when setting the problem up with a constrair
matrix, right-hand side, and objective function. So shalulepresent the number of
bits needed to specify the nonzero constraint coefficients, objective coefficients, an
right-hand sides, or should it be the number of bits in the original data set plus the
number of bits in the description of how this data represents a linear programming
problem? No one currently uses this last notion of problem size, but it seems fairly
reasonable that they should (or at least that they should seriously consider it). Anyway
our purpose here is merely to mention that these important issues are lurking abou
but, as stated above, we shall simply focusmerandn to characterize the size of a
problem.

3. Measuring the Effort to Solve a Problem

The second issue to discuss is how one should measure the amount of work re
quired to solve a problem. The best answer is the number of seconds of compute
time required to solve the problem, using the computer sitting on one’s desk. Un-
fortunately, there are (hopefully) many readers of this text, not all of whom use the
exact same computer. Even if they did, computer technology changes rapidly, anc
a few years down the road everyone would be using something entirely different. It
would be nice if the National Institute of Standards and Technology (the government
organization in charge of setting standards, such as how many threads/inch a standa
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light bulb should have) would identify a standard computer for the purpose of bench-
marking algorithms, but, needless to say, this is not very likely. So the time needed tc
solve a problem, while the most desirable measure, is not the most practical one her:
Fortunately, there is a fairly reasonable substitute. Algorithms are generally iterative
processes, and the time to solve a problem can be factored into the number of iteratior
required to solve the problem times the amount of time required to do each iteration
The first factor, the number of iterations, does not depend on the computer and s
is a reasonable surrogate for the actual time. This surrogate is useful when compa
ing various algorithms within the same general class of algorithms, in which the time
per iteration can be expected to be about the same among the algorithms; however,
becomes meaningless when one wishes to compare two entirely different algorithms
For now, we shall measure the amount of effort to solve a linear programming problem
by counting the number of iterations needed to solve it.

4. Worst-Case Analysis of the Simplex Method

How bad can the simplex method be in the worst case? Well, we have already
seen that for some pivoting rules it can cycle, and hence the worst-case solution timi
for such variants is infinite. However, what about noncycling variants of the simplex
method? Since the simplex method operates by moving from one basic feasible solt
tion to another without ever returning to a previously visited solution, an upper bound
on the number of iterations is simply the number of basic feasible solutions, of which

there can be at most
n+m
. .

For a fixed value of the sum + m, this expression is maximized when = n. And
how big is it? It is not hard to show that

2
i22n S ( n) S 22n
2n n

(see Exercisg 4]9). It should be noted that, even though typographically compact, th
expressior2™ is huge even when is not very big. For exampl@®® = 1.1259 x 10'°.

Our best chance for finding a bad example is to look at the case wheten.
We shall now give an example, first discovered by V. Klee and G.J. Minty in 1972, in
which the simplex method using the largest coefficient rule req@ites 1 iterations
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to solve. The example is quite simple to state:

n
maximize » 10" x;
j=1
1—1
subjectto 2y 10" + z; < 1007 i=1,2,....n
j=1

(4.1)

.I‘j>0 j=1,2,...,n.

Itis instructive to look more closely at the constraints. The first three constraints are

X1 1
20x1 + 9 100
200x1 + 2022 + z3 < 10000.

IN A

The first constraint simply says that is no bigger than one. With this in mind, the
second constraint says that has an upper bound of abol0, depending on how

big x; is. Similarly, the third constraint says thaj is roughly no bigger than 10,000
(again, this statement needs some adjustment depending on the sizeamufz,).
Therefore, the constraints are approximately just a set of upper bounds, which mear
that the feasible region is virtually ardimensional hypercube:

0§$1§1

0<xy <100

0<x, <100" .

For this reason, the feasible region for the Klee—Minty problem is often referred to
as the Klee—Minty cube. Am-dimensional hypercube h&$ vertices, and, as we
shall see, the simplex method with the largest-coefficient rule will start at one of these
vertices and visit every vertex before finally finding the optimal solution.

In order to understand the Klee—Minty problem, let us begin by replacing the
specific right-hand side$p0?—!, with more generic values;, with the property that

1=b <by < K by

As in the previous chapter, we use the expressic& b to mean that: is so much
smaller tharb that no factors multiplying: and dividings that arise in the course of
applying the simplex method to the problem at hand can ever make the resulting
as large as the resultirtg Hence, we can think of thi's as independent variables
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for now (specific values can be chosen later). Next, it is convenient to change eacl
right-hand side replacing with

1—1
> 10°79b; + b,
j=1

Since the numbers;, j = 1,2,...,7 — 1 are "small potatoes” compared with,

this modification to the right-hand sides amounts to a very small perturbation. The
right-hand sides still grow by huge amountsiaacreases. Finally, we wish to add

a constant to the objective function so that the Klee—Minty problem can finally be
written as

N I~
maximize Z 10" I, — 5 Z 1079,

j=1 j=1
(4.2) - G S '
subjectto 2> 10"z, +a; <> 10°7b; + b, i=1,2,....n
j=1 j=1
z; >0 j=12,...,n.

In Exercisg 4.]7, you are asked to prove that this problem t2kes 1 iterations. To
start to get a handle on the proof, here are the seven iterations that one gets=ith
The initial dictionary is

¢(=—209%; — Db, — 1bg + 10021 + 1025 + x5

wy = b1 -
Wo = 1061 + bo — 20x1 — a9
w3 = 100b1 + 10b2 + bg - 200I1 - 20172 — X3,

which is feasible. Using the largest coefficient rule, the entering variable iErom
the fact that each subsequénis huge compared with its predecessor it follows that
w IS the leaving variable. After the first iteration, the dictionary reads

(= 0 — 0%y — 1b3 — 100w + 1022 + 23
T = by — w1
wo = —10b1 + by + 20w — o
w3 = —100by + 10bs + b3 + 200w — 2022 — x3.
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Now, z, enters andv, leaves, so after the second iteration we get:

¢= —&20()1 + 12ij — %bg, + 100w — 10ws + x3
xrp = b1 — w1
T = —10b1 + bg + 2011)1 - w2
wg = 100b; — 10by + b3 — 200w, + 20wo — x3.

After the third iteration

(= %[h + %bg — %b3 — 10021 — 10ws + x3

w1

b1 - 1
To = 1001 + bo — 201 — ws
wz = —100by — 10bs + b3 + 2001 + 20w, — x3.

After the fourth iteration

¢=—20%; — 10by + 1by + 100z, + 10w; — w3
wy; = by — T
ro= 10b1+ bo — 201 — we
x3 =—1000; — 1002 + b3 + 200z + 20wq — ws.

After the fifth iteration

CZ 1070171 — 12*0192 + %bg — 100w + 10wy — w3

b1 - w1

Z1
o = —].Obl + b2 + 20w1 - w2
x3 = 100b; — 10by + b3 — 200w + 20ws — ws.

After the sixth iteration

C: —17[2)0[)1 + L20b2 + %b3 + 100wy — 10zo — w3
T = b1 — w1
Wo = —].Ob1 + b2 + 20’11}1 - T2

x3 = —100by + 10by + b3 + 200w, — 209 — ws.
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And, finally, after the seventh iteration, we get

¢ =190 + Dby + $b3 — 10021 — 1022 — w3
wy = by — T
we = 10b; + be — 201 — 2o
x3 = 100by + 1065 + b3 — 200z — 2022 — w3,

which is, of course, optimal.

A few observations should be made. First, every pivot is the swap of avith
the corresponding;. Second, every dictionary looks just like the first one with the
exception that they;'s and thez;’s have become intertwined and various signs have
changed (see Exercise }.6).

Also note that the final dictionary could have been reached from the initial dictio-
nary in just one pivot if we had selectegd to be the entering variable. But the largest-
coefficient rule dictated selecting;. It is natural to wonder whether the largest-
coefficient rule could be replaced by some other pivot rule for which the worst-case
behavior would be much better than 2febehavior of the largest-coefficient rule. So
far no one has found such a pivot rule. However, no one has proved that such a rul
does not exist either.

Finally, we mention that one desirable property of an algorithm is that it be scale
invariant. This means that should the units in which one measures the decision vari
ables in a problem be changed, the algorithm would still behave in exactly the same
manner. The simplex method with the largest-coefficient rule is not scale invariant. To
see this, consider changing variables in the Klee—Minty problem by putting

z; =100"""z;.

In the new variables, the initial dictionary for the= 3 Klee—Minty problem becomes

¢(=—230b1 — Dby — 3b3 +100Z1 4 1000Z2 + 10000Z3
wy = b1 - T
wy=10bi+ by —- 202 — X
ws = 100b; + 10003 + bz — 200z, — 2000z — 10000z

Now, the largest-coefficient rule picks variahblg to enter. Variablauvs leaves, and

the method steps to the optimal solution in just one iteration. There exist pivot rules
for the simplex method that are scale invariant. But Klee—Minty-like examples have
been found for most proposed alternative pivot rules (whether scale invariant or not)
In fact, it is an open question whether there exist pivot rules for which one can prove
that no problem instance requires an exponential number of iterations (as a functiol
of m or n).
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Exercises

In solving the following problems, the simple pivot tool can be used to check your
arithmetic:

campuscgi.princeton.edufvdb/JAVA/pivot/simple.html

4.1 Compare the performance of the largest-coefficient and the smallest-index
pivoting rules on the following linear program:

maximize 4x1 + 5x»
subject to2x7 4+ 2z <9
1 <4
o <3

x1, T2 > 0.

4.2 Compare the performance of the largest-coefficient and the smallest-index
pivoting rules on the following linear program:

maximize 2z1 + x4
subjectto3x; + 22 <3

x1, w2 > 0.

4.3 Compare the performance of the largest-coefficient and the smallest-index
pivoting rules on the following linear program:

maximize 3z + 5z2
subjectto x; +2x9 <5
T <3
To <2

T1, T2 > 0.

4.4 Solve the Klee—Minty problenf (4.1) far = 3.
4.5 Solve the 4 variable Klee-Minty problem using the online pivot tool:

campuscgi.princeton.edufvdb/JAVA/pivot/kleeminty.html


http://campuscgi.princeton.edu/~rvdb/JAVA/pivot/simple.html
http://campuscgi.princeton.edu/~rvdb/JAVA/pivot/kleeminty.html

NOTES 53

4.6 Consider the dictionary

(== 10" (ij - %‘)

Jj=1
i—1

wi =Y €107 (b; — 22;) + (b —x;)  i=1,2,...,m,

Jj=1

where theb;’s are as in the Klee—Minty problerpi (4.2) and where egdB

+1. Fix k& and consider the pivot in whichy enters the basis and, leaves

the basis. Show that the resulting dictionary is of the same form as before.
How are the new;'’s related to the old;’s?

4.7 Use the result of the previous problem to show that the Klee—Minty problem
(4.2) require2™ — 1 iterations.

4.8 Consider the Klee—Minty problerfi (3.2). Suppose that 3:~! for some
£ > 1. Find the greatest lower bound on the sep3&f for which the this
problem require@™ — 1 iterations.

4.9 Show that, for any integer,

i22n < <2n> < 2271,.
2n n

4.10 Consider a linear programming problem that has an optimal dictionary in
which exactlyk of the original slack variables are nonbasic. Show that by
ignoring feasibility preservation of intermediate dictionaries this dictionary
can be arrived at in exactly pivots. Don't forget to allow for the fact that
some pivot elements might be zekint: see Exercisp 2.15.

Notes

The first example of a linear programming problemnirvariables and: con-
straints taking2™ — 1 iterations to solve was published by Klee & Mihty (1972).
Several researchers, including Smale (1983), Borgwardt (1982), Borgwardta}1987
Adler & Megiddo (1985), and Todd (1986), have studied the average number of it-
erations. For a survey of probabilistic methods, the reader should cbnsult Borgward
(198M).

Roughly speaking, a class of problems is said to haelynomial complexity
if there is a polynomiap for which every problem of “size’h in the class can be
solved by some algorithm in at mgstn) operations. For many years it was unknown
whether linear programming had polynomial complexity. The Klee—Minty examples



54 4. EFFICIENCY OF THE SIMPLEX METHOD

show that, if linear programming is polynomial, then the simplex method is not the
algorithm that gives the polynomial bound, sirieis not dominated by any polyno-
mial. In 1979] Khachian (1979) gave a new algorithm for linear programming, called
the ellipsoid methodwhich is polynomial and therefore established once and for all
that linear programming has polynomial complexity. The collection of all problem
classes having polynomial complexity is usually denotedbyA class of problems
is said to belong to the claggP if, given a (proposed) solution, one can verify its
optimality in a number of operations that is bounded by some polynomial in the “size”
of the problem. ClearlyP c NP (since, if we can solve from scratch in a polyno-
mial amount of time, surely we can verify optimality at least that fast). An important
problem in theoretical computer science is to determine whether dPrieta strict
subset of\/P.

The study of how difficult it is to solve a class of problems is caltethplexity
theory Readers interested in pursuing this subject further should cansult Garey &
Johnsoh[(1977).



CHAPTER 5

Duality Theory

Associated with every linear program is another called its dual. The dual of this
dual linear program is the original linear program (which is then referred to as the
primal linear program). Hence, linear programs come in primal/dual pairs. It turns out
that every feasible solution for one of these two linear programs gives a bound on the
optimal objective function value for the other. These ideas are important and form a
subject called duality theory, which is the topic we shall study in this chapter.

1. Motivation—Finding Upper Bounds

We begin with an example:

maximize 4x1 + xo + 323
subjectto z; + 4xo <1
3x1— o+ x3<3

x1, w2, 3 >0.

Our first observation is that every feasible solution provides a lower bound on the
optimal objective function valu€,*. For example, the solutiafx;, z2, z3) = (1,0,0)

tells us thai* > 4. Using the feasible solutiofx, z2, z3) = (0,0, 3), we see that

¢* > 9. But how good is this bound? Is it close to the optimal value? To answer,
we need to give upper bounds, which we can find as follows. Let's multiply the first
constraint by2 and add that t@ times the second constraint:

2 (z1+4z ) <2(1)
+3 (3.1‘1 — X9+ x3> < 3(3)
11.’E1 —+ 5.’E2 —+ 3.’E3 S ].].

Now, since each variable is nonnegative, we can compare the sum against the objecti
function and notice that

4r1 + 19 + 323 < 1lx1 + S + 323 < 11.

55
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Hence(* < 11. We have localized the search to somewhere betWeen11. These
bounds leave a gap (within which the optimal solution lies), but they are better than
nothing. Furthermore, they can be improved. To get a better upper bound, we agai
apply the same upper bounding technique, but we replace the specific numbers w
used before with variables and then try to find the values of those variables that give
us the best upper bound. So we start by multiplying the two constraints by nonnegative
numbersy; andys, respectively. The fact that these numbers are nonnegative implies
that they preserve the direction of the inequalities. Hence,

y1( x1 +4xs ) < Y1
+y2(3z1 — w2+ a3) < 3y
(y1 +3y2)x1 + (4y1 — y2)z2 + (y2)r3 < y1 + 3yo.

If we stipulate that each of the coefficients of thés be at least as large as the corre-
sponding coefficient in the objective function,

Y1 +3y2 >4
dy1 — y2 21
y2237

then we can compare the objective function against this sum (and its bound):

(=4x1 4+ x2 + 323
< (y1 +3y2)z1 + (441 — y2)22 + (y2)73
<wy1 + 3y2.
We now have an upper boung, + 3y-, which we should minimize in our effort to

obtain the best possible upper bound. Therefore, we are naturally led to the following
optimization problem:

minimize y; + 3y2
subjectto y; + 3y2 >4
4y — Y221
y2 >3
Y1, y2 > 0.
This problem is called the dual linear programming problem associated with the given

linear programming problem. In the next section, we will define the dual linear pro-
gramming problem in general.
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2. The Dual Problem

Given a linear programming problem in standard form,

n
maximize » _ c;x;
i=1
n
subjectto » " ai;z; < b, i=1,2,...,m
=1

(5.1)

]‘]ZO j:1,2,...,n,

the associatedual linear programis given by

m
minimize Zbiyi
i=1
m
subjectto Y “wiai;; >¢;  j=1,2,...,n
i=1
y; >0 1=1,2,...,m.

Since we started witf (5.1), it is called tipeimal problem Our first order of
business is to show that taking the dual of the dual returns us to the primal. To set
this, we first must write the dual problem in standard form. That is, we must change
the minimization into a maximization and we must change the first set of greater-than
or-equal-to constraints into less-than-or-equal-to. Of course, we must effect thest
changes without altering the problem. To change a minimization into a maximization,
we note that to minimize something it is equivalent to maximize its negative and then
negate the answer:

m m
min Z biy; = —max <— Z biyi> .
=1 =1

To change the direction of the inequalities, we simply multiply through by minus one.
The resulting equivalent representation of the dual problem in standard form then is

m

—maximize Z(_bi)yi

i=1
m

subject to Z(faij)yi < (—¢) ji=12...,n
=1
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Now we can take its dual:

n

—minimize ) "(—c;)z;
j=1

n

subjectto Y (—aij)x; > (~b;) i=1,2,...,m
j=1

2; >0 j=1,2,...n,

which is clearly equivalent to the primal problem as formulatedin (5.1).

3. The Weak Duality Theorem

As we saw in our example, the dual problem provides upper bounds for the primal
objective function value. This result is true in general and is referred to aA/ktia&
Duality Theorem

THEOREMS.1. If (21, 29, ..., 2,) is feasible for the primal anfy,, y2, . . ., Ym)
is feasible for the dual, then

chxj < szyz
7 7

PROOF The proof is a simple chain of obvious inequalities:
IEEES o] Do B
J J i
= Z YiQij Tj
ij

:Z Zaijxj Yi
i J

<> by,
i

where the first inequality follows from the fact that eachis nonnegative and each

¢; is no larger thany_, y;a;;. The second inequality, of course, holds for similar
reasons. 0

Consider the subset of the real line consisting of all possible values for the primal
objective function, and consider the analogous subset associated with the dual prot
lem. The weak duality theorem tells us that the set of primal values lies entirely to
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Primal Values Dual Values
} { =
Gap
Primal Values Dual Values
I —
No Gap

FIGURE 5.1. The primal objective values are all less than the dual
objective values. An important question is whether or not there is a
gap between the largest primal value and the smallest dual value.

the left of the set of dual values. As we shall see shortly, these sets are both close
intervals (perhaps of infinite extent), and the right endpoint of the primal set butts up
against the left endpoint of the dual set (see Figurg 5.1). That is, there is no gap be
tween the optimal objective function value for the primal and for the dual. The lack
of a gap between primal and dual objective values provides a convenient tool for veri-
fying optimality. Indeed, if we can exhibit a feasible primal solutiafi, =3, . . ., x%)

and a feasible dual solutidw;, v3, . . ., v, ) for which

Z cjxy = Z biy; s
j 5

then we may conclude that each of these solutions is optimal for its respective prob
lem. To see that the primal solution is optimal, consider any other feasible solution
(x1,29,...,x,). By the weak duality theorem, we have that

Z ¢z < Z biy; = chx;‘».
J ( J

Now, since(z7, x5, ..., z}) was assumed to be feasible, we see that it must be opti-
mal. An analogous argument shows that the dual solution is also optimal for the dua
problem. As an example, consider the solutiens (0, 0.25,3.25) andy = (1,3) in

our example. Both these solutions are feasible, and both yield an objective value o
10. Hence, the weak duality theorem says that these solutions are optimal.
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4. The Strong Duality Theorem

The fact that for linear programming there is never a gap between the primal anc
the dual optimal objective values is usually referred to asStineng Duality Theorem

THEOREMS.2. If the primal problem has an optimal solution,

x* = (af,x5,...,2)),

then the dual also has an optimal solution,

Y =Y Um);

such that

(5.2) Z cjz; = Z biyr.

J

Carefully written proofs, while attractive for their tightness, sometimes obfuscate
the main idea. In such cases, it is better to illustrate the idea with a simple example
Anyone who has taken a course in linear algebra probably already appreciates such
statement. In any case, it is true here as we explain the strong duality theorem.

The main idea that we wish to illustrate here is that, as the simplex method solves
the primal problem, it also implicitly solves the dual problem, and it does so in such a
way that [5.P) holds.

To see what we mean, let us return to the example discussed in §gfion 5.1. W
start by introducing variables;, i = 1,2, for the primal slacks and,, j = 1,2, 3,
for the dual slacks. Since the inequality constraints in the dual problem are greater
than constraints, each dual slack is defined as a left-hand side minus the correspondil
right-hand side. For example,

z21 =y +3y2 — 4.
Therefore, the primal and dual dictionaries are written as follows:

(= 4r1 + o+ 3x3
(P) wr=1— 71 -4z,

we =3 —3x1+ T3 — 3.

= — y1— 3y
z1=—4+ y1+3ye
zo=—1+4y1 — yo
23=-—3 + Y.

(D)



4. THE STRONG DUALITY THEOREM 61

Note that we have recorded the negative of the dual objective function, since we pre
fer to maximize the objective function appearing in a dictionary. Also note that the
numbers in the dual dictionary are simply the negative of the numbers in the primal
dictionary arranged with the rows and columns interchanged. Indeed, stripping awa
everything but the numbers, we have

0 -1 -3
0O 4 1 3
neg.—transp.| —4 1 3
-1 —4 —
-1 4 -1
3 -3 1 -1
-3 0 1

That is, as a table of numbers, the dual dictionary isribgative transposef the
primal dictionary.

Our goal now is to apply the simplex method to the primal problem and at the
same time perform the analogous pivots on the dual problem. We shall discover tha
the negative-transpose property persists throughout the iterations.

Since the primal dictionary is feasible, no Phase | procedure is necessary. Fo
the first pivot, we pickes as the entering variable:{ has the largest coefficient, but
x3 provides the greatest one-step increase in the objective). With this choice, the
leaving variable must be,. Since the rows and columns are interchanged in the dual
dictionary, we see that “columnt’s in the primal dictionary corresponds to “row
in the dual dictionary. Similarly, row- in the primal corresponds to columa in
the dual. Hence, to make an analogous pivot in the dual dictionary, we gelast
the entering variable ang, as the leaving variable. While this choice of entering and
leaving variable may seem odd compared to how we have chosen entering and leavir
variables before, we should note that our earlier choice was guided by the desire t
increase the objective function while preserving feasibility. Here, the dual dictionary
is not even feasible, and so such considerations are meaningless. Once we give
those rules for the choice of entering and leaving variables, it is easy to see that a pivc
can be performed with any choice of entering and leaving variables provided only that
the coefficient on the entering variable in the constraint of the leaving variables does
not vanish. Such is the case with the current choice. Hence, we do the pivot in bott
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the primal and the dual. The result is

(=9—-5x1 +4xs — 3w
(P) wr=1— x1 — 4z,

r3=3—3x1+ To— ws.

—§{=-9— y1—3z
21 = 5+ y1+323
zg=—4+4y1 — z3

(D)
y2= 3 + 3.

Note that these two dictionaries still have the property of being negative-transpose:
of each other. For the next pivot, the entering variable in the primal dictionary is
(this time there is no choice) and the leaving variableiisIn the dual dictionary, the
corresponding entering variablegig and the leaving variable is,. Doing the pivots,
we get
CZ 10 — 6.’E1— w1—3w2
P) T =0.25 — 0.2521 — 0.25w;
Tr3 = 3.25 — 3.25331 — 0.2511}1 — Wa.

—£=—-10—0.2525 — 3.2523
z1= 6+0.2529 + 3.2523
y1= 1+40.2529 +0.2523
y2= 3 + 23.

(D)

This primal dictionary is optimal, since the coefficients in the objective row are all
negative. Looking at the dual dictionary, we see that it is now feasible for the anal-
ogous reason. In fact, it is optimal too. Finally, both the primal and dual objective
function values aréO0.

The situation should now be clear. Given a linear programming problem, which
is assumed to possess an optimal solution, first apply the Phase | procedure to get
basic feasible starting dictionary for Phase Il. Then apply the simplex method to find
an optimal solution. Each primal dictionary generated by the simplex method implic-
itly defines a corresponding dual dictionary as follows: first write down the negative
transpose and then replace eaglwith az; and eachw; with ay;. As long as the pri-
mal dictionary is not optimal, the implicitly defined dual dictionary will be infeasible.
But once an optimal primal dictionary is found, the corresponding dual dictionary will
be feasible. Since its objective coefficients are always nonpositive, this feasible dua
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dictionary is also optimal. Furthermore, at each iteration, the current primal objective
function value coincides with the current dual objective function value.

To see why the negative transpose property is preserved from one dictionary tc
the next, let's observe the effect of one pivot. To keep notations uncluttered, we shal
consider only four generic entries in a table of coefficients: the pivot element, which
we shall denote by, one other element on the pivot element’s row, cdl| iine other
in its column, call ite, and a fourth element, denotéd chosen to make these four
entries into a rectangle. A little thought (and perhaps some staring at the example
above) reveals that a pivot produces the following changes:

the pivot element gets replaced by its reciprocal;

elements in the pivot row get negated and divided by the pivot element;
elements in the pivot column get divided by the pivot element; and

all other elements, such dsget decreased biy:/a.

These effects can be summarized on our generic table as follows:

1
b a - -
a a

pivot

—
d c d— be ¢
a a

Now, if we start with a dual dictionary that is the negative transpose of the primal and
apply one pivot operation, we get

Q| o

pivot
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Note that the resulting dual table is the negative transpose of the resulting primal table
By induction we then conclude that, if we start with this property, it will be preserved
throughout the solution process.

Since the strong duality theorem is the most important theorem in this book, we
present here a careful proof. Those readers who are satisfied with the above discussi
may skip the proof.

Proor oFTHEOREM[G.Z. It suffices to exhibit a dual feasible solutighsatis-
fying (5.9). Suppose we apply the simplex method. We know that the simplex method
produces an optimal solution whenever one exists, and we have assumed that one dc
indeed exist. Hence, the final dictionary will be an optimal dictionary for the primal
problem. The objective function in this final dictionary is ordinarily written as

<:§+Zéjl'j.

JEN

But, since this is the optimal dictionary and we prefer stars to bars for denoting optimal
“stuff,” let us write ¢* instead of¢. Also, the collection of nonbasic variables will
generally consist of a combination of original variables as well as slack variables.
Instead of using; for the coefficients of these variables, let us dséor the objective
coefficients corresponding to original variables, and let usdjs®r the objective
coefficients corresponding to slack variables. Also, for those original variables that
are basic we put; = 0, and for those slack variables that are basic wedput- 0.

With these new notations, we can rewrite the objective function as

n m
= +Zc;xj +Zd’{wi.
j=1 i=1

As we know,(* is the objective function value corresponding to the optimal primal
solution:

(5.3) =) el
j=1

Now, put

(5.4) yi = —d; i=1,2,...,m.
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We shall show thag* = (y7,vs, ...,y is feasible for the dual problem and satisfies
(5-9). To this end, we write the objective function two ways:

n n m

% * )
E cjrj=¢" + E c;xj+ E d; w;
j=1 j=1 i=1

m

=+ Gup+ Y (=) | b= Y aiy
j=1 i=1 j=1

=(* - Zbiy;k + Z <c;k + nyaij) xj.
i=1 j=1 i=1

Since all these expressions are linear in the variablese can equate the coefficients

of each variable appearing on the left-hand side with the corresponding coefficient
appearing in the last expression on the right-hand side. We can also equate the conste
terms on the two sides. Hence,

m

(5.5) = by
i=1
m
(5.6) cj:c;f—&—nyaij, i=12...,n.
=1

Combining [[5.B) and (5]5), we get that (5.2) holds. Also, the optimality of the dic-
tionary for the primal problem implies that eachis nonpositive, and hence we see

from (5.8) that
m
Zy:aijzcja j:]-aQa"'an'
i=1

By the same reasoning, ea¢his nonpositive, and so we see from (5.4) that

yr>0,  i=1,2...,m.

These last two sets of inequalities are precisely the conditions that guarantee dui:
feasibility. This completes the proof. |

The strong duality theorem tells us that, whenever the primal problem has an
optimal solution, the dual problem has one also and there is no duality gap. But wha
if the primal problem does not have an optimal solution? For example, suppose tha
it is unbounded. The unboundedness of the primal together with the weak duality
theorem tells us immediately that the dual problem must be infeasible. Similarly, if
the dual problem is unbounded, then the primal problem must be infeasible. It is
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natural to hope that these three cases are the only possibilities, because if they we
we could then think of the strong duality theorem holding globally. That is, even if,
say, the primal is unbounded, the fact that then the dual is infeasible is like saying tha
the primal and dual have a zero duality gap sitting outat. Similarly, an infeasible
primal together with an unbounded dual could be viewed as a pair in which the gap is
zero and sits atco.

But it turns out that there is a fourth possibility that sometimes occurs—it can hap-
pen that both the primal and the dual problems are infeasible. For example, conside
the following problem:

maximize 2z — xo
subjectto x; —a2< 1
—x1 + 22 < -2

1, v2 > 0.

It is easy to see that both this problem and its dual are infeasible. For these problem:
one can think of there being a huge duality gap extending framto +oo.

Duality theory is often useful in that it providescartificate of optimality For
example, suppose that you were asked to solve a really huge and difficult linear pro
gram. After spending weeks or months at the computer, you are finally able to get the
simplex method to solve the problem, producing as it does an optimal dual solution
y* in addition to the optimal primal solutiar*. Now, how are you going to convince
your boss that your solution is correct? Do you really want to ask her to verify the
correctness of your computer programs? The answer is probably not. And in fact it
is not necessary. All you need to do is supply the primal and the dual solution, anc
she only has to check that the primal solution is feasible for the primal problem (that's
easy), the dual solution is feasible for the dual problem (that’s just as easy), and the
primal and dual objective values agree (and that's even easier). Certificates of optimal
ity have also been known to dramatically reduce the amount of time certain underpaic
professors have to devote to grading homework assignments!

As we've seen, the simplex method applied to a primal problem actually solves
both the primal and the dual. Since the dual of the dual is the primal, applying the
simplex method to the dual also solves both the primal and the dual problem. Some
times it is easier to apply the simplex method to the dual, for example, if the dual has
an obvious basic feasible solution but the primal does not. We take up this topic in the
next chapter.

5. Complementary Slackness

Sometimes it is necessary to recover an optimal dual solution when only an opti-
mal primal solution is known. The following theorem, known as @@mplementary
Slackness Theoreroan help in this regard.
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THEOREM 5.3. Suppose that = (z1,2,...,x,) is primal feasible and that
y = (y1,¥2,.-.,ym) is dual feasible. Letw;, wa, ..., w,,) denote the corresponding
primal slack variables, and letzy, 29, . . ., 2,,) denote the corresponding dual slack

variables. Thenx andy are optimal for their respective problems if and only if
2z =0, forj =1,2,...,n,
(5.7) w;y; =0, fori=1,2,...,m.

PROOF We begin by revisiting the chain of inequalities used to prove the weak
duality theorem:

(58) chxj S Z (Z yiaij) €
J J i

= Z Z Qi T4 | Yi
i J
(5.9) <> by

Recall that the first inequality arises from the fact that each term in the left-hand sum
is dominated by the corresponding term in the right-hand sum. Furthermore, this
domination is a consequence of the fact that eacis nonnegative and

¢ < Z Yiij-
i

Hence, inequality{(5]8) will be an equality if and only if, for every= 1,2,...,n,
eitherz; = 0orc; = ), y;a;5. But since

cj = E Yitij — Cj,
i

we see that the alternative 19 = 0 is simply thatz; = 0. Of course, the statement
that at least one of these two numbers vanishes can be succinctly expressed by sayi
that the product vanishes.

An analogous analysis of inequalify (b.9) shows that it is an equality if and only
if (5.7) holds. This then completes the proof. O

Suppose that we have a nondegenerate primal basic optimal solution

¥t = (x],x5,...,2))
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and we wish to find a corresponding optimal solution for the dual. Let

w* = (wi,ws,...,w;)

denote the corresponding slack variables, which were probably given along with the
x;'s but if not can be easily obtained from their definition as slack variables:

w:‘ = bz — Zaijx;ﬂ
J
The dual constraints are

(510) Zyiaij — Zj = Cy, j = 1,27. Lo, ny

where we have written the inequalities in equality form by introducing slack variables
zj, j =1,2,...,n. These constraints form equations inm + n unknowns. But the
basic optimal solutioriz*, w*) is a collection ofn + m variables, many of which are
positive. In fact, since the primal solution is assumed to be nondegenerate, it follows
that them basic variables will be strictly positive. The complementary slackness
theorem then tells us that the corresponding dual variables must vanish. Hence, of th
m + n variables in[(5.10), we can set of them to zero. We are then left with just
equations im unknowns, which we would expect to have a unique solution that can
be solved for. If there is a unique solution, all the components should be nonnegative
If any are negative, this would stand in contradiction to the assumed optimality, of

6. The Dual Simplex Method

In this section, we study what happens if we apply the simplex method to the dual
problem. As we saw in our discussion of the strong duality theorem, one can actually
apply the simplex method to the dual problem without ever writing down the dual
problem or its dictionaries. Instead, the so-called dual simplex method is seen simply
as a new way of picking the entering and leaving variables in a sequence of prima
dictionaries.

We begin with an example:

maximize —x1 — o
subjectto -2z — a9 < 4
=211 + 429 < —8
—x1 +3x9 < =7

z1, r2 > 0.
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The dual of this problem is

minimize 4y, — 8y — Ty3
subjectto—2y; — 2y — y3 > —1
—y1+4y2 +3ys > —1
Y1, Y2, ys = 0.

Introducing variablesv;, ¢ = 1,2, 3, for the primal slacks and;, j = 1,2, for the
dual slacks, we can write down the initial primal and dual dictionaries:

(P) (= - x1— 22
w1 = 4+2.’K1+ T2
we = —8 4+ 2x1 — 4xo

w3:—7+ $1—3$2

(D) —&{= —4y +8y2 + Ty3
2121—2y1—2y2— y3
22=1— y1 +4y2 + 3ys3.

As before, we have recorded the negative of the dual objective function, since we
prefer to maximize the objective function appearing in a dictionary. More importantly,
note that the dual dictionary is feasible, whereas the primal one is not. This suggest
that it would be sensible to apply the simplex method to the dual. Let us do so, but
as we go we shall keep track of the analogous pivots applied to the primal dictionary
For example, the entering variable in the initial dual dictionaryisand the leaving
variable then i%;. Sincew, is complementary tg, andx; is complementary ta,,

we will usews, andz; as the entering/leaving variables in the primal dictionary. Of
course, sinca, is basic and:; is nonbasiciyw, must be the leaving variable am¢ the
entering variable—i.e., the reverse of what we have for the complementary variable:
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in the dual dictionary. The result of these pivots is

(P) (=—4—0.5w; — 312
wp = 12+ wa + 5To
T = 4+05’(U2+212

w3 =—34+ 0.5ws — xo

(D) —§= 4—12y1 — 4z + 3ys
Yo =05— 1y —0.5z1 —0.5y3

zo= 3— byr— 2z + Y3.

Continuing to work on the dual, we now see thatis the entering variable angh
leaves. Hence, for the primal we usg andws as the leaving and entering variable,
respectively. After pivoting, we have

P) (=—-T— w3 —4xs
wy = 18+ 2ws + Txo
1= T4+ wsz+ 3xs
we = 64 2wz + 229

(D) —f =7- 18y1 — 721 - 6y2
ys=1— 2y1 — 21— 2y
22:4— 7y1 —321 —2y2.

Now we natice that both dictionaries are optimal.

Of course, in each of the above dictionaries, the table of numbers in each dua
dictionary is the negative-transpose of the corresponding primal table. Therefore, we
never need to write the dual dictionary; the dual simplex method can be entirely de-
scribed in terms of the primal dictionaries. Indeed, first we note that the dictionary
must be dual feasible. This means that all the coefficients of the nonbasic variables i
the primal objective function must be nonpositive. Given this, we proceed as follows.
First we select the leaving variable by picking that basic variable whose constant tern
in the dictionary is the most negative (if there are none, then the current dictionary
is optimal). Then we pick the entering variable by scanning across this row of the
dictionary and comparing ratios of the coefficients in this row to the corresponding
coefficients in the objective row, looking for the largest negated ratio just as we did in
the primal simplex method. Once the entering and leaving variable are identified, we
pivot to the next dictionary and continue from there. The reader is encouraged to trac
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the pivots in the above example, paying particular attention to how one determines th
entering and leaving variables by looking only at the primal dictionary.

7. A Dual-Based Phase | Algorithm

The dual simplex method described in the previous section provides us with a new
Phase I algorithm, which if nothing else is at least more elegant than the one we gav
in Chaptef . Let us illustrate it using an example:

maximize —x1 + 4o
subjectto —2x; — a9 < 4
=211 + 429 < —8
—x1+3x9 < =7

Ty, r2 > 0.
The primal dictionary for this problem is

(P) ¢= — x1+4zo
wi= 4+2x1+ x9
wo = —8 + 2x1 — 4x,

w3 =—7+ z1 — 322,

and even though at this point we realize that we don’t need to look at the dual dictio-
nary, let's track it anyway:

(D) == —4y1 +8y2+Tys3
1 = 172y172y27 y3
22 =—4— y1 +4y2 + 3ys3.

Clearly, neither the primal nor the dual dictionary is feasible. But by changing the pri-
mal objective function, we can easily produce a dual feasible dictionary. For example
let us temporarily change the primal objective function to

n=—r — Ta.

Then the corresponding initial dual dictionary is feasible. In fact, it coincides with the
dual dictionary we considered in the previous section, so we already know the optima
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solution for this modified problem. The optimal primal dictionary is

n=—7— ws—4xs
wi = 18 + 2wz + Txo
r1= T4+ w3+ 3z,
wy = 64 2ws3 + 2x5.

This primal dictionary is optimal for the modified problem but not for the original
problem. However, it is feasible for the original problem, and we can now simply
reinstate the intended objective function and continue with Phase II. Indeed,

(=—z1 + 4z
= —(7 —+ w3 + 3.%‘2) + 4z,
=—7— w3+ x2.
Hence, the starting dictionary for Phase Il is
(=—T— ws+ 2
w1 = 18 + 2ws3 + Txo

r1= T4+ w3+ 3rs
Wo = 6+2W3+2ZL‘2

The entering variable ig». Looking for a leaving variable, we discover that this
problem is unbounded. Of course, more typically one would expect to have to do
several iterations of Phase 1l to find the optimal solution (or show unboundedness)
Here we just got lucky that the game ended so soon.

Itis interesting to note how we detect infeasibility with this new Phase | algorithm.
The modified problem is guaranteed always to be dual feasible. It is easy to see the
the primal problem is infeasible if and only if the modified problem is dual unbounded
(which the dual simplex method will detect just as the primal simplex method detects
primal unboundedness).

The two-phase algorithm we have just presented can be thought of as a dual
primal algorithm, since we first apply the dual simplex method to a modified dual
feasible problem and then finish off by applying the primal simplex method to the
original problem, starting from the feasible dictionary produced by Phase I. One could
consider turning this around and doing a primal—dual two-phase algorithm. Here, the
right-hand side of the primal problem would be modified to produce an obvious primal
feasible solution. The primal simplex method would then be applied. The optimal
solution to this primal problem will then be feasible for the original dual problem but
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will not be optimal for it. But then the dual simplex method can be applied, starting
with this dual feasible basis until an optimal solution for the dual problem is obtained.

8. The Dual of a Problem in General Form

In Chaptef ]L, we saw that linear programming problems can be formulated in a
variety of ways. In this section, we shall derive the form of the dual when the primal
problem is not necessarily presented in standard form.

First, let us consider the case where the linear constraints are equalities (and th
variables are nonnegative):

n

maximize  ~ c;x;
j=1
n

subjectto » "ajz;=b;  i=1,2,...,m
j=1

(5.11)

z;>0 i=1,2,....n.

As we mentioned in Chaptgf 1, this problem can be reformulated with inequality con-
straints by simply writing each equality as two inequalities: one greater-than-or-equal-
to and one less-than-or-equal-to:

n

maximize » _ c;x;
J=1
n

subjectto » "ajz; <b;  i=1,2,...,m
j=1

n
Zaijijbi i:172,...7m
j=1

;>0 j=1,2,...,n.

Then negating each greater-than-or-equal-to constraint, we can put the problem int
standard form:

n
maximize » _ c;x;

j=1
n
subject to Zaija:j < b; 1=1,2,...,m
j=1
n
Z —a;jx; < —b; 1=1,2,....,m
j=1
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Now that the problem is in standard form, we can write down its dual. Since there
are two sets ofn inequality constraints, we need two setsofdual variables. Let’s
denote the dual variables associated with the first set @onstraints byy;", i =
1,2,...,m, and the remaining dual variables by, i = 1,2,...,m. With these
notations, the dual problem is

m m
minimize Y by =Y biy;
i=1

i=1
m

m
SUbjeCttOZy;raij—Zyi_aijzcj j=12,....n
i=1 i=1

yi Ly >0 i=1,2,...,m.

A moment’s reflection reveals that we can simplify this problem. If we put
yl:yj__y@_7 i:1727"'7m7

the dual problem reduces to

m
minimize Z by
=1
m
subjectto Y “yiai; >¢;  j=1,2,....n.
=1

This problem ighedual associated with (5.]L.1). Note what has changed from when we
were considering problems in standard form: now the dual variables are not restricte
to be nonnegative. And that is the messagguality constraints in the primal yield
unconstrained variables (also referred to as free variables) in the dual, whereas in-
equality constraints in the primal yield nonnegative variables in the dBaiploying

the symmetry between the primal and the dual, we can say nfi@e:variables in

the primal yield equality constraints in the dual, whereas nonnegative variables in the
primal yield inequality constraints in the duaThese rules are summarized in Table

1.

9. Resource Allocation Problems

Let us return to the production facility problem studied in Chajpter 1. Recall that
this problem involves a production facility that can take a variety of raw materials
(enumerated = 1,2, ..., m) and turn them into a variety of final products (enumer-
atedj = 1,2,...,n). We assume as before that the current market value of a unit of
theith raw material is;, that the current market price for a unit of ti product is
o;, that producing one unit of produgtrequiresa;; units of raw materiaf, and that
at the current moment in time the facility has on handnits of theith raw material.
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Primal Dual

Equality Constraint Free Variable

Inequality Constraini Nonnegative Variable

Free Variable Equality Constraint

Nonnegative Variable Inequality Constraint

TABLE 5.1. Rules for forming the dual.

The current market values/prices are, by definition, related to each other by the
formulas

Uj:Zpiaij, j:1,2,...,n.
%

These equations hold whenever the market is in equilibrium. (Of course, it is crucial to
assume here that the collection of “raw materials” appearing on the right-hand side i
exhaustive, including such items as depreciation of fixed assets and physical labor.) |
the real world, the market is always essentially in equilibrium. Nonetheless, it contin-
ually experiences small perturbations that ripple through it and move the equilibrium
to new levels.

These perturbations can be from several causes, an important one being innov:
tion. One possible innovation is to improve the production process. This means tha
the values of some of the;;’s are reduced. Now, suddenly there is a windfall profit
for each unit of producf produced. This windfall profit is given by

(512) Cj =05 — Zpiaij.

Of course, eventually most producers of these products will take advantage of the sam
innovation, and once the suppliers get wind of the profits being made, they will get in
on the action by raising the price of the raw matevﬁa%onetheless, there is always a
time lag; it is during this time that fortunes are made.

To be concrete, let us assume that the time lag is about one month (dependin
on the industry, this lag time could be considered too short or too long). Suppose
also that the production manager decides to prodycenits of productj and that
all units produced are sold immediately at their market value. Then the total revenue

1one could take the prices of raw materials as fixed and argue that the value of the final products will
fall. It doesn't really matter which view one adopts, since prices are relative anyway. The point is simply
that the difference between the price of the raw materials and the price of the final products must narrow
due to this innovation.
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during this month will be)_; o;z;. The value of the raw materials on hand at the
beginning of the month ways_, p;b;. Also, if we denote the new price levels for the
raw materials at the end of the month by, i« = 1,2,...,m, then the value of any
remaining inventory at the end of the month is given by

E w; bi— E aijxj
4 J

(if any term is negative, then it represents the cost of purchasing additional raw mate
rials to meet the month’s production requirements—we assume that these additions
purchases are made at the new, higher, end-of-month price). The total windfall, call i
m, (over all products) for this month can now be written as

(513) W:ZUJ‘IJ' +ZUJZ bz 7Zaijl’j 7szb1
7 % 7 i

Our aim is to choose production levels, j = 1,2,...,n, that maximize this
windfall. But our supplier's aim is to choose prices, ¢ = 1,2,...,m, SO as to
minimize our windfall. Before studying these optimizations, let us first rewrite the
windfall in a more convenient form. As in Chapfér 1, Jetdenote the increase in the
price of raw material. That is,

(5.14) wy = pi + Uin

Substituting[(5.14) intd (5.13) and then simplifying notations uding {5.12), we see that

(5.15) = Z cjx; + Zyl b; — Z Qij %
j i J

To emphasize that depends on each of thg’s and on they;’s, we sometimes write
itasT(L1, .. s Tn, Y1y- -« Ym)-

Now let us return to the competing optimizations. Giwgrfor j = 1,2,...,n,
the suppliers react to minimiz&(z1, . .., Zn, 41, .., ym). LOOking at [5.1p), we see
that for any resourcein short supply, that is,

bi — Z aijry; < O7
J
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the suppliers will jack up the price immensely (i.g.,= oo). To avoid this obviously
bad situation, the production manager will be sure to set the production levels so that

Zaijxjgbi, i:1,2,...,m.
J

On the other hand, for any resourcthat is not exhausted during the windfall month,

that is,
b; — Z aijT; > 0,
J

the suppliers will have no incentive to change the prevailing market pricefi.€.0).
Therefore, from the production manager’s point of view, the problem reduces to one

of maximizing
J

subject to the constraints that
D ajr; <bi,  i=1,2,...,m,
j

z; >0, j=12...,n

This is just our usual primal linear programming problem. This is the problem that the
production manager needs to solve in anticipation of adversarial suppliers.
Now let us look at the problem from the suppliers’ point of view. Rearranging the

terms in [[5.Ib) by writing

(5.16) = Z <Cj - Zyia¢j> zj + Zyibi7

J

we see that if the suppliers set prices in such a manner that a windfall remains on th
jth product even after the price adjustment, that is,

cj — Zyiaij > 0,
7

then the production manager would be able to generate for the facility an arbitrarily
large windfall by producing a huge amount of tfa product (i.e.x; = oco). We
assume that this is unacceptable to the suppliers, and so they will determine their pric
increases so that

Zyiaij20j7 i=12,...,n.
i
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Also, if the suppliers set the price increases too high so that the production facility will
lose money by producing produgtthat is,

Cj — Zyiaij <0,
i

then the production manager would simply decide not to engage in that activity. That
is, she would set; = 0. Hence, the first term irf (5.16) will always be zero, and so
the optimization problem faced by the suppliers is to minimize

> by
i
subject to the constraints that
Zyiaijzcj, i=1,2...,n,
i

y; >0,  i=1,2,...,m.

This is precisely the dual of the production manager’s problem!

As we've seen earlier with the strong duality theorem, if the production manager’s
problem has an optimal solution, then so does the suppliers’ problem, and the twc
objectives agree. This means than an equilibrium can be reestablished by setting tt
production levels and the price hikes according to the optimal solutions to these twc
linear programming problems.

10. Lagrangian Duality

The analysis of the preceding section is an example of a general technique the
forms the foundation of a subject callédgrangian duality which we shall briefly
describe.

Let us start by summarizing what we did. It was quite simple. The analysis
revolved around a function

T(T1, ey Ty Y1y ey Ym) = chfﬂj - Zzyiaiﬁj + Zyibi~
j i i

%

To streamline notations, letstand for the entire collection of variables, xo, .. ., x,

and lety stand for the collection of;’s so that we can writer(z,y) in place of
(X1, oy Ty Y1, - - Ym). Written with these notations, we showed in the previous
section that

max ggﬂ(%y) = min max (2, y).
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We also showed that the inner optimization could in both cases be solved explicitly,
that the max—min problem reduced to a linear programming problem, and that the
min—max problem reduced to the dual linear programming problem.

One could imagine trying to carry out the same program for functicthéit don’t
necessarily have the form shown above. In the general case, one needs to consic
each step carefully. The max—min problem is called the primal problem, and the min-
max problem is called the dual problem. However, it may or may not be true that
these two problems have the same optimal objective values. In fact, the subject i
interesting because one can indeed state specific, verifyable conditions for which th
two problems do agree. Also, one would like to be able to solve the inner optimizations
explicitly so that the primal problem can be stated as a pure maximization problem anc
the dual can be stated as a pure minimization problem. This, too, is often doable. Ther
are various ways in which one can extend the notions of duality beyond the context of
linear programming. The one just described is referred to as Lagrangian duality. It is
perhaps the most important such extension.

Exercises

In solving the following problems, the advanced pivot tool can be used to check
your arithmetic:

campuscgi.princeton.edufvdb/JAVA/pivot/advanced.htrnl

5.1 What is the dual of the following linear programming problem:

maximize z; — 2x5

subjectto x; +2xo — x3+ x4>0
4r1 + 310 + 43 — 204 <3
—x1— xTo+2x3+ x4=1

z2, T3> 0.

5.2 lllustrate Theorerfi 5|2 on the problem in Exer¢isé 2.9.
5.3 lllustrate Theorerp 5|2 on the problem in Exer¢isg 2.1.
5.4 lllustrate Theorerp 5|2 on the problem in Exer¢isg 2.2.
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5.5 Consider the following linear programming problem:

maximize 2xz; +8zg9 — x3 — 214
subjectto 2z, + 3 +6x4< 6
—2x1 + 4x9 + 323 <1.5
3x1+2x9 — 203 — x4 < 4

1, T2, T3, T4 > 0.

Suppose that, in solving this problem, you have arrived at the following
dictionary:

¢ =3.5—-0.25wy + 6.2529 — 0.5ws — 1.5xy
r1=3.0— 0.5w; — 1.52 — 3.0z4
wg = 0.0 + 1.25wq — 3.25z9 — 1.5w3 + 13.524
x3=2.5—0.75w; — 1.25z9 + 0.5ws — 6.5z4.

(&) Write down the dual problem.

(b) In the dictionary shown above, which variables are basic? Which are
nonbasic?

(c) Write down the primal solution corresponding to the given dictionary.
Is it feasible? Is it degenerate?

(d) Write down the corresponding dual dictionary.

(e) Write down the dual solution. Is it feasible?

(f) Do the primal/dual solutions you wrote above satisfy the complemen-
tary slackness property?

(g) Is the current primal solution optimal?

(h) For the next (primal) pivot, which variable will enter if the largest co-
efficient rule is used? Which will leave? Will the pivot be degenerate?



EXERCISES 81

5.6 Solve the following linear program:

maximize —x; — 2xo
subjectto —2z; + 722 < 6
—3x1+ x2<—1
9r1 — 4z < 6
T — x12< 1
Tx1 —3x2< 6
=511 + 225, < —3

Ty, r2 > 0.

5.7 Solve the linear program given in Exercfse|2.3 using the dual-primal two-
phase algorithm.

5.8 Solve the linear program given in Exerc|se]2.4 using the dual—primal two-
phase algorithm.

5.9 Solve the linear program given in Exerc|se]2.6 using the dual—primal two-
phase algorithm.

5.10 Using today’s date (MMYY) for the seed value, solve 10 problems using the
dual phase | primal phase Il simplex method:

campuscgi.princeton.edurvdb/JAVA/pivot/dp2phase.htiml .

5.11 Using today’s date (MMYY) for the seed value, solve 10 problems using the
primal phase | dual phase Il simplex method:

campuscgi.princeton.edufvdb/JAVA/pivot/pd2phase.html
5.12 Forx andy in R, compute

i - and i -
max min (v = y) min max (x —y)

and note whether or not they are equal.


http://campuscgi.princeton.edu/~rvdb/JAVA/pivot/dp2phase.html
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5.13 Consider the following process. Starting with a linear programming problem
in standard form,

n
maximize  ~ c;x;
7j=1
n
subjectto » "ajz; <b;  i=1,2,...,m
Jj=1
z; >0 7=12,...,n,

first form its dual:

m
minimize Zbiyi

i=1

m

subjectto Y wiai;>¢;  j=1,2,...,n
=1
u>0  i=1,2,...,m.

Then replace the minimization in the dual with a maximization to get a new
linear programming problem, which we can write in standard form as fol-

lows:

m
maximize Z by
=1
m
subjectto > —yia;; < —¢;  j=1,2,....n
=1

Y >0 i=1,2...,m.

If we identify a linear programming problem with its data.;, b;, ¢;), the
above process can be thought of as a transformé&tion the space of data
defined by

(aij7 bi7 Cj) i) (*aji, —cy, b,)
Let(*(aqj, bi, c;) denote the optimal objective function value of the standard-

form linear programming problem having ddta;, b;, c;). By strong dual-
ity together with the fact that a maximization dominates a minimization, it

follows that

C*(aij, bi, cj) < C(—aji, —cj, b;).
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Now if we repeat this process, we get

T
(aij, b, c5) = (—aji, —c;, b;)

T

— (aij, —bi, —¢;)

T

= (—aji, cj, —b;)

T
= (aij, bi, ¢5)
and hence that

(*(aij, bi, cj) <

But the first and the last entry in this chain of inequalities are equal. There-
fore, all these inequalities would seem to be equalities. While this outcome
could happen sometimes, it certainly isn’t always true. What is the error in
this logic? Can you state a (correct) nontrivial theorem that follows from
this line of reasoning? Can you give an example where the four inequalities
are indeed all equalities?

5.14 Consider the following variant of the resource allocation problem:

maximize ¢’z

(5.17) subjectto Az <b

0<z<u.
Here,c denotes the vector of unit prices for the produetéenotes the vector
containing the number of units on hand of each raw materialyasehotes
a vector of upper bounds on the number of units of each product that can
be sold at the set price. Now, let's assume that the raw materials have no
been purchased yet and it is part of the problem to detertnibet p denote
the vector of prices for each raw material. The problem then becomes an
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optimization over both: andb:

maximize ¢’z — pT'b
subjectto Az —b<0
0<z<u
b>0.

(a) Show that this problem always has an optimal solution.

(b) Lety*(b) denote optimal dual variables for the original resource alloca-
tion problem[(5.1]7) (note that we've explicitly indicated that these dual
variables depend on the vectdr Show that the optimal value &f call
it b*, satisfies

y*(b*) = p.
5.15 Consider the following linear program:

n
maximize ijxj
j=1

n
subjectto » gz, < 8
j=1
;<1 7=12,...,n
LL'j>O j=1,2,...,n

Here, the numbers;, j = 1,2, ..., n are positive and sum to one. The same
is true of theg;’s:

n
> a=1
j=1

q; > 0.
Furthermore, assume that
PL_P2_  _Pn
q1 q2 dn

and that the parametgt is a small positive number. Lét = min{j :
¢j+1+ -+ gn < B}. Letyy denote the dual variable associated with the
constraint involvingsd, and lety; denote the dual variable associated with
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the upper bound of on variablex;. Using duality theory, show that the
optimal values of the primal and dual variables are given by

0 j<k
) B=gkt1——agn S
T = qk j=k
1 j>k
0 i=0
(Pi _ P ;
45 (q; qzt) j>k

See Exercisg 1].3 for the motivation for this problem.

5.16 Diet Problem.An MIT graduate student was trying to make ends meet on a
very small stipend. He went to the library and looked up the National Re-
search Council’s publication entitled “Recommended Dietary Allowances”
and was able to determine a minimum daily intake quantity of each essen-
tial nutrient for a male in his weight and age category. hetlenote the
number of nutrients that he identified as important to his diet, antg fer
i =1,2,...,m denote his personal minimum daily requirements. Next, he
made a list of his favorite foods (which, except for pizza and due mostly
to laziness and ineptitude in the kitchen, consisted almost entirely of frozen
prepared meals). He then went to the local grocery store and made a list of
the unit price for each of his favorite foods. Let us denote these pricgs as
for j = 1,2,...,n. In addition to prices, he also looked at the labels and
collected information about how much of the critical nutrients are contained
in one serving of each food. Let us denotedyy the amount of nutrient
1 contained in food;j. (Fortunately, he was able to call his favorite pizza
delivery service and get similar information from them.) In terms of this
information, he formulated the following linear programming problem:

n
minimize » " ¢;x;
j=1
n

subjectto Y " a;z; > b; i=1,2,....,m
j=1
2;>0  j=12...n

Formulate the dual to this linear program. Can you introduce another person
into the above story whose problem would naturally be to solve the dual?
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5.17 Saddle pointsA function h(y) defined fory € R is calledstrongly convex
if
e h/'(y) >0forally € R,
o lim, , o h'(y) = —o0, and
o lim, .o, ' (y) = cc.
Afunctionh is calledstrongly concavé —h is strongly convex. Let(z, y),
be a function defined fofr, ) € R? and having the following form

m(z,y) = f(z) — 2y + 9(y),

where f is strongly concave ang is strongly convex. Using elementary

calculus
1. Show that there is one and only one pdint, y*) € R? at which the
gradient ofr,
Ui — or/0x 7
on/dy

vanishesHint: From the two equations obtained by setting the deriva-
tives to zero, derive two other relations having the farm ¢(x) and
y = ¥(y). Then study the functionsand to show that there is one
and only one solution.

2. Show that

max min m(z,y) = w(z*,y") = min max(z, y),
where (z*, y*) denotes the “critical point” identified in part 1 above.
(Note: Be sure to check the signs of the second derivatives for both the
inner and the outer optimizations.)
Associated with each strongly convex functibis another function, called
the Legendre transformf ~ and denoted by.;, defined by

Ly (z) = max(zy — h(y)), z eR.
yeR

3. Using elementary calculus, show ttiaf is strongly convex.
4. Show that

. _ o
Igggggﬂgm(m,y) max(f(z) — Ly(2))

and that

. o Y
minmax n(z,y) = min{g(y) + Ls(~y))
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5. Show that the Legendre transform of the Legendre transform of a func-
tion is the function itself. That s,

Ly, (2) =h(z) forall z € R.

Hint: This can be proved from scratch but it is easier to use the result
of part 2 above.

Notes

The idea behind the strong duality theorem can be traced back to conversation
between G.B. Dantzig and J. von Neumann in the fall of 1947, but an explicit state-
ment did not surface until the paper|of Gale etal. (1951). The f@imal problem
was coined by G.B. Dantzig’s father, T. Dantzig. The dual simplex method was first
proposed by Lemke (1954).

The solution to Exercidge 5.[13 (which is left to the reader to supply) suggests that
a random linear programming problem is infeasible with probability, unbounded
with probability1/4, and has an optimal solution with probability2.






CHAPTER 6

The Simplex Method in Matrix Notation

So far, we have avoided using matrix notation to present linear programming
problems and the simplex method. In this chapter, we shall recast everything intc
matrix notation. At the same time, we will emphasize the close relations between the
primal and the dual problems.

1. Matrix Notation

As usual, we begin our discussion with the standard-form linear programming
problem:
n
maximize » _ c;x;
j=1
n
subject to Zaija:j < b; i1=1,2,...,m
j=1
1‘320 j:1,2,...,n.

In the past, we have generally denoted slack variables s/ but have noted that
sometimes it is convenient just to string them onto the end of the list of original vari-
ables. Such is the case now, and so we introduce slack variables as follows:

n
xn+i:bi_ E Qi g, i:1,2,...,m.
j=1

With these slack variables, we now write our problem in matrix form:

maximize ¢T z
subjectto Az =b
x>0,

89
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where
a1 aig ... A1n 1
a1 aszo ... A2, 1
(6.1) A= ] ) ] . ,
am1 Am2 ... Gmn 1
_C1 i [ T i
C2 T2
b1
ba
(6.2) b= . s c=|c,|, and z = T
0 Tn+1
bm,
L 0 | _xn+m_

As we know, the simplex method is an iterative procedure in which each iteration
is characterized by specifying whieh of then 4+ m variables are basic. As before,
we denote bys the set of indices corresponding to the basic variables, and we denote
by NV the remaining nonbasic indices.

In component notation, thih component ofAz can be broken up into a basic
part and a nonbasic part:

n+m

(6.3) Z AT = Zaijmj + Z i T;.
j=1

JjEB JEN

We wish to introduce a notation for matrices that will allow us to break up the matrix
productAx analogously. To this end, €2 denote ann x m matrix whose columns
consist precisely of the: columns ofA that are associated with the basic variables.
Similarly, let N denote ann x n matrix whose columns are thenonbasic columns

of A. Then we writeA in a partitioned-matrix form as follows:

A=|B N|
Strictly speaking, the matrix on the right does not equaldhmatrix. Instead, itis the

A matrix with its columns rearranged in such a manner that all the columns associate
with basic variables are listed first followed by the nonbasic columns. Nonetheless, a
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long as we are consistent and rearrange the rowsinfthe same way, then no harm
is done. Indeed, let us similarly rearrange the rows ahd write

B
Tr = .
TN
Then the following separation ofz into a sum of two terms is true and captures the
same separation into basic and nonbasic parts as we Had]in (6.3):

B
TN

Ax:[B N}[ = Bxp+ Nz

By similarly partitioninge, we can write
T
CR B
= = cgacg + cf/a:j\/.
CN TN

2. The Primal Simplex Method

A dictionary has the property that the basic variables are written as functions of
the nonbasic variables. In matrix notation, we see that the constraint equations

Ax =10

can be written as
Bxp+ Nz =b.

The fact that the basic variableg can be written as a function of the nonbasic vari-
ablesz s is equivalent to the fact that the matidixis invertible, and hence,

(6.4) z3 =B 'b— B 'Nxy.
(The fact thatB is invertible means that ite column vectors are linearly independent
and therefore form a basis f&®™ — this is why the basic variables are called basic,

in case you were wondering.) Similarly, the objective function can be written as

(6.5) ¢(=ckap +cf/xj\[

=cg (B7'0— B 'Nuay) + cyan

=cEB7 b — ((B_lN)TcB — CN)T:UN.
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Combining [6.5) and (6]4), we see that we can write the dictionary associated with
basisB as

65 C(=cEB b — ((B'N)Tes —cy)’
' rg= B 'b— B !Naxy.

Comparing against the component-form notation of Chdfgter 2 [[S€e (2.6)), we mak
the following identifications:

ckB™'h =
ev — (BTIN)es =g]
B'b=[3]
BTN = [ay],

where the bracketed expressions on the right denote vectors and matrices with th
index: running over3 and the indey running over\. The basic solution associated
with dictionary [6.6) is obtained by setting, equal to zero:

zy =0,
(6.7) x=B"'bh.
As we saw in the last chapter, associated with each primal dictionary there is a
dual dictionary that is simply the negative-transpose of the primal. However, to have
the negative-transpose property, it is important to correctly associate complementar

pairs of variables. So first we recall that, for the current discussion, we have appende
the primal slack variables to the end of the original variables:

(T1,y ey Ty Wy e ooy W) — (T1, ooy Ty Tt 1y -« 5 Trkm ) -

Also recall that the dual slack variables are complementary to the original primal
variables and that the original dual variables are complementary to the primal slack
variables. Therefore, to maintain the desired complementarity condition between like
indices in the primal and the dual, we need to relabel the dual variables and appen
them to the end of the dual slacks:

(Zla sy fns Yl e 7ym) - (Zlv sy Rny Antly e ;Zn-i-m)'
With this relabeling of the dual variables, the dual dictionary correspondifg o (6.6) is

—£= —cgB7b— (B7'b)T 25
v =B TN)cg —cny+ (BIN)T25.
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The dual solution associated with this dictionary is obtained by settingqual to
Zero:

zp =0,
(6.8) 2 =B N eg —cp.
Using [6.T) and[(618) and introducing the shorthand
(6.9) ¢* = cg B,

we see that we can write the primal dictionary succinctly as

_ ok x T
(6.10) (=62 an
rg=1z5— B 'Nuy.

The associated dual dictionary then has a very symmetric appearance:

- * \T
(6.11) 3 ¢ (z5)" 28
v = zi+ (B7IN) 2.
The (primal) simplex method can be described briefly as follows. The starting
assumptions are that we are given

(1) a partition of thex + m indices into a collectio8 of m basic indices and a
collectionV of n nonbasic ones with the property that the basis mairix
invertible,

(2) an associated current primal solutigh > 0 (andz}, = 0), and

(3) an associated current dual solutigip (with z; = 0)

such that the dictionary given by (6]10) represents the primal objective function and
the primal constraints. The simplex method then produces a sequence of steps |
“adjacent” bases such that the current vajtieof the objective functior( increases
at each step (or, at least, would increase if the step size were positive), updgting
andz}, along the way. Two bases are said to be adjacent to each other if they differ in
only one index. That is, given a bad¥s an adjacent basis is determined by removing
one basic index and replacing it with a nonbasic index. The index that gets removec
corresponds to the leaving variable, whereas the index that gets added corresponds
the entering variable.

One step of the simplex method is called an iteration. We now elaborate further
on the details by describing one iteration as a sequence of specific steps.

Step 1. Check for Optimalityf =3, > 0, stop. The current solution is optimal.
To see this, first note that the simplex method always maintains primal feasibility and
complementarity. Indeed, the primal solution is feasible, sitjge> 0 andxza = 0
and the dictionary embodies the primal constraints. Also, the factitffat 0 and
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zj = 0 implies that the primal and dual solutions are complementary. Hence, all that
is required for optimality is dual feasibility. But by looking at the associated dual
dictionary [6.11), we see that the dual solution is feasible if and onlj;if> 0.

Step 2. Select Entering Variableick an indexj € A for which z; < 0. Variable
x; is theentering variable

Step 3. Compute Primal Step Directidtxcz. Having selected the entering vari-
able, it is our intention to let its value increase from zero. Hence, we let

0
0
TN = |t = tej,
0]\
jth position
_O_.

where we follow the common convention of letting denote the unit vector that is
zero in every component except for a one in the position associated withjr{deie
that, because of our index rearrangement conventions, this is not generajtihthe
element of the vector). Then frofn (6]10), we have that

g =xh — Bithej.
Hence, we see that the step directibng for the primal basic variables is given by
Az = BilNej.

Step 4. Compute Primal Step Lengilie wish to pick the largest> 0 for which
every component of 3 remains nonnegative. That is, we wish to pick the largést
which

xp > tAxp.

Since, for eachi € B*, ¥ > 0 andt > 0, we can divide both sides of the above
inequality by these numbers and preserve the sense of the inequality. Therefore, doir
this division, we get the requirement that

forall: € B.

We want to lett be as large as possible, andls@ should be made as small as pos-
sible. The smallest possible value foft that satisfies all the required inequalities is
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obviously
1 AJZ,L'

— = Inax P
t  ieB x;

Hence, the largestfor which all of the inequalities hold is given by

-1
AQ?,‘

t = | max — .
i€B X}

As always, the correct convention foy0 is to set such ratios to zero. Also, if the
maximum is less than or equal to zero, we can stop here—the primal is unbounded.
Step 5. Select Leaving Variabl&he leaving variable is chosen as any variable
x;, 1 € B, for which the maximum in the calculation 6fs obtained.
Step 6. Compute Dual Step Directidxz . Essentially all that remains is to
explain howz}, changes. To see how, it is convenient to look at the dual dictionary.
Since in that dictionary; is the entering variable, we see that

Azy = —(B7IN)Te;.

Step 7. Compute Dual Step LengBince we know that; is the leaving variable
in the dual dictionary, we see immediately that the step length for the dual variables is

*
i

§ = —.
AZJ'

Step 8. Update Current Primal and Dual Solutioge now have everything we
need to update the data in the dictionary:

T —1

*
J

T — g —tAzp
and

X

74<_s

2 — 2 — SAzp.
Step 9. Update Basi&inally, we update the basis:
B — B\ {i} U{j}.

We close this section with the important remark that the simplex method as pre-
sented here, while it may look different from the component-form presentation given
in Chaptef , is in fact mathematically identical to it. That is, given the same set of
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pivoting rules and starting from the same primal dictionary, the two algorithms will
generate exactly the same sequence of dictionaries.

3. An Example

In case the reader is feeling at this point that there are too many letters and no
enough numbers, here is an example that illustrates the matrix approach to the simple
method. The problem we wish to solve is

maximize 4z + 3xo
subjectto x; — x5 <1
2.%1 — T2 S 3

xo <5
Ty, T2 > 0.
The matrixA is given by
1 -1 1
2 —1 1
0 1 1

(Note that some zeros have not been shown.) The initial sets of basic and nonbas
indices are
B ={3,4,5} and N ={1,2}.

Corresponding to these sets, we have the submatricés of

1 1 -1
B = 1 N=|2 -1
1 0 1

From [6.7) we see that the initial values of the basic variables are given by

and from [[6.8) the initial nonbasic dual variables are simply

* l_4‘|
N = TCN = _3 .
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Sincezxy > 0, the initial solution is primal feasible, and hence we can apply the
simplex method without needing any Phase | procedure.

3.1. First Iteration. Step 1.Sincezj, has some negative components, the cur-
rent solution is not optimal.

Step 2.Sincez; = —4 and this is the most negative of the two nonbasic dual
variables, we see that the entering index is

j=1
Step 3.
1 -1 ) 1
Aacng_lNej =2 -1 [0] = |2
0 1 0
Step 4.

120\ "
t=|maxq—, -, = =1
1°3°5

Step 5.Since the ratio that achieved the maximum in Step 4 was the first ratio and
this ratio corresponds to basis index 3, we see that

i =3.
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Step 8.

z3 =4, Zy

Il

1
I
W =
—
|
g
| — |
I
_ =
.
Il
T 1
|
~N O
.

Step 9.The new sets of basic and nonbasic indices are
B={1,4,5} and N ={3,2}.

Corresponding to these sets, we have the new basic and nonbasic submatfices of

1 1 -1
B=1]21 N=|0 -1/,
0 1 0 1

and the new basic primal variables and nonbasic dual variables:

x] 1 y :
z
e I
x5 5 2

3.2. Second lteration. Step 1. Since z, has some negative components, the

current solution is not optimal.
Step 2.Sincezi = —7, we see that the entering index is

j=2.
Step 3.
—1
1 1 -1 0 -1
Arg=B'Nej=|2 1 0 —1 Mz 1
0 1 0 1 1
Step 4.
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Step 5.Since the ratio that achieved the maximum in Step 4 was the second ratic
and this ratio corresponds to basis index 4, we see that

i =4.
Step 6.
Azy =—(B7'N)Te;
—1
1 20 0
1 0 0] [ 21
-1 -1 1 -1
1 0
Step 7.
z;‘ 7
5 Az; -1
Step 8.
K 1 E
x5 =1, zp=|1| -1 1 =101,
5 1 4
. L[4 - 2 [—10
zy =1, 2y = — = .
! R ~1] | o

Step 9.The new sets of basic and nonbasic indices are
B={1,2,5} and N ={3,4}.

Corresponding to these sets, we have the new basic and nonbasic submatfices of

1 -1 0 10
B=12 -1 0 N=]01/,
0 1 1 00

and the new basic primal variables and nonbasic dual variables:

2
) . 23 —10

= 2 = = .
N7 7

8
&
I
8 8
SR R
\

8
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3.3. Third Iteration. Step 1.Sincez}, has some negative components, the cur-
rent solution is not optimal.
Step 2.Sincezi = —10, we see that the entering index is

j=3.
Step 3.
-1
1 -1 0 Lo, -1
Arg=B'Nej=|2 -1 0 01 Mz —2
0 1 1 0 0 2
Step 4.

1 -2 21\ !
t=|maxqy—,—, =2
2714

Step 5.Since the ratio that achieved the maximum in Step 4 was the third ratio
and this ratio corresponds to basis index 5, we see that

i=>5.
Step 6.
Azy =—(B71N)T¢;
—1
1 2 0 0
100 -2
=— -1 -1 1 0] = .
010 1
0 0 1 1
Step 7.
_ 5 D
5= AZJ N —2 =5
Step 8.
Y 71 _
x5 =2, = (1| —-2]-2 = )
4 2
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Step 9.The new sets of basic and nonbasic indices are
B=1{1,2,3} and N = {5,4}.

Corresponding to these sets, we have the new basic and nonbasic submatfices of

1 -1 1 00
B=]12 -1 0 N=1]01],
0 1 0 10

and the new basic primal variables and nonbasic dual variables:

4 q T
z
z
9 4

3.4. Fourth Iteration. Step 1. Sincez}, has all nonnegative components, the
current solution is optimal. The optimal objective function value is

8

8

= *

Il

8 8
Wx Nx =¥

¢* =4a] + 325 = 3L

Itis undoubtedly clear at this point that the matrix approach, as we have presente
it, is quite a bit more tedious than the dictionary manipulations with which we are
quite familiar. The reason is that, with the dictionary approach, dictionary entries
get updated from one iteration to the next and the updating process is fairly easy
whereas with the matrix approach, we continually compute everything from scratch
and therefore end up solving many systems of equations. In the next chapter, we wil
deal with this issue and show that these systems of equations don't really have to b
solved from scratch each time; instead, there is a certain updating that can be done th
is quite analogous to the updating of a dictionary. However, before we take up suct
practical considerations, let us finish our general discussion of the simplex methoc
by casting the dual simplex method into matrix notation and discussing some relatec
issues.

4. The Dual Simplex Method

In the presentation of the primal simplex method given in the previous section,
we tried to make the symmetry between the primal and the dual problems as evider
as possible. One advantage of this approach is that we can now easily write dow
the dual simplex method. Instead of assuming that the primal dictionary is feasible
(x5 > 0), we now assume that the dual dictionary is feasibfg & 0) and perform
the analogous steps:
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Step 1. Check for Optimalitylf 2 > 0, stop. The current solution is opti-
mal. Note that for the dual simplex method, dual feasibility and complementarity are
maintained from the beginning, and the algorithm terminates once a primal feasible
solution is discovered.

Step 2. Select Entering Variableick an index € B for whichz} < 0. Variable
z; is theentering variable

Step 3. Compute Dual Step Directidx nr. From the dual dictionary, we see that

Azy = —(B7IN)Te;.

Step 4. Compute Dual Step Lengte wish to pick the largest > 0 for which
every component of,, remains nonnegative. As in the primal simplex method, this
computation involves computing the maximum of some ratios:

-1
AZj

§ = | max —; .
JEN 25

If sis not positive, then stop here—the dual is unbounded (implying, of course, that
the primal is infeasible).

Step 5. Select Leaving Variabl&he leaving variable is chosen as any variable
zj, j € N, for which the maximum in the calculation sfis obtained.

Step 6. Compute Primal Step Directidnrz. To see howej; changes in the dual
dictionary, it is convenient to look at the primal dictionary. Since in that dictiorary
is the entering variable, we see that

Axrp = BilNej.

Step 7. Compute Primal Step Leng8ince we know that; is the leaving vari-
able in the primal dictionary, we see immediately that the step length for the primal
variables is

x¥

t=———.
A.’IJZ‘

Step 8. Update Current Primal and Dual Solutioge now have everything we

need to update the data in the dictionary:
xi—1

-k
J
Tp — 2 — tAzp.
and

zi — S

2 — 2 — SAzn
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Primal Simplex Dual Simplex
Supposer; > 0 Supposery > 0
while (23 2 0) { while (x5 # 0) {
pickj € {j € N': 25 <0} picki € {i € B: x} <0}
Axrpg = B_lN(ij Azy = —(B_lN)Tei
-1 -1
Al‘i AZJ'
t = maXx;en — s = maX;e N -
T; Z5
L Ax; . . 2
pick ¢ € argmaxes —.- pick j € AYMage —.-
i J
AzN:—(B_lN)Tei AQ:B:B_INBJ'
s ,_
Az; - Auxy
x;‘ — t .13; —
TR — xi — tAzg rh — xp —tAxp
Z2i — s 25— s
Zrr — Zh — sAzn 2y Zh — SAzy
B« B\ {i} U{j} B — B\ {i}U{j}
} }

FIGURE 6.1. The primal and the dual simplex methods.

Step 9. Update Basi&inally, we update the basis:

B— B\ {i}U{j}.

To further emphasize the similarities between the primal and the dual simplex
methods, Figurg 6]1 shows the two algorithms side by side.
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5. Two-Phase Methods

Let us summarize the algorithm obtained by applying the dual simplex method as
a Phase | procedure followed by the primal simplex method as a Phase Il. Initially, we
set

B={n+1,n+2,...,n+m} and N ={1,2,...,n}.

Then from [6.1) we see that = [N B} , where

a1 a2 ... A1n 1
a1 az2 ... QA2n 1
N = . . . ) B = . )
Am1 Am2 .- Gmn 1
and from [6.2) we have
C1 0
[65) 0
ey =1 . and c¢p=

Cn 0

Substituting these expressions into the definitionsjofz},, and{*, we find that
zp=B"'b=0
Zi=(B'N) eg—cn = —cn
¢ =0.
Hence, the initial dictionary reads:
(= chay
rg=b— Nxy.

If b has all nonnegative components afelhas all nonpositive components, then
this dictionary is optimal—the problem was trivial. Suppose, however, that one of
these two vectors (but not both) has components of the wrong sign. For example
suppose thatis okay (all nonnegative components) bwt has some positive compo-
nents. Then this dictionary is primal feasible, and we can start immediately with the
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primal simplex method. On the other hand, supposedfratas all nonpositive com-
ponents bub has some negative ones. Then the starting dictionary is dual feasible,
and we can commence immediately with the dual simplex algorithm.

The last, and most common, case is where lbodimd ¢, have components of
the wrong sign. In this case, we must employ a two-phase procedure. There are tw
choices. We could temporarily replaeg: with another vector that is nonpositive.
Then the modified problem is dual feasible, and so we can apply the dual simplex
method to find an optimal solution of this modified problem. After that, the original
objective function could be reinstated. With the original objective function, the opti-
mal solution from Phase | is most likely not optimal, but it is feasible, and therefore
the primal simplex method can be used to find the optimal solution to the original
problem.

The other choice would be to modityinstead ofc,s, thereby obtaining a pri-
mal feasible solution to a modified problem. Then we would use the primal simplex
method on the modified problem to obtain its optimal solution, which will then be dual
feasible for the original problem, and so the dual simplex method can be used to finist
the problem.

6. Negative Transpose Property

In our discussion of duality in Chaptef 5, we emphasized the symmetry betweer
the primal problem and its dual. This symmetry can be easily summarized by saying
that the dual of a standard-form linear programming problem is the negative transpos
of the primal problem. Now, in this chapter, the symmetry appears to have been lost
For example, the basis matrix is an x m matrix. Whym x m and notn x n? It
seems strange. In fact, if we had started with the dual problem, added slack variable
to it, and introduced a basis matrix on that side it would be ann matrix. How are
these two basis matrices related? It turns out that they are not themselves related
any simple way, but the important matrx—! NV is still the negative transpose of the
analogous dual construct. The purpose of this section is to make this connection clea

Consider a standard-form linear programming problem

maximize ¢’z
subjectto Az < b
x>0,

and its dual
minimize b7y
subjectto ATy > ¢
y=>0.
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Letw be a vector containing the slack variables for the primal problem,beta slack
vector for the dual problem, and write both problems in equality form:

maximize ¢’ x
subjectto Az +w=">
z,w >0,
and
minimize b7y
subjectto ATy —z=¢
y, 2> 0.

Introducing three new notations,

A=a1], c:l§]7 and w:lﬂ

the primal problem can be rewritten succinctly as follows:

maximize ¢T'z
subjectto AZ =15
0.

Y

T

Similarly, using “hats” for new notations on the dual side,

Az{—IAT], Bz[ﬂ, and

<>
Il
—
< W
.

the dual problem can be rewritten in this way:
minimize 57
subjectto Aj = ¢
y>0.
Note that the matrixl = [ A I]is anm x (n-+m) matrix. The firsta columns of
it are the initial nonbasic variables and the lastolumns are the initial basic columns.

After doing some simplex pivots, the basic and nonbasic columns get jumbled up bu
we can still write the equality

1] =[5
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with the understanding that the equality only holds after rearranging the columns ap.
propriately.

On the dual side, the matrix = [~ AT ]is ann x (n + m) matrix. The first
n columns of it are the initial basic variables (for the dual problem) and thenlast
columns are the initial nonbasic columns. If the same set of pivots that were appliec
to the primal problem are also applied to the dual, then the columns get rearranged i
exactly the same way as they did for the primal and we can write

-+ o] =[#5]

again with the proviso that the columns of one matrix must be rearranged in a specifi
manner to bring it into exact equality with the other matrix.

Now, the primal dictionary involves the matrix—' N whereas the dual dictionary
involves the matrix3—'N. It probably doesn't seem at all obvious that these two
matrices are negative transposes of each other. To see that it is so, consider wh
happens when we multiplgt by A7 in both the permuted notation and the unpermuted
notation:

RT
AAT =[N B] NT]:NET+BNT
and
AAT — [A 1} _AI] — A+ A=0.

These two expressions obviously must agree so we see that
NBT + BNT = 0.

Putting the two terms on the opposite sides of the equality sign and multiplying on the
right by the inverse of37 and on the left by the inverse &f, we get that

B*N:—@*Nf,

which is the property we wished to establish.
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Exercises
6.1 Consider the following linear programming problem:
maximize —6x1 + 32x5 — 9x3
subjectto —2z; + 10z — 323 < —6
T1— Tro+2x3< 4

z1, T2, T3 > 0.

Suppose that, in solving this problem, you have arrived at the following

dictionary:
(=—18 — 3z4 + 229
T3= 2— x4+ 4T9— 215
T = 2xy — x9 + 3x5.

(a) Which variables are basic? Which are nonbasic?

(b) Write down the vectotgy;, of current primal basic solution values.
(c) Write down the vector;, of current dual nonbasic solution values.
(d) Write downB~!'N.

(e) Is the primal solution associated with this dictionary feasible?

(f) Is it optimal?

(g) Is it degenerate?

6.2 Consider the following linear programming problem:

maximize xr1 + 21’2 + 41’3 + 81’4 + 16%5
subjectto x1 + 2x9 + 3x3 +4xs + Sxs <2
Tx1+ 5ro — 313 — 224 <0

L1, T2, T3, T4, T5 ZO

Consider the situation in whichs andx; are basic and all other variables
are nonbasic. Write down:
(@) B,

(b) N,

(©) b,

(d) s,

(e) cn,

(f) BN,

Q) z33 =B,

(h) ¢* =cEB™'b,

() 2% = (B7'N)Tep — ey,
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() the dictionary corresponding to this basis.

6.3 Solve the problem in Exerci$e 2.1 using the matrix form of the primal sim-
plex method.

6.4 Solve the problem in Exerci§e .4 using the matrix form of the dual simplex
method.

6.5 Solve the problem in Exercige 2.3 using the two-phase approach in matrix
form.

6.6 Find the dual of the following linear program:

maximize Tz
subjectto a < Az <
1< z<u

6.7 (a) LetA be a givenm x n matrix, ¢ a givenn-vector, anc a givenm-
vector. Consider the following max-min problem:
: T T T
—yt Az +b'y) .
glg(}){r;lzlg (c T —y Axr + y)

By noting that the inner optimization can be carried out explicitly, show
that this problem can be reduced to a linear programming problem.
Write it explicitly.

(b) What linear programming problem do you get if the min and max are
interchanged?

Notes

In this chapter, we have accomplished two tasks: (1) we have expressed the sim
plex method in matrix notation, and (2) we have reduced the information we carry
from iteration to iteration to simply the list of basic variables together with current
values of the primal basic variables and the dual nonbasic variables. In particular, it i
not necessary to calculate explicitly all the entries of the ma@riX V.

What's in a name7here are times when one thing has two names. So far in this
book, we have discussed essentially only one algorithm: the simplex method (assurr
ing, of course, that specific pivot rules have been settled on). But this one algorithm ic
sometimes referred to as the simplex method and at other times it is referred to as th
revised simplex method@he distinction being made with this new name has nothing to
do with the algorithm. Rather it refers to the specifics of an implementation. Indeed,
an implementation of the simplex method that avoids explicit calculation of the matrix
B~1N is referred to as an implementation of the revised simplex method. We shall
seein Chapt8 why it is beneficial to avoid computBig! V.






CHAPTER 7

Sensitivity and Parametric Analyses

In this chapter, we consider two related subjects. The first, called sensitivity anal-
ysis (or postoptimality analysis) addresses the following question: having found an
optimal solution to a given linear programming problem, how much can we change
the data and have the current partition into basic and nonbasic variables remain opt
mal? The second subject addresses situations in which one wishes to solve not just ol
linear program, but a whole family of problems parametrized by a single real variable.

We shall study parametric analysis in a very specific context in which we wish
to find the optimal solution to a given linear programming problem by starting from a
problem whose solution is trivially known and then deforming this problem back to the
original problem, maintaining as we go optimality of the current solution. The result
of this deformation approach to solving a linear programming problem is a new variant
of the simplex method, which is called the parametric self-dual simplex method. We
will see in later chapters that this variant of the simplex method resembles, in certair
respects, the interior-point methods that we shall study.

1. Sensitivity Analysis

One often needs to solve not just one linear programming problem but severa
closely related problems. There are many reasons that this need might arise. Fc
example, the data that define the problem may have been rather uncertain and or
may wish to consider various possible data scenarios. Or perhaps the data are knov
accurately but change from day to day, and the problem must be resolved for each ne
day. Whatever the reason, this situation is quite common. So one is led to ask whethe
it is possible to exploit the knowledge of a previously obtained optimal solution to
obtain more quickly the optimal solution to the problem at hand. Of course, the answel
is often yes, and this is the subject of this section.

We shall treat a number of possible situations. All of them assume that a problem
has been solved to optimality. This means that we have at our disposal the final
optimal dictionary:

(= ¢ —2fan

rp=1zj — B 'Nzy.

111



112 7. SENSITIVITY AND PARAMETRIC ANALYSES

Suppose we wish to change the objective coefficients from say,c. It is natural to
ask how the dictionary at hand could be adjusted to become a valid dictionary for the
new problem. That is, we want to maintain the current classification of the variables
into basic and nonbasic variables and simply adjtstz},, andxz} appropriately.

Recall from [(6.7),[(6.8), and (6.9) that
ry =B,
2= (B'N) e — cp,

" =cEB .

Hence, the change fromto ¢ requires us to recompute, and¢*, butz remains
unchanged. Therefore, after recomputirigand¢*, the new dictionary is still primal
feasible, and so there is no need for a Phase | procedure: we can jump straight into tf
primal simplex method, and éis not too different fronm, we can expect to get to the
new optimal solution in a relatively small number of steps.

Now suppose that instead of changingve wish to change only the right-hand
sideb. In this case, we see that we need to recompgtand(*, but z}, remains
unchanged. Hence, the new dictionary will be dual feasible, and so we can apply the
dual simplex method to arrive at the new optimal solution fairly directly.

Therefore, changing just the objective function or just the right-hand side results
in a new dictionary having nice feasibility properties. What if we need/want to change
some (or all) entries in both the objective function and the right-hand side and maybe
even the constraint matrix too? In this case, everything charges:;,, 5. Even
the entries inB and N change. Nonetheless, as long as the new basis nati&
nonsingular, we can make a new dictionary that preserves the old classification inte
basic and nonbasic variables. The new dictionary will most likely be neither primal
feasible nor dual feasible, but if the changes in the data are fairly small in magnitude
one would still expect that this starting dictionary will get us to an optimal solution
in fewer iterations than simply starting from scratch. While there is no guarantee
that any of these so-called warm-starts will end up in fewer iterations to optimality,
extensive empirical evidence indicates that this procedure often makes a substanti
improvement: sometimes the warm-started problems solve in as little as one percer
of the time it takes to solve the original problem.

1.1. Ranging. Often one does not wish to solve a modification of the original
problem, but instead just wants to ask a hypothetical question:

If I were to change the objective function by increasing or decreas-
ing one of the objective coefficients a small amount, how much
could | increase/decrease it without changing the optimality of my
current basis?
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To study this question, let us suppose thgets changed te+ tAc, wheret is a real
number andAc is a given vector (which is often all zeros except for a one in a single

entry, but we don't need to restrict the discussion to this case). It is easy to sef that
gets incremented by

tAzy,
where
(7.1) Azy = (B7IN)T Acs — Acyr.
Hence, the current basis will remain dual feasible as long as
(7.2) Zi + tAzp > 0.

We've manipulated this type of inequality many times before, and so it should be clear
that, fort > 0, this inequality will remain valid as long as

-1
AZ]‘

t < | max — .
JEN zj*

Similar manipulations show that, for< 0, the lower bound is

-1
. AZj

t > | min——; .
JEN 25

Combining these two inequalities, we see thatust lie in the interval

-1 -1
. AZj AZj
min —— <t < | max —— .
JEN 25 JEN 25

Let us illustrate these calculations with an example. Consider the following linear
programming problem:

maximize 5x1 + 4xs + 3x3

subjectto2x; + 3z + x3< 5
41+ o+ 223<11
3ry +4xs 4+ 223 < 8

1, T2, r3=> 0.
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The optimal dictionary for this problem is given by

E=13—-329— 14— x¢
r3= 14 a9+ 324 — 2x4

r1= 2—210— 214+ x4
5= 14 5x0+ 224 .
The optimal basis i = {3, 1, 5}. Suppose we want to know how much the coef-

ficient of 5 on x; in the objective function can change without altering the optimality
of this basis. From the statement of the problem, we see that

T
c=| 54300 0].
Since we are interested in changes in the first coefficient, we put
T
Ac=[ 10000 0.

We partitionc according to the final (optimal) basis. Hence, we have

0 0
Acg= |1 and Acy = |0
0 0

Next, we need to comput&z,, using [7-1). We could computé—* N from scratch,
but it is easier to extract it from the constraint coefficients in the final dictionary. In-
deed,

1 3-
-B'N=|-2-2
5 2 0
Hence, from[(7]1) we see that
2
Azpn = 2
—1

Now, (7:2) gives the condition on Writing it out componentwise, we get

3+42t>0, 1+2t>0, and 1—t>0.
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These three inequalities, which must all hold, can be summarized by saying that

DO =
IN
~
IN
p—

Hence, in terms of the coefficient an, we finally see that it can range frofxb to 6.

Now suppose we chandeto b + tAb and ask how much can change before
the current basis becomes nonoptimal. In this cagedoes not change, bui; gets
incremented byAxz, where

Azg = B~1Ab.

Hence, the current basis will remain optimal as long ks in the interval

. Al‘i -t A]Jz -t
min — <t < | max— .
i€eB @} ieB x;

2. Parametric Analysis and the Homotopy Method

In this section, we illustrate the notion parametric analysi®y applying a tech-
nique called thdhomotopy methotb get a new algorithm for solving linear program-
ming problems. The homotopy method is a general technique in which one creates
continuous deformation that changes a given difficult problem into a related but triv-
ially solved problem and then attempts to work backwards from the trivial problem to
the difficult problem by solving (hopefully without too much effort) all the problems
in between. Of course, there is a continuum of problems between the hard one and tt
trivial one, and so we shouldn’t expect that this technique will be effective in every
situation; but for linear programming and for many other problem domains, it turns
out to yield efficient algorithms.

We start with an example. Suppose we wish to solve the following linear pro-
gramming problem:

maximize —2x; + 39
subjectto —x; + x2 < -1
—r] — 209 < —2
o< 1

Ty, T2 > 0.
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The starting dictionary is

(= —2x1—(-3)x
r3=—-14+ x1 — To
Ty=-24 x1+ 2x9
5= 1 — T .

This dictionary is neither primal nor dual feasible. Let's perturb it by adding a positive
real numbey to each right-hand side and subtracting it from each objective function
coefficient. We now arrive at a family of dictionaries, parametrizeg by

(= —(2+p)ar — (=3 + p)zs
= —1 —
(7.3) T3 +up+ T T3
Ty=—-24+pu+ T+ 22
rs= 14+pu — Zo .

Clearly, for u sufficiently large, specifically: > 3, this dictionary is both primal
and dual feasible. Hence, the associated solutiea [0,0, —1 + p, —2 + p, 1 + yj

is optimal. Starting withu large, we reduce it as much as we can while keeping
dictionary [7.3) optimal. This dictionary will become nonoptimal as soop as 3,
since the associated dual variaple= —3 + n will become negative. In other words,
the coefficient ofro, which is3 — u, will become positive. This change of sign on the
coefficient ofx, suggests that we make a primal pivot in whichenters the basis.
The usual ratio test (using the specific valuguof 3) indicates that:s must be the
leaving variable. Making the pivot, we get

(=-3+4p—p® — (=1 +2p)a1 — (3 — p)as

ro=—14 p + T1 — T3
rg=—443u + 3r, — 2x3
Is = 2 —+ $1+ I3 .

This dictionary is optimal as long as

—1+4+2u >0, 3—pn=>0,
—14+p>0, —4+3u>0.

These inequalities reduce to

[SSIRN
IA
=
IN

w
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So now we can reducg from its current value o down to4/3. If we reduce it
below4/3, the primal feasibility inequality-4 + 3u > 0, becomes violated. This
violation suggests that we perform a dual pivot withserving as the leaving variable.
The usual (dual) ratio test (with = 4/3) then tells us that; must be the entering
variable. Doing the pivot, we get

(=—3+sp+p?—(—5+ 5wz = (5 + 308
T = % + %1‘4 - %.233
T = % - U + %x4 + %.Ig
5= 5+ p - 374+ 373
Now the conditions for optimality are
1 2 7 1
— =4+ Zu>0 —+-pu>0
3 rat=t 3Tgr=h
4 2
o > 07 o > 07
3 M= 3+uf
which reduce to
1 o, < 4
g =Hh=73

For the next iteration, we redugeto 1/2 and see that the inequality that becomes
binding is the dual feasibility inequality

12
3 Tgh="

Hence, we do a primal pivot with, entering the basis. The leaving variablerig
and the new dictionary is

(=-1 — = (1 =2p)zs — (24 p)z3
To= 14+ pu — Ts5

1= 2 — x5 + T3
Ty= 243u — 3x5 + T3 .

For this dictionary, the range of optimality is given by

14+pu>0, 2+3pu >0,
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which reduces to

<p<

Wl N
DN | =

This range coverg = 0, and so how we can sgtto 0 and get an optimal dictionary
for our original problem:

C:—l— 375—2373

To — 1-— Is
1= 2— x5+ I3
ry= 2—3r5+ x3.

The algorithm we have just illustrated is called thegametric self-dual simplex
methO(ﬂ We shall often refer to it more simply as the self-dual simplex method. It
has some attractive features. First, in contrast to the methods presented earlier, th
algorithm does not require a separate Phase | procedure. It starts with any problen
be it primal infeasible, dual infeasible, or both, and it systematically performs pivots
(whether primal or dual) until it finds an optimal solution.

A second feature is that a trivial modification of the algorithm can avoid en-
tirely ever encountering a degenerate dictionary. Indeed, suppose that, instead ¢
adding/subtracting. from each of the right-hand sides and objective coefficients, we
add/subtract a positive constant times Suppose further that the positive constant
is different in each addition/subtraction. In fact, suppose that they are chosen inde
pendently from, say, a uniform distribution ¢y2, 3/2]. Then with probability one,
the algorithm will produce no primal degenerate or dual degenerate dictionary in any
iteration. In Chaptefr]3, we discussed perturbing the right-hand side of a linear pro-
gramming problem to avoid degeneracy in the primal simplex method, but back ther
the perturbation changed the problem. The present perturbation does not in any wa
affect the problem that is solved.

With the above randomization trick to resolve the degeneracy issue, the analysis o
the convergence of the algorithm is straightforward. Indeed, let us consider a problen
that is feasible and bounded (the questions regarding feasibility and boundedness a
addressed in Exerci$e 7]10). For each nondegenerate pivot, the next valweélof
be strictly less than the current value. Since each of thesdues is determined by a
partition of the variables into basics and nonbasics and there are only a finite numbe
of such partitions, it follows that the method must reach a partition with a negative
value in a finite number of steps.

Lin the first edition, this method was called the primal—dual simplex method.
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3. The Parametric Self-Dual Simplex Method

In the previous section, we illustrated on an example a new algorithm for solving
linear programming problems, called the parametric self-dual simplex method. In this
section, we shall lay out the algorithm in matrix notation.

Our starting point is an initial dictionary as written [n (6 10) and transcribed here
for convenience:

(=( =z oy
rg=1zj — B 'Nuxy,

where
zi=DB"1b
=B N) g —cn
¢t =chry = cEB™'h.

Generally speaking, we don’t expect this dictionary to be either primal or dual feasible.
So we perturb it by adding essentially arbitrary perturbatighandz, to z; andzy,,
respectively:

(= ¢* = (2 + pan) Tan
g = (z} + uzp) — B~'Nxy.

We assume that the perturbations are all strictly positive,
x>0 and Zn >0,

so that by taking. sufficiently large the perturbed dictionary will be optimal. (Actu-
ally, to guarantee optimality for large we only need to perturb those primal and dual
variables that are negative in the initial dictionary.)

The parametric self-dual simplex method generates a sequence of dictionarie
having the same form as the initial one—except, of course, the Basil change,
and hence all the data vectoes(, Zxr, x5, andzg) will change too. Additionally, the
current value of the objective functidri will, with the exception of the first dictionary,
depend onu.

One step of the self-dual simplex method can be described as follows. First, we
compute the smallest value pffor which the current dictionary is optimal. Letting
©* denote this value, we see that

p* =min{p : 2x + pZy > 0 andzi + pzp > 0}.

There is either g € A for which z; +p*z; = 0 orani € B for whichz +pu*z; = 0
(if there are multiple choices, an arbitrary selection is made). If the blocking constraint
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corresponds to a nonbasic indgxe N, then we do one step of the primal simplex
method. If, on the other hand, it corresponds to a basic indexs, then we do one
step of the dual simplex method.

Suppose, for definiteness, that the blocking constraint corresponds to an inde
j € N. Then, to do a primal pivot, we declasg to be the entering variable, and
we compute the step direction for the primal basic variables agttheolumn of the
dictionary. That is,

Arg = B_lNej.

Using this step direction, we find an indéx B that achieves the maximal value of
Ax;/(xf + p*z;). Variablez; is the leaving variable. After figuring out the leaving
variable, the step direction vector for the dual nonbasic variables is just the negative
of theith row of the dictionary

Azy = —(B7IN)Te;.

After computing the primal and dual step directions, it is easy to see that the stey
length adjustments are given by

*

t= e~
Al‘i’ AJZ,L"

; _
g 0 s
AZj7 AZJ'

And from these, it is easy to write down the new solution vectors:

x;—t g , Zi < 8,

xp — v — tAzg, I «— Ip —tAxg,

Zh — 2 — sAzy, IN — ZN — SAzp.
Finally, the basis is updated by adding the entering variable and removing the leaving
variable

B—B\{i}u{j}.
The algorithm is summarized in FigdreJ7.1.

Exercises

In solving the following problems, the advanced pivot tool can be used to check
your arithmetic:

campuscgi.princeton.edufvdb/JAVA/pivot/advanced.htrnl


http://campuscgi.princeton.edu/~rvdb/JAVA/pivot/advanced.html

EXERCISES

* *

J
Computey* = max | max ——, max ——

JEN Ej i€B T;
z; >0 ;>0

While (u* > 0) {

If max is achieved by

x’;g — Z% —tAzxg Tp «— Ip — tAxp

2 2 — SAzn Zn — Zn — 5Azy

B—B\{i}u{j}
Recompute* as above

jeN: i€ B:
Axrpg = B_lNej Azpy = —(B_IN)TGZ*
ick i € argma_,— 2% pick j € argma Az
; _ 8%
AZN:—(B_IN)TGZ‘ AxB:B_lNej
p= T po T
Az A
Az; Az;
xj —t T
Zi 5 Zj+— 3§

FIGURE 7.1. The parametric self-dual simplex method.
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7.1 The final dictionary for

maximize zi +2x2+ x3+ 4

subjectto2x; + zo +5x3+ x4 < 8
2x1 + 219 +4ry <12
3x1+ x9+ 2x3 <18

x1, T2, T3, T4 > 0

(=124 —1.227 —0.2x5 — 0.9z — 2.824
To= 6— 11 —0.52¢ — 224
x3= 0.4—0.221 —0.225 + 0.1x4 + 0.224
r7=11.2 —1.6x1 + 0.4x5 + 0.3z + 1.624.

(the last three variables are the slack variables).
(&) What will be an optimal solution to the problem if the objective func-
tion is changed to

3x1 + 220 + 13 + 147

(b) What will be an optimal solution to the problem if the objective func-
tion is changed to

1 + 2x9 + 0.523 + 247

(c) What will be an optimal solution to the problem if the second con-
straint’s right-hand side is changed26?

7.2 For each of the objective coefficients in the problem in Exefcige 7.1, find the
range of values for which the final dictionary will remain optimal.

7.3 Consider the following dictionary which arises in solving a problem using
the self-dual simplex method:

(=3 — (14205 - B
To=—14+ p+ Ty — T3
rg=—-44+3u+ 3r1 — 213
T5= 2 + T+ 3.

(a) For which values of: is the current dictionary optimal?
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(b) Forthe next pivot in the self-dual simplex method, identify the entering
and the leaving variable.

7.4 Solve the linear program given in Exerc[se]|2.3 using the self-dual simplex
method.Hint: It is easier to use dictionary notation than matrix notation.

7.5 Solve the linear program given in Exerc[se]|2.4 using the self-dual simplex
method.Hint: It is easier to use dictionary notation than matrix notation.

7.6 Solve the linear program given in Exerc[se]|2.6 using the self-dual simplex
method.Hint: It is easier to use dictionary notation than matrix notation.

7.7 Using today’s date (MMYY) for the seed value, solve 10 problems using the
self-dual simplex method:

campuscgi.princeton.edurvdb/JAVA/pivot/pdlphase.htiml .

7.8 Use the self-dual simplex method to solve the following problem:

maximize 3x1 — o
subjectto x; —a2< 1
—x1+r2<—4
1, v2 > 0.
7.9 Let P, denote the perturbed primal problem (with perturbatign Show

that if P, is infeasible, therP,, is infeasible for every,’ < p. State and
prove an analogous result for the perturbed dual problem.

7.10 Using the notation of Figufe 7.1 state precise conditions for detecting infea-
sibility and/or unboundedness in the self-dual simplex method.

7.11 Consider the following one parameter family of linear programming prob-
lems (parametrized by):

max (4 — 4dp)xo — 2x1 — 2xe — 205 — 224

S.t. To— X1 <1
X — I <2
o — 3 <4
To — 14 <8

Lo, L1, L2, T3, T4 ZO

Starting fromu = oo, use the parametric simplex method to decreasstil
you get toy = —oo. Hint: the pivots are straight forward and, after the
first couple, a clear pattern should emerge which will make the subsequent


http://campuscgi.princeton.edu/~rvdb/JAVA/pivot/pd1phase.html
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pivots easyClearly indicate the range @f values for which each dictionary
is optimal.

Notes

Parametric analysis has its roots in Gass & Saaty (1955). G.B. Dantzig’s clas-
sic book [(Dantzig 19€3) describes the self-dual simplex method under the name o
the self-dual parametric simplex metholl.is a special case of “Lemke’s algorithm”
for the linear complementarity problem (Lemke 1965) (see Exe[cisé 17.7). |[Smale
(1983) and Borgwardtf (1982) were first to realize that the parametric self-dual sim-
plex method is amenable to probabilistic analysis. For a more recent discussion o
homotopy methods and the parametric self-dual simplex method, see Nazareth (198
and Nazareih (1987).



CHAPTER 8

Implementation Issues

In the previous chapter, we rewrote the simplex method using matrix notation.
This is the first step toward our aim of describing the simplex method as one would
implement it as a computer program. In this chapter, we shall continue in this direction
by addressing some important implementation issues.

The most time-consuming steps in the simplex method are the computations

Azxp = B~ 'Ne; and Azy = —(B7IN)Te;,

and the difficulty in these steps arises from fe!. Of course, we don't ever actually
compute the inverse of the basis matrix. Instead, we calculateAsgy by solving
the following system of equations:

(8.1) BAzp = aj,

where

aj :Nej

is the column ofV associated with nonbasic variablg.
Similarly, the calculation ofAz is also broken into two steps:

(8.2) BTy =e;,

Azy =—NTo.

Here, the first step is the solution of a large system of equations, this time involving
BT instead ofB, and the second step is the comparatively trivial task of multiplying
a vector on the left by the matrix N7

Solving the systems of equatiofs (8.1) gnd](8.2) is where most of the complexity
of a simplex iteration lies. We discuss solving such systems in the first two sections.
In the second section, we look at the effect of sparsity on these systems. The ne»
few sections explain how to reuse and/or update the computations of one iteration i
subsequent iterations. In the final sections, we address a few other issues that affe
the efficiency of an implementation.

125
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1. Solving Systems of EquationsZU -Factorization

In this section, we discuss solving systems of equations of the form
Bx =b,

where B is an invertiblem x m matrix andb is an arbitrarym-vector. (Analysis of

the transpos&”z = b is left to Exercis4.) Our first thought is to use Gaussian
elimination. This idea is correct, but to explain how Gaussian elimination is actually
implemented, we need to take a fresh look at how it works. To explain, let us considel
an example:

4 -2

3 1 1
B=|-1 -1 -2
-1 —6
1 4

(Note that, to emphasize the importance of sparsity, zero entries are simply left blank.
In Gaussian elimination, one begins by subtracting appropriate multiples of the first
row from each subsequent row to get zeros in the first column below the diagonal. Fo
our specific example, we subtrat2 times the first row from the second row and we
subtract—1/2 times the first row from the third row. The result is

Y 5]
1-6 1 3

-3

-1 —6

1 4

Shortly, we will want to remember the values of the nonzero elements in the first
column. Therefore, let us agree to do the row operations that are required to eliminat
nonzeros, but when we write down the result of the elimination, we will leave the

nonzeros there. With this convention, the result of the elimination of the first column

can be written as
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Note that we have drawn a line to separate the eliminated top/left parts of the matrix
from the uneliminated lower-right part.

Next, we eliminate the nonzeros below the second diagonal (there’s only one)
by subtracting an appropriate multiple of the second row from each subsequent row
Again, we write the answer without zeroing out the eliminated elements:

After eliminating the third column, we get

2 4 -2
3 1-6 1 3
-1 1 -3

-1 —-6| 1 -21
1 7
Now, the remaining uneliminated part is already an upper triangular matrix, and hence
no more elimination is required.

At this point, you are probably wondering how this strangely produced matrix is
related to the original matri¥3. The answer is both simple and elegant. First, take
the final matrix and split it into three matrices: the matrix consisting of all elements
on or below the diagonal, the matrix consisting of just the diagonal elements, and the
matrix consisting of all elements on or above the diagonal. It is amazing but true that

B is simply the product of the resulting lower triangular matrix times the inverse of
the diagonal matrix times the upper triangular matrix:

2 2 -2
1 1 1-6 1 3
B=|-1 1 1 1 -3
-1 -6 1 1 1 -21
i 1 7_ i 7_ i 7_
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(If you don't believe it, multiply them and see.) Normally, the product of the lower
triangular matrix and the diagonal matrix is denotedhy

- - r — - -

2 1
3.1 1 31
L=|-1 1 1 =|-3 1 ,
-1-6 1 1 -1-6 1
I 1 7] 7 I 1 1

2 4 -2
1-6 1 3
U= -3
1 -21
L 7_
The resulting representation,
B = LU,

is called anLU-factorizationof B. Finding anLU-factorization is equivalent to
Gaussian elimination in the sense that multiplyl@n the left byL~! has the effect
of applying row operations t® to put it into upper-triangular forry.

The value of anLU-factorization is that it can be used to solve systems of equa-
tions. For example, suppose that we wish to solve Equdtioh (8.1), wthisras above
and

(83) a; =

First, we substitutd.U for B so that the system becomes
LUAzp = aj;.
Now, if we lety = UAxg, then we can solve

Ly=1>
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for y, and oncey is known, we can solve
UAxp =1y

for Azg. Becausel is lower triangular, solvind.y = b is easy. Indeed, writing the
system out,

1 Y1 7
31 Yo -2
—% 1 Yys | = 0 5
-1 —6 1 Yy

1 1 Ys

we notice immediately that; = 7. Then, giveny,, it becomes clear from the second
equation thay, = —2 — (3/2)y; = —25/2. Continuing in this way, we find that

(i 7
Y2 —2*25
ys | = %
Ya *2*23
| Y5 | i —% ]

The process of successively solving for the elements of the vgatarting with the
first and proceeding to the last is call@dward substitution

Of course, solvind/ Az = y is easy too, sinc is upper triangular. The system
to solve is given by

[ 2 4 ol [ae] [ 7]
1-6 1 3| |Axs -2
1 -3 | |Azz| = 1
1-21| |Axy -z
i 7_ _A£C5_ i —% |

(note that, to keep notations simple, we are assuming that the basic indicés are
through5 so thatAzg = (Axq, Azg, Azs, Axy, Axs)). This time we start with the
last equation and see thAtc; = —1/2. Then the second to last equation tells us that
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Axy = 23/2 + 21(Axs) = 1. After working our way to the first equation, we have

Az, —1_
Axo 0
Azg = | Azg | = 21 .
Azy 1
_Ax5_ _—%_

This process of working from the last elementdf; back to the first is calleback-
ward substitution

2. Exploiting Sparsity

In the previous section, we took a specific matBxand constructed ahU fac-
torization of it. However, with that example we were lucky in that every diagonal
element was nonzero at the moment it was used to eliminate the nonzeros below i
Had we encountered a zero diagonal element, we would have been forced to rearran
the columns and/or the rows of the matrix to put a nonzero element in this position.
For a random matrix (whatever that means), the odds of encountering a zero are ni
but a basis matrix can be expected to have plenty of zeros in it, since, for example, i
is likely to contain columns associated with slack variables, which are all zero except
for onel. A matrix that contains zeros is calledparse matrix

When a sparse matrix has lots of zeros, two things happen. First, the chance
of being required to make row and/or column permutations is high. Second, addi-
tional computational efficiency can be obtained by making further row and/or column
permutations with the aim of keepirgand/orU as sparse as possible.

The problem of finding the “best” permutation is, in itself, harder than the linear
programming problem that we ultimately wish to solve. But there are simple heuristics
that help to preserve sparsity inandU. We shall focus on just one such heuristic,
called theminimum-degreerdering heuristic, which is describe as follows:

Before eliminating the nonzeros below a diagonal “pivot” ele-
ment, scan all uneliminated rows and select the sparsest row, i.e.,
that row having the fewest nonzeros in its uneliminated part (ties
can be broken arbitrarily). Swap this row with the pivot row. Then
scan the uneliminated nonzeros in this row and select that one
whose column has the fewest nonzeros in its uneliminated part.
Swap this column with the pivot column so that this nonzero be-
comes the pivot element. (Of course, provisions should be made
to reject such a pivot element if its value is close to zero.)

As a matter of terminology, the number of nonzeros in the uneliminated part of a
row/column is called theegreeof the row/column. Hence, the name of the heuristic.
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Let's apply the minimum-degree heuristic to thé/-factorization of the matrix
B studied in the previous section. To keep track of the row and column permutations
we will indicate original row indices on the left and original column indices across the
top. Hence, we start with:

P 4 5
1 [ 9]
B 2 1 1
3| -1 -1 )
4 1 6
5 1 4

To begin, row 4 has the fewest nonzeros, and within row 4;th& column 2 belongs
to the column with the fewest nonzeros. Hence, we swap rows 1 and 4 and we swa
columns 1 and 2 to rewrit® as

4 [ -1 6]
2 1 1

B= 3
3 1 -1 —9
1 2 4 —2
5 4

Now, we eliminate the nonzeros under the first diagonal element (and, as before, w
leave the eliminated nonzeros as they were). The result is

4 -1 —6
2 11 3 1 -6
3 -1 -1 -2
1 2 4 -2
5 | 4 |

Before doing the elimination associated with the second diagonal element, we
note that row 5 is the row with minimum degree, and within row 5, the elerhémt
column 3 has minimum column degree. Hence, we swap rows 2 and 5 and we swa
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columns 1 and 3 to get

4 — —6
5 1 4
3 -1 -1 -2
1 4 2 -2
2 | 1 31 —6]

[ R SSCIN S BN

For the third stage of elimination, note that row 3 is a minimum-degree row and
that, among the nonzero elements of that row,thés in a minimum-degree column.
Hence, for this stage no permutations are needed. The result of the elimination is

4 — —6
5 1 4
3 -1 -1 2
1 4 2 —14
2 1 3 1

For the next stage of the elimination, both of the remaining two rows have the
same degree, and hence we don’t need to swap rows. But we do need to swap colum
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5 and 4 to put the-14 into the diagonal position. The result of the swap is

4 — —6
5 1 4
3 -1 -1 2
1 4  2|-14
2 | 1 3 L]

At this point, we notice that the remainirigx 2 uneliminated part of the matrix is

already upper triangular (in fact, diagonal), and hence no more elimination is needed
With the elimination completed, we can extract the matricesdU in the usual

way:

4 [ -1 1 [ -1 |
1 1
L= "
3 1 -1 1
1
1 4 2-14 — L
2 1 3 1 1
4 [ 1 1
5 1
3 -1 1 '
1 4 -2 1
2 | -1 ~3 1
and
2 3 1 5 4
- —6
1 4
U:
1 2
14
1
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(Note that the columns of and the rows of/ do not have any “original” indices
associated with them, and so no permutation is indicated across the foprafown
the left side ofU.)

This LU -factorization has five off-diagonal nonzeros/irand three off-diagonal
nonzeros irJ for a total of eight off-diagonal nonzeros. In contrast, it factor-
ization from the previous section had a total of 12 off-diagonal nonzeros. Hence, the
minimum-degree ordering heuristic paid off for this example by reducing the number
of nonzeros by 33%. While such a reduction may not seem like a big deal for small
matrices such as odrx 5 example, for large matrices the difference can be dramatic.

The fact that we have permuted the rows and columns to get this factorization ha:
only a small impact on how one uses the factorization to solve systems of equations
To illustrate, let us solve the same system that we considered bdbakes = a;,
whereq; is given by [8.8). The first step in solving this system is to permute the rows
of a; so that they agree with the rows afand then to use forward substitution to
solve the systenby = a;. Writing it out, the system looks like this:

4 1 i 4 3
5 1 Ya 50 0
3 -1 1 ys | =3 0
1 4 -2 1 Ya 1| 7
2 | -1 -3 1| |ws] 2|-2]

The result of the forward substitution is that

Y1

Y2
(8.4)

Ya

<
w
Il
_ N o o w
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The next step is to solve the systéi\z; = y. Writing this system out, we get

-1 —6 2 | Axs 3
1 4 3 | Axs 0
-1 2 1 | Az | =10
—14 5 | Axy 7
i 1 | 4 i Axy | i 1 |

Using backward substitution, we see that

2 | Axy 0
3 | Axs 2
1| Az | = | -1
5 | Axs f%
4 _Ax4_ | 1]

Finally, we rewrite the solution listing the elements/f ;s in their original order:

_Axl_ [ 1]
Axo 0
Az = Azs | = 21 .
Azy 1
o] |1

Of course, the answer obtained here agrees with the one obtained at the end of tt

previous section.

Even with good fill-in minimizing heuristics such as minimum-degree,ibe
factorization remains a significant computational bottleneck. To see why, consider for
the moment dense matrices. If we were to write a subroutine to carry ofi/an
factorization, we would find that the main body of the routine would have a big triply
nested loop:

for each column index j {
for each remaining row index i {
for each remaining column index k {
update the (i,k) entry in accordance with
the aim to make the (i,j) entry be zero
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Since each of these loops involves approximatelgteps, thel.U-factorization rou-

tine requires abouh? operations and hence is called an orderalgorithm. Similar
considerations tell us that the forward and backward substitutions are bothretder
algorithms. This means that forward and backward substitution can be done mucl
faster thanL.U-factorization. Indeed, ifn = 5000, then factorization takes a couple

of thousand times longer than a forward or backward substitution. Of course, this ar-
gument is for dense matrices. But for sparse matrices a similar, if less dramatic, effec
is seen. Typically, for sparse matrices, one expects that factorization will take from
10 to 100 times longer than substitution. Therefore, it is important to perform as few
LU-factorizations as possible. This is the subject of the next section.

3. Reusing a Factorization

In the previous two sections, we showed how to usé &rfactorization ofB to
solve the system of equations

BAzp = aj

for the primal step directiodx . Since the basis matrix doesn’t change much from
one iteration of the simplex method to the next (columns get replaced by new ones
one at a time), we ask whether ttié/-factorization of B from the current iteration
might somehow be used again to solve the systems of equations that arise in the ne
iteration (or even the next several iterations).

Let B denote the current basis (for which a factorization has already been com-
puted) and letB denote the basis of the next iteration. ThBris simply B with
the column that holds the column vecior associated with the leaving variablg
replaced by a new column vectay associated with the entering variablg. This
verbal description can be converted into a formula:

(8.5) B =B+ (a; —a;)e} .

Here, as before; denotes the vector that is all zeros except for a one in the position
associated with index—to be definite, let us say that this position is itk position
in the vector. To see why this formula is correct, it is helpful to realize that a column
vector, sayu, timese! produces a matrix that is all zero except for gl column,
which contains the column vectar

Since the basi® is invertible, [8.5) can be rewritten as

B=B(I+B aj; —a)el).

Denote the matrix in parentheses By Recall thaiu; = Ne;, since it is the column
vector fromA associated with the entering variable Hence,

B7'a; = B"'Ne; = Azg,
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which is a vector we need to compute in the current iteration anyway. Also,
Bilai = €4,
sincea; is the column ofB associated with the leaving variable Therefore, we can
write £ more simply as
E=1+ (A.’I}B — ei)elr.
Now, if £ has a simple inverse, then we can use it together witlLthidactorization

of B to provide an efficient means of solving systems of equations involiéinghe
following proposition shows that’ does indeed have a simple inverse.

PROPOSITIONS.1. Given two column vectors andwv for which1 + vTu # 0,

’LL’UT

IT+uw’)y t=T— —n.
(7 +w™) 1+vTu

PROOF The proof is trivial. We simply multiply the matrix by its supposed in-
verse and check that we get the identity:

uvT uvT wvTuvT
I "Nlr——__ =1 T _ _
( +uv )( 1+1)Tu> +uv 1+0vTu  1+0Tu
1 vTu
=I+w’ (1- -
+uv ( 1+0vTu 1+UTU>

=1,

where the last equality follows from the observation that the parenthesized expressio
vanishes. O

The identity in Propositiof 8|1 may seem mysterious, but in fact it has a simple
derivation based on the explicit formula for the sum of a geometric series:

= 1
Jj=0

This is an identity for real numbers, but it also holds for matrices:
ZXj = (I_X)_l )
j=0

provided that the absolute value of each of the eigenvalués isfless than one (we
don’t prove this here, since it's just for motivation). Assuming, for the moment, that
the absolute values of the eigenvalues.of are less than one (actually, all but one of
them are zero), we can expafidi-uv”)~! in a geometric series, reassociate products,
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and collapse the resulting geometric series to get

(T+u”™) ™ =T —w” + (") (") - (w”) () (™) + - -

=TI —w! +uTu)v? — u@Tuw) (T u)? +---
:Ifu(lfvTqu(vTu)2 f'u)vT
1
. T
T T
B uv?
B 1+ vy’

where the last equality follows from the fact thal(1 + v7«) is a scalar and therefore
can be pulled out of the vector/matrix calculation.
Applying Propositior 8]1 to matri¥, we see that
(Azp —e;)el
1+el'(Azg —e;)
(Azp —e;)el
Al‘i

Az,

El=1-

—I—

AIj
_ " Ip—1
1 Ax;
— 1
ALE,;
N Asz+1 1
Ax;

_A:tjwl 1
L T4

Now, let’s look at the systems of equations that need to be solved in the next
iteration. Using tildes to denote items associated with the next iteration, we see tha

we need to solve

BAig=a; and BTo=g¢
(actually, we should probably put the tilde on thénstead of thex; and on the:
instead of thee;, but doing so seems less aesthetically appealing, even though it's
more correct). Recalling tha8 = BE, we see that the first system is equivalent to

BEAZp = aj;,
which can be solved in two stages:
Bu = aj,
EAZp = u.
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Of course, the second system (involvifayis trivial, since we have an explicit formula
for the inverse of:

Aig = E
=y — Au;l (Azp — €;)

(where, in keeping with our tradition, we have usedto denote the element of
associated with the basic variablg—that is,u; is thepth entry ofu).

The system involving3” is handled in the same manner. Indeed, first we rewrite
it as

ETBTp = ¢,
and then observe that it too can be solved in two steps:
ETu=¢;,

BT% = u.
This time, the first step is the trivial dfje

u = E_Téi
- (Axlg — ei)Téi
=€, — €.
A.’L‘i
Note that the fraction in the preceding equation is a scalar, and so this final expressio
for u shows that it is a vector with at most two nonzeros—that is, the result is utterly
trivial even if the formula looks a little bit cumbersome. B
We end this section by returning briefly to our example. Supposeéigai3 with

column 3 replaced by the vectoy given in [8.3). Suppose that
T
a;=] 5 00 0-1] .

To solve BAip = a;, we first solveBu = a; using ourLU-factorization of B. The
result of the forward and backward substitutions is

T
u=[ 03 13-4 .

1Occasionally we use the superscrigl’ for the transpose of the inverse of a matrix. Herfge,” =
(E-HT.
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Next, we solve forAig = E~1u:

—1 0 i

. 0 0 3

~ us _ _ 1
AfB—U—T%(ACEB—e:S)— 1 ~3 21— |1 = 5
-3 1 0 —

1 1 1

|~ 3 ] —3] O] |~ 1]

Of course, it is easy to check that we have gotten the correct answer: simply multiply
B timesAzp and check that it equals;. It does.

4. Performance Tradeoffs

The idea of writing the next basis as a product of the current basis times an easily
invertible matrix can be extended over several iterations. For example, if weklook
iterations out, we can write

Bk = B()E()El s Ek—l-

If we have anLU-factorization ofB, and we have saved enough information to recon-
struct eacht;, then we can use this product to solve systems of equations involving
By.

Note that in order to reconstrugl;, all we need to save is the primal step direction
vectorA:c{g (and an integer telling which column it goes in). In actual implementa-
tions, these vectors are stored in lists. For historical reasons, this list is called ar
eta-file(and the matrice#’; are calledeta matricey Given theLU-factorization of
By and the eta-file, it is an easy matter to solve systems of equations involving eithel
B or BT. However, as: gets large, the amount of work required to go through the
entire eta-file begins to dominate the amount of work that would be required to simply
form a newLU-factorization of the current basis. Hence, the best strategy is to use an
eta-file but with periodic refactorization of the basis (and accompanied purging of the
eta-file).

The question then becomes: how often should one recompute a factorization o
the current basis? To answer this question, suppose that we know that itFakes
arithmetic operations to form abU-factorization (of a typical basis for the problem
at hand),S operations to do one forward/backward substitution, Bnoperations to
multiply by the inverse of one eta-matrix. Then the number of operations for the initial
iteration of the simplex method iE + 25 (since we need to do ahU-factorization
and two forward/backward substitutions—one for the system involving the basis and
the other for the system involving its transpose). Then, in the next iteration, we neec
to do two forward/backward substitutions and two eta-inverse calculations. Each sub
sequent iteration is the same as the previous, except that there are two extra eta-inver
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calculations. Hence, the average number of arithmetic operations per iteration if we
refactorize after every iterations is

TUQ:>£«F+st+%S+Ey+%S+2E)

K
4o 428+ (K- 1)E))
:%F+25+(K—1)E.

Treating/K as a real variable for the moment, we can differentiate this expression with
respect tak, set the derivative equal to zero, and solve oto get an estimate for

the optimal choice ofs:
K=/
E

As should be clear from our earlier discussiofss of orderm and, if the basis
matrix is denseF is of orderm3. Hence, for dense matrices, our estimates would
indicate that refactorizations should take place everjterations or so. However,
for sparse matrices;’ will be substantially less thah3—more like a constant times
m2—which would indicate that refactorizations should occur on the order of every
\/m iterations. In practice, one typically allows the valuefofto be a user-settable
parameter whose default value is set to somethingllike

5. Updating a Factorization

There is an important alternative to the eta-matrix method for reusinglan
factorization, which we shall describe in this section and the next. As always, it is
easiest to work with an example, so let’s continue with the same example we've beel
using throughout this chapter.

Recall that the matri¥3 is simply B with its third column replaced by the vector

a; given in [8.3):

1 2 45 P 1 5 4
1 [ 2] 4 [ -1 6 |
h_ 2 1| —2| 1 I 4
3| -1 ) 3 1 2
4 1] 3 6 1 71 2 -2
5 | 4] 2 | 1] 2| 3 1]

(Note that we've highlighted the new column by putting a box around it.) )
SinceL~!'B = U andB differs from B in only one column, it follows that ' B
coincides withU except for the column that got changed. And, since this column got
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replaced bya;, it follows that this column ofL~! B containsL~'a;, which we've
already computed and found to be given[by](8.4). Hence,

2 1 5 4
1| -1 —6
(8.6) oy 1
3 -1 2
4 7 —14
5 1

As we saw before, the columns 6fhave no “original” indices to relate back to, and

so one can simply take them to be numbered in natural order. The same is then tru
for the rows ofL~! and hence for the rows df~'B. That is why the rows shown
above are numbered as they are. We've shown these numbers explicitly, since they a
about to get permuted.

The boxed column irf (8]6) is calledspike since it has nonzeros below the diag-
onal. Thet x 4 submatrix constructed from rows 2 through 5 and columns 3, 1, 5, and
4 is called thebump To get this matrix back into upper-triangular form, one could do
row operations to eliminate the nonzeros in the spike that lie below the diagonal. But
such row operations could create fill-in anywhere in the bump. Such fill-in would be
more than one would like to encounter. However, consider what happens if the spike
column is moved to the rightmost column of the bump, shifting the other columns left
one position in the process, and if the top row of the bump (i.e., row 2) is moved to
the bottom of the bump, shifting the other bump rows up by one. The result of these
permutations is

1 [ -1 —6 |
T 1 2

4 14 7

5 11

2 | 4

(For future reference, we've boxed the bump.) In general, the effect of this permutatior
is that the column spike gets replaced by a row spike along the bottom row of the bump
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k ok ko ok ok ok ok ok ok k% K ok ok Kk x Kk K K % % k|
* ok ok ok ok ok ok ok kK * ok ok ko ko ok ok ok kK
k ok ok ok ok ok ok ok ok * ok ok ok ok kK ok ok
k% ok ok ok ok ok ok ok k ok ok ok ok ok ok ok
* * ok ok ok ok k% kok ok ok ok ok ok
* * ok ok ok ok ok | — * ok ok ok ok ok
* k ok ok k% * ok ok ok ok
* *k ko ok kK ok kK
* * ok ok * ok ok ok ok ok ok ok ok
* ok * ok
* *

Now any fill-in produced by row operations is confined to the spike row. In our exam-
ple, there is only one nonzero in the spike row, and to eliminate it we need ®/add
times row 4 to it. This row operation can be represented algebraically as multiplication
on the left by the matrix

- ]
1
E= 1
1
I
That s,
2 1 5 4
1 [ -1 6 |
BL'B= " -2
4 14 7
5 11
2 | 2

If we denote the new upper triangular matrix by then, solving forB, we get the
following factorization ofB3:
B=LE'U.
We can use this new factorization to solve systems of equations. For example, t
solve
BA&?B = a;,
we first solve
(8.7) Ly=a;

for y. Then, givery, we compute
z= Ly,
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and finally we solve
UA:%B =z
for AZg. Itis clear from the following chain of equalities that these three steps com-
puteAzg:
Aipg=U'2=U"'"Ey=U"'EL 'a; = B 'a;.
For our example, we use forward substitution to sdive] (8.7)fdrhe result is

1] o] 1] o]
2 |—-1 3 |—1
y=3|-1| = 4 7
41 7 51-3
) _—3_ 2 _—1_
Next, we apply the row operations (in our case, there is only one) te:get
1] o]
31-1
z:Ey =4 7
5 |—3
2 1

2 1 5 4
1 [ -1 —6 T2 1 1 o
3 -1 2 1 3| -1
4 —14 71 5|?| = 4 7
5 1 4 51(-3
2 2| 3 | 2 1
The result of the backward substitution is
o[ 3] 1] 1]
1| 3 2| 3
Aip =5 |-+ =3 1,
4 (-1 4 (-1
30 3] 5-1]

which agrees with the solution we got before using eta-matrices.
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6. Shrinking the Bump

There is an important enhancement to the factorization updating technique de
scribed in the previous section. After permuting rows and columns converting the
spike column into a spike row, we can exploit the fact that the spike row is often very
sparse (coming as it does from what was originally the top row of the bump) and do
further row and column permutations to reduce the size of the bump. To see wha
we mean, let's look at our example. First, we note that the leftmost element of the
spike row is zero (and hence that the left column of the bump is a singleton column).
Therefore, we can simply declare that this column and the corresponding top row dc
not belong to the bump. That is, we can immediately reduce the size of the bump by
one:

2 1 5 4
1 [ - —6 |
3 12

4 14 7

5 11

2 | 4

This idea can be extended to any column that has a single nonzero in the bump. Fc
example, column 4 is a singleton column too. The trick now is to move this column to
the leftmost column of the bump, pushing the intermediate columns to the right, and
to apply the same permutation to the rows. After permuting the rows and columns like
this, the bump can be reduced in size again:

1| - 6 3]
3 -1 2
5 1 1
4 147
2 | 4

Furthermore, this reduction in the bump causes a new singleton column to appes
(since a singleton need only be a singleton within the bump), namely, column 3.
Hence, we permute once again. This time just the column gets permuted, since th
singleton is already in the correct row. The bump gets reduced in size once again, no\
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toal x 1 bump, which is not really a bump at all:

2 1 4 3 5

1 [ -1 3 —6
3 -1 2
5 11

4 714
2 |

Note that we have restored upper triangularity using only permutations; no row oper-
ations were needed. While this doesn’t always happen, it is a common and certainl
welcome event.

Our example, being fairly small, doesn’t exhibit all the possible bump-reducing
permutations. In addition to looking for singleton columns, one can also look for
singleton rows. Each singleton row can be moved to the bottom of the bump. At the
same time, the associated column is moved to the right-hand column of the bump
After this permutation, the right-hand column and the bottom row can be removed
from the bump.

Before closing this section, we reiterate a few important points. First, as the
bump gets smaller, the chances of finding further singletons increases. Also, with the
exception of the lower-right diagonal element of the bump, all other diagonal elements
are guaranteed to be nonzero, since the mafrikom which U is derived has this
property. Therefore, most bump reductions apply the same permutation to the row
as to the columns. Finally, we have illustrated how to update the factorization once,
but this technique can, of course, be applied over and over. Eventually, however, i
becomes more efficient to refactorize the basis from scratch.

7. Partial Pricing

In many real-world problems, the number of constraimtds small compared
with the number of variables. Looking over the steps of the primal simplex method,
we see that the only steps involvingvectors are Step 2, in which we pick a nonbasic
variable to be the entering variable,

pickj € {j e N': 2} <0};
Step 6, in which we compute the step direction for the dual variables,
Azy = —(BIN)Te;;
and Step 8, in which we update the dual variables,
Zh — Zn — SAzZ.

Scanning all the nonbasic indices in Step 2 requires lookingcandidates. When
is huge, this step is likely to be a bottleneck step for the algorithm. However, there is
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no requirement that all indices be scanned. We could simply scan from the beginnin
and stop at the first indexfor which =7 is negative (as in Bland's rule). However, in
practice, itis felt that picking an indexcorresponding to a very negativg produces
an algorithm that is likely to reach optimality faster. Therefore, the following scheme,
referred to agartial pricing is often employed. Initially, scan only a fraction of the
indices (sayn/3), and set aside a handful of good ones (say4ther so having the
most negative ;). Then use only thes#) in Steps 2, 6, and 8 for subsequent iterations
until less than a certain fraction (say,2) of them remain eligible. At this point, use
(6-8) to compute the current values of a new batch & nonbasic dual variables, and
go back to the beginning of this partial pricing process by setting aside thé(bdat
this way, most of the iterations look like they only hatenonbasic variables. Only
occasionly does the grim reality of the full huge number of nonbasic variables surface
Looking at the dual simplex method (Figure]6.1), we see that we aren’t so lucky.
In it, vectors of lengthn arise in the max-ratio test:

-1
A,Zj
t = | max —=
JEN 25

L Az
pick j € argmax, \r s
J

Here, the entire collection of nonbasic indices must be checked; otherwise, dual fea
sibility will be lost and the algorithm will fail. Therefore, in cases wherés huge
relative tom and partial pricing is used, it is important not to use the dual simplex
method as a Phase | procedure. Instead, one should use the technique of adding art
cial variables as we did in Chapf€r 2 to force an initial feasible solution.

8. Steepest Edge

In Chaptef #, we saw that one of the drawbacks of the largest-coefficient rule is
its sensitivity to the scale in which variables are quantified. In this section, we shall
discuss a pivot rule that partially remedies this problem. Recall that each step of the
simplex method is a step along an edge of the feasible region from one vertex to al
adjacent vertex. The largest coefficient rule picks the variable that gives the larges
rate of increase of the objective function. However, this rate of increase is measure
in the “space of nonbasic variables” (we view the basic variables simply as depender
variables). Also, this space changes from one iteration to the next. Hence, in a certai
respect, it would seem wiser to measure the rate of increase in the larger space consi
ing of all the variables, both basic and nonbasic. When the rate of increase is gauge
in this larger space, the pivot rule is called #teepest-edgeile. It is the subject of
this section.
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Fix a nonbasic indey € N. We wish to consider whether; should be the
entering variable. If it were, the step direction vector would be
Axp —B~!Ne;
AQS‘N’ ej ’

Ax =

This vector points out along the edge corresponding to the pivot that would result by
letting «; enter the basis. As we know, the objective function is
f(x) ="z = chap + chran.
The derivative off () in the direction ofAx is given by
af r Az cEAzp + cl Axy
=C =
A% [Az| [Az|
The numerator is easy (and familiar):

cgArp + Az =c; — cs B~ 'Ne;
= (exy = (B7'N)Tes),
=—Zj.
The denominator is more troublesome:
|Az|* = |Azs|* + 1= B~ Nej|* + 1.
To calculateB~! Ne; for everyj € N is exactly the same as computing the matrix
B~!'N, which (as we've discussed before) is time consuming and therefore a com-
putation we wish to avoid. But it turns out that we can compiité Ne; for every
j € N once at the start (wheB is essentially, if not identically, an identity matrix)
and then update the norms of these vectors using a simple formula, which we sha
now derive.
Let
v = |B" Neg|?, keN.
Suppose that we know these numbers, we use them to perform one step of the simple
method, and we are now at the beginning of the next iteration. As usual, let us denot
quantities in this next iteration by putting tildes on them. For examldenotes the
new basis matrix. As we've seen befofgjs related toB by the equatiorB = BE,
where -
Azg —e;)e;
pt=p (AT e
Al‘i
Now, let's compute the new values:
I)k = a;;FB_TB_lak
=alBTETE'B

. T _oNT
88 =afB T (1 - alds ) ) (I Bee oo ) B~'ay.
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Recall from [[8.2) that we must compute
v = B_Tei
in the course of the old iteration. If, in addition, we compute
w=B"TAzp

then, expanding out the productfin (8.8) and expressing the resulting terms zsidg
w, we get the following formula for quickly updating the alt to the newv’s:

P _2afv(w—v)Tak 5 |Azg — e;]?
Ax; (Ax;)?
Recent computational studies using this update formula have shown that the steepe:

edge rule for choosing the entering variable is competitive against, if not superior to,
other pivot rules.

+ (agv)

Exercises

8.1 (a) Without permuting rows or columns, compute ftié-factorization of

2 5 6
1 13 9 6
(8.9) B= 2 6 4
4 1
~1-3-1

(b) Solve the systenBAxp = a; where

IS

<

Il
=IO O =

(c) Suppose thaB is B with its second column replaced by. Solve the
systemBAzg = a; where

using the eta-matrix method.
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(d) Solve the systenBAZg = a; again, this time using the factorization
updating method.

8.2 Use the minimum-degree ordering heuristic to finddi-factorization of
the matrixB given by [8.9).

8.3 A permutation matrixs a matrix of zeros and ones for which each row has

onel and each column has one

(a) LetB be anm x m matrix, and letP be a permutation matrix. Show
that PB is a matrix obtained by permuting the rows Bf and that
BP is a matrix obtained by permuting the columnsif Are the two
permutations the same?

(b) Show that every permutation of the rows of a mafBixorresponds to
multiplying B on the left by a permutation matrix.

(c) Show that for any permutation matrix,

p~t=pT.
8.4 Explain how to use the factorizatids = LU to solve
BTz =b.

Notes

Techniques for exploiting sparsity in matrix factorization have their roots in the
paper by Markowitz| (1957). A few standard references on matrix factorization are the
books of| Duff et al.[(1986), Golub & VanLoah (1989), and Gill et al. (1991). The
eta-matrix technique given in Sectipfii|8.3 for using an old basis to solve systems o
equations involving the current basis was first described by Dantzig & Orchard Hayes
(1954). The factorization updating technique described in Secfion 8.5 is the methoc
given by|Forrest & Tomlih[(1972). The bump reduction techniques of Seflign 8.6
were first introduced by Saundgrs (1973) and Reid (1982). The steepest-edge pivotin
rule is due t¢ Goldfarb & Rejd (1977). A similar rule, knownevex was given by
Harris (1973).



CHAPTER 9

Problems in General Form

Up until now, we have always considered our problems to be given in standard
form. However, for real-world problems it is often convenient to formulate problems
in the following form:

maximize T
(9.1) subjectto a < Az <
1< z<u.

Two-sided constraints such as those given here are called constraintangés The
vector! is called the vector dbwer boundsandu is the vector olipper boundsWe
allow some of the data to take infinite values; that is, for eaehl, 2, ..., m,

—o00 < a; < by < oo,
and, foreachy =1,2,...,n,
—o00 < <uy < oo.

In this chapter, we shall show how to modify the simplex method to handle problems
presented in this form.

1. The Primal Simplex Method

Itis easiest to illustrate the ideas with an example:

maximize 3] — 9
subjectto 1< —z1+4+ 22< 5
2< —=3x1 4+ 225 <10
200 — x9< 0
—-2<
0< To < 6.

With this formulation, zero no longer plays the special role it once did. Instead, that
role is replaced by the notion of a variable or a constraint being at its upper or lower

151
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bound. Therefore, instead of defining slack variables for each constraint, we; use
simply to denote the value of thith constraint:

w1 = —I1+ T2
wo = —3!1,'1 + 2!172
w3 = 2$1 — I3.

The constraints can then be interpreted as upper and lower bounds on these variable
Now when we record our problem in a dictionary, we will have to keep explicit track
of the upper and lower bound on the origingl variables and the new; variables.
Also, the value of a nonbasic variable is no longer implicit; it could be at either its
upper or its lower bound. Hence, we shall indicate which is the case by putting a box
around the relevant bound. Finally, we need to keep track of the values of the basi
variables. Hence, we shall write our dictionary as follows:

l
6

-2
U 00

C: 331‘1— 1‘2:—6
1 51[)1: —T1+ x2= 2
210wy = —-3x1 +22x9= 6

—o0 Olws= 21— x90=-—4.

Since all thew;’s are between their upper and lower bounds, this dictionary is feasi-
ble. But it is not optimal, since;; could be increased from its present value at the
lower bound, thereby increasing the objective function’s value. Hencghall be the
entering variable for the first iteration. Looking @t, we see that; can be raised
only 1 unit beforew, hits its lower bound. Similarlyz; can be raised by/3 units,

at which pointw, hits its lower bound. Finally, if-; were raised units, thenws
would hit its upper bound. The tightest of these constraints is the one pand so

w1 becomes the leaving variable—which, in the next iteration, will then be at its lower
bound. Performing the usual row operations, we get

l 1] [o]
5 6

C = *3’11}1 + QIQ =-3

—200|r1= —wi1+ x2=-—1
210’&)2: 3’[017 T = 3
—0oQ Ow3:—2w1+ $2:—2.

Note, of course, that the objective function value has increased @rémo —3). For
the second iteration, raising, from its lower bound will produce an increasedgn
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Hence s is the entering variable. Looking at the basic variablgs {2, andws), we
see thatw, will be the first variable to hit a bound, namely, its lower bound. Hence,
ws IS the leaving variable, which will become nonbasic at its lower bound:

!
U 5 10
(=3w; — 2wy =—1
—200|xy =2w; — we= 0
0 6jlzg=3w; — wa= 1
—o00 Olwz= w; — we=-1.

For the third iterationy; is the entering variable, and; is the leaving variable, since
it hits its upper bound before any other basic variables hit a bound. The result is

l —00
[0] 10
(=3ws+ wy=2
—200|x1 = 2wz + wo =2
0 6|xe = 3ws+ 2w, =4

1 Blwi= w3+ wey=2.

e

Now for the next iteration, note that the coefficients on bothandw, are positive.

But ws is at its upper bound, and so if it were to change, it would have to decrease.
However, this would mean a decrease in the objective function. Henceugrdgn
enter the basis, in which case is the leaving variable getting set to its upper bound:

l —00 0

(= 1.5ws+0.525=3

—2o0|z1 = 0.5w3+0.520 =3
2 10|lwe = —1.5w3 + 0.529 = 3
1 5wy =—-0.5w3 + 0.5 =3.

:

For this dictionary, bothws andx, are at their upper bounds and have positive coeffi-
cients in the formula fo¢. Hence, neither can be moved off from its bound to increase
the objective function. Therefore, the current solution is optimal.

2. The Dual Simplex Method

The problem considered in the previous section had an initial dictionary that was
feasible. But as always, we must address the case where the initial dictionary is no
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feasible. That is, we must define a Phase | algorithm. Following the ideas presente
in Chaptef b, we base our Phase | algorithm on a dual simplex method. To this end
we need to introduce the dual 6 (P.1). So first we rewfite](9.1) as

maximize ¢’z
subjectto Az < b
—Az < —q
< u
—r < -,
and adding slack variables, we have
maximize ¢’z
subjectto Az + f = b
—Ax + p=—a
T+ 1= u
-z + g= —I

f7p7t7g2 0'

We see immediately from the inequality form of the primal that the dual can be written
as

minimize bTv —aTq+u’s —1Th
(9.2) subjectto AT(v—¢q)— (h—s) = ¢
v, q, S, h > 0.

Furthermore, at optimality, the dual variables are complementary to the correspondin
primal slack variables:

fivi=0 1=1,2,...,m,

piq; =0 1=1,2,...,m,
(9.3) ' :

thjZO jZl,Q,...,TL,

gjhj:() j:].,Q,...,TL.

Note that for each, if b; > a;, then at optimalityy; andg; must be complemen-
tary to each other. Indeed, if both were positive, then they could be reduced by ar
equal amount without destroying feasibility, and the objective function value would
strictly decrease, thereby implying that the supposedly optimal solution is not opti-
mal. Similarly, if for somei, b, = a;, then it is no longer required that andg; be
complementary at optimality; but, given an optimal solution for which hgtaAndg;
are positive, we can decrease both these values at the same rate until the smaller of t
two reaches zero, all the while preserving feasibility of the solution and not changing
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the objective function value. Hence, there always exists an optimal solution in which
every component of is complementary to the corresponding component. of he
same argument shows that if there exists an optimal solution, then there exists one i
which all the components @f ands are complementary to each other as well.

For a real variablé, its positive part ™ is defined as

¢ = max{¢, 0}

and its negative patt is defined similarly as
& =max{-¢,0}.
Clearly, bothét and¢— are nonnegative. Furthermore, they are complementary,
=0 or £ =0,
and their difference represergts
E=ct-¢

From the complementarity of the componenta afgainst the components ¢f
we can think of them as the positive and negative parts of the components of just on
vectory. So let us write:

Similarly, let us write
h=2z" and s=2z".

If we impose these complementarity conditions not just at optimality but also from the
start, then we can eliminaig ¢, s, andh from the dual and write it simply as

©.4) minimize b7yt —aTy” +ulzt — 172~
' subjectto ATy — z = ¢,

where the notatiop™ denotes the componentwise positive panj,aftc. This problem
is an example from the class of problems called piecewise linear programs. Usually
piecewise linear programs are solved by converting them into linear programs. Here
however, we wish to go in the other direction. We shall present an algorithifn Tor (9.4)
that will serve as an algorithm fdr (9.2). We will call this algorithm theal simplex
methodfor problems in general form.

To economize on the presentation, we shall present the dual simplex method ir
the context of a Phase | algorithm for linear programs in general form. Also, to avoid
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cumbersome notations, we shall present the algorithm with the following example:

maximize 221 — T9
subjectto 0< 214+ 22< 6
2< —x1+ 222 <10
r1— 22< 0
—2< r
1< To < 5.

(9.5)

The piecewise linear formulation of the dual is

minimize 6y;” + 10y; + 22f — 2z
— 2y, +ooy; +o0zy + 525
subjectto y1 — Yo+ ys— 21 = 2
i+ 2Yy2—  ys— — 22=-L

Note that the objective function has coefficients that are infinite. The correct
convention is that infinity times a variable is plus infinity if the variable is positive,
zero if the variable is zero, and minus infinity if the variable is negative.

Since the objective function is nonlinear (taking positive and negative parts of
variables is certainly a nonlinear operation), we will not be able to do the usual row
operations on the objective function. Therefore, in each iteration, we simply study it
as is. But as usual, we prefer to think in terms of maximization, and so we record the
negative of the objective function:

—& =—6y; — 10y — 22 + 2

+ 2y, —ooy; — 00z — 52y .

(9.6)

We can of course perform row operations on the two constraints, so we set up the
usual sort of dictionary for them:

271==2+4+y1— Y2+ys3
2= 14y +2y2 —ys.

(9.7)

For the dual problem, all the action takes place at zero. That is, slopes in the objec
tive function change when a variable goes from negative to positive. Since nonbasi
variable are supposed to be set where the action is, we associate a current solutic
with each dictionary by setting the nonbasic variables to zero. Hence, the solutior
associated with the initial dictionary is

(y17y27 Ys, 21, 22) = (07 07 0, _27 1)

The fact thatz; is negative implies that; is a positive number and hence that the
objective function value associated with this solution is minus infinity. Whenever the
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objective function value is minus infinity, we say that the solutiomfeasible We
also refer to the associated dictionary as infeasible. Hence, the initial dictionary giver
in (9.7) is infeasible.

The dual simplex method must start with a dual feasible solution. But since we
intend to use the dual simplex method simply to find a feasible solutiop fdr (9.5), we
are free to change the objective function[in [9.5) any way we please. In particular, we
can change it from

(=2z1 — 22
to
n = —2x1 — Ta.

Making that change to the primal leaves the dual objective function unchanged, bu
produces a feasible dual dictionary:

9.8) 21=2+y1— Y2+Ys3
zo=141y1+2y2 — ys.

For comparison purposes, let us also record the corresponding primal dictionary
It is easy to write down the equations defining thés, but how do we know whether
the x;'s are supposed to be at their upper or their lower bounds? The answer come
from the requirement that the primal and dual satisfy the complementarity conditions
given in [9:3). Indeed, from the dual dictionary we see that 1. Hence,z;” = 1.
But sincez;" is just a surrogate fok,, we see thah, is positive and hence that
must be zero. This means that must be at its lower bound. Similarly, for the sake
of complementarityz, must also be at its lower bound. Hence, the primal dictionary

Is
!
)

-2
U 00

nN=-—x1— 2= 1

0 6lwr= 214+ x20=-1
210w2:—z1+2z2: 4

—o0 Olws= 71— x2=-3.

Note that it is infeasible, since; is not between its upper and lower bounds.

We are now ready to describe the first iteration of the dual simplex method. To
this end, we ask whether we can improve the dual objective function value by moving
one of the nonbasic variableg, ( y», or y3) away from zero. Of course, each of these
three variables can be moved either to the positive or the negative side of zero; wi
must analyze these six cases individually. First of all, note that sincepositive at
the current solution, it follows that] = z; andz; = 0 in a neighborhood of the
current solution. A similar statement can be madezforand so we can rewritg (9.6)
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locally around the current solution as

&= _6yi" — 10y; — 221+ 2o
+ 2y, —ooys .

Now, asy; is increased from zero, the rate of increase-¢fis simply the derivative of

the right-hand side with respect o, where we must keep in mind that andz, are
functions ofy; via the dictionary[(9]8). Hence, the rate of increases-2+1 = —7;

i.e., the objective function decreases at a rate of 7 units per unit increage tf

on the other handy; is decreased from zero into negative territory, then the rate of
increase of—¢ is the negative of the derivative of the right-hand side. In this case
we get no contribution frony; but we do get something from, andz, for a total

of 2 — 1 = 1. Hence, the rate of increase as we move in this direction is one unit
increase per unit move. We can analyze changes &mdys. The entire situation can

be summarized as follows:

v,/ —6—-24+1= —7
i\, 0+2—-1= 1
y2 / —104+2+2= —6
Y2\, 2-2-2= -2
ys / 0—-2—-1= -3
Y3 \\—00 + 2+ 1= —o00.

Of these six cases, the only one that brings about an increasgigthe one in which

y1 IS sent negative. Henceg; shall be our entering variable, and it will go negative.
To find the leaving variable, we must ask: @asgoes negative, which of; and z,

will hit zero first? For the current dictionary, gets to zero first and so becomes the
leaving variable. Performing the usual row operations, the new dictionary for the dual
problem is

z1= 1+ 29— 3y2+ 2y3
y1=—1+ 22 —2y> — ys.

Let us have a look at the new primal dictionary. The fact thawvas the entering
variable in the dual dictionary implies that, is the leaving variable in the primal.
Furthermore, the fact that has gone negative implies thgt is now positive, and so
complementarity then demands thatbe zero; i.e.ww; should go to its lower bound.
The fact thatzo was the leaving variable in the dual dictionary implies thais the
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entering variable in the primal. Hence, the new primal dictionary is

l [0]
00 6

U
n= —r— w=
1 5|lzo= —214+ w1 =
2 10jwg = —3x1 + 2w =
—o0 Olws= 221 — wi=-4.

We are now ready to begin the second iteration. Therefore, we ask which nonbasi
variable should be moved away from zero (and in which direction). As before, we first
note that; positive implies that;” = z; andz; = 0 and thaty, negative implies that
y{ = 0andy; = —y;. Hence, the objective function can be written locally around
the current solution as

—&= —10ys — 22+ 2z
+ 2y, —ooys — 52, .
We now summarize the possibilities in a small table:

2/ 1-2= —1
2\, —b+2= -3
Y2/ —104+6= —4
Y. 2-6= —4
s/ 0—4= —4
Yz \, —00 +4 = —o0.

Note that all the changes are negative, meaning that there are no possibilities to ir
crease the objective function any further. That is, the current dual solution is optimal.
Of course, this also could have been deduced by observing that the primal dictionan
is feasible (which is what we are looking for, after all).

Even though this example of the dual simplex method has terminated after only
one iteration, it should be clear how to proceed had it not terminated.

Now that we have a feasible solution for the primal, we could solve the problem
to optimality by simply reinstating the original objective function and proceeding by
applying the primal simplex method in a Phase Il procedure to find the optimal solu-
tion. Since the primal simplex method has already been discussed, we stop here c
this problem.

Exercises

Solve the following linear programming problems:
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9.1 maximize —z; + 2
subjectto —x; + x5 <5
1 — 215 <9
0<z2:<6
0<xy<8.

9.2 maximize —3x1 — 2o + 3 +214 — x5+ x6— X7 — 4T

subjectto +4x3+ x4 — D5 — 226 + 377 — 6283 = T
To —3x3 — x4+ 4rs5+ T6— 217+ Hrg=—3

0<zr; < 8

0<zo< 6

0<a3< 10

0<z,< 15

0<zs;< 2

0<26< 10

0<z, < 4

0<zg < 3.

Notes

Dantzig (1955) was the first to consider variants of the simplex method that handle
bounds and ranges implicitly.



CHAPTER 10

Convex Analysis

This book is mostly about linear programming. However, this subject, important
as itis, is just a subset of a larger subject called convex analysis. In this chapter, wi
shall give a brief introduction to this broader subject. In particular, we shall prove a
few of the fundamental results of convex analysis and see that their proofs depend o
some of the theory of linear programming that we have already developed.

1. Convex Sets

Given a finite set of pointszy, 29,...,2,, iIn R™, a pointz in R™ is called a
convex combinationf these points|ff

n
z = E thj,
j=1

wheret; > 0 for eachj and}_"_, t; = 1. Itis called astrict convex combinatioii
none of the;’s vanish. Fom = 2, the set of all convex combinations of two points is
simply the line segment connecting them.

A subsetS of R™ is calledconvexif, for everyz andy in S, S also contains all
points on the line segment connectingndy. Thatis,tz + (1 — t)y € S, for every
0 <t < 1. See Figurg 10]1.

Certain elementary properties of convex sets are trivial to prove. For example,
the intersection of an arbitrary collection of convex sets is convex. Indeed,let
a € I, denote a collection of convex sets indexed by somd sédthen the claim is
thatN,cr S, is convex. To see this, consider an arbitrary pair of paingsidy in the
intersection. It follows that andy are in eacht,,. By the convexity ofS,, it follows
thatS,, contains the line segment connectingndy. Since each of these sets contains
the line segment, so does their intersection. Hence, the intersection is convex.

Here is another easy one:

THEOREM10.1. A setC' is convex if and only if it contains all convex combina-
tions of points inC.

1Until now we've used subscripts for the components of a vector. In this Chapter, subscripts will be
used to list sequences of vectors. Hopefully, this will cause no confusion.

161
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FIGURE 10.1. The set on the left monvex—for any pair of points

in the set, the line segment connecting the two points is also con-
tained in the set. The set on the rightrist convex—there exists
pairs of points, such as theandy shown, for which the connecting
line segment is not entirely in the set.

PROOF LetC be a convex set. By definitioli; contains all convex combinations
of pairs of points inC. The first nontrivial step is to show thét contains all convex
combinations of triples of points i@0'. To see this, fixy, z2, andzs in C and consider

2 =1121 + 1220 + 1323,

wheret; > 0 for eachj andZ?:1 t; = 1. If any of thet;’s vanish, ther is really
just a convex combination of two points and so belongé€'toHence, suppose that
each of the;’s is strictly positive. Rewrite: as follows:

z:(l—t3)< b fa

— 6 T 1 4

t to
=(1-t 21+ 29 | + t3z3.
(1=ts) <t1+t2 Pt 2) o

SinceC contains all convex combinations of pairs of points, it follows that
31 ta
z
t1 + 1o t1 +12
Now, sincez is a convex combination of the two poinﬁi—hzl + -2 and z,
both of which belong ta”, it follows thatz is in C. It is easy to see (pun intended)
that this argument can be extended to an inductive proof@hedntains all convex
combinations of finite collections of points @i. Indeed, one must simply show that
the fact thatC' contains all convex combinations efpoints fromC' implies that it
contains all convex combinations of+ 1 points fromC. We leave the details to the
reader.
Of course, proving that a set is convex if it contains every convex combination of
its points is trivial: simply take convex combinations of pairs to get that it is convex.
O

Zz) + 1323

ZQEC.

1+
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For each sef in R™ (not necessarily convex), there exists a smallest convex set,
which we shall denote by cof¥), containingS. It is defined, quite simply, as the
intersection of all convex sets containiSg From our discussion about intersections,
it follows that this set is convex. The set cddy is called theconvex hullof S.

This definition can be thought of as a definition from the “outside,” since it involves
forming the intersection of a collection of sets that cont&irOur next theorem gives
a characterization of convex sets from the “inside”:

THEOREM 10.2. The convex hultonuS) of a setS in R™ consists precisely of
the set of all convex combinations of finite collections of points ffom

PROOF Let H denote the set of all convex combinations of finite sets of points
inS:

n n
H={z=)Y tjz:n>1z cSandt; >0forallj, and» t; =1
j=1 j=1

It suffices to show that (1} containsS, (2) H is convex, and (3) every convex set
containingS also containgd{.

To see thaf{ containsS, just taken = 1 in the definition ofH.

To see thaf{ is convex, fix two points andy in H and a real number < ¢ < 1.
We must show that = tx + (1 — t)y € H. The fact thatr € H implies that
x = > ._, pjx;, for somer > 1, wherep; > 0forj = 1,2,...,r, >3%_ p; = 1,
andz; € Sforj = 1,2,...,r. Similarly, the fact that is in H implies thaty =
> i—14;Y;, for somes > 1, whereq; > 0forj = 1,2,...,s, 37 ,¢; = 1, and
y; € Sforj=1,2,...,s. Hence,

T S
s=tr+(1—ty=> tpjz;+ > (1-1t)gy;.

Jj=1 J=1

Since the coefficient@ps, ..., tp., (1 — t)q1, ..., (1 — t)gs) are all positive and sum
to one, it follows that this last expression fois a convex combination of+ s points
from S. Hence,z is in H. Sincex andy were arbitrary points irfH and¢ was an
arbitrary real number between zero and one, the factdhat H implies thatH is
convex.

It remains simply to show thatl is contained in every convex set containifig
Let C be such a set (i.e., convex and containff)g From Theorerf 10]1 and the fact
thatC' containssS, it follows thatC' contains all convex combinations of pointsSn
Hence,C containsH . O

2. Carathéodory’s Theorem

In the previous section, we showed that the convex hull of e&5setn be con-
structed by forming all convex combinations of finite sets of points fnin 1907,
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Caratleodory showed that it is not necessary to use all finite sets. Instead,points
suffice:

THEOREM10.3. The convex hultonV(S) of a setS in R™ consists of all convex
combinations ofn + 1 points froms:

m—+1
conS) =4 z= > t;z:z € Sandt; >0forallj, and Y t; =1
j=1 i

PROOF. Let H denote the set on the right. From Theofem [10.2, we seefthat
is contained in con\s5). Therefore, it suffices to show that every point in c@$v
belongs toH. To this end, fix a point in con\S). By Theorenj 102, there exists a

collection of, sayn pointszy, 2, ..., 2, in S and associated nonnegative multipliers
t1,to,...,t, SUMmMIng to one such that
(10.2) z= Z tjz;.
j=1
Let A denote the matrix consisting of the points z-, . . ., z,, as the columns ofi:
A= {21 P zn}

Also, letx* denote the vector consisting of the multipliersts, . . ., t,:

151

to

¥ =
tn

Finally, letb = z. Then from[(I0.]l), we see that is feasible for the following linear
programming problem:
maximize ¢’z
subjectto Az = b
eTe =1

xz > 0.

(10.2)

The fundamental theorem of linear programming (Thedrer 3.4) tells us that every
feasible linear program has a basic feasible solution. For such a solution, only the
basic variables can be nonzero. The number of basic variablés i (10.2) coincide

with the number of equality constraints; that is, there are at most1 variables that

are nonzero. Hence, this basic feasible solution corresponds to a convex combinatic

of justm + 1 of the originaln points. (See Exercige 10.5.) O



3. THE SEPARATION THEOREM 165

Itis easy to see that the number+- 1 is the best possible. For example, the point
(1/(m+1),1/(m+1),...,1/(m+1)) in R™ belongs to the convex hull of the + 1
pointsey, es, ..., emn, 0 but is not a convex combination of any subset of them.

3. The Separation Theorem

We shall define &alfspaceof R™ to be any set given by a single (nontrivial) linear
inequality:

(10.3) {r eR": Zajxj < b}, (a1,az,...,a,) # 0.
j=1
Every halfspace is convex. To see this, supposedthat (z1, z2,...,z,) andy =

(y1,92, .- -, yn) both satisfy the linear inequality if (10.3). Fhbetween zero and
one. Then both and1 — ¢ are nonnegative, and so multiplying by them preserves the
direction of inequality. Therefore, multlplymE a;x; < bbyt andZ a;y; < b

by 1 — t and then adding, we get

Zaj (tz; + (1 —1t)y;) <b.

That is,tx + (1 — )y also satisfies the inequality defining the halfspace.

If we allow the vector of coefficientéas, as, . . ., a,,) in the definition of a half-
space to vanish, then we call the set so defingdreeralized halfspacdt is easy to
see that every generalized halfspace is simply a halfspace,[&fl,ajr the empty set.
Also, every generalized halfspace is clearly convex.

A polyhedronis defined as the intersection of a finite collection of generalized
halfspaces. That is, a polyhedron is any set of the form

{(I} eR™: Zaijxj < b;,i= 1,2,...,m}.
j=1
Every polyhedron, being the intersection of a collection of convex sets, is convex.
The following theorem is called th@eparation Theorerior polyhedra.

THEOREM 10.4. Let P and P be two disjoint nonempty polyhedralRt". Then
there exist disjoint halfspaceé$ and H such thatP ¢ H andP C H.

PROOF. Suppose thaP andP are given by the following systems of inequalities:
P={z: Az <b},
P={z:Ax <b}.
The disjointness oP and P implies that there is no solution to the system

A1)

(10.4) I
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To continue the proof, we need a result known as Farkas’ Lemma, which says tha
Az < b has no solutions if and only if there is amvectory such that

ATy =0
y=>0
bT'y < 0.

We shall prove this result in the next section. For now, let us apply Farkas’ Lemma to
the situation at hand. Indeed, the fact that there are no solutions t (10.4) implies tha
there exists a vector, which we shall write in block form as

ol

such that
(10.5) a7 7] |7 = ATy + ATg=0
Y
(10.6) I'>0
Yy
(10.7) [bT bT] [ ] =Ty + 075 <0.
Yy

From the last condition, we see that eithér, < 0 or 7§ < 0 (or both). Without
loss of generality, we may assume that

bTy < 0.
Farkas’ Lemma (this time applied in the other direction) together with the nonempti-
ness ofP now implies that
ATy #£0.
Put
H={z:(A"y)"z <b"y} and H= {:U (AT T > —BTQQ}.

These sets are clearly halfspaces. To finish the proof, we must show that they ar
disjoint and contain their corresponding polyhedra.

First of all, it follows from @) thaf] andH are disjoint. Indeed, suppose that
x € H. Then(ATy)Tz < Ty < —b"y, which implies that: is not in A.

To show thatP C H, fix z in P. ThenAx < b. Sincey > 0 (as we know from
(10-8)), it follows then thay” Az < yT'b. But this is exactly the condition that says
thatx belongs toH . Sincex was an arbitrary point i, it follows thatP C H.

Showing thatP is a subset off is similar. Indeed, suppose thate P. Then
Az < b. Multiplying on the left by—3” and noting thaf > 0, we see that-j7 Az >
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—¢Tb. But from (10.5) we seeNthatng/lx = y" Az, and so this last inequality is
exactly the condition that € H. Again, the arbitrariness of € P implies that
P C H, and the proof is complete. |

4. Farkas’' Lemma

The following result, known as Farkas’ Lemma, played a fundamental role in
the proof of the separation theorem of the preceding section (Thgorein 10.4). In thi
section, we state it formally as a lemma and give its proof.

LEMMA 10.5. The systemlz < b has no solutions if and only if there isyesuch
that

ATy=0
(10.8) y>0
bTy <.

PROOFE Consider the linear program

maximize 0
subjectto Ax

IN
>

and its dual
minimize b"y
subjectto ATy = 0
y > 0.

Clearly, the dual is feasible (just take= 0). So if the primal is feasible, then the
dual is bounded. Also, if the primal is infeasible, the dual must be unbounded. That
is, the primal is infeasible if and only if the dual is unbounded. To finish the proof, we
claim that the dual is unbounded if and only if there exists a solutidn t0](10.8). Indeed,
suppose that the dual is unbounded. The dual simplex method is guaranteed to pro
that it is unbounded, and it does so as follows. At the last iteration, a step direction
Ay is computed that preserves feasibility, i.e.,

ATAy =0,
is a descent direction for the objective function, i.e.,
v Ay <0,
and is a direction for which the step length is unbounded, i.e.,
Ay > 0.

But these three properties show thgj is the solution to[(10]8) that we were looking
for. Conversely, suppose that there is a solutiof 0 {10.8). CAljitlt is easy to see
that starting fromy = 0, this step direction provides an unbounded decrease in the
objective function. This completes the proof. O
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5. Strict Complementarity

In this section, we consider the usual inequality-form linear programming prob-
lem, which we write with its slack variables shown explicitly:

maximize ¢’ x
(10.9) subjectto Az +w=1"5
z,w > 0.
As we know, the dual can be written as follows:
minimize b7y
(10.10) subjectto ATy —z=¢
y,z22> 0.

In our study of duality theory in Chaptp} 5, we saw that every pair of optimal solu-
tions to these two problems possesses a property called complementary slackness.
(z*,w*) denotes an optimal solution to the primal ad, z*) denotes an optimal
solution to the dual, then the complementary slackness theorem says that, for eac
J = 1,2,...,n, eitherz} = 0 orz; = 0 (or both) and, for each = 1,2,...,m,
eithery; = 0 orw} = 0 (or both). In this section, we shall prove that there are opti-
mal pairs of solutions for which the parenthetical “or both” statements don’t happen.
Thatis, there are optimal solutions for which exactly one member of eactufjair;)
vanishes and exactly one member from each @girw;) vanishes. In such cases, we
say that the optimal solutions as&ictly complementaryo each other. The strictness
of the complementary slackness is often expressed by saying’thatz* > 0 and
y* +w* > B

As a warm-up, we prove the following theorem.

THEOREM 10.6. If both the primal and the dual have feasible solutions, then
there exists a primal feasible solutid@, w) and a dual feasible solutiofy, z) such
thatz +z > 0andy + w > 0.

ProoOF. If there is a feasible primal solutionfor whichz; > 0, then it doesn’t
matter whether there is a feasible dual solution whfikeslack variable is strictly
positive. But what about indicesfor whichz; = 0 for every feasible solution? Let
be such an index. Consider the following linear programming problem:

maximize x;
(10.11) subjectto Az <b
x> 0.

2Given any vecto, we use the notatiog > 0 to indicate that every component §fis strictly
positive:£; > 0 for all j
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This problem is feasible, since its constraints are the same as for the original prima
problem [I0.P). Furthermore, it has an optimal solution (the corresponding objective
function value is zero). The dual ¢f (10]11) is:

minimize b7y

H T
subjectto A"y > e;
y=0.

By the strong duality theorem, the dual has an optimal solutionySay.etting 2’
denote the corresponding slack variable, we have that

ATy — 2 =¢;
Y,z >0.

Now, lety be any feasible solution t@ (10]10) and tebe the corresponding slack
variable. Then the above propertiesyfand 2z’ imply thaty + 3’ is feasible for
(I0.10) and its slack is + 2’ + ¢;. Clearly, for this dual feasible solution we have
that thejth component of its vector of slack variables is at ldasfo summarize, we
have shown that, for eagh there exists a primal feasible solution, callzt’), w()),

and a dual feasible solution, call(ig"), (7)), such thawg.” + zj(-]) > 0. In the same

way, one can exhibit primal and dual feasible solutions for which each individual dual
variable and its corresponding primal slack add to a positive number. To complete the
proof, we now form a strict convex combination of these- m feasible solutions.
Since the feasible region for a linear programming problem is convex, these conve»
combinations preserve primal and dual feasibility. Since the convex combination is
strict, it follows that every primal variable and its dual slack add to a strictly positive
number as does every dual variable and its primal slack. d

A variablez; that must vanish in order for a linear programming problem to be
feasible is called aull variable The previous theorem says that if a variable is null,
then its dual slack is not null.

The following theorem is called thtrict Complementary Slackness Theorem

THEOREM 10.7. If a linear programming problem has an optimal solution, then
there is an optimal solutiof*, w*) and an optimal dual solutiofy*, z*) such that
x* + z* > 0andy* + w* > 0.

We already know from the complementary slackness theorem (Th¢orem 5.1) tha
z* and z* are complementary to each other as gfeandw*. This theorem then
asserts that the complementary slackness is strict.

PROOF. The proof is much the same as the proof of Thedrem|10.6 except this
time we look at an index for which z; vanishes in everpptimal solution. We then
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consider the following problem:

maximize x;

subjectto Az <b
cTa> c*

x>0,

(10.12)

where(* denotes the objective value of the optimal solution to the original problem. In
addition to the dual variablagcorresponding to thelz < b constraints, there is one
more dual variable, call it, associated with the constraintz > ¢*. The analysis

of problem [10.1IP) is similar to the analysis given in Theofem]10.6 except that one
must now consider two cases: (a) the optimal valugisfstrictly positive and (b) the
optimal value of vanishes. The details are left as an exercise (see Exgrcise 1016).

Exercises
10.1 IsR™ a polyhedron?

10.2 For eachh € R™, let£*(b) denote the optimal objective function value for
the following linear program:
maximize ¢’z
subjectto Az < b
x> 0.
Suppose thag* (b) < oo for all b. Show that the functiog*(b) is concave (a

function f onR™ is calledconcavef f(tz+(1—t)y) > tf(x)+(1—t)f(y)
for all x andy in R™ and all0 < ¢ < 1). Hint: Consider the dual problem.

10.3 Describe how one needs to modify the proof of Thedrem|10.4 to get a proof
of the following result:
Let P and P be two disjoint polyhedra ifR™. Then there exist
disjoint generalized halfspacé$ and H such thatP ¢ H and
PCH.

10.4 Find a strictly complementary solution to the following linear programming
problem and its dual:
maximize 2z; + 2
subjecttodx; + 2z <6
o<1
2r1+ 19<3

z1, 2 > 0.
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10.5 There is a slight oversimplification in the proof of Theolem 10.3. Can you
spot it? Can you fix it?

10.6 Complete the proof of Theorgm 10.7.

10.7 Interior solutions.Prove the following statement: If a linear programming
problem has feasible solutions and the set of feasible solutions is bounded
then there is a strictly positive dual feasible solutign>> 0 andz > 0.

Hint. It is easier to prove the equivalent statement: if a linear programming
problem has feasible solutions and the dual has null variables, then the set
of primal feasible solutions is an unbounded set.

Notes

Caratleodory (1907) proved Theorgm ID[3. Farkas (1902) proved L§mmp 10.5.
Several similar results were discovered by many others, incldding Gordan| (1873)
Stiemke [(1915), Ville[(1938), arid Tucker (1956). The standard reference on conve»
analysis i$ Rockafellay (1970).






CHAPTER 11

Game Theory

In this chapter, we shall study if not the most practical then certainly an elegant
application of linear programming. The subject is called game theory, and we shall
focus on the simplest type of game, called fimite two-person zero-sum gamar
just matrix gamefor short. Our primary goal shall be to prove the famous Minimax
Theorem, which was first discovered and proved by John von Neumann in 1928. His
original proof of this theorem was rather involved and depended on another beautifu
theorem from mathematics, the Brouwer Fixed-Point Theorem. However, it eventu-
ally became clear that the solution of matrix games could be found by solving a certair
linear programming problem and that the Minimax Theorem is just a fairly straight-
forward consequence of the Duality Theorem.

1. Matrix Games

A matrix gamds a two-person game defined as follows. Each person first selects,
independently of the other, an action from a finite set of choices (the two players in
general will be confronted with different sets of actions from which to choose). Then
both reveal to each other their choice. If wedetenote the first player’s choice and
j denote the second player’s choice, then the rules of the game stipulate that the fir:
player will pay the second playes; dollars. The array of possible payments

A = [ag]
is presumed known to both players before the game begins. Of coursesihegative
for some pail(i, j), then the payment goes in the reverse direction — from the second
player to the first. For obvious reasons, we shall refer to the first player aswhe
playerand the second player as tbelumn player Since we have assumed that the
row player has only a finite number of actions from which to choose, we can enumerate
these actions and assume without loss of generalityi tkagimply an integer selected
from 1 to m. Similarly, we can assume thgtis simply an index ranging from
to n (in its real-world interpretation, row actiohwill generally have nothing to do
with column actior3—the numbeB simply indicates that it is the third action in the
enumerated list of choices).

Let us look at a specific familiar example. Namely, consider the game every
child knows, called Paper—Scissors—Rock. To refresh the memory of older readers

173
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this is a two-person game in which at the count of three each player declares eithe
Paper, Scissors, or Rock. If both players declare the same object, then the round is
draw. But Paper loses to Scissors (since scissors can cut a piece of paper), Scissc
loses to Rock (since a rock can dull scissors), and finally Rock loses to Paper (since
piece of paper can cover up a rock—it's a weak argument but that's the way the gam
is defined). Clearly, for this game, if we enumerate the actions of declaring Paper
Scissors, or Rock &k 2, 3, respectively, then the payoff matrix is

0 1 -1
-1 0 1
1 -1 0

With this matrix, neither player has an obvious (i.e., deterministic) winning strategy.
If the column player were always to declare Paper (hoping that the row player will
declare Rock), then the row player could counter by always declaring Scissors an
guaranteeing herself a winning of one dollar in every round. In fact, if the column
player were to stick to any specific declaration, then the row player would eventually
get wise to it and respond appropriately to guarantee that she wins. Of course, th
same logic applies to the row player. Hence, neither player should employ the sami
declaration over and over. Instead, they should randomize their declarations. In fact
due to the symmetry of this particular game, both players should make each of the
three possible declarations with equal likelihood.

But what about less trivial games? For example, suppose that the payoffs in the
Paper—Scissors—Rock game are altered so that the payoff matrix becomes

0 1 -2
A=]-3 0 4
5 =6 0

This new game still has the property that every deterministic strategy can be foiled
by an intelligent opponent. Hence, randomized behavior remains appropriate. But th
best probabilities are no longer uniformly3. Also, who has the edge in this game?
Since the total of the payoffs that go from the row player to the column playr is
whereas the total of the payoffs that go to the row playéi jsve suspect that the row
player might have the edge. But this is just a guess. Is it correct? If it is correct, how
much can the row player expect to win on average in each round? If the row playel
knows this number accurately and the column player does not, then the row playe
could offer to pay the column player a small fee for playing each round. If the fee
is smaller than the expected winnings, then the row player can still be confident tha
over time she will make a nice profit. The purpose of this chapter is to answer these
questions precisely.



2. OPTIMAL STRATEGIES 175

Let us return now to the general setup. Consider the row player.r@ydomized
strategy we mean that, at each play of the game, it appears (from the column player’s
viewpoint) that the row player is making her choices at random according to some
fixed probability distribution. Le; denote the probability that the row player selects
actioni. The vectory composed of these probabilities is calledtachastic vector
Mathematically, a vector is a stochastic vector if it has nonnegative components tha
sum up to one:

y>0 and ely=1,

wheree denotes the vector consisting of all ones. Of course, the column player must

also adopt a randomized strategy. ketdenote the probability that the column player

selects actiorj, and letz denote the stochastic vector composed of these probabilities.
The expected payoff to the column player is computed by summing over all pos-

sible outcomes the payoff associated with that outcome times the probability of the

outcome. The set of possible outcomes is simply the set of paif$ as: ranges

over the row indices]( 2, . .., m) andj ranges over the column indicek, 2, .. ., n).

For outcome(i, j) the payoff isa;;, and, assuming that the row and column play-

ers behave independently, the probability of this outcome is simply. Hence, the

expected payoff to the column player is

Z yiair; =y’ Az,

(2%

2. Optimal Strategies

Suppose that the column player adopts strategdiye., decides to play in accor-
dance with the stochastic vecte). Then the row player’s best defense is to use the
strategyy™* that achieves the following minimum:

minimize y Ax
(11.1) subjecttoe’y =1
y=>0.
From the fundamental theorem of linear programming, we know that this problem has
a basic optimal solution. For this problem, the basic solutions are signpygtors that
are zero in every component except for one, which is one. That is, the basic optima
solutions correspond to deterministic strategies. This is fairly obvious if we look again
at our example. Suppose that
1/3
z=|1/3
1/3
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Then

-1/3
Az = 1/31,
-1/3
and so the row player’s best choice is to select either1 (Paper) ori = 3 (Rock)
or any combination thereof. That is, an optimal solutiogis= (1,0, 0) (it is not
unique).
Since for any givern: the row player will adopt the strategy that achieves the

minimum in [I1.1), it follows that the column player should employ a strategjat
attains the following maximum:

(11.2) max min y! Az,
r oy

where the max and the min are over all stochastic vectors (of the appropriate dimen
sion).

The question then becomes: how do we sdlve {11.2)? It turns out that this problen
can be reformulated as a linear programming problem. Indeed, we have already see
that the inner optimization (the minimization) can be taken over just the deterministic
strategies:

miny? Az = mine! Az,
Yy 1

where we have used to denote the vector of all zeros except for a one in position
Hence, the max-min problem given [n (I1.2) can be rewritten as

maximize (min; el Az)

n
subjectto » x; =1
=1
QTJZO j:1,2,...,n.

Now, if we introduce a new variable, representing a lower bound on thgAx’s,
then we see that the problem can be recast as a linear program:

maximize v
subject to v<el Ax i=1,2,....m

n
E Tj= 1
j=1

;>0 i=1,2,...,n.
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Switching back to vector notation, the problem can be written as

maximize v

subjectto ve — Ax <0

eTe=1
x> 0.

Finally, writing in block-matrix form, we get
.. X

maximize [0 1} l ]

v

(11.3) subject to [ 7;1 61 [xl = [
e 0| (v =]|1

x>0
v free

A
Rl

Now let’s turn it around. By symmetry, the row player seeks a stratégyat
attains optimality in the following min-max problem:

min maxy’ Az,
y xT

which can be reformulated as the following linear program:

minimize u
subjecttoue — ATy >0
eTy=1
y=>0.
Writing in block-matrix form, we get
minimize [0 1} [y
(3
. AT e | |yl >0
(11.49) subject to[ T 0] L‘] _ H
y=0
u free

3. The Minimax Theorem

Having reduced the computation of the optimal strategiesndy* to the solution
of linear programs, it is now a simple matter to show that they are consistent with eact
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other. The next theorem, which establishes this consistency, is called the Minimax
Theorem:

THEOREM11.1. There exist stochastic vectar$ andy* for which

*

T .
max y*" Az = min y7 Az*.

PROOF The proof follows trivially from the observation th@t (1]L.4) is the dual of
(I1.3). Thereforey* = w*. Furthermore,

v* = miin el Ax* = myin yT Ax*,
and similarly,
u* = mjax e;‘-FAT * = max e ATy = mfxy*TA:L'.
([l

The common optimal value* = u* of the primal and dual linear programs is
called thevalue of the game. From the Minimax Theorem, we see that, by adopting
strategyy™, the row player assures herself of losing no more thamits per round
on the average. Similarly, the column player can assure himself of winning ableast
units per round on the average by adopting strat€gyA game whose value is zero is
therefore dair game Games where the roles of the two players are interchangeable
are clearly fair. Such games are callanmetric They are characterized by payoff
matrices having the property that; = —a;; for all ¢ andj (in particular,m must
equaln and the diagonal must vanish).

For the Paper—Scissors—Rock game, the linear programming problem that the co
umn player needs to solve is

maximize w
0 —1 2 1 1| < |0
. -4 1 < |0
subject to 2| =
-5 0 1 T3 S 0
1 1 0 w| = |1

L1,T2,23 >0

w free



3. THE MINIMAX THEOREM 179

In nonmatrix notation, it looks like this:

maximize w
subject to —r9+2x3+w<0
31 —4drz3+w<0
—5x1 + 629 +w<0
1+ X2+ x3 =1
x1, T2, 3 >0.
This linear programming problem deviates from our standard inequality form in two
respects: (1) it has an equality constraint and (2) it has a free variable. There ar
several ways in which one can convert this problem into standard form. The most
compact conversion is as follows. First, use the equality constraint to solve explicitly
for one of thez;’s, sayxs:
T3 = 1-— 1 — Tg.
Then eliminate this variable from the remaining equations to get
maximize w
subjectto —2x; — 3xo +w < —2
Tx1+4rs+w< 4

—5x1+ 6z +w< 0
1+ o < 1
z1, T2 > 0.

The elimination ofr3 has changed the last constraint from an equality into an inequal-
ity.

The next step is to write down a starting dictionary. To do this, we need to in-
troduce slack variables for each of these constraints. It is natural (and desirable) t
denote the slack variable for the last constraintzhy In fact, doing this, we get the
following starting dictionary:

&= w
Ty=—242x1+ 312 — W
r5= 4—Tx1 —4x9 — W
Tg = 5x1 — 6x9 — w
r3= 1— 21— oo .

The variablew is not constrained to be nonnegative. Therefore, there is no reason for
it to be nonbasic. Let us do an arbitrary pivot withas the entering variable and any
basic variable as the leaving variable (well, not exactly any—we must make sure tha
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it causes no division by, so thereforers is not a candidate). Picking, to leave, we
get

E=—-242x1 4+ 315 — 24
w=—242x14+3T2 — T4

T5 = 6—91?1—73724-1‘4
T = 2+3£C1*9£C2+1’4
r3= 1— x1— 2o .

Sincew is free of sign constraints, it will never leave the basis (since a leaving vari-
able is, by definition, a variable that hits its lower bound—kas no such bound).
Therefore, we may as well remove it from the dictionary altogether; it can always be
computed at the end. Hence, we note that

w=—2+42x1 4+ 3x2 — 24,
or better yet that
w=¢,
and the dictionary now becomes
5272+2£C1+3£C271'4

T5= 6—911 —Txo+ x4
Teg= 24311 —922+ 24

Tr3 = 1-— X1 — T9 .

Atlast, we are in a position to apply the simplex method. Two (tedious) iterations bring
us to the optimal dictionary. Since it involves fractions, we multiply each equation by
an integer to make each number in the dictionary an integer. Indeed, after multiplying
by 102, the optimal dictionary is given by

102§ = —16 — 2725 — 1326 — 6224
10221 = 404+ 9254+ Txg+ 214
10229 = 36 — 3x5 — 9z6 + 1224
10223 = 26+ 1225 + 2x6 — 14x4.

From this dictionary, it is easy to read off the optimal primal solution:
40/102

r* = |36/102
26,102



4. POKER 181

Also, sincezxy, x5, andxg are complementary tg;, y», andys in the dual problem,
the optimal dual solution is

62/102
y* = |27/102
13/102

Finally, the value of the game is
w* =¢* =-16/102 = —0.15686275,

which indicates that the row player does indeed have an advantage and can expect
make on the average closelt® cents per round.

4. Poker

Some card games such as poker involve a round of bidding in which the players a
timesbluff by increasing their bid in an attempt to coerce their opponents into backing
down, even though if the challenge is accepted they will surely lose. Similarly, they
will sometimesunderbidto give their opponents false hope. In this section, we shall
study a simplified version of poker (the real game is too hard to analyze) to see fif
bluffing and underbidding are justified bidding strategies.

Simplified poker involves two players, A and B, and a deck having three chrds,

2, and3. At the beginning of a round, each player “antes up” $1 and is dealt one card
from the deck. A bidding session follows in which each player in turn, starting with
A, either (a)betsand adds $1 to the “kitty” or (bpassesBidding terminates when

a bet is followed by a bet,
a pass is followed by a pass, or
a bet is followed by a pass.

In the first two cases, the winner of the round is decided by comparing cards, and the
kitty goes to the player with the higher card. In the third case, bet followed by pass,
the player who bet wins the round independently of who had the higher card (in real
poker, the player who passes is saiddial).

With these simplified betting rules, there are only five possible betting scenarios:

A passes, B passes: $1 to holder of higher card
A passes, B bets, Apasses: $1toB

A passes, B bets, A bets: $2 to holder of higher card
A bets, B passes: $1t0 A

A bets, B bets: $2 to holder of higher card
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After being dealt a card, player A will decide to bet along one of three lines:

1. Pass. If B bets, pass again.
2. Pass. If B bets, bet.
3. Bet.

Similarly, after being dealt a card, player B can bet along one of four lines:

1. Pass no matter what.

2. If A passes, pass, but if A bets, bet.
3. If A passes, bet, but if A bets, pass.
4. Bet no matter what.

To model the situation as a matrix game, we must identify each player’s pure strategies
A pure strategy is a statement of what line of betting a player intends to follow for
each possible card that the player is dealt. Hence, the players’ pure strategies can |
denoted by triplesy:, y2,y3), wherey; is the line of betting that the player will use
when holding card. (For player A, they;’s can take values$, 2, and3, whereas for
player B, they can take valués2, 3, and4.)

Given a pure strategy for both players, one can compute the average paymer
from, say, A to B. For example, suppose that player A adopts strdfedy2) and
player B adopts strateg, 2,4). There are six ways in which the cards can be dealt,
and we can analyze each of them as follows:

card dealt| betting session payment
A B AtoB
1 2 | Abets, B bets 2

1 3 | Abets, B bets 2

2 1 |Apasses, Bbets, Apasses 1

2 3 | Apasses, Bbets, Apasses 1

3 1 |Apasses, Bbets, Abets -2

3 2 | Apasses, B passes -1

Since each of the six deals are equally likely, the average payment from A to B is
2+24+414+1-2-1)/6=0.5

The calculation of the average payment must be carried out for every combinatior
of pairs of strategies. How many are there? Player A3ha8 x 3 = 27 pure strategies
and player B hag x 4 x 4 = 64 pure strategies. Hence, there afex 64 = 1728 pairs.
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Calculating the average payment for all these pairs is a daunting task. Fortunately, w
can reduce the number of pure strategies (and hence the number of pairs) that need
be considered by making a few simple observations.

The first observation is that a player holding ahould never answer a bet with
a bet, since the player will lose regardless of the answering bet and will lose less by
passing. This logic implies that, when holding,a

player A should refrain from betting along lirzg
player B should refrain from betting along linesnd4.

More clearly improvable strategies can be ruled out when holding the highest
card. For example, a player holdingahould never answer a bet with a pass, since
by passing the player will lose, but by betting the player will win. Furthermore, when
holding a3, a player should always answer a pass with a bet, since in either case th
player is going to win, but answering with a bet opens the possibility of the opponent
betting again and thereby increasing the size of the win for the player holdirgy the
Hence, when holding 3,

player A should refrain from betting along lirne
player B should refrain from betting along linés2, and3.

Eliminating from consideration the above lines of betting, we see that player A
now has2 x 3 x 2 = 12 pure strategies and player B Hasg 4 x 1 = 8 pure strategies.
The number of pairs has therefore droppefide-a significant reduction. Not only do
we eliminate these “bad” strategies from the mathematical model but also we assum
that both players know that these bad strategies will not be used. That is, player A
can assume that player B will play intelligently, and player B can assume the same o
A. This knowledge then leads to further reductions. For example, when holding a
player A should refrain from betting along lire To reach this conclusion, we must
carefully enumerate possibilities. Since player A holds2ha@ayer B holds either the
1 or the3. But we've already determined what player B will do in both of those cases.
Using this knowledge, it is not hard to see that player A would be unwise to bet along
line 3. A similar analysis reveals that, when holding,alayer B should refrain from
lines 3 and4. Therefore, player A now has onlyx 2 x 2 = 8 pure strategies and
player B has onl2 x 2 x 1 = 4 pure strategies.
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At this point, no further reductions are possible. Computing the payoff matrix,
we get

(1,1,4) (1,2,4) (3,1,4) (3,2,4)

(1,1,2) : L
(1,1,3) -3 3 3
L22| § § -5 %
A=(1,23) | 3§ ~%
(3,1,2) | —% 3 i
GLy | - F b
(3,2.2) s

(3,2,3) | i1 5

Solving the matrix game, we find that
T
y*:Hooéoooé}
and
* 2 1 r
T = [ 5 00 3 ] .
These stochastic vectors can be summarized as simple statements of the optimal ra

domized strategies for the two players. Indeed, player A's optimal strategy is as fol-
lows:

when holdingl, mix lines1 and3 in 5:1 proportion;
when holding2, mix lines1 and2 in 1:1 proportion;
when holding3, mix lines2 and3 in 1:1 proportion.

Similarly, player B’s optimal strategy can be described as

when holdingl, mix lines1 and3 in 2:1 proportion;
when holding2, mix lines1 and2 in 2:1 proportion;
when holding3, use lined.

Note that it is optimal for player A to use lir.ewhen holding al at least some of the
time. Since line3 says to bet, this bet is a bluff. Player B also bluffs sometimes, since
betting line3 is sometimes used when holding aClearly, the optimal strategies also
exhibit some underbidding.

Exercises

11.1 Players A and B each hide a nickel or a dime. If the hidden coins match,
player A gets both; if they don’t match, then B gets both. Find the optimal
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strategies. Which player has the advantage? Solve the problem for arbitrary
denominations andb.

11.2 Players A and B each pick a number betwéemd100. The game is a draw
if both players pick the same number. Otherwise, the player who picks the
smaller number wins unless that smaller number is one less than the oppo
nent’'s number, in which case the opponent wins. Find the optimal strategy
for this game.

11.3 We say that rowr dominatesow s if a,; > as; forall j = 1,2,...,n.
Similarly, columnr is said to dominate columsnif a;. > a;s forall i =
1,2,...,m. Show that
(a) If a row (say,r) dominates another row, then the row player has an
optimal strategy* in whichy* = 0.

(b) If a column (says) is dominated by another column, then the column
player has an optimal strategy in whichz? = 0.

Use these results to reduce the following payoff matrix 2oxa2 matrix:

-6 2 -4 -7 -5
0 4 -2 -9 -1
-7 3 -3 -8 -2
2 -3 6 0 3
11.4 Solve simplified poker assuming that antes$@nd bets aré1.

11.5 Give necessary and sufficient conditions for tiie pure strategy of the row
and thesth pure strategy of the column player to be simultaneously optimal.

11.6 Use the Minimax Theorem to show that
maxmin y’ Az = minmax y? Az.

11.7 Bimatrix GamesConsider the following two-person game defined in terms
of a pair ofm x n matricesA and B: if the row player selects row index
and the column player selects column ingexhen the row player pays;
dollars and the column player palg dollars. Stochastic vectors' andy*
are said to form &ash equilibriumf

y* T Ax* < yT Ax* for all y
y*T Ba* < y*T Bz for all x.

The purpose of this exercise is to relate Nash equilibria to the problem of
finding vectorsr andy that satisfy
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0 —Ally w —e
+ = ,
-BT 0 T z —e
(11.5) yiw; = 0, for all 7,
xjz; =0, for all 7,
T, w,y,z2 >0

(vectorsw andz can be thought of as being defined by the matrix equality).
Problem[(TT.B) is called knear complementarity problem
(&) Show that there is no loss in generality in assumingthahd B have
all positive entries.
(b) Assuming thatd and B have all positive entries, show that,(if*, y*)
is a Nash equilibrium, then

x Y
xlzi l:

y*TAI* ) Y y*TBx*

solves the linear complementarity probldm (11.5).

(c) Show that, if(2’,y’) solves the linear complementarity problgm (11.5),
then

is a Nash equilibrium.
(An algorithm for solving the linear complementarity problem is developed

in Exercisg 17]7.)

11.8 The Game of Morra. Two players simultaneously throw out one or two
fingers and call out their guess as to what the total sum of the outstretchec
fingers will be. If a player guesses right, but his opponent does not, he
receives payment equal to his guess. In all other cases, it is a draw.

(a) List the pure strategies for this game.

(b) Write down the payoff matrix for this game.

(c) Formulate the row player’s problem as a linear programming problem.
(Hint: Recall that the row player’s problem is to minimize the maximum
expected payout.

(d) What is the value of this game?

(e) Find the optimal randomized strategy.

11.9 Heads | Win—Tails You Losén the classical coin-tossing game, player A
tosses a fair coin. If it comes up heads player B pays player A $2 but if it
comes up tails player A pays player B $2. As a two-person zero-sum game,
this game is rather trivial since neither player has anythingettide(after
agreeing to play the game). In fact, the matrix for this gamelis a matrix
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with only a zero in it, which represents the expected payoff from player A

to B.

Now consider the same game with the following twist. Player A is
allowed to peek at the outcome and then decide either to stay in the game
or to bow out. If player A bows out, then he automatically loses but only
has to pay player B $1. Of course, player A must inform player B of his
decision. If his decision is to stay in the game, then player B has the option
either to stay in the game or not. If she decides to get out, then she loses
$1 to player A. If both players stay in the game, then the rules are as in the
classical game: heads means player A wins, tails means player B wins.

(a) List the strategies for each player in this game. (Hint: Don't forget that
a strategy is something that a player has control over.)

(b) Write down the payoff matrix.

(c) A few of player A's strategies are uniformly inferior to others. These
strategies can be ruled out. Which of player A's strategies can be ruled
out?

(d) Formulate the row player’s problem as a linear programming problem.
(Hints: (1) Recall that the row player’s problem is to minimize the max-
imum expected payout. (2) Don't include rows that you ruled out in the
previous parf)

(e) Find the optimal randomized strategy.

() Discuss whether this game is interesting or not.

Notes

The Minimax Theorem was proved by von Neumahnn (1928). Important refer-
ences include Gale etfdl. (1951), von Neumann & Morgenstern (1947), Karlin|(1959),
and|Dresher (1961). Simplified poker was invented and analyzéd by, Kuhn| (1950).
Exercise$ 1T]1 arjd 11.2 are borrowed ffom &hay(1983).






CHAPTER 12

Regression

In this chapter, we shall study an application of linear programming to an area
of statistics called regression. As a specific example, we shall use size and iteratior
count data collected from a standard suite of linear programming problems to derive
a regression estimate of the number of iterations needed to solve problems of a give
size.

1. Measures of Mediocrity

We begin our discussion with an example. Here are the midterm exam scores fo
a linear programming course:

28, 62, 80, 84, 86, 86, 92, 95, 98.

Let m denote the number of exam scores (iwe.= 9) and leth;, i = 1,2,...,m, de-
note the actual scores (arranged in increasing order as above). The most naive meas
of the “average” score is just thmeanvalue,z, defined by
1 m

I= m;bl =79.0.
This is an example of a statistic, which, by definition, is a function of a set of data.
Statistics are computed so that one does not need to bother with reporting large table
of raw numbers. (Admittedly, the task of reporting the above ligt ekam scores is
not very onerous, but this is just an example.) Now, suppose the professor in questio
did not report the scores but instead just gave summary statistics. Consider the stude
who got an’0 on the exam. This student surely didn’t feel great about this score but
might have thought that at least it was better than average. However, as the raw da
makes clear, this student really did worse than avﬁagethe exam (the professor
confesses that the exam was rather easy). In fact, out of the nine students, the or
who got ar80 scored third from the bottom of the class. Furthermore, the student who
scored worst on the exam did so badly that one might expect this student to drop thi
course, thereby making tt88 look even worse.

1“Average" is usually taken as synonymous with “mean” but in this section we shall use it in an
imprecise sense, employing other technically defined terms for specific meanings.

189
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FIGURE 12.1. The objective function whose minimum occurs at
the median.

Any statistician would, of course, immediately suggest that we report the median
score instead of the mean. Theedianscore is, by definition, that score which is
worse than half of the other scores and better than the other half. In other words, th
medianz is defined as

T= b(m,-l—l)/Q = 86.

(Here and in various places in this chapter, we shall assumenthatodd so that
certain formulas such as this one remain fairly simple.) Clearly3thgives a more
accurate indication of what the average score on the exam was.

There is a close connection between these statistical concepts and optimizatior
For example, the meanminimizes, over all real numbers the sum of the squared
deviations between the data points anitself. That is,

m
T =argmin,cg  (z — b)>.
i=1
To verify this claim, we letf (z) = Y. | (x — b;)?, differentiate with respect to, and
set the derivative to zero to get

f(z) = Zz(x —b;) = 0.
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Solving this equation for the critical pofht, we see that

1 m
1=

The fact that this critical point is a minimum rather than a maximum (or a saddle point)
follows from the fact thayf”’ (z) > 0 for all z € R.

The mediant also enjoys a close connection with optimization. Indeed, it is the
point that minimizes the sum of the absolute values of the difference between eacl
data point and itself. That s,

m
& =argmin,e > |2 — bil.
i=1
To see that this is correct, we again use calculus. Let

m

fz) = Z|x — by

This function is continuous, piecewise linear, and convex (see Fjgurg 12.1). How-
ever, it is not differentiable at the data points. Nonetheless, we can look at its de-
rivative at other points to see where it jumps across zero. The derivative, §r

{bl, bg, ey bm}, is

@) = S sgrte — ),

where
1 ifz>0
sgnz) = 0 ifz=0
-1 ifz<o.

Hence, we see that the derivativeras just the number of data points to the leftof
minus the number of data points to the right. Clearly, this derivative jumps across zerc
at the median, implying that the median is the minimum.

In this chapter, we shall discuss certain generalizations of means and median
called regressions. At the end, we will consider a specific example that is of particula
interest to us: the empirical average performance of the simplex method.

2. Multidimensional Measures: Regression Analysis

The analysis of the previous section can be recast as follows. Given a “random’
observationb, we assume that it consists of two parts: a fixed, but unknown, part

2Recall from calculus thateritical pointis any point at which the derivative vanishes or fails to exist.
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denoted byr and a random fluctuation about this fixed part, which we denote by
Hence,

b=x+e.

Now, if we take several observations and index them as1,2, ..., m, theb’s and
the e’s will vary, but z is assumed to be the same for all observations. Therefore, we
can summarize the situation by writing

bi=z+e, i=1,2...,m.

We now see that the mean is simply the valuecahat minimizes the sum of the
squares of the;’is. Similarly, the median is the value afthat minimizes the sum of
the absolute values of the's.

Sometimes one wishes to do more than merely identify some sort of “average.”
For example, a medical researcher might collect blood pressure data on thousanc
of patients with the aim of identifying how blood pressure depends on age, obesity
(defined as weight over height), sex, etc. So associated with each obseivafion
a blood pressure are values of thesmtrol variables. Let's denote by, the age
of a personas the obesity,a; the sex, etc. Lek denote the number of different
control variables being considered by the researcher. In (linear) regression analysi
we assume that thesponsé depends linearly on the control variables. Hence, we
assume that there are (unknown) numbersj = 1,2, ..., n, such that

n
b= g a;T; + €.
Jj=1

This equation is referred to as tregression modelOf course, the researcher collects
data from thousands of patients, and so the data itears] thes;'s, must be indexed
over these patients. That is,

n
bi: E aijxj+el—, i:172,...7m.
Jj=1

If we let b denote the vector of observatiorghe vector of random fluctuations, and
A the matrix whoseéth row consists of the values of the control variables forithe
patient, then the regression model can be expressed in matrix notation as

(12.1) b= Az +e.

In regression analysis, the goal is to find the veettinat best explains the obser-
vationsb. Hence, we wish to pick values that minimize, in some sense, the wetor
Just as for the mean and median, we can consider minimizing either the sum of th
squares of the;’s or the sum of the absolute values of this. There are even other
possibilities. In the next two sections, we will discuss the range of possibilities and
then give specifics for the two mentioned above.
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3. L?-Regression

There are several notions of the size of a vector. The most familiar one is the

Euclidean length
lylla = O wi)'/2.

This notion of length corresponds to our physical notion (at least when the dimensior
is low, such ag, 2, or 3). However, one can use any power inside the sum as long as
the corresponding root accompanies it on the outside of the sum. €gr < oo, we

get then the so-callefi”-normof a vectory

lyll, = O y¥)'/P.

Other thanp = 2, the second most important casepis= 1 (and the third most
important case corresponds to the limitatends to infinity).

Measuring the size afin (I2:1) using the.?-norm, we arrive at thé&>-regression
problem, which is to find: that attains the minimuni2-norm for the difference be-
tweenb and Az. Of course, it is entirely equivalent to minimize the square of the
L2-norm, and so we get

T = argmin, ||b — Az||3.
Just as for the mean, there is an explicit formulaiorTo find it, we again rely on
elementary calculus. Indeed, let
2

fla)=b—Az|3=>"[b: =D aiz;
j

K2

In this multidimensional setting, a critical point is defined as a point at which the
derivative with respect to every variable vanishes. So if we denote a critical point by
z, we see that it must satisfy the following equations:

of - .
aixk(l')ZEQ bii;aijwj (70,1';6):0, k:1,2,...,n.

Simplifying these equations, we get
Zaikbizzzaikaijjj’ k=1,2,...,n.
i v
In matrix notation, these equations can be summarized as follows:
ATh = AT Az.
In other words, assuming that’ A is invertible, we get
(12.2) = (ATA)~1 ATy,
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FIGURE 12.2. Three data points for a linear regression.

This is the formula foi.2-regression. It is also commonly callkghst squares regres-
sion In Sectior] T2, we will use this formula to solve a specific regression problem.

Example. The simplest and most common regression model arises when one
wishes to describe a response variabls a linear function of a single input vari-
ablea. In this case, the model is

b=axi + xo.

The unknowns here are the slope and the intercept,. Figure[12.P shows a plot

of three pairg(a, b) through which we want to draw the “best” straight line. At first
glance, this model does not seem to fit the regression paradigm, since regression mo
els (as we've defined them) do not involve a term for a nonzero intercept. But the
model here can be made to fit by introducing a new control variable asayhich

is always set td. While we're at it, let's change our notation farto a; so that the
model can now be written as

b=aix1 + azxs.
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The three data points can then be summarized in matrix notation as

01 €1
T
251 =121 + | e
T2
4 1 €3
For this problem,
02 4 01 20 6
ATA = ] 2 1| = [ ]
1 11 6 3
4 1
and
02 4 17
1 1 6.5
3
Hence,
& 1[ 3 —6][17 1/2
xr = = — = .
Ty 241 —6 20 6.5 7/6

4. L'-Regression

Just as the median gives a more robust estimate of the “average value” of a col
lection of numbers than the meali.-regression is less sensitive to outliers than least
squares regression is. It is defined by minimizing Zienorm of the deviation vector
in (I2.3). That is, the problem is to findas follows:

& = argmin,||b — Az||;.

Unlike for least squares regression, there is no explicit formula for the solution to
the L'-regression problem. However, the problem can be reformulated as a lineal
programming problem. Indeed, it is easy to see thaftheegression problem,

minimize Z b; — Zaijxj ,
i J

can be rewritten as
minimize )", t;
subjecttot; —

bi*Zjaijl‘j‘ =0, 1=12,...,m,
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which is equivalent to the following linear programming problem:

minimize ). t;

(12.3) ,
subjectto —t; < b; — Zj a;jr; <ty 1=1,2,...,m.

Hence, to solve thé!-regression problem, it suffices to solve this linear programming
problem. In the next section, we shall present an alternative algorithm for computing
the solution to arL.!-regression problem.

Example Returning to the example of the last section, iHeregression problem
is solved by finding the optimal solution to the following linear programming problem:

minimize t1+to +t3
subject to —To — 1 < -1
—2x1 — T9 —t9 <-2.5
—4x1 — x9 —t3< =3
xo — 1 < 1
2x1 4+ T2 —t9 < 25
4z + 2o —t3< 3
t1, ta, t3> 0.

The solution to this linear programming problem is

5= [Oﬂ ,

which clearly indicates that the poifi2, 2.5) is viewed by theL!-regression as an
outlier, since the regression line passes exactly through the other two points.

5. Iteratively Reweighted Least Squares

Even though calculus cannot be used to obtain an explicit formula for the solution
to the L'-regression problem, it can be used to obtain an iterative procedure that,
when properly initialized, converges to the solution of theregression problem.
The resulting iterative process is callgdratively reweighted least squarefn this
section, we briefly discuss this method. We start by considering the objective functior
for L!-regression:

f(x)=1b— Azl

=D [bi = > _aiy).
i J
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Differentiating this objective function is a problem, since it involves absolute values.
However, the absolute value function

9(2) = ||

is differentiable everywhere except at one point= 0. Furthermore, we can use the
following simple formula for the derivative, where it exists:

Using this formula to differentiat¢’ with respect to each variable, and setting the
derivatives to zero, we get the following equations for critical points:

5f Z Qij Ty . .
(12.4) Z‘b =5 %M( aix) =0, k=1,2,...,n.

If we introduce the following shorthand notation for the deviations,
62(.%') = bl — Zaijxj 5
J
we see that we can rewrife (IR.4) as

Z Lk‘b ZZ“TWUIJ k=1,2,...,n

Now, if we let £, denote the diagonal matrix containing the veetar) on the diago-
nal, we can write these equations in matrix notation as follows:

ATE "o = ATE; ! Ax.

This equation can’t be solved far as we were able to do ih?-regression because
of the dependence of the diagonal matrix.anBut let us rearrange this system of
equations by multiplying both sides by the inversetdtE 1 A. The result is

v = (ATE;'A) T ATE .

This formula suggests an iterative scheme that hopefully converges to a solution. In
deed, we start by initializing® arbitrarily and then use the above formula to succes-
sively compute new approximations. If we et denote the approximation at tl¢h
iteration, then the update formula can be expressed as

P = (ATESA) T ATES M,

Assuming only that the matrix inverse exists at every iteration, one can show that this
iteration scheme converges to a solution to fheregression problem.
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6. An Example: How Fast is the Simplex Method?

In Chaptef #, we discussed the worst-case behavior of the simplex method an
studied the Klee—Minty problem that achieves the worst case. We also discussed th
importance of empirical studies of algorithm performance. In this section, we shall
introduce a model that allows us to summarize the results of these empirical studies.

We wish to relate the number of simplex iteraticgligequired to solve a linear
programming problem to the number of constraintand/or the number of variables
n in the problem (or some combination of the two). As any statistician will report, the
first step is to introduce an appropriate m(ﬁlblence, we begin by askingpw many
iterations, on average, do we expect the simplex method to take if the problem ha
m constraints andh variables? To propose an answer to this question, consider the
initial dictionary associated with a given problem. This dictionary involvegalues,

x%, for the primal basic variables, andvalues,y,, for the dual nonbasic variables.
We would like each of thesa: + n variables to have nonnegative values, since that
would indicate optimality. If we assume that the initial dictionary is nondegenerate,
then one would expect on the average t{hat+ n)/2 of the values would be positive
and the remainingm + n)/2 values would be negative.

Now let’s look at the dynamics of the simplex method. Each iteration focuses on
exactly one of the negative values. Suppose, for the sake of discussion, that the neg
tive value corresponds to a dual nonbasic variable, that is, one of the coefficients in th
objective row of the dictionary. Then the simplex method selects the corresponding
primal nonbasic variable to enter the basis, and a leaving variable is chosen by a rati
test. After the pivot, the variable that exited now appears as a nonbasic variable ir
the same position that the entering variable held before. Furthermore, the coefficien
on this variable is guaranteed to be positive (since we've assumed nondegeneracy
Hence, the effect of one pivot of the simplex method is to correct the sign of one of
the negative values from the list of + n values of interest. Of course, the pivot also
affects all the other values, but there seems no reason to assume that the situation ri
ative to them will have any tendency to get better or worse, on the average. Therefore
we can think of the simplex method as statistically reducing the number of negative
values by one at each iteration.

Since we expect on the average that an initial dictionary will Have-n)/2 neg-
ative values, it follows that the simplex method should take+ n)/2 iterations, on
average. Of course, these expectations are predicated on the assumption that deger
ate dictionaries don't arise. As we saw in Secfigi] 7.2, the self-dual simplex method
initialized with random perturbations will, with probability one, never encounter a de-
generate dictionary. Hence, we hypothesize that this variant of the simplex methoc
will, on average, takém + n)/2 iterations. It is important to note the main point of

3In the social sciences, a fundamental difficulty is the lack of specific arguments validating the appro-
priateness of the models commonly introduced.
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our hypothesis; namely, that the number of iterationgmar in m + n as opposed,
say, to quadratic or cubic.

We can test our hypothesis by first supposing thatan be approximated by a
function of the form

2%(m +n)?

for a pair of real numbera and3. Our goal then is to find the value for these pa-
rameters that best fits the data obtained from a set of empirical observations. (We'v
written the leading constant @8 simply for symmetry with the other factor—there is
no fundamental need to do this.) This multiplicative representation of the number of
iterations can be converted into an additivediand3) representation by taking log-
arithms. Introducing am to represent the difference between the model’s prediction
and the true number of iterations, we see that the model can be written as

logT = alog2 + flog(m + n) + e.

Now, suppose that several observations are made. Using subscripts to distinguish tt
various observations, we get the following equations:

log T} log2 log(mi + n1) €1
log Ty log2 log(msa + no) o €2
. = . . +
: : : B
log Ty, log2 log(my + ng) €k

If we let b denote the vector on the left, the matrix on the righty the vector multi-
plied by A, ande the vector of deviations, then the model can be expressed as

b=Ax +e,

whereA andb are given. As we've seen, this is just a regression model, which we can
solve as arl.!-regression or as ab?-regression.

Given real data, we shall solve this model both ways. Tablg 12.1 shows specific
data obtained by running the self-dual simplex method described in Chépter 7 (with
randomized initial perturbations) against most of the problems in a standard suite o
test problems (called theeTLIB suite (Gay 1985)). Some problems were too big to
run on the workstation used for this experiment, and others were formulated with free
variables that the code was not equipped to handle.

Using [12:2) to solve the problem as Afregression, we get

al  [-1.03561
B 1.05152 |

T ~ 0.488(m + n)*%52,

Or, in other words,
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Name m n iters || Name m n iters

25fv47 777 1545 5089(| nesm 646 2740 5829
80bau3b | 2021 9195 10514| recipe 74 136 80
adlittle 53 96 141 || sc105 104 103 92
afiro 25 32 16 || sc205 203 202 191
agg2 481 301 204|| sc50a 49 48 46
agg3 481 301 193|| sc50b 48 48 53
bandm 224 379 1139|| scagr25 347 499 1336
beaconfd| 111 172 113|| scagr7 95 139 339
blend 72 83 117 || scfxml 282 439 531
bnl1 564 1113 2580|| scfxm2 564 878 1197
bnl2 1874 3134 6381|| scfxm3 846 1317 1886
boeingl 298 373 619|| scorpion 292 331 411
boeing2 125 143 168|| scrs8 447 1131 783
bore3d 138 188 227|| scsdl 77 760 172
brandy 123 205 585|| scsdé 147 1350 494
czprob 689 2770 2635|| scsd8 397 2750 1548

décube 403 6183 5883|| sctapl 284 480 643
degen2 444 534 1421|| sctap2 1033 1880 1037
degen3 1503 1818 6398|| sctap3 1408 2480 1339
e226 162 260 598(| seba 449 896 766
etamacro| 334 542 1580|| sharelb 107 217 404
fffff800 476 817 1029|| share2b 93 79 189

finnis 398 541 680|| shell 487 1476 1155
fitld 24 1026 925(| ship04l 317 1915 597
fitlp 627 1677 15284| ship04s 241 1291 560

forplan 133 415 576(| ship08l 520 3149 1091
ganges | 1121 1493 2716|| ship08s 326 1632 897
greenbea| 1948 4131 21476/ shipl2l 687 4224 1654
growl15 300 645 681|| shipl2s 417 1996 1360
grow22 440 946 999|| sierra 1212 2016 793

grow7 140 301 322|| standata 301 1038 74
israel 163 142 209|| standmps| 409 1038 295
kb2 43 41 63 || stocforl 98 100 81
lotfi 134 300 242|| stocfor2 | 2129 2015 2127

maros 680 1062 2998

TABLE 12.1. Number of iterations for the self-dual simplex method.

This is amazingly close to our hypothesized formifta,+ n)/2. Figure/ 12.B shows

a log-log plot ofT" vs. m + n with the L2-regression line drawn through it. It is clear
from this graph that a straight line (in the log—log plot) is a good model for fitting this
data.
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FIGURE 12.3. A log—log plot ofT" vs. m + n and theL! and L2
regression lines.

Using [12.3) to solving the problem, we get
al  [-0.9508
gl | ro491|

T ~ 0.517(m + n)"0%.

In other words,

The fact that this regression formula agrees closely with/theegression indicates
that the data set contains no outliers. In Se¢tign|12.7, we shall see an example in whic
outliers do indeed cause tié and L? regression lines to be significantly different
from each other.
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7. Which Variant of the Simplex Method is Best?

As we saw in the previous section, if the simplex method does not encounter
degenerate dictionaries along its path to optimality, then we can expect that on the
average it will converge iim + n)/2 iterations. Also, we've verified this hypothesis
running the self-dual simplex method (with randomized initial perturbations) against
actual data. The other variants of the simplex method that we have studied do en
counter degenerate dictionaries and hence we expect them to take more iterations.

To test this hypothesis, we looked at the two-phase simplex method using a dua
Phase | followed by a primal Phase Il. The temporary objective function chosen for
Phase | was generated randomly, and hence the Phase | portion of the algorithm e
countered no degeneracy. However, the Phase Il dictionaries were often degenera
using this method. Figufe 12.4 shows a log—log plot of iterationaws- n.

The particular code that was used to produce these numbers has not been careful
tuned, and hence, due to minor numerical problems, the code failed to find an optima
solution for several of the test problems (even though all the problems in the test suite
are known to have optimal solutions). For these bad problems, one would expect the
the number of iterations to solve the problem is in fact larger (perhaps significantly)
than the number obtained. Nonetheless, Fifure| 12.4 shows all the results, even tho:
corresponding to bad problems. The bad data points are shown with open circles.

The figure shows two regression lines. The lower one isltheegression line.
Note that it is pulled down significantly by the single outlier at the bottom of the graph.
The upper line is thé! regression line. Visually it appears to capture better the trend
exhibited by most points. The equation for the-regression is

T ~ 0.877(m + n)-94,

Again, the hypothesis that the number of iterations is lineamin- n is strongly
supported. But this time the coefficient is obviously not closd t®. Instead, it

is almost twice as large. Hence, this method seems to be worse than the self-du
simplex method.

To reiterate, our conclusion is that degeneracy is bad for iteration counts and any
version of the simplex method that can avoid it will likely do well. To see this effect
in a dramatic setting, let us consider one instance of a large problem that is known tc
be highly degenerate. The problem we shall consider is calledsignment problem
This class of linear programming problem is discussed in detail in Chiapter 14. For
now, it suffices to say simply that problems in this class are always degenerate. W
generated one largen( = 600, n = 90,000) random assignment problem and let
the two codes described above solve it. The two-phasg’idod& 9951 iterations,
whereas the self-dual code took onl§h5—a substantial improvement.

4Unlike the earlier experiments, here the Phase | objective was initialized, without the benefit of
randomization, by setting thgh coefficient tomax(c;, 1) wherec; is the Phase Il objective coefficient.
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FIGURE 12.4. A log-log plot ofl" vs. m + n for the two-phase
simplex method. The upper line is tle-regression line, and the
lower line is theL2-regression line. The open circles show data
points for which the code did not find an optimal solution (even
though one exists).

Exercises
12.1 Find theL?-regression line for the data shown in Figlre 12.5.
12.2 Find theL'-regression line for the data shown in Figlre 12.5.

12.3 Midrange. Given a sorted set of real numbe{$; , bs, ..., b, }, show that
the midrangez = (b1 + by,,,)/2, minimizes the maximum deviation from
the set of observations. That is,

1 .
§(b1 + by,) = argmin, g max |z — by
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FIGURE 12.5. Four data points for a linear regression.

12.4 Centroid. Given a set of point§b,, bs, . . ., b, } on the planék?, show that

the centroid
1 m
L b
Tl

minimizes the sum of the squares of the distance to each point in the set
That is,z solves the following optimization problem:

minimize ) " |z — ;|3
i=1
Note: Each data poing; is a vector inR? whose components are denoted,

say, byb;; andb;, and, as usual, the subscripton the norm denotes the
Euclidean norm. Hence,

o = billa = /(21 — bi1)? + (w2 — bi2)2.

12.5 Facility Location. A common problem is to determine where to locate a
facility so that the distance from its customers is minimized. That is, given
a set of pointgby, bs, . . ., by, } on the planék?, the problem is to find: =
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Jan 390 May 310| Sep 550
Feb 420{ Jun 590 Oct 360
Mar 340| Jul 340 Nov 420
Apr 320| Aug 580| Dec 600.

TABLE 12.2. Projected labor hours by month.

(1, 22) that solves the following optimization problem:

m
minimize ) " [z — bi».
i=1
As for L'-regression, there is no explicit formula fér but an iterative
scheme can be derived along the same lines as in S¢cfign 12.5. Derive a
explicit formula for this iteration scheme.

12.6 A Simple Steiner Tre&uppose there are only three customers in the facility
location problem of the previous exercise. Suppose that the triangle formed
by b1, b2, andbs has no angles greater thaf0 degrees. Show that the
solutionz to the facility location problem is the unique point in the triangle
from whose perspective the three customerd adedegrees apart from each
other. What is the solution if one of the angles, say, at vérteis more than
120 degrees?

12.7 Sales Force PlanningA distributor of office equipment finds that the busi-
ness has seasonal peaks and valleys. The company uses two types of sal
persons: (a) regular employees who are employed year-round and cost th
company $17.50/hr (fully loaded for benefits and taxes) and (b) temporary
employees supplied by an outside agency at a cost of $25/hr. Projections fo
the number of hours of labor by month for the following year are shown in
Table[IZ.2. Let; denote the number of hours of labor needed for manth
and letz denote the number of hours per month of labor that will be handled
by regular employees. To minimize total labor costs, one needs to solve the
following optimization problem:

minimize ) (25 max(a; — x,0) + 17.50z).
(a) Show how to reformulate this problem as a linear programming prob-
lem.
(b) Solve the problem for the specific data given above.
(c) Use calculus to find a formula giving the optimal value for
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12.8 Acceleration Due to GravityThe law of gravity from classical physics says
that an object dropped from a tall building will, in the absence of air resis-
tance, have a constant rate of acceleragiea that the height, as a function
of timet, is given by

1

x(t) = f§gt2.

Unfortunately, the effects of air resistance cannot be ignored. To include
them, we assume that the object experiences a retarding force that is directl
proportional to its speed. Letting(¢t) denote the velocity of the object at
timet, the equations that describe the motion are then given by

2'(t) = v(t), t>0, x(0) =0,

V(t)=—g— folt),  t>0, v(0)=0
(f is the unknown constant of proportionality from the air resistance). These
equations can be solved explicitly foras a function of:

z(t) = f% (e =1+ ft)
v(t) = —% (1-— efft) .

Itis clear from the equation for the velocity that tleeminal velocityis g/ f.
It would be nice to be able to compujdry measuring this velocity, but this
is not possible, since the terminal velocity involves bétandg. However,
we can use the formula far(¢) to get a two-parameter model from which
we can compute botli andg. Indeed, if we assume that all measurements
are taken after terminal velocity has been “reached” (i.e., whéhis much
smaller thant), then we can write a simple linear expression relating posi-
tion to time:

T = E. gt.

2 f

Now, in our experiments we shall set valuesedfcorresponding to specific
positions below the drop point) and measure the time at which the object
passes these positions. Since we prefer to write regression models with the
observed variable expressed as a linear function of the control variables, le
us rearrange the above expression sotlagipears as a function of

1
t:f—ix.

f g
Using this regression model and the data shown in 12.3, dg-an
regression to compute estimates fgif and—f/g. From these estimates
derive an estimate fay. If you have access to linear programming software,
solve the problem using af!-regression and compare your answers.
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Obs. | Position Time
Number| (meters) (secs
1 -10 3.72
2 -20 7.06
3 -30 10.46
4 -10 3.71
5 -20 7.00
6 -30 10.48
7 -10 3.67
8 -20 7.08
9 -30 10.33

TABLE 12.3. Time at which a falling object passes certain points.

12.9 Iteratively Reweighted Least Squar&how that the sequence of iterates in
the iteratively reweighted least squares algorithm produces a monotonically
decreasing sequence of objective function values by filling in the details
in the following outline. First, recall that the objective function bt-
regression is given by

m

f(x) = b= Azl = ) ei(w),

i=1
where

n
61(1) = bl — Zaijxj .
j=1
Also, the function that defines the iterative scheme is given by

T(x) = (ATE;'A) " ATE "D,

whereE,, denotes the diagonal matrix with the vect¢r) on its diagonal.
Our aim is to show that

f(T(x)) < f(x).

In order to prove this inequality, let

(2) = 30 S = B0 - 42)
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(@) Use calculus to show that, for eacHl’(x) is a global minimum ofj,.
(b) Show thay,(z) = f(x).
(c) By writing

€i(T(x)) = €(x) + (e:(T(x)) — i)

and then substituting the right-hand expression into the definition of
g2(T(z)), show that

92(T(2)) = 2f(T'(x)) — f(z).
(d) Combine the three steps above to finish the proof.

12.10 In our study of means and medians, we showed that the median of a collec:
tion of numbersby, ba, . .., by, is the numbei: that minimizeszj |z —bjl.
Let 1 be a real parameter.
(a) Give a statistical interpretation to the following optimization problem:

minimize ) " (|z — b;| + p(z — bj)) .
J
Hint: the special casegs = 0, +1/2, +1 might help clarify the general
situation.

(b) Express the above problem as a linear programming problem.

(c) The parametric simplex method can be used to solve families of linear
programming problems indexed by a parametgsuch as we have
here). Starting at = oo and proceeding tg« = —oo one solves
all of the linear programs with just a finite number of pivots. Use the
parametric simplex method to solve the problems of the previous part
in the case where = 4 andb; = 1, by = 2, b3 = 4, andb, = 8.

(d) Now consider the general case. Write down the dictionary that appears
in the k-th iteration and show by induction that it is correct.

12.11 Show that thel.*°-norm is just the maximum of the absolute values. That
is,
lim ||z, = max |z
p—o K]

Notes

Gonin & Money (1989) and Dodge (1987) are two references on regression tha
include discussion of boti? and L' regression. The standard referenceldnre-
gression is Bloomfield & Steiger (1983).

Several researchers, including Smale (1.983), Borgwardt {1982), Borgwardaj1987
Adler & Megiddd (1985), and Todd (1986), have studied the average number of iter-
ations of the simplex method as a functionrefand/orn. The model discussed in
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this chapter is similar to the sign-invariant model introduced by Adler & Berenguer
(1981).






Part 2

Network-Type Problems



Allow me to say, ..., that the arguments with

which you have supported this extraordinary

application have been as frivolous as the
application was ill-judged— J. Austen



CHAPTER 13

Network Flow Problems

Many linear programming problems can be viewed as a problem of minimizing
the “transportation” cost of moving materials through a network to meet demands for
material at various locations given sources of material at other locations. Such prob
lems are calledietwork flow problemsThey form the most important special class of
linear programming problems. Transportation, electric, and communication networks
provide obvious examples of application areas. Less obvious, but just as important
are applications in facilities location, resource management, financial planning, anc
others.

In this chapter we shall formulate a special type of linear programming problem
called theminimum-cost network flow problenit turns out that the simplex method
when applied to this problem has a very simple description and some important specic
properties. Implementations that exploit these properties benefit dramatically.

1. Networks

A network consists of two types of objects: nodes and arcs. We shall titnote
the set ofhodes We letm denote the number of nodes (i.e., the cardinality of the set
N).

The nodes are connected aics. Arcs are assumed to be directed. This means
that an arc connecting nodéo nodej is not the same as an arc connecting nptte
nodei. For this reason, we denote arcs using the standard mathematical notation fc
ordered pairs. That is, the arc connecting nottenode;j is denoted simply ag, j).

We let.A denote the set of all arcs in the network. This set is a subset of the set of all
possible arcs:

AcC{(i,j):i,j €N,i#j}
In typical networks, the setl is much smaller than the set of all arcs. In fact, usually
each node is only connected to a handful of “nearby” nodes.

The pair(N, A) is called anetwork It is also sometimes called graph or a
digraph(to emphasize the fact that the arcs are directed). Higurg 13.1 shows a networ
having7 nodes and 4 arcs.

To specify a network flow problem, we need to indicate the supply of (or demand
for) material at each node. So, for eaick N, let b; denote the amount of material
being supplied to the network at node We shall use the convention that negative
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FIGURE13.1. A network having nodes and4 arcs. The numbers
written next to the nodes denote the supply at the node (negative
values indicate demands; missing values indicate no supply or de-
mand).

supplies are in fact demands. Hence, our problem will be to move the material that
sits at the supply nodes over to the demand nodes. The movements must be along t
arcs of the network (and adhering to the directions of the arcs). Since, except for the
supply and demand, there is no other way for material to enter or leave the systen
it follows that the total supply must equal the total demand for the problem to have a
feasible solution. Hence, we shall always assume that

Z b; = 0.
1EN
To help us decide the paths along which materials should move, we assume the

each arc, sayy, j), has associated with it a cast that represents the cost of shipping
one unit fromi to j directly along arc(i, ). The decision variables then are how
much material to ship along each arc. That is, for €ach) € A, z;; will denote the
quantity shipped directly fromto j along arc(, j). The objective is to minimize the
total cost of moving the supply to meet the demand:

minimize " cijxi;.
(,7)€A

As we mentioned before, the constraints on the decision variables are that the!
ensure flow balance at each node. Let us consider a fixed nodé, say,. The total
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FIGURE 13.2. The costs on the arcs for the network in Figure|13.1.

flow into nodek is given by

>
(iK)eA
Similarly, the total flow out from nodg is
> o

J:
(k.j)eA

The difference between these two quantities is the net inflow, which must be equal tc
the demand at the node. Hence, tlosv balance constraintsan be written as

Z Tik — Z xkj:—bk, keWN.

(i.k)eA (k,ffeA
Finally, the flow on each arc must be nonnegative (otherwise it would be going in the
wrong direction):
xi; >0, (i,5) € A.
Figure[I3.2 shows cost information for the network shown in Figure] 13.1. In
matrix notation, the problem can be written as follows:
minimize ¢’ x
(13.1) subjectto Az = —b
x>0,
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where

T _
T = [ Tac Tad Tae Tba Thc The Tdb Tde Tfa Tfo Tfc Tfg Tgb Lge | »

(-1 -1 -1 1 1
-1-1-1 1 1 1
1 1 1 —6
A= 1 -1 -1 , b=1|-6],
1 1 1 1 -2
-1 -1-1-1
i 1 -1 1] | 5]

cT:[48 28 10 7 65 7 38 15 56 48 108 24 33 19 |.

In network flow problems, the constraint mattikis called thenode-arc incidence
matrix.

The network flow problem differs from our usual standard form linear program-
ming problem in two respects: (1) it is a minimization instead of a maximization and
(2) the constraints are equalities instead of inequalities. Nonetheless, we have studie
before how duality applies to problems in nonstandard form. The du@glof (13.1) is

maximize —b"y
subjectto ATy + z=¢

z> 0.
Written in network notation, the dual is
maximize — > b;y;
ieN
subject to y; — y; + 2i; = ¢4, (i,j) € A
Zij Z 07 (Zvj) € A

Finally, it is not hard to check that the complementarity conditions (to be satisfied by
an optimal primal—-dual solution pair) are

xijzi5 =0, (i,j) € A
We shall often refer to the primal variablesggmal flows

2. Spanning Trees and Bases

Network flow problems can be solved efficiently because the basis matrices have
a special structure that can be described nicely in terms of the network. In order tc
explain this structure, we need to introduce a number of definitions.

First of all, an ordered list of nodés, no, . . ., nk) is called gpathin the network
if each adjacent pair of nodes in the list is connected by an arc in the network. It is



2. SPANNING TREES AND BASES 217

s

/

FIGURE 13.3. The network on the left is connected whereas the

one on the right is not.

FIGURE 13.4. The network on the left contains a cycle whereas the
one on the right is acyclic.

L

s

important to note that we do not assume that the arcs point in any particular direction
For example, for nodes; andn,.1, there must be an arc in the network. It could
run either fromn; to n;, or from n;; to n;. (One should think about one-way
roads—even though cars can only go one way, pedestrians are allowed to walk alon
the path of the road in either direction.) A network is calbedinectedf there is a path
connecting every pair of nodes (see Figure 13.3). For the remainder of this chaptel
we make the following assumption:

AssumptionThe network is connected.

For any arq(i, j), we refer to; as itstail and; as itshead

A cycleis a path in which the last node coincides with the first node. A network
is calledacyclicif it does not contain any cycles (see Figure 13.4).

A network is atreeif it is connected and acyclic (see Figire 13.5). A network
(N A) is called asubnetworkof (N, A) if N ¢ M andA C A. A subnetwork
(J\/ A) is aspanning treef it is a tree and\" = M. Since a spanning tree’s node set
coincides with the node set of the underlying network, it suffices to refer to a spanning
tree by simply giving its arc set.
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(TR

FIGURE 13.5. The network on the left is a tree whereas the two on
the right not—they fail in the first case by being disconnected and
in the second by containing a cycle.

ot | 6 65 / AY

e

FIGURE 13.6. The fat arcs show a spanning tree for the network in
Figure[I3.1. The numbers shown on the arcs of the spanning tree
are the primal flows, the numbers shown next to the nodes are the
dual variables, and the numbers shown on the arcs not belonging to
the spanning tree are the dual slacks.

Given a network flow problem, any selection of primal flow values that satisfies
the balance equations at every node will be callédlanced flow It is important to
note that we do not require the flows to be nonnegative to be a balanced flow. Tha
is, we allow flows to go in the wrong direction. If all the flows are nonnegative, then
a balanced flow is calledfaasible flow Given a spanning tree, a balanced flow that
assigns zero flow to every arc not on the spanning tree will be caltezbasolution
Consider, for example, the tree shown in Figure 13.6. The numbers shown on the
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arcs of the spanning tree give the tree solution corresponding to the supplies/demanc
shown in Figur¢ 13]1. They were obtained by starting at the “leaves” of the tree and
working “inward.” For instance, the flows could be solved for successively as follows:

flow bal at d: Tad = 6,
flow bal at a: Ttg — Tag=0 = Ity =06,
flow bal at f: —ZTfa— Tip =—9 — T =3,
flow bal at c: Tpe = 6,
flow bal at b: T+ Tgp—Toe=0 = xgp=3,
flow bal at e: ZTge = 2.

Itis easy to see that this process always works. The reason is that every tree must ha
at least one leaf node, and deleting a leaf node together with the edge leading into
produces a subtree.

The above computation suggests that spanning trees are related to bases in tl
simplex method. Let us pursue this idea. Normally, a basis is an invertible square
submatrix of the constraint matrix. But for incidence matrices, no such submatrix
exists. To see why, note that if we sum together all the rows, afe get a row vector
of all zeros (since each column df has exactly one-1 and one—1). Of course,
every square submatrix of has this same property and so is singular. In fact, we
shall show in a moment that for a connected network, there is exactly one redundarn
equation (i.e., the rank of is exactlym — 1).

Let us select some node, say, the last one, and delete the flow-balance constrai
associated with this node from the constraints defining the problem (since it is redun
dant anyway). Let's call this node thmeot node Let A denote the incidence matrix
A without the row corresponding to the root node (i.e., the last row), ariddenote
the supply/demand vector with the last entry deleted. The most important property of
network flow problems is summarized in the following theorem:

THEOREM 13.1. A square submatrix ofl is a basis if and only if the arcs to
which its columns correspond form a spanning tree.

Rather than presenting a formal proof of this theorem, it is more instructive to
explain the idea using the example we've been studying. Therefore, consider the
spanning tree shown in Fig.6, andietenote the square submatrix Afcor-
responding to this tree. The matr® is invertible if and only if every system of
equations of the form

Bu=p

has a unique solution. This is exactly the type of equation that we already solved tc
find the tree solution associated with the spanning tree:

BZ‘B = —b.
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We solved this system of equations by looking at the spanning tree and realizing tha
we could work our way to a solution by starting with the leaves and working inward.
This process amounts to a permutation of the rows and colummstofget a lower
triangular matrix. Indeed, for the calculations given above, we have permuted the row:
by P and the columns by to get

(@d) (fa) (fb) (b.c) (9.b) (g.€)

d 1
al -1 1
PBQT = f -1 -1
c 1
b 1 -1 1
e| 1 |

The fact thatB is invertible is now immediately apparent from the fact that the per-
muted matrix is lower triangular. In fact, it has onlyi’'s and—1's on the diagonal.
Therefore, we can solve systems of equations involBngithout ever having to do
any divisions. Also, since the off-diagonal entries are atd¢s, it follows that we
don’t need to do any multiplications either. Every system of equations involving the
matrix B can be solved by a simple sequence of additions and subtractions.

We have shown that, given a spanning tree, the submatrik ainsisting of the
columns corresponding to the arcs in the spanning tree is a basis. The converse dire
tion (which is less important to our analysis) is relegated to an exercise (see Exercis
[3.12).

Not only is there a primal solution associated with any basis but also there is a
dual solution. Hence, corresponding to any spanning tree there is a dual solution. Th
dual solution consists of two types of variables: #is and thez;;'s. These variables
must satisfy the dual feasibility conditions:

Yj — Yi + Zij = Cijs (i,j) € A.
By complementarityz;; = 0 for each(i, j) in the spanning tre& . Hence,
Yj — Yi = Cij, (i,j) €T,

Since a spanning tree on nodes hasn — 1 arcs (why?), these equations define a
system ofn — 1 equations inn unknowns. But don't forget that there was a redundant
equation in the primal problem, which we associated with a specific node called the
root node. Removing that equation and then looking at the dual, we see that there i
not really a dual variable associated with the root node. Or equivalently, we can just
say that the dual variable for the root node is zero. Making this assignment, we get

equations inm unknowns. These equations can be solved by starting at the root node
and working down the tree.
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For example, let node “g” be the root node in the spanning tree in Figurg 13.6.
Starting with it, we compute the dual variables as follows:

Yg =0,
acrossarc (g.e): Ye—vyg=19 = ye=19,
acrossarc (g,b):  w—vy3=33 = =33,
acrossarc (b,c):  yYyc—yp =65 = y.=98,
across arc (f,b): Yo —yr =48 = yr = —15,
across arc (f,a): Ya— Yt =H6 = ya=41,
acrossarc (a,d):  yg—ya=28 = yq=60.

Now that we know the dual variables, the dual slacks for the arcs not in the spanning
tree7 can be computed using

zig=vite;—y;, (L) €T
(which is just the dual feasibility condition solved fey;). These values are shown on
the nontree arcs in Figufe 1B.6.
From duality theory, we know that the current tree solution is optimal if all the
flows are nonnegative and if all the dual slacks are nonnegative. The tree solutior
shown in Figurg 13]6 satisfies the first condition but not the second. That is, it is

primal feasible but not dual feasible. Hence, we can apply the primal simplex methoc
to move from this solution to an optimal one. We take up this task in the next section.

3. The Primal Network Simplex Method

Each of the variants of the simplex method presented in earlier chapters of this
book can be applied to network flow problems. It would be overkill to describe them
all here in the context of networks. However, they are all built on two simple algo-
rithms: the primal simplex method (for problems that are primal feasible) and the duall
simplex method (for problems that are dual feasible). We discuss them both in detail.

We shall describe the primal network simplex method by continuing with our
example. As mentioned above, the tree shown in Fifurg 13.6 is primal feasible bu
not dual feasible. The basic idea that defines the primal simplex method is to pick &
nontree arc that is dual infeasible and let it enter the tree (i.e., become basic) and the
readjust everything so that we still have a tree solution.

The First Iteration.For our first pivot, we let arc (a,c) enter the tree usiqgimal
pivot In a primal pivot, we add flow to the entering variable, keeping all other nontree
flows set to zero and adjusting the tree flows appropriately to maintain flow balance.
Given any spanning tree, adding an extra arc must create a cycle (why?). Hence, tr
current spanning tree together with the entering arc must contain a cycle. The flow:
on the cycle must change to accommodate the increasing flow on the entering arc. TF

flows on the other tree arcs remain unchanged. In our example, the cycle is: “a”, “c”,
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FIGURE 13.7. The cycle produced by including the entering arc
with the spanning tree. As the flotwon the entering arc increases,
eventually the flow on arc (f,b) becomes zero (when 3). Hence,
arc (f,b) is the leaving arc.

“p”, “f”. This cycle is shown in Figur¢ T3]7 with flows adjusted to take into account a
flow of ¢ on the entering arc. Asincreases, eventually the flow on arc (f,b) decreases
to zero. Hence, arc (f,b) is the leaving arc. Updating the flows is easy; just tak®e
and adjust the flows appropriately.

With a little thought, one realizes that the selection rule for the leaving arc in a
primal pivot is as follows:

Leaving arc selection rule:
¢ the leaving arc must be oriented along the cycle in the reverse
direction from the entering arc, and
e among all such arcs, it must have the smallest flow.

Also, the flows on the cycle get updated as follows:

Primal flows update:

e Flows oriented in the same direction as the leaving arc are
decreased by the amount of flow that was on the leaving arc
whereas flows in the opposite direction are increased by this
amount.

The next issue is how to update the dual variables. To this end, note that if we
delete the leaving arc from the spanning tree (without concurrently adding the entering
arc), we disconnect it into two disjoint trees. In our example, one tree contains node:
“a”, “d” and “f” while the second tree contains the other nodes. Fijure| 13.8 shows the
two disjoint trees. Recalling that the dual variables are calculated starting with the roof
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FIGURE 13.8. The two disjoint trees. Primal and dual values that
remained unchanged are shown, whereas those that need to be up-
dated are shown as question marks.

node and working up the spanning tree, it is clear that the dual variables on the subtre
containing the root node remain unchanged, whereas those on the other subtree mt
change. For the current pivot, the other subtree consists of nodes “a”, “d”, and “f”.
They all get incremented by the same fixed amount, since the only change is that th
arc by which we bridged from the root-containing tree to this other tree has changec
from the leaving arc to the entering arc. Looking at node “a” and using tildes to denote
values after being changed, we see that

Ya=Yc — Cac
=Yc — Cac,
whereas
Zac = Ya+ Cac — Yc-

Combining these two equations, we get
Ya = Ya— Zac

That is, the dual variable at node “a” gets decremented,py- —9. Of course, all
of the dual variables on this subtree get decremented by this same amount. In gener:
the dual variable update rule can be stated as follows:

Dual variables update:
e Ifthe entering arc crosses from the root-containing tree to the
non-root-containing tree, then increase all dual variables on
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FIGURE 13.9. The tree solution at the end of the first iteration.

the non-root-containing tree by the dual slack of the entering
arc.
e Otherwise, decrease these dual variables by this amount.

Finally, we must update the dual slacks. The only dual slacks that change are
those that span across the two trees since, for these nodes, either the head or the f
dual variable changes, while the other does not. Those that span the two subtrees
the same direction as the entering arc must be decreaseg,byhereas those that
bridge the two trees in the opposite direction must be increased by this amount. Fo
our example, six nontree arcs, (f,g), (f,b), (f,c), (d,b), (d,e), and (a,e), span in the sam
direction as the entering arc. They all must be decreaseddbyrhat is, they must be
increased by. For example, the dual slack on arc (f,c) changes frafrto 4. Only
one arc, (b,a), spans in the other direction. It must be decreasgd Bye updated
solution is shown in Figure 13.9. The general rule for updating the dual slacks is as
follows:

Dual slacks update:

e The dual slacks corresponding to those arcs that bridge in the
same direction as the entering arc get decremented by the old
dual slack on the entering arc, whereas those that correspond
to arcs bridging in the opposite direction get incremented by

this amount.
The Second IterationThe tree solution shown in Figufe 1B.9 has only one re-
maining infeasibility: z,, = —10. Arc (b,a) must therefore enter the spanning tree.

Adding it, we create a cycle consisting of nodes “a”, “b”, and “c”. The leaving arc
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FIGURE 13.10. The two disjoint subtrees arising in the second iteration.

must be pointing in the opposite direction from the entering arc. Here, there is only
one such arc, (b,c). It must be the leaving arc. The leaving arc’s flow decreases from
to 0. The flow on the other two cycle arcs must increas8 hypreserve flow balance.

The two subtrees formed by removing the leaving arc are shown in 13.10
The dual variables on the non-root-containing subtree get incremented by the duz
slack on the entering arg, = —10. The dual slacks for the spanning arcs also change
by 10 either up or down depending on which way they bridge the two subtrees. The
resulting tree solution is shown in Figdre 13.11.

The Third and Final Iteration.The tree solution shown in Figufe 13|11 has one
infeasibility: z;, = —1. Hence, arc (f,c) must enter the spanning tree. The leaving arc
must be (f,a). Leaving the details of updating to the reader, the resulting tree solutior
is shown in Figurg 13.12. Itis both primal and dual feasible—hence optimal.

4. The Dual Network Simplex Method

In the previous section, we developed simple rules for the primal network simplex
method, which is used in situations where the tree solution is primal feasible but not
dual feasible. When a tree solution is dual feasible but not primal feasible, then the
dual network simplex method can be used. We shall define this method now. Conside
the tree solution shown in Figufe 13]13. It is dual feasible but not primal feasible
(sincezqp < 0). The basic idea that defines the dual simplex method is to pick a tree
arc that is primal infeasible and let it leave the spanning tree (i.e., become nonbasic
and then readjust everything to preserve dual feasibility.
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FIGURE 13.11. The tree solution at the end of the second iteration.
To get from the spanning tree in Figlire 73.9 to here, we let arc (b,a)
enter and arc (b,c) leave.
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FIGURE 13.12. The tree solution at the end of the third iteration.
To get from the spanning tree in Figlire 13.11 to here, we let arc (f,b)
enter and arc (f,a) leave. This tree solution isdp&malsolution to

the problem.
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FIGURE 13.13. A tree solution that is dual feasible but not primal feasible.

The First Iteration.For the first iteration, we need to let arc (d,b) leave the span-
ning tree using aual pivot which is defined as follows. Removing arc (d,b) discon-
nects the spanning tree into two disjoint subtrees. The entering arc must be one of th
arcs that spans across the two subtrees so that it can reconnect them into a spanni
tree. That is, it must be one of

(a,e) (ad) (be) or (g.e)

See Figuré 13.14. To see how to decide which it must be, we need to consider care
fully the impact of each possible choice.

To this end, let us consider the general situation. As mentioned above, the span
ning tree with the leaving arc removed consists of two disjoint trees. The entering arc
must reconnect these two trees.

First, consider a reconnecting arc that connects in the same direction as the leavin
arc. When we add flow to this prospective entering arc, we will have to decrease flow
on the leaving arc to maintain flow balance. Therefore, the leaving arc’s flow, which
is currently negative, can't be raised to zero. That is, the leaving arc can't leave. This
is no good.

Now suppose that the reconnecting arc connects in the opposite direction. If it
were to be the entering arc, then its dual slack would drop to zero. All other re-
connecting arcs pointing in the same direction would drop by the same amount. Tc
maintain nonnegativity of all the others, we must pick the one that drops the least. We
can summarize the rule as follows:

Entering arc selection rule:
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FIGURE 13.14. The two subtrees for the first pivot of the dual sim-
plex method.

¢ the entering arc must bridge the two subtrees in the opposite
direction from the leaving arc, and
e among all such arcs, it must have the smallest dual slack.

In our example, all bridging arcs point in the opposite direction from the leaving arc.
The one with the smallest dual slack is (g,e) whose slagleis- 9. This arc must be
the entering arc.

We have now determined both the entering and leaving arcs. Hence, the nev
spanning tree is determined and therefore, in principle, all the variables associate
with this new spanning tree can be computed. Furthermore, the rules for determinin
the new values by updating from the previous ones are the same as in the prime
network simplex method. The resulting tree solution is shown in Figure13.15.

The Second lteratiorf-or the second pivot, there are two choices for the leaving
arc: (g,b) and (d,e). Using the most infeasible, we choose (d,e). We remove this ar
from the spanning tree to produce two subtrees. One of the subtrees consists of ju
the node “d” all by itself while the other subtree consists of the rest of the nodes.
Remembering that the reconnecting arc must bridge the two subtrees in the opposi
direction, the only choice is (a,d). So this arc is the entering arc. Making the pivot, we
arrive at the optimal tree solution shown in Fighre 1B.12.

5. Putting It All Together

As we saw in Chaptér} 5, for linear programming the primal and the dual simplex
methods form the foundation on which one can build a few different variants of the
simplex method. The same is true here in the context of network flows.
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FIGURE 13.15. The tree solution after the first pivot.

For example, one can build a two-phased procedure in which one first uses the
dual network simplex method (with costs artificially and temporarily altered to ensure
dual feasibility of an initial tree solution) to find a primal feasible solution and then
uses the primal network simplex method to move from the feasible solution to an
optimal one.

Alternatively, one can use the primal network simplex method (with supplies tem-
porarily altered to ensure primal feasibility of an initial tree solution) to find a dual
feasible solution and then use the dual network simplex method (with the original
supplies) to move from the dual feasible solution to an optimal one.

Finally, as described for linear programming in Chapter 7, one can define a para
metric self-dual method in which primal pivots and dual pivots are intermingled as
needed so as to reduce a perturbation paramefr®em oo to zero.

Since there is nothing new in how one builds the network versions of these algo-
rithms from the basic primal and dual simplex pivots, we don’t go through any exam-
ples here. Instead, we just mention one final observation about the dual variables, th
y;'s. Namely, they are not needed anywhere in the performance of a primal or a dua
pivot. Hence, their calculation is entirely optional and can be skipped altogether or
simply defered to the end.

For completeness, we end this section by giving a step-by-step description of the
self-dual network simplex method'he steps are as follows:

(1) Identify a spanning tree-any one will do (see Exerci§e 13]14). Also identify
a root node.

(2) Computeinitial primal flowson the tree arcs by assuming that nontree arcs
have zero flow and the total flow at each node must be balanced. For this
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calculation, the computed primal flows may be negative. In this case, the
initial primal solution is not feasible. The calculation is performed working
from leaf nodes inward.

(3) Computeinitial dual valuesby working out from the root node along tree
arcs using the formula

Yj — Yi = Cij,s

which is valid on tree arcs, since the dual slacks vanish on these arcs.
(4) Computdnitial dual slackson each nontree arc using the formula

Zij = Yi + Cij = Yj-

Again, some of the;;'s might be nonnegative. This is okay (for now), but

it is important that they satisfy the above equality.

(5) Perturbeach primal flow and each dual slack that has a negative initial value
by adding a positive scalarto each such value.

(6) Identify arangeuwn < p < pwax Over which the current solution is optimal
(on the first iterationjuyax Will be infinite).

(7) Check the stopping rulaf pyn < 0, then setu = 0 to recover an optimal
solution. While not optimal, perform each of the remaining steps and then
return to recheck this condition.

(8) Select an arassociated with the inequalipyn < w (if there are several,
pick one arbitrarily). If this arc is a nontree arc, then the current pivot is a
primal pivot. If, on the other hand, it is a tree arc, then the pivot cual
pivot.

(a) Ifthe pivotis a primal pivot, the arc identified above is émering arc
Identify the associatdéaving arcas follows. First, add the entering arc
to the tree. With this arc added, there must be a cycle consisting of the
entering arc and other tree arcs. The leaving arc is chosen from those
arcs on the cycle that go in the opposite direction from the entering arc
and having the smallest flow among all such arcs (evaluated -at
/JJMIN)-

(b) If the pivot is a dual pivot, the arc identified above is tbaving arc
Identify the associateentering arcas follows. First, delete the leaving
arc from the tree. This deletion splits the tree into two subtrees. The
entering arc must bridge these two trees in the opposite direction to the
leaving arc, and, among such arcs, it must be the one with the smallest
dual slack (evaluated at= iyn)-

(9) Update primal flowsas follows. Add the entering arc to the tree. This ad-
dition creates a cycle containing both the entering and leaving arcs. Adjust
the flow on the leaving arc to zero, and then adjust the flows on each of the
other cycle arcs as necessary to maintain flow balance.
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(10) Update dual variabless follows. Delete the leaving arc from the old tree.
This deletion splits the old tree into two subtrees. Lgtenote the subtree
containing the tail of the entering arc, and Tetdenote the subtree contain-
ing its head. The dual variables for nodes/inremain unchanged, but the
dual variables for nodes if, get incremented by the old dual slack on the
entering arc.

(11) Update dual slackas follows. All dual slacks remain unchanged except for

those associated with nontree arcs that bridge the two sulireasd 7.
The dual slacks corresponding to those arcs that bridge in the same directior
as the entering arc get decremented by the old dual slack on the entering arc
whereas those that correspond to arcs bridging in the opposite direction ge
incremented by this amount.

As was said before and should now be clear, there is no need to update the dual var
ables from one iteration to the next; that is, 10 can be skipped.

6. The Integrality Theorem

In this section, we consider network flow problems for which all the supplies and
demands are integers. Such problems are cakadork flow problems with integer
data As we explained in Sectidn [[3.2, for network flow problems, basic primal so-
lutions are computed without any multiplication or division. The following important
theorem follows immediately from this property:

THEOREM 13.2. Integrality TheoremFor network flow problems with integer
data, every basic feasible solution and, in particular, every basic optimal solution
assigns integer flow to every arc.

This theorem is important because many real-world network flow problems have
integral supplies/demands and require their solutions to be integral too. This inte-
grality restriction typically occurs when one is shipping indivisible units through a
network. For example, it wouldn’t make sense to ship one third of a car from an au-
tomobile assembly plant to one dealership with the other two thirds going to anothel
dealership.

Problems that are linear programming problems with the additional stipulation
that the optimal solution values must be integers are calteder programming prob-
lems Generally speaking, these problems are much harder to solve than linear pro
gramming problems (see Chapfer 22). However, if the problem is a network flow
problem with integer data, it can be solved efficiently using the simplex method to
compute a basic optimal solution, which the integrality theorem tells us will be integer
valued.

6.1. Konig's Theorem. In addition to its importance in real-world optimization
problems, the integrality theorem also has many applications to the branch of mathe
matics called combinatorics. We illustrate with just one example.
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THEOREM 13.3. Konig's Theorem.Suppose that there are girls and n boys,
that every girl knows exactly boys, and that every boy knows exaétlgirls. Thenn
marriages can be arranged with everybody knowing his or her spouse.

Before proving this theorem it is important to clarify its statement by saying that
the property of “knowing” is symmetric (for example, knowing in the biblical sense).
That is, if a certain girl knows a certain boy, then this boy also knows this girl.

PROOFE Consider a network with nodes, gs, ..., gn, b1, b2, ..., b, and an arc
from g, to b; if girl 4 and boy; know each other. Assign one unit of supply to each girl
node and a unit of demand to each boy node. Assign arbitrary objective coefficients tc
create a well-defined network flow problem. The problem is guaranteed to be feasible
just put a flow of1/k on each arc (the polygamists in the group might prefer this
nonintegral solution). By the integrality theorem, the problem has an integer-valued
solution. Clearly, the flow on each arc must be either zero or one. Also, each girl
node is the tail of exactly one arc having a flow of one. This arc points to her intended
mate. O

Exercises

In solving the following problems, the network pivot tool can be used to check
your arithmetic:

campuscgi.princeton.edufvdb/JAVA/network/nettool/netsimp.htiml
13.1 Consider the following network flow problem:

Numbers shown above the nodes are supplies (negative values represent d
mands) and numbers shown above the arcs are unit shipping costs. Th
darkened arcs form a spanning tree.

(a) Compute primal flows for each tree arc.

(b) Compute dual variables for each node.

(c) Compute dual slacks for each nontree arc.


http://campuscgi.princeton.edu/~rvdb/JAVA/network/nettool/netsimp.html
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13.2 Consider the tree solution for the following minimum cost network flow

problem:
%M

The numbers on the tree arcs represent primal flows while numbers on the
nontree arcs are dual slacks.
(a) Using the largest—coefficient rule in the dual network simplex method,
what is the leaving arc?
(b) What is the entering arc?
(c) After onepivot, what is the new tree solution?

13.3 Consider the following network flow problem:

A
o

-1
The numbers above the nodes are supplies (negative values represent di
mands) and numbers shown above the arcs are unit shipping costs. Thi
darkened arcs form a spanning tree.
(&) Compute primal flows for each tree arc.

(b) Compute dual variables for each node.
(c) Compute dual slacks for each nontree arc.

13.4 Consider the tree solution for the following minimum cost network flow
problem:
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A

14 6

(J*-ls 1*;@

k
10 13 14

Vet

The numbers on the tree arcs represent primal flows while numbers on the
nontree arcs are dual slacks.
(a) Using the largest—coefficient rule in the primal network simplex method,
what is the entering arc?
(b) What is the leaving arc?
(c) After onepivot, what is the new tree solution?

13.5 Consider the tree solution for the following minimum cost network flow

s
TRLYAR

oleod

The numbers on the tree arcs represent primal flows while numbers on the
nontree arcs are dual slacks.
(a) Using the largest—coefficient rule in the dual network simplex method,
what is the leaving arc?
(b) What is the entering arc?
(c) After onepivot, what is the new tree solution?

13.6 Solve the following network flow problem starting with the spanning tree
shown.
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The numbers displayed next to nodes are suppligdémands{). Num-
bers on arcs are costs. Missing data should be assumed to be zero. The bo
arcs represent an initial spanning tree.

13.7 Solve Exercisg 2.11 using the self-dual network simplex method.

13.8 Using today’s date (MMYY) for the seed value, solve 10 problems using the
network simplex pivot tool:

campuscgi.princeton.edufvdb/JAVA/network/challenge/netsimp.himl .

13.9 Consider the following tree solution for a minimum cost network flow prob-
lem:

5+m 10-m

6
‘62, 6+m_; 2+m;®

7-m 6 -4+m 5-m 3
@4—%&5%
0 3 2-m

As usual, bold arcs represent arcs on the spanning tree, numbers next to th
bold arcs are primal flows, numbers next to non-bold arcs are dual slacks,
and numbers next to nodes are dual variables.

(a) For what values af is this tree solution optimal?

(b) What are the entering and leaving arcs?

(c) After onepivot, what is the new tree solution?

(d) For what values of. is the new tree solution optimal?


http://campuscgi.princeton.edu/~rvdb/JAVA/network/challenge/netsimp.html
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13.10 Consider the following tree solution for a minimum cost network flow prob-
lem:

5+m 10-m

6
‘G%, - 4+m_; 2+m;®

7-m 6 6+tm 5m 3
é4+&54§c{
0 3 2-m

(a) For what values af is this tree solution optimal?

(b) What are the entering and leaving arcs?

(c) After onepivot, what is the new tree solution?

(d) For what values of. is the new tree solution optimal?

13.11 Consider the following minimum cost network flow problem
-1 1

e

As usual, the numbers on the arcs represent the flow costs and numbers &
the nodes represent supplies (demands are shown as negative supplies). T
arcs shown in bold represent a spanning tree. If the solution corresponding
to this spanning tree is optimal prove it, otherwise find an optimal solution
using this tree as the initial spanning tree.

13.12 Suppose that a square submatrixbfs invertible. Show that the arcs cor-
responding to the columns of this submatrix form a spanning tree.

13.13 Show that a spanning tree ennodes must have exactly — 1 arcs.

13.14 Define an algorithm that takes as input a network and either finds a spanning
tree or proves that the network is not connected.

13.15 Give an example of a minimum-cost network flow problem with all arc costs
positive and the following counterintuitive property: if the supply at a partic-
ular source node and the demand at a particular sink node are simultaneousl
reduced by one unit, then the optimal cost increases.
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FIGURE 13.16. The primal network has nodes “a” through “f”.
The corresponding dual network has nodes “A’ through “D” (node
“A’ is “at infinity”). A primal spanning tree is shown. It consists

of five arcs: (a,b), (f,b), (b,e), (e,d), and (c,d). The corresponding
dual spanning tree consists of three arcs: (B,A), (A,C), and (D,A).
Primal costs are shown along the primal arcs and supplies/demands
are shown at the primal nodes.

13.16 Consider a possibly disconnected netw@i, .A). Two nodes; andj in
N are said to beonnectedf there is a path from to j (recall that paths
can traverse arcs backwards or forwards). We wirite j if ¢ and j are
connected.

(&) Show that ~” defines arequivalence relationThat is, it has the fol-
lowing three properties:
(i) (reflexivity) foralli € N, ~ i;
(i) (symmetry) foralli,j € N, ~ j implies thatj ~ i;
(iii) (transitivity) for all 4,j,k € N, i ~ 5 andj ~ k implies that
i~ k.
Using the equivalence relation, we can partitighinto a collection of sub-
sets ofequivalence classe&;, N5, ..., N} such that two nodes are con-
nected if and only if they belong to the same subset. The nuitsecalled
the number oEonnected components
(b) Show that the rank of the node—arc incidence madrig exactlym — k
(recall thatm is the number of rows ofl).



238 13. NETWORK FLOW PROBLEMS

13.17 One may assume without loss of generality that every node in a minimum
cost network flow problem has at least two arcs associated with it. Why?

13.18 The sum of the dual slacks around any cycle is a constant. What is that
constant?

13.19 Planar Networks.A network is calledplanar if the nodes and arcs can be
layed out on the two-dimensional plane in such a manner that no two arcs
cross each other (it is allowed to draw the arcs as curves if necessary). All
of the networks encountered so far in this chapter have been planar. Associ
ated with each planar network is a geometrically defined dual network. The
purpose of this problem is to establish the following interesting fact:

A dual network simplex pivot is precisely a primal network simplex

method applied to the dual network.

Viewed geometrically, the nodes of a planar graph are caftgtices
and the arcs are calletiges Consider a specific connected planar network.

If one were to delete the vertices and the edges from the plane, one woulc
be left with a disjoint collection of subsets of the plane. These subsets are
calledfaces Note that there is one unbounded face. It is a face just like
the other bounded ones. An example of a connected planar network with its
faces labeled! throughD is shown in Figurg¢ 13.16.

Dual nodes.Associated with each connected planar network dsial
networkdefined by interchanging vertices and faces. That is, place a dual
vertex in the center of each primal face. Note: the dual vertex corresponding
to the unbounded primal face could be placed anywhere in the unboundec
face but we choose to putat infinity. In this way, dual edges (defined next)
that have a head or a tail at this node can run off to infinity in any direction.

Dual arcs. Connect with a dual edge any pair of dual nodes whose
corresponding primal faces share an edge. Each dual edge crosses exact
one primal edge. The directionality of the dual edge is determined as fol-
lows: first, place a vector along the corresponding primal edge pointing in
the direction of the primal arc, and then rotate it counterclockwise until it is
tangent to the dual edge. The vector now defines the direction for the dual
arc.

Dual spanning tree.Consider a spanning tree on the primal network
and suppose that a primal—dual tree solution is given. We defiparning
tree on the dual network as follows. A dual edge is on the dual network’s
spanning tree if and only if the corresponding primal edge is not on the
primal network’s spanning tree.

Dual flows and dual dual-slacksThe numerical arc data for the dual
network is inherited directly from the primal. That is, flows on the dual tree
arcs are exactly equal to the dual slacks on the associated primal nontre
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arcs. And, the dual slacks on the the dual nontree arcs are exactly equa
to the primal flows on the associated primal tree arcs. Having specified
numerical data on the arcs of the dual network, it is fairly straightforward
to determine values for supplies/demands at the nodes and shipping cost
along the arcs that are consistent with these numerical values.

(&) Which of the following networks are planar:

a c a c

(@ (b) (©

(b) A network is calledcompleteif there is an arc between every pair of
nodes. If a complete network witth nodes is planar, then every net-
work with m nodes is planar. Prove it.

(c) Show that a nonplanar network must h&wer more nodes.

(d) As always, letn denote the number of nodes andiledenote the num-
ber of arcs in a network. Let denote the number of faces in a planar
network. Show by induction ofi thatm = n — f + 2.

(e) Show that the dual spanning tree defined above is in fact a spanning
tree.

(f) Show that a dual pivot for a minimum cost network flow problem de-
fined on the primal network is precisely the same as a primal pivot for
the corresponding network flow problem on the dual network.

(g) Using the cost and supply/demand information given for the primal
problem in Figuré¢ 13.16, write down the primal problem as a linear
programming problem.

(h) Write down the dual linear programming problem that one derives al-
gebraically from the primal linear programming problem.

(i) Using the spanning tree shown in Figlre 13.16, compute the primal
flows, dual variables, and dual slacks for the network flow problem
associated with the primal network.

() Write down the flow and slacks for the network flow problem associated
with the dual network.
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(k) Find arc costs and node supplies/demands for the dual network that are
consistent with the flows and slacks just computed.

() Write down the linear programming problem associated with the net-
work flow problem on the dual network.

Notes

The classical referencelis Ford & Fulkerson (1962). More recent works include
the books by Christofides (1975), Lawler (1976), Bazaraalet al. (1977), Kennington &
Helgasoh((1980), Jensen & Barhes (1980), Bertsekas [(1991), and Ahuja et al. (1993

The two “original” algorithms for solving minimum-cost network flow problems
are thenetwork simplex methodeveloped by Dantzjg (19%) and theprimal—dual
methoddeveloped by Ford & Fulkerson (1958). The self-dual algorithm described
in this chapter is neither of these. In fact, it resembles the “out-of-kilter” method
described by Ford & Fulkersbh (1962).



CHAPTER 14

Applications

In this chapter, we discuss briefly the most important applications of network flow
problems.

1. The Transportation Problem

The network flow problem, when thought of as representing the shipment of goods
along a transportation network, is called tin@nsshipment problemAn important
special case is when the set of nodésan be partitioned into two sefsandD,

N=8SUD, SND =0,

such that every arc il has its tail inS and its head irD. The nodes ir§ are called
source (or supply) nodesvhile those inD are calleddestination (or demand) nodes
Such graphs are calldpartite graphs(see Figurg 14]1). A network flow problem on
such a bipartite graph is calledransportation problemin order for a transportation

O\
go
%
Supply Demand
nodes nodes

FIGURE 14.1. A bipartite graph—the network for a transportation problem.

241
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problem to be feasible, the supply must be nonnegative at every supply node, and tr
demand must be nonnegative at every demand node. That is,

b, >0 fories,
b; <0 forieD.

When put on paper, a bipartite graph has the annoying property that the arcs ten
to cross each other many times. This makes such a representation inconvenient fi
carrying out the steps of the network simplex method. But there is a nice, uncluttered
tabular representation of a bipartite graph that one can use when applying the simple
method. To discover this tabular representation, first suppose that the graph is lai
out as shown in Figufe 14.2. Now if we place the supplies and demands on the node
and the costs at the kinks in the arcs, then we get, for example, the following simple
tabular representation of a transportation problem;

—10-23 —15
715 6 o«
(14.2) 1118 4 3
18 + 9  x
120 « 3 6

(the asterisks represent nonexistent arcs). The iterations of the simplex method can
written in this tabular format by simply placing the dual variables where the supplies
and demands are and by placing the primal flows and dual slacks where the arc cos
are. Of course, some notation needs to be introduced to indicate which cells are pa
of the current spanning tree. For example, the tree could be indicated by putting a bo:
around the primal flow values. Here is a (nonoptimal) tree solution for the data given
above:

1 4
5 *
(3] -4
[18] «
3|« []15]

(the solution to this problem is left as an exercise).

In the case where every supply node is connected to every demand node, th
problem is called thélitchcock Transportation Problemin this case, the equations
defining the problem are especially simple. Indeed, if we denote the supplies at the
supply nodes by, i € S, and if we denote the demands at the demand nodes, by

(14.2) -3
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-10 -23 -15 Demands
5 6
70O
8 4 3
11 O—=
9
8 O—F-———

12 O

Supplies

FIGURE 14.2. The bipartite graph from Figure T4.1 laid out in a
rectangular fashion, with supplies and demands given at the nodes,
and with costs given on the arcs.

j € D, then we can write the problem as

minimize Z Z CijTij

i€S jED
subject to Z ;=1 €S
JjE€D
ZCL’Z‘]‘ = Sj j€D
€S
zi; > 0 1€8,j€D.

2. The Assignment Problem

Given a setS of m people, a seD of m tasks, and for eache S, j € D a cost
¢;; associated with assigning persoto taskyj, theassignment probleris to assign
each person to one and only one task in such a manner that each task gets covered
someone and the total cost of the assignments is minimized. If we let

1 if personi is assigned task,
Tij = .
! 0 otherwise
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then the objective function can be written as

minimize Z Z CijTij.
i€S jeD
The constraint that each person is assigned exactly one task can be expressed sim|
as
Y wij=1, forallies.
JED
Also, the constraint that every task gets covered by someone is just

inj =1, forall j € D.
=5
Except for the assumed integrality of the decision variables,the assignment

problem is just a Hitchcock transportation problem in which the supply at every sup-
ply node (person) is one and the demand at every demand node (task) is also one. Tt
Hitchcock transportation problem therefore is calledltRerelaxationof the assign-
ment problem. It is easy to see that every feasible solution to the assignment probler
is a feasible solution for its LP-relaxation. Furthermore, every integral feasible so-
lution to the LP-relaxation is a feasible solution to the assignment problem. Since
the network simplex method applied to the LP-relaxation produces an integral solu-
tion, it therefore follows that the method solves not only the LP-relaxation but also the
assignment problem itself. We should note that this is a very special and importan
feature of the network simplex method. For example, had we used the primal-dua
interior-point method to solve the LP-relaxation, there would be no guarantee that the
solution obtained would be integral (unless the problem has a unique optimal solu-
tion, in which case any LP solver would find the same, integral answer—but typical
assignment problems have alternate optimal solutions, and an interior-point metho
will report a convex combination of all of them).

3. The Shortest-Path Problem

Roughly speaking, the shortest-path problem is to find, well, the shortest path
from one specific node to another in a netw@f, .4). In contrast to earlier usage,
the arcs connecting successive nodes on a path must point in the direction of trave
Such paths are sometimes referred tadliescted paths To determine a shortest path,
we assume that we are given the length of each arc. To be consistent with earlie
notations, let us assume that the length of (@rg) is denoted by:;;. Naturally, we
assume that these lengths are nonnegative.

To find the shortest path from one node (sgyto another (say;), we will see
that it is necessary to compute the shortest path from many, perhaps all, other nodes
r. Hence, we define thehortest-path probleras the problem of finding the shortest
path from every node iV to a specific node € A. The destination nodeis called
theroot node
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3.1. Network Flow Formulation. The shortest-path problem can be formulated
as a network flow problem. Indeed, put a supply of one unit at each nonroot node, an
put the appropriate amount of demand at the root (to meet the total supply). The cos
on each arc is just the length of the arc. Suppose that we've solved this network flow
problem. Then the shortest path from a nade r can be found by simply following
the arcs from to r on the optimal spanning tree. Also, the length of the shortest path
isy; —yi.

While the network simplex method can be used to solve the shortest-path problem
there are faster algorithms designed especially for it. To describe these algorithms, le
us denote the distance frointo r by v;. These distances (or approximations thereof)
are calledabelsin the networks literature. Some algorithms compute these distances
systematically in a certain order. These algorithms are chllesl-setting algorithms
Other algorithms start with an estimate for these labels and then iteratively correct
the estimates until the optimal values are found. Such algorithms are tattied
correcting algorithms

Note that if we sety’ to zero in the network flow solution, then the labels are
simply the negative of the optimal dual variables. In the following subsections, we
shall describe simple examples of label-setting and label-correcting algorithms.

3.2. A Label-Correcting Algorithm. To describe a label-correcting algorithm,
we need to identify a system of equations that characterize the shortest-path distance
First of all, clearly

v, = 0.

What can we say about the labels at other nodes, say,ifo8appose that we select

an arc(i, j) that leaves nodg If we were to travel along this arc and then, from node
J, travel along the shortest pathitothen the distance to the root wouldgg+v;. So,

from nodei, we should select the arc that minimizes these distances. This selectior
will then give the shortest distance frano . That is,

(14.3) v; = min{¢;; +v; : (4,7) € A}, i F£

The argument we have just made is called pieciple of dynamic programming
and equation| (14]3) is calléBkellman’s equation Dynamic programming is a whole
subject of its own—we shall only illustrate some of its basic ideas by our study of the
shortest-path problem. In the dynamic programming literature, the sesofiewed
as a function defined on the nodes is calledvhlee functionhence the notation).

From Bellman’s equation, it is easy to identify the arcs one would travel on in a
shortest-path route to the root. Indeed, these arcs are given by

T:{(i7j)€~/4:vi:cij+vj}~

This set of arcs may contain alternate shortest paths to the root, and so the setis n
necessarily a tree. Nonetheless, any path that follows these arcs will get to the root o
a shortest-path route.
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3.2.1. Method of Successive Approximatiddellman’s equation is an implicit
system of equations for the valueg i € N. Implicit equations such as this arise
frequently and beg to be solved by starting with a guess at the solution, using this
guess in the right-hand side, and computing a new guess by evaluating the right-han
side. This approach is called theethod of successive approximatiofie apply it to
the shortest-path problem, we initialize the labels as follows:

0 ) —
UEO): (3 T
0o TFET.

Then the updates are computed using Bellman’s equation:

(k+1) 0 1=
Ui = . k) /. .
min{c;; +v; 1 (4,5) € A} i # 7

J

3.2.2. Efficiency. The algorithm stops when an update leaves all i}t un-
changed. It turns out that the algorithm is guaranteed to stop in no morerilien-
ations. To see why, it suffices to note tlwé'f) has a very simple description: it is the
length of the shortest path froitio  that hag: or fewer arcs in the path. (It is not hard
to convince yourself with an induction dnthat this is correct, but a pedantic proof
requires introducing a significant amount of added notation that we wish to avoid.)
Hence, the label-correcting algorithm cannot take more thaterations, since every
shortest path can visit each node at most once. Since each iteration involves looking :
every arc of the network, it follows that the number of additions/comparisons needec
to solve a shortest-path problem using the label-correcting algorithm is abaut

3.3. A Label-Setting Algorithm. In this section, we describBijkstra’s algo-
rithm for solving shortest-path problems. The data structures that are carried from one
iteration to the next are a sét of finishednodes and two arrays indexed by the nodes
of the graph. The firstarray,, j € NV, is just the array of labels. The second arfay,
i € N, indicates the next node to visit from nodi@ a shortest path. As the algorithm
proceeds, the séft contains those nodes for which the shortest path has already beer
found. This set starts out empty. Each iteration of the algorithm adds one node to it
This is why the algorithm is called a label-setting algorithm, since each iteration sets
one label to its optimal value. For finished nodes, the labels are fixed at their optimal
values. For each unfinished node, the label has a temporary value, which represen
the length of the shortest path from that node to the root, subject to the condition tha
allintermediate nodes on the path must be finished nodes. Atthose nodes for which n
such path exists, the temporary label is set to infinity (or, in practice, a large positive
number).

The algorithm is initialized by setting all the labels to infinity except for the root
node, whose label is set @b Also, the set of finished nodes is initialized to the empty
set. Then, as long as there remain unfinished nodes, the algorithm selects an unfinish
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Initialize:
F=0

0 J=
E {oo j#ET
while (|JF¢| > 0){
j=argmin{vg : k ¢ F}
F e FUfj)
for eachi for which (4, j) € Aandi ¢ F {
if (cij +v; <v;){
Vi = Cij + vy

hi=13j

FIGURE 14.3. Dijkstra’s shortest-path algorithm.

node; having the smallest temporary label, adds it to the set of finished nodes, anc
then updates each unfinished “upstream” neighillmy setting its label te;; + v; if

this value is smaller than the current valye For each neighbor whose label gets
changedp; is set toj. The algorithm is summarized in Figyre 14.3.

4. Upper-Bounded Network Flow Problems

Some real-world network flow problems involve upper bounds on the amount
of flow that an arc can handle. There are modified versions of the network simplex
method that allow one to handle such upper bounds implicitly, but we shall simply
show how to reduce an upper-bounded network flow problem to one without upper
bounds.

Let us consider just one ar@, j), in a network flow problem. Suppose that there
is an upper bound af;; on the amount of flow that this arc can handle. We can express
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this bound as an extra constraint:
0 <z < uyj.
Introducing a slack variable;;, we can rewrite these bound constraints as
Tij + tij = uyy
Tij, tij = 0.

If we look at the flow balance constraints and focus our attention on the variables
andt,;, we see that they appear in only three constraints: the flow balance constraint
for nodesi and; and the upper bound constraint,

If we subtract the last constraint from the second one, we get
. _xZ] oo — _b’L
- —tij = —bj — uij
Tij —Hfij = Usgj -

Note that we have restored a network structure in the sense that each column aga
has onet+1 and one—1 coefficient. To make a network picture, we need to create
a new node (corresponding to the third row). Let us call this flad&he network
transformation is shown in Figure 14.4.

We can use the above transformation to derive optimality conditions for upper-
bounded network flow problems. Indeed, let us consider an optimal solution to the
transformed problem. Clearly, if;;. is zero, then the corresponding dual slagk=
yi + ¢ij — yx IS nonnegative:

(14.4) Yyi +cij —yr > 0.
Furthermore, the back-flow;;, must be at the upper bound rate:
Tjk = Uiy
Hence, by complementarity, the corresponding dual slack must vanish:
(14.5) Zjk = Y5 — Yk = 0.
Combining [I4.%) with[(I4]5), we see that

Yi + Cij = Y.



4. UPPER-BOUNDED NETWORK FLOW PROBLEMS 249

FIGURE 14.4. Adding a new nodé;, to accommodate an aft, j)
having an upper bound;; on its flow capacity.

On the other hand, if the flow on af¢, k) is at the capacity value, then the back-flow
on arc(j, k) must vanish. The complementarity conditions then say that

Zik =Yi + Cij —Yr =0
Zjk =Yj — Yk = 0.
Combining these two statements, we get
Yi +¢ij <y
Finally, if 0 < x;; < u;;, then both slack variables vanish, and this implies that
Yi +cij = Yj.
These properties can then be summarized as follows:
zij =0 = y; +ci; > y;
(146) Tij = Ujj = Y; + Cij < Y;
0< Tij < Uiy == Yi + Ci5 = Yj-
While upper-bounded network flow problems have important applications, we
admit that our main interest in them is more narrowly focused. It stems from their

relation to an important theorem called the Max-Flow Min-Cut Theorem. We shall
state and prove this theorem in the next section. The only tool we need to prove
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this theorem is the above result giving the complementarity conditions when there are
upper bounds on arcs. So on with the show.

5. The Maximum-Flow Problem

The subject of this section is the class of problems caflagimum-flow problems
These problems form an important topic in the theory of network flows. There are
very efficient algorithms for solving them, and they appear as subproblems in many
algorithms for the general network flow problem. However, our aim is rather modest.
We wish only to expose the reader to one important theorem in this subject, which is
called the Max-Flow Min-Cut Theorem.

Before we can state this theorem we need to set up the situation. Suppose th:
we are given a network\, A), a distinguished node € N called thesource node
a distinguished nodec N called thesink node and upper bounds on the arcs of the
networku;;, (i, 7) € A. For simplicity, we shall assume that the upper bounds are all
finite (although this is not really necessary). The objective is to “push” as much flow
from s to ¢ as possible.

To solve this problem, we can convert it to an upper-bounded network flow prob-
lem as follows. First, let;; = 0 for all arcs(i, j) € A, and leth; = 0 for every node
i € N. Then add one extra a[¢, s) connecting the sink nodeback to the source
nodes, put a negative cost on this arc (say, = —1), and let it have infinite capacity
ugs = 00. Since the only nonzero cost is actually negative, it follows that we shall
actually make a profit by letting more and more flow circulate through the network.
But the upper bound on the arc capacities limits the amount of flow that it is possible
to push through.

In order to state the Max-Flow Min-Cut Theorem, we must define what we mean
by a cut. Acut, C, is a set of nodes that contains the source node but does not contair
the sink node (see Figure T}.5). Teepacityof a cut is defined as

H(C) == Z Usj -

icC

Jj¢c
Note that here and elsewhere in this section, the summations are over “original” arc:
that satisfy the indicated set membership conditions. That is, they don't include the
arc that we added connecting franback tos. (If it did, the capacity of every cut
would be infinite—which is clearly not our intention.)

Flow balance tells us that the total flow along original arcs connecting the cut set

C to its complement minus the total flow along original arcs that span these two set:
in the opposite direction must equal the amount of flow on the artificigltasg. That
is,

(14.7) Tes = > Tij— Y Tij.

ieC igC
J¢C jec
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FIGURE 14.5. A cut set” for a maximum flow problem.

We are now ready to state the Max-Flow Min-Cut Theorem.
THEOREM 14.1. The maximum value af;; equals the minimum value s{C).

PrRooFR The proof follows the usual sort of pattern common in subjects where
there is a sort of duality theory. First of all, we note that it follows from (JL4.7) that

(14.8) xes < k(C)

for every feasible flow and every cut sét Then all that is required is to exhibit a
feasible flow and a cut set for which this inequality is an equality.

Letz};, (i,7) € A, denote the optimal values of the primal variables, ang;let

i € N, denote the optimal values of the dual variables. Then the complementarity
conditions [(I4.6) imply that

(14.9) zj; =0 whenevery; +ci; > y;
(14.10) ry; = u;; whenevery; +c;; < yj.
In particular,

Y —1>y;

(sinceuys = o0). PutC* = {k : y; < y}. Clearly,C* isacut.

Consider an arc having its tail 6 and its head in the complement 6f. It
follows from the definition ofC™ thaty; < y; < y;. Sincec;; is zero, we see from
@) thatﬂ:} = Ujj-

Now consider an original arc having its tail in the complementCtfand its
head inC* (i.e., bridging the two sets in the opposite direction). It follows then that
y; <y < y;. Hence, we see from (14.9) thay;, = 0.
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Combining the observations of the last two paragraphs With(14.7), we see that
Ty, = Z ui; = ~(C™).

ieC
jéc

In light of (14.8), the proof is complete. O

Exercises

14.1 Solve the transportation problem given[in (14.1), using (14.2) for the starting
tree solution.

14.2 Solve the following linear programming problem:

maximize 7xq — 3xo + 9x3 + 224

subjectto x; + a9 <1
3+ x4<1

1 + z3 >1

To + x42>1

X1, T2, I3, x420
(Note: there are two greater-than-or-equal-to constraints.)

14.3 Bob, Carol, David, and Alice are stranded on a desert island. Bob and David
each would like to give their affection to Carol or to Alice. Food is the
currency of trade for this starving foursome. Bob is willing to pay Cérol
clams if she will accept his affection. David is even more keen and is willing
to give Carol9 clams if she will accept it. Both Bob and David prefer Carol
to Alice (sorry Alice). To quantify this preference, David is willing to pay
Alice only 2 clams for his affection. Bob is even more averse: he says that
Alice would have to pay him for it. In fact, she'd have to pay Hralams
for his affection. Carol and Alice, being proper young women, will accept
affection from one and only one of the two guys. Between the two of them
they have decided to share the clams equally between them and hence the
objective is simply to maximize the total number of clams they will receive.
Formulate this problem as a transportation problem. Solve it.

14.4 Project SchedulingThis problem deals with the creation of a project sched-
ule; specifically, the project of building a house. The project has been di-
vided into a set of jobs. The problem is to schedule the time at which each
of these jobs should start and also to predict how long the project will take.
Naturally, the objective is to complete the project as quickly as possible
(time is money!). Over the duration of the project, some of the jobs can be
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done concurrently. But, as the following table shows, certain jobs definitely
can't start until others are completed.

Duration Must be
Job (weeks) | Preceeded by
0. Sign Contract with Buyer 0 -
1. Framing 2 0
2. Roofing 1 1
3. Siding 3 1
4. Windows 2.5 3
5. Plumbing 15 3
6. Electical 2 2.4
7. Inside Finishing 4 5,6
8. Outside Painting 3 2,4
9. Complete the Sale to Buyer 0 7,8
One possible schedule is the following:
Job Start Time

0. Sign Contract with Buyer 0

1. Framing 1

2. Roofing 4

3. Siding 6

4. Windows 10

5. Plumbing 9

6. Electical 13

7. Inside Finishing 16

8. Outside Painting 14

9. Complete the Sale to Buyer 21

With this schedule, the project duration is 21 weeke (difference be-
tween the start times of jobs 9 an§l 0

To model the problem as a linear program, introduce the following de-
cision variables:

t; = the start time of joly.
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(a) Write an expression for the objective function, which is to minimize the
project duration.

(b) For each joly, write a constraint for each jakthat must preceegt the
constraint should ensure that jgldoesn’t start until job is finished.
These are callepgrecedence constraints

14.5 Continuation.This problem generalizes the specific example of the previous
problem. A project consists of a set of jops For each jobj € J there
is a certain seP; of other jobs that must be completed before jotan be
started. (This is called the setpfedecessorsf job j.) One of the jobs, say
s, is the starting job; it has no predecessors. Another jobt siaythe final
(or terminal) job; it is not the predecessor of any other job. The time it will
take to do jobyj is denoted?; (thedurationof the job).

The problem is to decide what time each job should begin so that no
job begins before its predecessors are finished, and the duration of the entir
project is minimized. Using the notations introduced above, write out a
complete description of this linear programming problem.

14.6 Continuation. Let z;; denote the dual variable corresponding to the prece-
dence constraint that ensures jodoesn’t start until joli finishes.
(a) Write out the dual to the specific linear program in Proljlem|14.4.
(b) Write out the dual to the general linear program in Proljlem|14.5.
(c) Describe how the optimal value of the dual variable can be inter-
preted.

14.7 Continuation. The project scheduling problem can be represented on a di-
rected graph with arc weights as follows. The nodes of the graph corresponc
to the jobs. The arcs correspond to the precedence relations. That is; if job
must be completed before jghthen there is an arc pointing from nodl®
node;. The weight on this arc ig;.

(a) Draw the directed graph associated with the example in Prgblefn 14.4,
being sure to label the nodes and write the weights beside the arcs.

(b) Return to the formulation of the dual from Problgem 14.6(a). Give an
interpretation of that dual problem in terms of the directed graph drawn
in Part (a).

(c) Explain why there is always an optimal solution to the dual problem in
which each variable;; is either O or 1.

(d) Write out the complementary slackness condition corresponding to dual
variablezryg.
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(e) Describe the dual problem in the language of the original project sched-
uling model.

14.8 Continuation.Here is an algorithm for computing optimal start tintes

1. List the jobs so that the predecessors of each job come be-
fore it in the list.

2. Putty = 0.

3. Go down the list of jobs and for jopputt; = max{t;+d; :
i is a predecessor gf.

(a) Apply this algorithm to the specific instance from Problem[14.4. What
are the start times of each of the jobs? What is the project duration?

(b) Prove that the solution found in Part (a) is optimal by exhibiting a corre-
sponding dual solution and checking the usual conditions for optimal-
ity (Hint: The complementary slackness conditions may help you find a
dual solution).

14.9 Currency Arbitrage.Consider the world’s currency market. Given two cur-
rencies, say the Japanese Yen and the US Dollar, there is an exchange ra
between them (currently about 110 Yen to the Dollar). It is always true that,
if you convert money from one currency to another and then back, you will
end up with less than you started with. That is, the product of the exchange
rates between any pair of countries is always less than one. However, it
sometimes happens that a longer chain of conversions results in a gain. Suc
a lucky situation is called aarbitrage One can use a linear programming
model to find such situations when they exist.

Consider the following table of exchange rates (which is actual data
from the Wall Street Journal on Nov 10, 1996):

param rate:
usD Yen Mark Franc =
UsD . 111.52 1.4987 5.0852
Yen .008966 . .013493 .045593
Mark .6659 73.964 . 3.3823

Franc .1966 21.933 .29507

Itis not obvious, but the USB Yen—Mark—USD conversion actually makes
$0.002 on each initial dollar.
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To look for arbitrage possibilities, one can makgemeralized network
mode] which is a network flow model with the unusual twist that a unit
of flow that leaves one node arrives at the next node multiplied by a scale
factor—in our example, the currency conversion rate. For us, each currency
is represented by a node. There is an arc from each node to every other nod
A flow of one unit out of one node becomes a flow of a different magnitude
at the head node. For example, one dollar flowing out of the USD node
arrives at the Franc node as 5.0852 Francs.

Let z;; denote the flow from node (i.e. currenayip nodej. This flow
is measured in the currency of node

One node is special; it is theomenode, say the US Dollars (USD)
node. At all other nodes, there must be flow balance.

(a) Write down the flow balance constraints at the 3 non-home nodes (Franc
Yen, and Mark).

At the home node, we assume that there is a supply of one unit (to get things
started). Furthermore, at this node, flow balance will not be satisfied. Instead
one expects a net inflow. If it is possible to make this inflow greater than
one, then an arbitrage has been found. Edte a variable that represents
this inflow.

(b) Using variablef to represent net inflow to the home node, write a flow
balance equation for the home node.

Of course, the primal objective is to maximife

(c) Usingy; to represent the dual variable associated with the primal con-
straint for currency;, write down the dual linear program. (Regard the
primal variablef as a free variable.)

Now consider the general case, which might involve hundreds of currencies
worldwide.

(d) Write down the model mathematically using; for the flow leaving
node: heading for nodg (measured in the currency of nogjer;; for
the exchange rate when converting from currehtty currencyy, and
f for the net inflow at the home nodé.

(e) Write down the dual problem.
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(f) Can you give an interpretation for the dual variables? Hint: It might be
helpful to think about the case wherg = 1/r;; for all ¢, 5.

(g) Comment on the conditions under which your model will be unbounded
and/or infeasible.

Notes

The Hitchcock problem was introduced by Hitchcock (1941). Dijkstra’s algo-
rithm was discovered hy Dijkstra (1959).

The Max-Flow Min-Cut Theorem was proved independently by Elias|et al. {1956),
by[Ford & Fulkersoh/(1956) and, in the restricted case where the upper bounds are a
integers, by Kotzig/ (1956). Fulkerson & Dantz|g (1955) also proved the Max-Flow
Min-Cut Theorem. Their proof uses duality, which is particularly relevant to this
chapter.

The classic references for dynamic programming are the bodgks by Béllman (1957
and|Howar( [(1960). Further discussion of label-setting and label-correcting algo-
rithms can be found in the book by Ahuja et al. (1993).






CHAPTER 15

Structural Optimization

This final chapter on network-type problems deals with finding the best design
of a structure to support a specified load at a fixed set of points.tdaogyof the
problem is described by a graph where each node repres@itsia the structure and
each arc represents a potenﬁﬂmbeE] We shall formulate this problem as a linear
programming problem whose solution determines which of the potential members tc
include in the structure and how thick each included member must be to handle the
load. The optimization criterion is to find a minimal weight structure. As we shall see,
the problem bears a striking resemblance to the minimum-cost network flow problem
that we studied in Chapter]L3.

1. An Example

We begin with an example. Consider the graph shown in Figurg 15.1. This graph
represents a structure consisting of five joints and eight possible members connectir
the joints. The five joints and their coordinates are given as follows:

Joint Coordinates
1 (0.0, 0.0
2 (6.0, 0.0)
3 (0.0,8.0)
4 (6.0, 8.0)
5 (3.0,12.0)

Since joints are analogous to nodes in a network, we shall denote the set of joints b
N and denote byn the number of joints. Also, since members are analogous to arcs
in network flows, we shall denote the set of themby For the structure shown in
Figure[15.1, the set of members is

A={{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{3,5},{4,5}} .

ICivil engineers refer to beams as members.

259
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FIGURE 15.1. Sample topology for a two-dimensional structure.

Note that we enclosed the pairs of endjoints in braces to emphasize that their orde
is irrelevant. For exampl€2, 3} and{3, 2} refer to one and the same member span-
ning between joint? and3. In network flows, the graphs we considered were di-
rected graphs. Here, they are undirected. Also, the graphs here are embedded in
d-dimensional Euclidean space (meaning that every node comes with a set of coordi
nates indicating its location i+dimensional space). No such embedding was imposed
before in our study of network flows, even though real-world network flow problems
often possess such an embedding.

Following the standard convention of using braces to denote sets, we ought to le
xy; ;1 denote the force exerted by member;} on its endjoints. But the braces are
cumbersome. Hence, we shall write this force simplyas with the understanding
thatz;; andz;; denote one and the same variable.

We shall assume that a positive force represents tension in the member (i.e., th
member is pulling “in” on its two endjoints) and that a negative value represents com-
pression (i.e., the member is pushing “out” on its two endjoints).

If the structure is to be in equilibrium (i.e., not accelerating in some direction),
then forces must be balanced at each joint. Of course, we assume that there may be
nonzero external load at each joint (this is the analogue of the external supply/deman
in the minimum-cost network flow problem). Hence, for each ngdet b; denote
the externally applied load. Note that edghs a vector whose dimension equals the
dimension of the space in which the structure lies. For our example, this dimension i
2. In general, we shall denote the spatial dimensiod.by
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Force balance imposes a number of constraints on the member forces. For exan
ple, the force balance equations for jontan be written as follows:

ol [o}
w2

1
whereb} andb3 denote the components bf. Note that the three vectors appearing
on the left are unit vectors pointing out from joidalong each of the corresponding
members.

-1
0

-0.6

T12 + Xo3 + x24

2. Incidence Matrices

If, for each jointi, we letp; denote its position vector, then the unit vectors point-
ing along the arcs can be written as follows:

Pj — Pi ..
uy =————,  {i,jt €A
Y lpy — pall
It is important to note that;; = —u;;, since the first vector points frophtowards

1, whereas the second points frantowards;j. In terms of these notations, the force
balance equations can be expressed succinctly as

(151) Z UijTq5 = 7bi = ]., 2, ey
{ifeA

These equations can be written in matrix form as

(15.2) Az = —b

wherez denotes the vector consisting of the member foréedenotes the vector
whose elements are the applied load vectors, Ang a matrix containing the unit
vectors pointing along the appropriate arcs. For our example, we have

1 .6 b= by
0 8 b2
-6 b}
8 b2
-6 6 b

5 ol
| -8] -8 | 02
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Note that we have writted as a matrix oR-vectors by putting “inner” brackets around
appropriate pairs of entries. These inner brackets could of course be dropped—the
are included simply to show how the constraints match up With15.1).

In network flows, an incidence matrix is characterized by the property that every
column of the matrix has exactly two nonzero entries, erieand one—1. Here,
the matrix A is characterized by the property that, when viewed as a matrik of
vectors, every column has two nonzero entries that are unit vectors pointing in opposit
directions from each other. Generically, matdxcan be written as follows:

{i, 7}
- l -
11— Ujj
A =
J—= | uji

where, for eacHi, j} € A,

Uiz, Ujq € Rd,

Uij = —Uji,
and

[Jujll = llujall = 1.

By analogy with network flows, the matrid is called anincidence matrix This
definition is a strict generalization of the definition we had before, since] ferl1,
the current notion reduces to the network flows notion. Incidence matrices for network

flows enjoy many useful properties. In the following sections, we shall investigate the
extent to which these properties carry over to our generalized notion.

3. Stability

Recall that for network flows, the sum of the rows of the incidence matrix van-
ishes and that if the network is connected, this is the only redundancy. Far, the
situation is similar. Clearly, the sum of the rows vanishes. But is this the only redun-
dancy? To answer this question, we need to look for nonzero row vecdidos which
yT A = 0. The set of all such row vectors is a subspace of the set of all row vectors.
Our aimis to find a basis for this subspace and, in particular, to identify its dimension.
To this end, first writey in component form ag” = [y7 - ..yZ | where each of the
entriesy;, i = 1,2,...,m, ared-vectors (transposed to make them into row vectors).
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Multiplying this row vector against each column df we see thay” A = 0 if and
only if
(15.3) y?uij + y]TU,]Z =0, for all {l,]} € A

There are many choices gfthat yield a zero row combination. For example, we can
take any vector € R¢ and put

Y =, for everyi € NV.
Substituting this choice aj;'s into the left-hand side of (15.3), we get
y?uij + ijuﬂ = vTuij + UTUji = vTuij — vTuij =0.

This set of choices shows that the subspace is atdedishensional.

But there are more! They are defined in terms of skew symmetric matrices. A
matrix R is calledskew symmetrid R” = —R. A simple but important property of
skew symmetric matrices is that, for every vecpr

(15.4) ETRE=0

(see Exercisp 15.1). We shall make use of this property shortly. Now, to give more
choices ofy, let R be ad x d skew symmetric matrix and put

Y = Rp;, for everyi ¢ N/

(recall thatp; denotes the position vector for joif)t We need to check(15.3). Sub-
stituting this definition of the/’s into the left-hand side if (15.3), we see that

yi wij + yj wji = p; R uij + pj R
= —piTRuij — pruﬂ
= (p; — pi)" Ruyj.

Now substituting in the definition af;;, we get
(p; —pi)" R(p; — pi)
Ip; — pill

Finally, by puttingé = p; — p; and using property (15.4) of skew symmetric matrices,
we see that the numerator on the right vanishes. Helnce] (15.3) holds.

How many redundancies have we found? Ect 2, there are two independent
v-type redundancies and one madgetype. The following two vectors and a matrix
can be taken as a basis for these redundancies

o L1

(pj — pi)" Ruy; =
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Ford = 3, there are three independentype redundancies and thréetype. Here
are three vectors and three matrices that can be taken as a basis for the space of red
dancies:

0
S )
0
0-1 0 0 0 -1 0 0 0
(15.5) 1 0 0|, [0 0o of, [0 0-1
0 0 0 1 0 0 0 1 0

In general, there aré + d(d — 1)/2 = d(d + 1)/2 independent redundancies.
There could be more. But just as for network flows, where we showed that there is one
redundancy if and and only if the network is connected, further redundancies represer
a defect in the underlying graph structure. In fact, we say that the grajpdiikeif the
rank of the incidence matrid is exactlymd — d(d + 1)/2, that is, if and only if the
above redundancies account for the entire rank deficiengy of

4. Conservation Laws

Recall that for network flows, not all choices of supplies/demands yield feasible
flows. For connected networks, it is necessary and sufficient that the total supply
equals the total demand. The situation is similar here. The analogous question is
which external loads give rise to solutions[to (15.2)? We have already identified severa
row vectorsy” for whichy” A = 0. Clearly, in order to have a solution fo (15.2), it is
necessary thaj”'b = 0 for all these row vectors. In particular for everyc R?, we
see thab must satisfy the following condition:

Z UTbi =0.

Bringing the sum inside of the product, we get

oT (Z b) =0.

Since this must hold for everrvectorv, it follows that
> bi=0.

This condition has a simple physical interpretation: the loads, taken in total, must
balance.

What about the choices gf arising from skew symmetric matrices? We shall
show that these choices impose the conditions necessary to prevent the structure fro
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spinning around some axis of rotation. To show that this is so, let us first consider the
two-dimensional case. For eveyx 2 skew symmetric matrixz, the load vectors;,
i € N, must satisfy

(15.6) > (Rpi)"b; =0.

?

This expression is a sum of terms of the foffyp)”'b, wherep is the position vector
of a point and is a force applied at this point. We claim thd@p)” b is precisely the
torque about the origin created by applying fobee locationp. To see this connection
between the algebraic expression and its physical interpretation, first decopriptise
the product of its lengthr times a unit vectow pointing in the same direction and
rewrite the algebraic expression as

(Rp)"b = r(Rv)™b.

Now, without loss of generality, we may assume tRai the “basis” matrix for the
space of skew symmetric matrices,

R:[g—g].

This matrix has the additional property that its two columns are unit vectors that are
orthogonal to each other. That BY R = I. Hence,

IRol|* = |lv]* = 1.

Furthermore, property (13.4) tells us that is orthogonal ta. Therefore, the product
(Rv)Tb is the length of the projection df in the direction of Rv, and sor(Rv)Tb

is the distance from the origin (of the coordinate systemp,tavhich is called the
moment armtimes the component of the force that is orthogonal to the moment arm
in the direction of Rv (see Figurg 15]2). This interpretation for each summand in
(I5.8) shows that it is exactly the torque around the rotation axis passing through the
origin of the coordinate system caused by the fdrcapplied to jointi. Ind = 2,

there is only one rotation around the origin. This fact corresponds to the fact that the
dimension of the space of skew symmetric matrices in two dimensiohs Aso,
stipulating that the total torque about the origin vanishes implies that the total torque
around any point other point also vanishes—see Ex€rcisg 15.4.

The situation ford > 2, in particular ford = 3, is slightly more complicated.
Algebraically, the complications arise because the basic skew symmetric matrices ni
longer satisfyRT R = I. Physically, the complications stem from the fact that in
two dimensions rotation takes place around a point, whereas in three dimensions |
takes place around an axis. We shall explain how to resolve the complications fol
d = 3. The extension to higher dimensions is straightforward (and perhaps not sc
important). The basic conclusion that we wish to derive is the same, namely that fol
basic skew symmetric matrices, the expres$iop)” b represents the torque generated
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FIGURE 15.2. Theith summand in[(15]6) is the length pf times
the length of the projection df; onto the direction given byRv;.
This is precisely the torque around an axi® aaused by the force
b; applied at joint.

by applying a forceb at pointp. Recall that there are just three basic skew symmetric
matrices, and they are given jy (1I5.5). To be specific, let us just study the first one:

0-1 0
R=1|1 0 0
0 0 0
This matrix can be decomposed into the product of two matrices:
R=UP
where
0-1 0 1 0 0
U=1|1 0 0 and P=10 1 0
0 0 1 0 0 O
The matrixU has the property thak had before, namely,
Ut = 1.
Such matrices are calladhitary. The matrixP is a projection matrix. If we let
q = Pp,
q
V=,
lql
and

r = llqll;
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FIGURE 15.3. The decomposition ¢fzp)7b into the product of a
moment armr- times the component d@fin the directionUv shows
that it is precisely the torque around the third axis.

then we can rewritéRp)”b as
(Rp)Tb = r(Uv)Tb.

Sincew is a unit vector and/ is unitary, it follows thatUv is a unit vector. Hence,
(Uv)T'b represents the scalar projectioniobnto the direction determined Hyw.
Also, it is easy to check thdfv is orthogonal tov. At this point, we can consult
Figure[15.38 to see thatis the moment arm for the torque around the third coordinate
axis andUv)Tb is the component of force in the direction of rotation around this axis.
Therefore, the product is precisely the torque around this axis. As we knov=#d,
there are three independent axes of rotation, namébh, roll, andyaw. These axes
correspond to the three basis matrices for the spa8exdf skew symmetric matrices
(the one we have just studied corresponds to the yaw axis).

Finally, we note tha{ (I5]6) simply states that the total torque around each axis of
rotation must vanish. This means that the forces cannot be chosen to make the syste
spin.

5. Minimum-Weight Structural Design

For a structure withn nodes, the system of force balance equations|(15.2)ldas
equations. But, as we now know, if the structure is stable, there are exé&étiyl)/2
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redundant equations. That is, the rankdois md — d(d 4 1)/2. Clearly, the structure
must contain at least this many members. We say that the structuteuissd it is
stable and has exactipd — d(d + 1)/2 members. In this case, the force balance
equations have a unique solution (assuming, of course, that the total applied force an
the total applied torque around each axis vanish). From an optimization point of view,
trusses are not interesting because they leave nothing to optimize—one only needs
calculate.

To obtain an interesting optimization problem, we assume that the proposed struc
ture has more members than the minimum required to form a truss. In this setting, we
introduce an optimization criterion to pick that solution (whether a truss or otherwise)
that minimizes the criterion. For us, we shall attempt to minimize total weight. To
keep things simple, we assume that the weight of a member is directly proportional tc
its volume and that the constant of proportionality (temsityof the material) is the
same for each member. (These assumptions are purely for notational convenience-
a real engineer would certainly include these constants and let them vary from one
member to the next). Hence, it suffices to minimize the total volume. The volume of
one member, say, j}, is its lengthl;; = ||p; — p;|| times its cross-sectional area.
Again, to keep things as simple as possible, we assume that the cross-sectional ar
must be proportional to the tension/compression carried by the member (members ca
rying big loads must be “fat"—otherwise they might break). Let’s set the constant of
proportionality arbitrarily to one. Then the function that we should minimize is just
the sum over all members &f |x;;|. Hence, our optimization problem can be written
as follows:

minimize > 1|z
{i,j}eA
subject to Z Ui Tij = —b; 1=1,2,...,m.
{i,jJ}.GA
This problem is not a linear programming problem: the constraints are linear, but the
objective function involves the absolute value of each variable. We can, however,
convert this problem to a linear programming problem with the following trick. For
each{i, j} € A, write z;; as the difference between two nonnegative variables:

Tii =1l — o + o
Tij =X — T, x5, ¢ > 0.

Think of xj; as the tension part af;; andz;; as the compression part. The absolute

value can then be modeled as the sum of these components
o —
|lzij| = 23 + x5

We allow both components to be positive at the same time, but no minimum-weight
solution will have any member with both components positive, since if there were
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such a member, the tension component and the compression component could be d
creased simultaneously at the same rate without changing the force balance equatio
but reducing the weight. This reduction contradicts the minimum-weight assumption.

We can now state the linear programming formulation of the minimum weight
structural design problem as follows:

minimize Z Lzl + L)
{ijleA
subject to Z (uur;; — U,’jaji;) =—b; 1=1,2,....m

J:
{igteA

ah, ;>0 {i,j} € A.
In terms of the incidence matrix, each column must now be written down twice, once

as before and once as the negative of before.

6. Anchors Away

So far we have considered structures that are free floating in the sense that eve
though loads are applied at various joints, we have not assumed that any of the joint
are anchored to a large object such as the Earth. This setup is fine for structure
intended for a rocket or a space station, but for Earth-bound applications it is generally
desired to anchor some joints. It is trivial to modify the formulation we have already
given to cover the situation where some of the joints are anchored. Indeetfoitve
balance equations associated with an anchored joint are simply dropped as constrain
since the Earth supplies whatever counterbalancing force is needed. Of course, or
can consider dropping only some of tlidorce balance equations associated with a
particular joint. In this case, the physical interpretation is quite simple. For example,
in two dimensions it simply means that the joint is allowed to roll on a track that is
aligned with one of the coordinate directions but is not allowed to move off the track.

If enough “independent” constraints are dropped (at least three in two dimensions
and at least six in three dimensions), then there are no longer any limitations on the
applied loads—the structure will be sufficiently well anchored so that the Earth will
apply whatever forces are needed to prevent the structure from moving. This is the
most typical scenario under which these problems are solved. It makes setting up th
problem much easier, since one no longer needs to worry about supplying loads the
can't be balanced.

We end this chapter with one realistic example. Suppose the need exists to desig
a bracket to support a hanging load at a fixed distance from a wall. This bracket
will be molded out of plastic, which means that the problem of finding an optimal
design belongs to the realm of continuum mechanics. However, we can get an ide
of the optimal shape by modeling the problem discretely (don't tell anyone). That is,
we define a lattice of joints as shown in Figlire 15.4 and introduce a set of member:
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FIGURE 15.4. The set of joints used for the discrete approximation
to the bracket design problem. The highlighted joints on the left
are anchored to the wall, and the highlighted joint on the right must
support the hanging load.

from which the bracket can be constructed. Each joint has members connecting i
to several nearby joints. Figufe 1.5 shows the members connected to one specif
joint. Each joint in the structure has this connection “topology” with, of course, the

understanding that joints close to the boundary do not have any member for which th
intended connecting joint does not exist. The highlighted joints on the left side in

Figure[I5.4 are the anchored joints, and the highlighted joint on the right side is the
joint to which the hanging load is applied (by “hanging,” we mean that the applied

load points downward). The optimal solution is shown in Figure]|15.6. The thickness
of each member is drawn in proportion to the square root of the tension/compressiol
in the member (since if the structure actually exists in three dimensions, the diamete
of a member would be proportional to the square root of the cross-sectional area)
Also, those members under compression are drawn in dark gray, whereas those und
tension are drawn in light gray. Note that the compression members appear to cros
the tension members at right angles. These curves are gallegiple stressesilt is

a fundamental result in continuum mechanics that the principle tension stresses cros
the principle compression stresses at right angles. We have discovered this result usir
optimization.
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FIGURE 15.5. The members connected to a single interior joint.

FIGURE 15.6. The minimum weight bracket.
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Most nonexperts find the solution to this problem to be quite surprising, since it
covers such alarge area. Yetitis indeed optimal. Also, one can see that the continuut
solution should be roughly in the shape of a leaf.

Exercises
15.1 Show that a matrixX? is skew symmetric if and only if
¢TRE =0, for every vectot.

15.2 Which of the structures shown in Figiire 75.7 is stable? (Note: each structure
is shown embedded in a convenient coordinate system.)

15.3 Which of the structures shown in Figdre 15.7 is a truss?

15.4 Assuming that the total applied force vanishes, show that total torque is
translation invariant. That is, for any vectpe R¢,

D (R(pi =€) b = > (Rpi)"bs.

15.5 In 3-dimensions there are 5 regular (Platonic) solids. They are shown in
Figure[15.8 and have the following number of vertices and edges:

vertices edges

tetrahedron 4 6
cube 8 12
octahedron 6 12
dodecahedron 20 30
icosahedron 12 30

If one were to construct pin-jointed wire-frame models of these solids, which
ones would be stable?

Notes

Structural optimization has its roots|in Michell (1904). The first paper in which
truss design was formulated as a linear programming problem is Dorp|et al| (1964). A
few general references on the subject include Hemp (1973), Rdzvany (1989), Eendsg
et al| (1994), and RecskKi (1989).
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FIGURE 15.8. The five regular solids.



Part 3

Interior-Point Methods



There is, | believe, in every disposition a
tendency to some particular evil — a natural
defect, which not even the best education
can overcome.— J. Austen



CHAPTER 16

The Central Path

In this chapter, we begin our study of an alternative to the simplex method for
solving linear programming problems. The algorithm we are going to introduce is
called apath-following methodlit belongs to a class of methods calletkerior-point
methods The path-following method seems to be the simplest and most natural of
all the methods in this class, so in this book we focus primarily on it. Before we
can introduce this method, we must define the path that appears in the name of th
method. This path is called tleentral pathand is the subject of this chapter. Before
discussing the central path, we must lay some groundwork by analyzing a nonlinea
problem, called théarrier problem associated with the linear programming problem
that we wish to solve.

Warning: Nonstandard Notation Ahead

Starting with this chapter, given a lower-case letter denoting a vector quantity, we
shall use the upper-case form of the same letter to denote the diagonal matrix whos
diagonal entries are those of the corresponding vector. For example,

1 Z1

Tn Tn
This notation is nonstandard in mathematics at large, but has achieved a certain amou
of acceptance in the interior-point-methods community.
1. The Barrier Problem

In this chapter, we consider the linear programming problem expressed, as usua
with inequality constraints and nonnegative variables:

maximize ¢T z
subjectto Az < b
x> 0.

277
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The corresponding dual problem is
minimize b7y
subjectto ATy > ¢
y=>0.

As usual, we add slack variables to convert both problems to equality form:

maximize ¢T z
(16.1) subjectto Az +w=1"5
z,w>0

and
minimize b%y
subjectto ATy —z=¢
y,z > 0.

Given a constrained maximization problem where some of the constraints are

inequalities (such as our primal linear programming problem), one can consider re-
placing any inequality constraint with an extra term in the objective function. For
example, in[(I6]1) we could remove the constraint that a specific variable; sy,
nonnegative by adding to the objective function a term that is negative infinity when
is negative and is zero otherwise. This reformulation doesn’t seem to be particularly
helpful, since this new objective function has an abrupt discontinuity that, for exam-
ple, prevents us from using calculus to study it. However, suppose we replace thi
discontinuous function with another function that is negative infinity whgeis nega-
tive but is finite forx; positive and approaches negative infinity:aspproaches zero.
In some sense this smooths out the discontinuity and perhaps improves our ability t
apply calculus to its study. The simplest such function is the logarithm. Hence, for
each variable, we introduce a new term in the objective function that is just a constan
times the logarithm of the variable:

maximize ¢’z + pyojlogxs 4+ py 2, logw;

(16.2) )
subjectto Az + w = b.

This problem, while not equivalent to our original problem, seems not too different
either. In fact, as the parametgr which we assume to be positive, gets small, it
appears thaf (16.2) becomes a better and better stand-in fof (16.1). Prpblem (16.
is called thebarrier problemassociated with (I6/1). Note that it is not really one
problem, but rather a whole family of problems indexed by the parametEach of
these problems is a nonlinear programming problem because the objective functio
is nonlinear. This nonlinear objective function is calletbarier functionor, more
specifically, dogarithmic barrier function
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® &

(@) p=x (b) p=1
II IOOl
(c) p=0.01 (d) central path

FIGURE 16.1. Parts (a) through (c) show level sets of the barrier
function for three values gf.. For each value ofi, four level sets
are shown. The maximum value of the barrier function is attained
inside the innermost level set. The drawing in part (d) shows the
central path.

It is instructive to have in mind a geometric picture of the barrier function. Recall
that, for problems expressed in standard form, the set of feasible solutions is a poly
hedron with each face being characterized by the property that one of the variable
is zero. Hence, the barrier function is minus infinity on each face of the polyhedron.
Furthermore, it is finite in the interior of the polyhedron, and it approaches minus in-
finity as the boundary is approached. Fidure [L6.1 shows some level sets for the barrie
function for a specific problem and a few different choiceg oNotice that, for each
1, the maximum is attained at an interior point, angi@ets closer to zero this interior
point moves closer to the optimal solution of the original linear programming problem
(which is at the top vertex). Viewed as a function;gfthe set of optimal solutions
to the barrier problems forms a path through the interior of the polyhedron of feasible



280 16. THE CENTRAL PATH

f

FIGURE 16.2. The concentric rings illustrate a few level setg of
Clearly, at the optimal solution;*, the gradient must be perpendic-
ular to the feasible set.

solutions. This path is called thentral path Our aim is to study this central path. To
this end, we need to develop some machinery, referredltagimnge multipliers

2. Lagrange Multipliers

We wish to discuss briefly the general problem of maximizing a function subject
to one or more equality constraints. Here, the functions are permitted to be nonlineat
but are assumed to be smooth, say, twice differentiable.

For the moment, suppose that there is a single constraint equation so that th
problem can be formally stated as

maximize f(x)
subjecttog(z) = 0.

In this case, the geometry behind the problem is compelling (see Figufe 16.2). The
gradient off, denotedV f, is a vector that points in the direction of most rapid increase
of f. For unconstrained optimization, we would simply set this vector equal to zero
to determine the so-callettitical pointsof f, and the maximum, if it exists, would
have to be included in this set. However, given the constrafm), = 0, it is no longer
correct to look at points where the gradient vanishes. Instead, the gradient must b
orthogonal to the set of feasible solutiofis: g(«) = 0}. Of course, at each point

in the feasible setyg(z), is a vector that is orthogonal to the feasible set at this point
x. Hence, our new requirement for a pairitto be a critical point is that it is feasible
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Vg,

FIGURE 16.3. The feasible set is the curve formed by the intersec-
tion of gy = 0 andg, = 0. The pointz* is optimal, since the
gradient off at that point is perpendicular to the feasible set.

and thatV f (z*) be proportional t6V g(z*). Writing this out as a system of equations,
we have

g(z*) =0
Vf(x*) =yVg(z").
Here,y is the proportionality constant. Note that it can be any real number, either pos-
itive, negative, or zero. This proportionality constant is callédgrange multiplier
Now consider several constraints:
maximize f(x)

subjectto ¢i(z) =
(

In this case, the feasible region is the intersectiomdfypersurfaces (see Figlire 16.3).
The space orthogonal to the feasible set at a poisto longer a one-dimensional set
determined by a single gradient, but is instead a higher-dimensional space (typically
m), given by the span of the gradients. Hence, we require\iifdt:*) lie in this span.
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This yields the following set of equations for a critical point:

g(z*) =0
(16.3) Vi) => yiVg(a").
i=1

The derivation of these equations has been entirely geometric, but there is also
simple algebraic formalism that yields the same equations. The idea is to introduce
the so-called_agrangianfunction

L(z,y) = f(x) - Zyzgz(fﬂ)

and to look for its critical points over bothandy. Since this is now an unconstrained
optimization problem, the critical points are determined by simply setting all the first
derivatives to zero:

L .
0 _af_zy 8g7] 207 j:1,2,...,’l’L,

o, = a2V,
oL
0y; - =0, i1 =1,2, ,m

Writing these equations in vector notation, we see that they are exactly the same &
those derived using the geometric approach. These equations are usually referred
as thefirst-order optimality conditions
Determining whether a solution to the first-order optimality conditions is indeed a
global maximum as desired can be difficult. However, if the constraints are all linear,
the first step (which is often sufficient) is to look at the matrix of second derivatives:
o f

This matrix is called thélessianof f atx. We have

HiG) = |

THEOREM 16.1. If the constraints are linear, a critical point* is a local maxi-
mum if

(16.4) ETHf(*)E<0
for each¢ # 0 satisfying
(16.5) ¢'Vgi(z*) =0, i=1,2,...,m.

PROOF We start with the two-term Taylor series expansiorf @boutz*:

Fla* +6) = ) + V@6 + S€THI )6 + o).
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The vectorg represents a displacement from the current potntThe only displace-
ments that are relevant are those that lie in the feasible set. Hengédet direction

vector satisfying[(1615). Fror (16.3) arid (16.5), we seethatz*)T¢ = 0, and so
Pl €)= fa*) + 5€THT(@)e + ol €]?)
Employing [16.4) finishes the proof. O

It is worth remarking that if (16]4) is satisfied not justdtbut at allz;, thenz* is
a unique global maximum.

In the next section, we shall use Lagrange multipliers to study the central path
defined by the barrier problem.

3. Lagrange Multipliers Applied to the Barrier Problem

In this section, we shall use the machinery of Lagrange multipliers to study the
solution to the barrier problem. In particular, we will show that (subject to some mild
assumptions) for each value of the barrier parametehere is a unique solution to
the barrier problem. We will also show that agends to zero, the solution to the
barrier problem tends to the solution to the original linear programming problem. In
the course of our study, we will stumble naturally upon the central path for the dual
problem. Taken together, the equations defining the primal and the dual central path
play an important role, and so we will introduce the notion of a primal—dual central
path.

We begin by recalling the barrier problem:

maximize ¢’z + p >ojlogw; 4+ p ), logw;
subjectto Az + w = b.
This is an equality-constrained optimization problem, and so it is a problem to which

we can apply the Lagrange multiplier tools developed in the previous section. The
Lagrangian for this problem is

L(z,w,y) = ch—|—/,LZIngj +uZlogwi + 37 (b— Az — w).
] i

Taking derivatives with respect to each variable and setting them to zero, we get the
first-order optimality conditions:

OL 1

2= - _ a;; =0, =12 ...
oz, CJ+/txj iyzau y ] 12,0,
oL 1

G =l = Ui =0, i=12,...,m.
w; w;

oL .
ayi:bi_;aiﬂj—wi =0, 1=1,2,...,m.
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Writing these equations in matrix form, we get
Aty —puXx-le=c¢
y=puWlte
Az +w =b.
Here, as warned at the beginning of the chaptedenotes the diagonal matrix whose
diagonal entries are the componentscofand similarly forl. Also, recall that we
usee to denote the vector of all ones.

Introducing an extra vector defined as= X ~'e, we can rewrite the first-order
optimality conditions like this:

Az +w =b.

Aty —z=¢
z=puX"le
y = pWlte.

Finally, if we multiply the third equation through by and the fourth equation by,
we arrive at a primal—-dual symmetric form for writing these equations:

Ar+w=1>
ATy — 2=
(16.6) yome=e
XZe=pe
YWe = pe.

Note that the first equation is the equality constraint that appears in the primal problem
while the second equation is the equality constraint for the dual problem. Furthermore
writing the third and fourth equations out componentwise,

xjz; =1 j=1,2,....,n
Yiw; = [ i=1,2,....m

we see that they are closely related to our old friend: complementarity. In fact, if we
setu to zero, then they are exactly the usual complementarity conditions that must
be satisfied at optimality. For this reason, we call these last two equations the
complementaritgonditions.

The first-order optimality conditions, as written jn (16.6), give2ust 2m equa-
tions in2n 4+ 2m unknowns. If these equations were linear, they could be solved using
Gaussian elimination, and the entire subject of linear programming would be no more
difficult than solving systems of linear equations. But alas, they are nonlinear—but
just barely. The only nonlinear expressions in these equations are simple multiplica
tions such as:;z;. This is about the closest to being linear that one could imagine.
Yet, it is this nonlinearity that makes the subject of linear programming nontrivial.
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We must ask both whether a solution fo (36.6) exists and if so is it unique. We
address these questions in reverse order.
4. Second-Order Information

To show that the solution, if it is exists, must be unique, we use second-order
information on the barrier function:

(16.7) flz,w)=clz+ uZlong + leogwi.
7 7
The first derivatives are
0
Y o+l jor2m,
ij S(Jj
0
f = ﬂv 1= ]-7 27 , M,
8wi w;
and the pure second derivatives are
*f 1
— = —— ) =1,2,...
ax? x?? .] ) ) 7n)
*f [
— s = —— ,=1,2,... .
awg 'w7;2’ Z ) ) 7m

All the mixed second derivatives vanish. Therefore, the Hessian is a diagonal matrix
with strictly negative entries. Hence, by Theorpm 16.1, there can be at most one
critical point and, if it exists, it is a global maximum.

5. Existence

So, does a solution to the barrier problem always exist? It might not. Consider,
for example, the following trivial optimization problem on the nonnegative half-line:
maximize 0
subjecttoz > 0.

For this problem, the barrier function is

f(x) = plogz,
which doesn’t have a maximum (or, less precisely, the maximum is infinity which
is attained att = oo). However, such examples are rare. For example, consider
modifying the objective function in this example to make= 0 the unique optimal
solution:

maximize —z

subjecttoz > 0.
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In this case, the barrier function is
f(x) = —z + ploguz,
which is a function whose maximum is attainedrat .
In general, we have the following result:

THEOREM16.2. There exists a solution to the barrier problem if and only if both
the primal and the dual feasible regions have nonempty interior.

PROOF The “only if” part is trivial and less important to us. Therefore, we only
prove the “if” part. To this end, suppose that both the primal and the dual feasible
regions have nonempty interior. This means that there exists a primal feasible poin
(z,w) with z > 0 andw > 0 and there exists a dual feasible poiftz) with g > 0
andz > OE] Now, given any primal feasible poiritz, w), consider the expression
zTx + yTw. Replacing the primal and dual slack variables with their definitions, we
can rewrite this expression as follows:

e+ ylw=(ATy - c)T z+ g7 (b— Azx)
=Ty —cTa.
Solving this equation for the primal objective functiohz, we get that
To=-7Te—grw+ by
Therefore, the barrier functiofidefined in equatiorj (1§.7) can be written as follows:

f(z,w) :chJruZlong +,u210gwi
j i
= Z (—zjz; + plog xj)

J
+ Z (—giwi + plog w;)

+b7.
Note that the last term is just a constant. Also, each summand in the two sums is
function of just one variable. These functions all have the following general form:
h() = —al + plogg,  0< &< oo,

wherea > 0. Such functions have a unique maximum ggt) and tend to—oo as¢
tends toco. From these observations, it is easy to see that, for every constaetset

{(z,w) e R™*™ : f(z,w) > c}

is bounded.

IRecall that we writes > 0 to mean that; > 0 for all 5.
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Put

and let
P={(z,w): Az +w=0b,x >0,w >0, f(x,w) > f}.
Clea[Iy,I3 is nonempty, since it contain(g, w). From the discussion above, we see
that P is a bounded set.
This set is also closed. To see this, note that it is the intersection of three sets,

{(z,w) : Az +w = b} N {(z,w) : & > 0,w > 0} N {(z,w) : f(z,w) > f}.

The first two of these sets are obviously closed. The third set is closed because it i
the inverse image of a closed sgt, oo], under a continuous mappirfg Finally, the
intersection of three closed sets is closed.

In Euclidean spaces, a closed bounded set is called compact. A well-known theo
rem from real analysis about compact sets is that a continuous function on a nonempt
compact set attains its maximum. This means that there exists a point in the compa
set at which the function hits its maximum. Applying this theorenf tn P, we see
that f does indeed attain its maximum @ and this implies it attains its maximum
on all of {(z,w) : = > 0,w > 0}, sinceP was by definition that part of this domain
on which f takes large values (bigger th@nanyway). This completes the proof]

We summarize our main result in the following corollary:

COROLLARY 16.3. If a primal feasible set (or, for that matter, its dual) has a
nonempty interior and is bounded, then for eacl 0 there exists a unique solution

(J)u, Wy Yus Z}L)
to (16.8)
PrROOF. Follows immediately from the previous theorem and Exefcisg 10.7.

The path{(z,,wy, yu, z,) : 1 > 0} is called theprimal—-dual central path It
plays a fundamental role in interior-point methods for linear programming. In the next
chapter, we define the simplest interior-point method. It is an iterative procedure that
at each iteration attempts to move toward a point on the central path that is closer
optimality than the current point.

Exercises
16.1 Compute and graph the central trajectory for the following problem:

maximize —x1 + x2

subject to o< 1
—x1 S -1
Ty, 2> 0
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Hint: The primal and dual problems are the same — exploit this symmetry.

16.2 Let 0 be a fixed paramete, < ¢ < 7, and consider the following problem:

maximize (cos )z + (sin 6)xo
subject to 1 <1
T2 S 1

z1,x2 2 0.

Compute an explicit formula for the central pdth),, w,,, y,., z,), and eval-
uatelim,, . =, andlim,,_.o z,.

16.3 Suppose thafz : Az < b,z > 0} is bounded. Let € R™ ands € R™ be
vectors with positive elements. By studying an appropriate barrier function,
show that there exists a unigue solution to the following nonlinear system:

Az +w=">
ATy —z2=c
XZe=r
YWe=s
z,y,z,w> 0.

16.4 Consider the linear programming problem in equality form:
maximize ), c;jz;
(16.8) subjectto » " ajz; =b

J
z; >0, j=12...,n,
where eaclu; is a vector inR™, as isb. Consider the change of variables,

_ 2

T; = 39

and the associated maximization problem:

maximize 3 ¢;&3

subjectto " a;&7 = b

(note that the nonnegativity constraints are no longer needed). denhote
the set of basic feasible solutions {o (16.8), andiétdenote the set of
points (£2,£2,...,&2) in R™ for which (&1, &2, .. .,&,) is a solution to the
first-order optimality conditions fof (16.9). Show thdatc W. What does
this say about the possibility of usirfg (16.9) as a vehicle to splve](16.8)?

(16.9)
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Notes

Research into interior-point methods has its roots in the wofk of Fiacco & Mc-
Cormick (1968). Interest in these methods exploded after the appearance of the ser
inal paper Karmarkar (1984). Karmarkar's paper uses clever ideasrojective
geometry.lt doesn’t mention anything about central paths, which have become fun-
damental to the theory of interior-point methods. The discovery that Karmarkar's
algorithm has connections with the primal—dual central path introduced in this chapte!
can be traced to Megiddb (1989). The notion of central points can be traced to pre
Karmarkar times with the work ¢f Huard (1967). D.A. Bayer and J.C. Lagarias, in a
pair of papers (Bayer & Lagarias 19B), give an in-depth study of the central path.

Deriving optimality conditions and giving conditions under which they are nec-
essary and sufficient to guarantee optimality is one of the main goaisrdinear
programming Standard texts on this subject include the books by Luenhbeérger|(1984),
Bertsekas (1995), and Nash & Safer (1996).






CHAPTER 17

A Path-Following Method

In this chapter, we define an interior-point method for linear programming that
is called a path-following method. Recall that for the simplex method we required
a two-phase solution procedure. The path-following method is a one-phase methoc
This means that the method can begin from a point that is neither primal nor dual
feasible and it will proceed from there directly to the optimal solution. Hence, we
start with an arbitrary choice of strictly positive values for all the primal and dual
variables, i.e.(z,w, y, z) > 0, and then iteratively update these values as follows:

(1) Estimate an appropriate value for(i.e., smaller than the “current” value
but not too small).

(2) Compute step direction\z, Aw, Ay, Az) pointing approximately at the
point(x,,, w,, y,, z,) on the central path.

(3) Compute a step length parametesuch that the new point

T =x+ 0Azx, J=1y+ 0Ay,
W= w + 0 Aw, Z=z+0Az
continues to have strictly positive components.
(4) Replacqz,w,y, z) with the new solution(z, @, 7, 2).

To fully define the path-following method, it suffices to make each of these four steps
precise. Since the second step is in some sense the most fundamental, we start
describing that one after which we turn our attention to the others.

1. Computing Step Directions

Our aim is to find(Az, Aw, Ay, Az) such that the new pointr + Az, w +
Aw,y + Ay, z + Az) lies approximately on the primal—-dual central path at the point
(2, wu, Yy, 2,). Recalling the defining equations for this point on the central path,

Az +w=">
Aty —z2=c¢
XZe = pe

YWe = pe,
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292 17. A PATH-FOLLOWING METHOD

we see that the new poifit + Az, w+ Aw, y + Ay, z + Az), if it were to lie exactly
on the central path at, would be defined by

Alx + Az) + (w+ Aw) =b

AT(y+ Ay) — (z+ Az) =c¢
(X +AX)(Z+AZ)e = pe
(Y + AY)(W 4+ AW )e = pe.

Thinking of (x, w, y, z) as data anfAz, Aw, Ay, Az) as unknowns, we rewrite these
equations with the unknowns on the left and the data on the right:

AAz+Aw=b—-—Ax—w =:p
ATAy—Az=c—ATy+z2=0
ZAx 4+ XAz + AXAZe=pe— XZe
WAy +YAw+ AYAWe = pe — YWe.

Note that we have introduced abbreviated notatiprando, for the first two right-
hand sides. These two vectors represenpitimaal infeasibilityand thedual infeasi-
bility, respectively.

Now, just as before, these equations form a system of nonlinear equations (thi
time for the “delta” variables). We want to have a linear system, so at this point we
simply drop the nonlinear terms to arrive at the following linear system:

(17.1) AAz +Aw=p

(17.2) ATAy —Az=0

(17.3) ZAx + XAz=pe— XZe
(17.4) WAy +YAw=pe — YWe.

This system of equations is a linear systertwof-2m equations ir2n+2m unknowns.
We will show later that this system is nonsingular (under the mild assumptionithat
has full rank) and therefore that it has a unique solution that defines the step direction
for the path-following method. Chaptdrs|18 andl 19 are devoted to studying method:
for efficiently solving systems of this type.

If the business of dropping the nonlinear “delta” terms strikes you as bold, let
us remark that this is the most common approach to solving nonlinear systems o
equations. The method is called Newton’s method. It is described briefly in the next
section.



2. NEWTON’'S METHOD 293

2. Newton’s Method

Given a function

Fi(§) &1
F

O e
Fn(§) En

fromRY intoR", a common problem s to find a poifit € R” for which F(¢*) = 0.
Such a point is called mot of F. Newton’s method is an iterative method for solving
this problem. One step of the method is defined as follows. Given any @i’ ,

the goal is to find astep directionA¢ for which F(§¢ + A¢) = 0. Of course, for a
nonlinearF it is not possible to find such a step direction. Hence, it is approximated
by the first two terms of its Taylor’s series expansion,

F(§+ A =~ F(§) + F'(§AE,

where
oF,  9F, . OF
651 852 851\7
or, oIy .. OF
01 RI 9N
/
F'(§) =
dFy O8Fn ... OFn
L 96 0&2 O¢N

The approximation is linear il{. Hence, equating it to zero gives a linear system to
solve for the step direction:

F'(§)A¢ = —F(€).
GivenA¢, Newton’s method updates the current solutjday replacing it witht +A&.
The process continues until the current solution is approximately a rootRi.&),~
0). Simple one-dimensional examples given in every elementary calculus text illustrate
that this method works well, when it works, but it can faiFifis not well behaved and
the initial point is too far from a solution.
Let’s return now to the problem of finding a point on the central path. Letting

N B o 8
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and

Ax+w—1b
ATy —z—¢
XZe — pe
YWe — pe

F(§) =

we see that the set of equations definimg, y,,, w,, z,) is a root of F. The matrix of
derivatives ofF’ is given by

A 0 I 0
0 AT 0 -I
F'(§) =
©) Z 0 0 X
o W'Y 0
Noting that
Ax
Ay
A¢ = ,
¢ Aw
Az

it is easy to see that the Newton direction coincides with the direction obtained by

solving equationg (17} 1)=(17.4).

3. Estimating an Appropriate Value for the Barrier Parameter

We need to say how to pick. If u is chosen to be too large, then the sequence
could converge to the analytic center of the feasible set, which is not our intention. If,
on the other handy is chosen to be too small, then the sequence could stray too far
from the central path and the algorithm cojdd into the boundary of the feasible set
at a place that is suboptimal. The trick is to find a reasonable compromise betweel
these two extremes. To do this, we first figure out a value that represents, in som
sense, the current value pfand we then choose something smaller than that, say a
fixed fraction of it.

We are given a pointz, w, y, z) that is almost certainly off the central path. If it
were on the central path, then there are several formulas by which we could recove
the corresponding value gf. For example, we could just computgr; for any fixed
indexj. Or we could computeg;w; for any fixed:. Or, perverse as it may seem, we
could average all these values:
2To+ yTw

17.5 -
(17.5) % o
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This formula gives us exactly the value pfwhenever it is known thatz, w, y, 2)
lies on the central path. The key point here then is that we will use this formula to
produce an estimate far even when the current solutidm, w, y, z) does not lie on
the central path. Of course, the algorithm needs a valyetbht represents a point
closer to optimality than the current solution. Hence, the algorithm takes this “par”
value and reduces it by a certain fraction:
.y 2To + yTw
N n+m
whered is a number between zero and one. In practice, one finds that séttong
approximatelyl /10 works quite well, but for the sake of discussion we will always
leave it as a parameter.

4. Choosing the Step Length Parameter

The step directions, which were determined using Newton’s method, were deter-
mined under the assumption that the step length pararfieteuld be equal to one
(i.e., = x4+ Az, etc.). But taking such a step might cause the new solution to violate
the property that every component of all the primal and the dual variables must remair
positive. Hence, we may need to use a smaller valué.fo¥e need to guarantee, for
example, that

x; +0Az; >0, j=12...,n.
Moving the Ax; term to the other side and then dividing throughttendz ;, both of
which are positive, we see th@must satisfy
1. Ay

0 xj

Of course, a similar inequality must be satisfied for they, and z variables too.
Putting it all together, the largest valuetivould be given by

1 {_ij CAw; Ay _AZJ}

, j=12,...,n.

— = Imax =, 3 ,

0 iJ Z; w; Yi Zj
where we have abused notation slightly by usingithex;; to denote the maximum
of all the ratios in the indicated set. However, this choicé wfill not guarantee strict
inequality, so we introduce a parametemhich is a number close to but strictly less
than one, and we $et

~1
(17.6) 0:r<max{—ij,—Awl,—Ayz,—AZ]}> AL

v Ly Wi Yi Zj

This formula may look messy, and no one should actually do it by hand, but it is trivial
to program a computer to do it. Such a subroutine will be really fast (requiring only
on the order on + 2m operations).

Iror compactness, we use the notaon b to represent the minimum of the two numberandb.
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initialize (z, w,y,z) >0

while (not optimal){
p=b—Ar —w
c=c— ATy +z

v = sz—i—yTw

'u:(sn—i—m

solve:
AAx+Aw  =p
ATAy — Az =o¢
ZAx+ XAz =pue— XZe
WAy +YAw=pue—YWe

Az, Aw; Ay Az )\ !

0 — r (max; _%,_w,_y7_%}) A1
Lj Wy Yi Zj

x—x+ 0Ax, w — w+ 0Aw

y«— vy + 0Ay, z+— z+0Az

FIGURE 17.1. The path-following method.

A summary of the algorithm is shown in Figyre 17.1. In the next section, we
investigate whether this algorithm actually converges to an optimal solution.

5. Convergence Analysis

In this section, we investigate the convergence properties of the path-following
algorithm. Recall that the simplex method is a finite algorithm (assuming that steps are
taken to guard against cycling). For interior-point methods, the situation is different.
Every solution produced has all variables strictly positive. Yet for a solution to be
optimal generally requires many variables to vanish. This vanishing can only happer
“in the limit.” This raises questions, the most fundamental of which are these: does
the sequence of solutions produced by the path-following method converge? If so, i
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the limit optimal? How fast is the convergence? In particular, if we set “optimality
tolerances,” how many iterations will it take to achieve these tolerances? We will
address these questions in this section.

In this section, we will need to measure the size of various vectors. There are
many choices. For example, for eatk p < oo, we can define the so-callednorm
of a vectorx as

p
el = | D Ly I?
j

The limit asp tends to infinity is also well defined, and it simplifies to the so-called
sup-norm
llloo = maxc|a;].

5.1. Measures of ProgressRecall from duality theory that there are three crite-
ria that must be met in order that a primal—dual solution be optimal:
(1) Primal feasibility,
(2) Dual feasibility, and
(3) Complementarity.

For each of these criteria, we introduce a measure of the extent to which they fail tc
be met.
For the primal feasibility criterion, we use thenorm of the primal infeasibility
vector
p=0b—Azx —w.
For the dual feasibility criterion, we use thenorm of the dual infeasibility vector
o=c— ATy + 2.

For complementarity, we use
v = To+ yTw.
5.2. Progress in One lteration. For the analysis in the section, we prefer to

modify the algorithm slightly by having it take shorter steps than specified before.
Indeed, we let

Azi| |Aw;| |Ay| Az )\ 7!
GZT(max{xj Wi ,‘ Y ,ZJ}> Al
1,] Ij w; Yi Zj
(17.7) ! AL

" max(| X Az]|u, ..., | Z 1Az]|x)

Note that the only change has been to replace the negative ratios with the absolut
value of the same ratios. Since the maximum of the absolute values can be larger the
the maximum of the ratios themselves, this formula produces a smaller valfielifor

this section, let, y, etc., denote quantities from one iteration of the algorithm, and
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put a tilde on the same letters to denote the same quantity at the next iteration of th
algorithm. Hence,

T =uz+ 0Azx, 7=y + 0Ay,
W= w + 0Aw, Z==z
Now let's compute some of the other quantities. We begin with the primal infea-
sibility:
p=b—AT —w
=b— Az —w—0(AAx + Aw).
Butb — Az — w equals the primal infeasibility (by definition) andAAx + Aw also

equalsp, since this is precisely the first equation in the system that defines the “delta”
variables. Hence,

(17.8) p=(1-0)p.
Similarly,
G=c—ATj+2
—c— ATy + 2 - 0(AAYy — Az)
(17.9) =(1-0)

Sincef is a number between zero and one, it follows that each iteration produces ¢
decrease in both the primal and the dual infeasibility and that this decrease is bette
the close® is to one.
The analysis of the complementarity is a little more complicated (after all, this is
the part of the system where the linearization took place):
y=2"i+y"w
= (2 4+ 0A2)T (z 4+ 0Ax) + (y + 0AY) T (w + 6Aw)
=zTe+ yTw
+ 02T Az + ATz + yT Aw + AyTw)
+0%(A2T Az + AyT Aw).
We need to analyze each of théerms separately. Fror (I7.3), we see that
Az + AT =T (ZAz + XAz)
=eT (ue — ZXe)

=pun — 2l
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Similarly, from (I7.4), we have
yTAw + AyTw = T (Y Aw + WAY)
= el (ue — YWe)
= pum —yTw.
Finally, (I7:1) and[(17]2) imply that
AT Az + AyTAw = (ATAy — 0)" Az + Ay” (p— AAx)
=AyTp—oT Az
Substituting these expressions into the last expression foe get
F =20+ yTw
+0 (u(n +m) — (z"z +y"w))
+ 62 (AyTp — JTACE) .
At this point, we recognize that’ x + y*w = + and thatu(n + m) = év. Hence,
F=1-1-680)v+6*(Ay"p—0o"Az).

We must now abandon equalities and work with estimates. Our favorite tool for esti-
mation is the following inequality:

o w| = > vjw;]
j
< sl
i
< (m?Xle)(Z |w;])
j

= [[vllc[lw]]1-

This inequality is the trivial case ¢dolder’s inequality From Holder's inequality, we
see that

[AyTpl < ol Ayl and  Jo"Az| < [loli]|Az]o.
Hence,

<A =(1=8)0)v+0(pll0Ayllo + llollil0Az]ls0) -
Next, we use the specific choice of step len@tto get a bound orj|0Ay||. and
|0Az| . Indeed,[(T7]7) implies that

0 < r < Y
XAz T [Azy

for all 5.

Hence,
10AZ]|0o < []|oo-
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Similarly,
10AY[loc < [|yllso-
If we now assume that, along the sequence of pairgady visited by the algorithm,

lz]| o @and||y||c are bounded by a large real numbiér then we can estimate the new
complementarity as

(17.10) 5 < (1= (1= 8)8) 7 + Mlplls + Mljo]]s.

5.3. Stopping Rule.Let e > 0 be a small positive tolerance, and fet < oo
be a large finite tolerance. Jfc||, gets larger tha/, then we stop and declare the
problem primal unbounded. Jfy||-. gets larger tha/, then we stop and declare the
problem dual unbounded. Finally,|ip||1 < €, |lo]l1 < €, andy < ¢, then we stop and
declare the current solution to be optimal (at least within this small tolerance).
Since+ is a measure of complementarity and complementarity is related to the
duality gap, one would expect that a small valueyaghould translate into a small
duality gap. This turns out to be true. Indeed, from the definitionsg, of, andp, we
can write

v = To+ yTw
=(o+ ATy —)w+y (b Az —p)
=bTy —cla4olz—ply.

At this point, we use Elder’s inequality to bound some of these terms to get an esti-
mate on the duality gap:

7y — cTa| < v+ |oTa| + [yTpl
<y +llolillzllso + ol [¥loo-

Now, if v, ||o||1, and]|p||; are all small (and|z||~ and||y|/~ are not too big), then

the duality gap will be small. This estimate shows that one shouldn’t expect the du-
ality gap to get small until the primal and the dual are very nearly feasible. Actual
implementations confirm this expectation.

5.4. Progress Over Several IterationsNow let p%), o(%) 4 (k) 9(k) "etc., de-
note the values of these quantities at iitle iteration. We have the following result
about the overall performance of the algorithm:

THEOREM 17.1. Suppose there is a real number- 0, a real numberM < oo,
and an integerK such that for allk < K,

k) > t,
12l < M,
Iy [loe < M.
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Then there exists a constahf < co such that

1p™ N < (1 = 6)* (1o,

lo™l < (1= 8)*(lo 1,

B < (1 -0,
forall £ < K where
t=t(1-29).
PROOF. From [I7.8) and the bound @&*), it follows that
Pl < (=) p* V< < (=) p@ 1

Similarly, from (I7.9), it follows that

lo™l < @ =)e* P < < (1 =80

IN

As usual,y(®) is harder to estimate. Frofn (17}10) and the previous two estimates, we
see that

A < (1= (1 — §))y*D
M1 =0 (1 + 1)
(1711) = (1 — g),y(k_l) + M(l _ t)k—l’

whereM = M (o1 + [|e(@]];). Since an analogous inequality relaté§~Y to
v(¥=2) we can substitute this analogous inequality ifito (7.11) to get

Y0 < (=D [(1 = Dy + M= )2 4+ 2T - 1)
22 (k=2) L 1 rea 11
Continuing in this manner, we see that

Y < (1= 82 [(1 =Dy + 1 (1 — 1)+
+ M(1-t)k! E_i + 1]

_ (1 _ 7:[)3,)/(1673) + M(l _ t)kfl

~y k—1 ~
. - 1—1 1—1
< (1 =8k O 4 M1 — )kt [() 4+t —+1




302 17. A PATH-FOLLOWING METHOD

Now we sum the bracketed partial sum of a geometric series to get

—(1—0k11_<1:i>k

ey 1= 11
=1
(A= pF-a -t
B t—1 '

Recalling that = ¢(1 — ) and dropping the second term in the numerator, we get
(1-D-a-nF _ (-9
t—1t - 8t
Putting this all together, we see that

%“S(l—ﬂkaL+Z>-

Denoting the parenthesized expressiomby}completes the proof. O

Theoren| I7]1 is only a partial convergence result because it depends on the a:
sumption that the step lengths remain bounded away from zero. To show that the
step lengths do indeed have this property requires that the algorithm be modified an
that the starting point be carefully selected. The details are rather technical and henc
omitted (see the Notes at the end of the chapter for references).

Also, before we leave this topic, note that the primal and dual infeasibilities go
down by a factor oft — ¢ at each iteration, whereas the duality gap goes down by a
smaller amount — ¢. The fact that the duality gap converges more slowly that the
infeasibilities is also readily observed in practice.

Exercises

17.1 Starting from(z, w, y, z) = (e, e, e, ¢e), and usingd = 1/10, andr = 9/10,
compute(x, w,y, z) after one step of the path-following method for the
problem given in

(a) Exercis¢ 2]3.
(b) Exercis¢ Z]4.
(c) Exercisg 2.
(d) Exercis¢ 2.70.

17.2 Let {(zp, wy, yu, 2,) : 1 > 0} denote the central trajectory. Show that

c T T, _
Hh_}rrolob Yu — C T, = 0.

Hint: look at (I7.3)
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17.3 Consider a linear programming problem whose feasible region is bounded
and has nonempty interior. Use the result of Exericise|17.2 to show that the
dual problem’s feasible set is unbounded.

17.4 Scale invarianceConsider a linear program and its dual:

maxc’ z min b’y
(P) st Az+w=hb (D) st ATy—z=c¢
z,w >0 y,z > 0.

Let R andS be two given diagonal matrices having positive entries along
their diagonals. Consider trszaledreformulation of the original problem

and its dual:
max (Sc)’ z min (Rb)y
(P) st RASt+w=Rb (D) st SATRj—z=Sc

0 >0 g,z > 0.

X
Let (z*, wk, 4", 2¥) denote the sequence of solutions generated by the primal-
dual interior-point method applied {&)—(D). Similarly, let(z*, w*, 5*, z¥)
denote the sequence of solutions generated by the primal—-dual interior-poin
method applied t¢P)—(D). Suppose that we have the following relations
among the starting points:

=812 w=Ru’, §°=R"1H°, 2°=5:"
Show that these relations then persist. That is, for éaghi,
8 =871k wf = Rwb, gF =R7YWF, ZF =82
17.5 Homotopy methodLet z, g, z, andw be given componentwise positive

“initial” values for x, y, z, andw, respectively. Let be a parameter between
0 and1. Consider the following nonlinear system:

Az +w=1tb+ (1 —t)(AZ + w)
ATy —z=tc+ (1 -t)(ATy - 2)

(17.12) XZe=(1—-t)XZe
YWe=(1-t)YWe
z,y, 2, w > 0.

(a) Use Exercisf 16.3 to show that this nonlinear system has a unique so
lution for eachd < ¢ < 1. Denote it by(z(t), y(t), z(t), w(t)).

(b) Show thatz(0),y(0),2(0),w(0)) = (Z, 7, Z, ®).

(c) Assuming that the limit

(2(1),y(1), 2(1), w(1)) = lim (2 (2), y(2), 2(t), w(t))
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exists, show that it solves the standard-form linear programming prob-
lem.

(d) The family of solutiongz(¢),y(t), z(t), w(t)), 0 < ¢t < 1, describes
a curve in “primal-dual” space. Show that the tangent to this curve at
t = 0 coincides with the path-following step direction @ g, z, w)
computed withy = 0; that is,

dx dy dz dw
(%510 510, 5 0. 50) = (0. 8,85, 0)

where(Az, Ay, Az, Aw) is the solution to[(T7]1)F(T7.4).

17.6 Higher-order methodsThe previous exercise shows that the path-following
step direction can be thought of as the direction one gets by approximating
a homotopy path with its tangent line:

By using more terms of the Taylor’s series expansion, one can get a bettel

approximation:
dx 1d%z, ., 1 d*x
2(t) =~ x(0) + o (0)t + 5 42 Ot +---+ x dtk(
(a) Differentiating the equations in (17]12) twice, derive a linear system for
(d%x/dt?(0), d>y/dt?(0), d?z/dt?(0), d*w/dt>(0)).
(b) Can the same technique be applied to derive linear systems for the
higher-order derivatives?

0)tk.

17.7 Linear Complementarity ProblenGiven ak x k matrix M and ak-vector
q, a vectorz is said to solve the linear complementarity problem if

—-Mzx+z=q
XZe=0
z,z2>0

(note that the first equation can be taken as the definitiaf). of
(a) Show that the optimality conditions for linear programming can be ex-
pressed as a linear complementarity problem with

0 -A
AT 0
(b) The path-following method introduced in this chapter can be extended

to cover linear complementarity problems. The main step in the deriva-

tion is to replace the complementarity conditiohiZe = 0 with a
pu-complementarity conditiolX Ze = pe and then to use Newton’'s
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method to derive step directiodsr andAz. Carry out this procedure
and indicate the system of equations that defineandAz.

(c) Give conditions under which the system derived above is guaranteed to
have a unique solution.

(d) Write down the steps of the path-following method for the linear com-
plementarity problem.

(e) Study the convergence of this algorithm by adapting the analysis given

in Sectior 11b.

17.8 Consider again th&'-regression problem:
minimize||b — Ax||;.

Complete the following steps to derive the step direction vesterssoci-
ated with the primal-dual affine-scaling method for solving this problem.

(a) Show that the&.'-regression problem is equivalent to the following lin-
ear programming problem:

minimize e (¢, +t_)
(17.13) subjectto Az +t, —t_=b
ty,t_>0.

(b) Write down the dual of (17.13).

(c) Add slack and/or surplus variables as necessary to reformulate the dua
so that all inequalities are simple nonnegativities of variables.

(d) Identify all primal-dual pairs of complementary variables.

(e) Write down the nonlinear system of equations consisting of: (1) the
primal equality constraints, (2) the dual equality constraints, (3) all
complementarity conditions (using= 0 since we are looking for an
affine-scaling algorithm).

(f) Apply Newton’s method to the nonlinear system to obtain a linear sys-
tem for step directions for all of the primal and dual variables.

(g) We may assume without loss of generality that both the initial primal
solution and the initial dual solution are feasible. Explain why.

(h) The linear system derived above i§ & 6 block matrix system. But it
is easy to solve most of it by hand. First eliminate those step direction
associated with the nonnegative variables to arrive atxa2 block
matrix system.

(i) Next, solve the x 2 system. Give an explicit formula fakz.

() How does this primal-dual affine-scaling algorithm compare with the
iteratively reweighted least squares algorithm defined in Sectiph 12.5?

17.9
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(a) Let¢;, 7 =1,2,..., denote a sequence of real numbers between zero
and one. Show thdf[;(1 — &;) = 0if >, &; = oc.

(b) Use the result of paff a to prove the following convergence result: if
the sequencesr® |, k = 1,2,..., and||y® | o, k = 1,2,..., are
bounded and", 6*) = oo, then

Jlim [lpM]]; =0
Jim [lo® ], =0

lim ’y(k) =0.

k—oo
Notes

The path-following algorithm introduced in this chapter has its origins in a paper
by/Kojima et al. [(1989). Their paper assumed an initial feasible solution and therefore
was a true interior-point method. The method given in this chapter does not assum
the initial solution is feasible—it is a one-phase algorithm. The simple yet beautiful
idea of modifying the Kojima—Mizuno—Yoshise primal—dual algorithm to make it into
a one-phase algorithm is du€ to Lustig (1990).

Of the thousands of papers on interior-point methods that have appeared in th
last decade, the majority have included convergence proofs for some version of al
interior-point method. Here, we only mention a few of the important papers. The
first polynomial-time algorithm for linear programming was discoverefl by Khathian
(1979). Khachian’s algorithm is fundamentally different from any algorithm presented
in this book. Paradoxically, it proved in practice to be inferior to the simplex method.
N.K. Karmarkar's pathbreaking paper (Karmarkar 1984) contained a detailed con-
vergence analysis. His claims, based on preliminary testing, that his algorithm is
uniformly substantially faster than the simplex method sparked a revolution in linear
programming. Unfortunately, his claims proved to be exaggerated, but nonetheles
interior-point methods have been shown to be competitive with the simplex method
and usually superior on very large problems. The convergence proof for a primal-dua
interior-point method was given by Kojima et/al. (1989). Shortly thereafter, Monteiro
& Adler| (1989) improved on the convergence analysis. Two recent survey papers.
Todd (1995) and Anstreicher (1996), give nice overviews of the current state of the
art. Also, a soon-to-be-published book /by Wright (1996) should prove to be a valu-
able reference to the reader wishing more information on convergence properties @
these algorithms.

The homotopy method outlined in Exercjse 17.5 is describéd in Nazareth (1986)
and Nazareih (1996). Higher-order path-following methods are described (differently)
in/Carpenter et alf (1993).



CHAPTER 18

The KKT System

The most time-consuming aspect of each iteration of the path-following method
is solving the system of equations that defines the step direction vécioray, Aw,
andAz:

(18.1) Al + Aw=p

(18.2) ATAy —Az=0

(18.3) ZAx + XAz=pe— XZe
(18.4) WAy +YAw=pe —YWe.

After minor manipulation, these equations can be written in block matrix form as
follows:

-Xz1! -1 Az —uZ e+ 2
A T A
(18.5) LY - P
-1 AT Az o
I yw-! Aw uW=lte —y

This system is called th€arush—Kuhn—Tucker systeor simply the KKT system. It

is a symmetric linear system 8fi + 2m equations iren + 2m unknowns. One could,

of course, perform a factorization of this large system and then follow that with a

forward and backward substitution to solve the system. However, it is better to do par
of this calculation “by hand” first and only use a factorization routine to help solve a

smaller system. There are two stages of reductions that one could apply. After the firs
stage, the remaining system is called the reduced KKT system, and after the secor
stage it is called the system of nhormal equations. We shall discuss these two systen
in the next two sections.

1. The Reduced KKT System

Equations[(I18]3) and (18.4) are trivial (in the sense that they only involve diag-
onal matrices), and so it seems sensible to eliminate them right from the start. Tc
preserve the symmetry that we saw[in (18.5), we should solve thetf@nd Aw,
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respectively:
Az =X"Yue - XZe — ZAx)
Aw =Y (e — YWe — WAYy).

Substituting these formulas into (IB.1) ahd (18.2), we get the so-caliierted KKT
system

(18.6) ANz — Y 'WAy=p—puY te+w

(18.7) ATAy+ X1 ZAz =0+ pXte — 2.

Substituting in the definitions gf ando and writing the system in matrix notation,

we get

-Y-'w A Ay b— Ax —puYle
AT X71Z| [Ax c— ATy 4+ puX1te

Note that the reduced KKT matrix is again a symmetric matrix. Also, the right-hand

side displays symmetry between the primal and the dual. To reduce the system an

further, one needs to break the symmetry that we have carefully preserved up to thi
point. Nonetheless, we forge ahead.

2. The Normal Equations

For the second stage of reduction, there are two choices: we could either (1) solv
(I8:8) for Ay and eliminate it from[(18]7) or (2) solve (18.7) fdrz and eliminate it
from (18.6). For the moment, let us assume that we follow the latter approach. In this
case, we get fronj (18.7) that

(18.8) Ar=XZ e— ATy +uX"te — AT Ay),
which we use to eliminatéx from (18.8) to get
(18.9) — (Y 'W + AXZ'AT)Ay=0b— Az — puY e
~AXZ Ye— ATy +uX"te).

This last system is a system of equations inn unknowns. It is called theystem
of normal equations in primal formit is a system of equations involving the matrix
YW + AXZ AT, TheY ~'W term is simply a diagonal matrix, and so the real
meat of this matrix is contained in theX Z—* A7 term.

Given thatA is sparse (which is generally the case in real-world linear programs),
one would expect the matrit.X Z 1 AT to be likewise sparse. However, we need to

investigate the sparsity of X Z—!1 AT (or lack thereof) more closely. Note that the
(i, 7)th element of this matrix is given by

i X
(AXZilAT)Z'j = Z aikz—:ajk.
k=1
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That is, the(s, j)th element is simply a weighted inner product of roivand ;j of
the A matrix. If these rows have disjoint nonzero patterns, then this inner product is
guaranteed to be zero, but otherwise it must be treated as a potential nonzero. This
bad news ifA is generally sparse but has, say, one dense column:

* * ok x % %
* * *
* [ % * * ok kK ok
* *
* * * * ok % % %
* *
k| % % = EEEE
* *
* | % * 'EEEE
* * *
* * EEEE
* *
* *

But don't forget that we didn’t have to go the primal normal equations route.
Instead, we could have chosen the other alternative of solving] (18.8)for

Ay= YW Hb— Az — pY " te — AAz),
and eliminating it from[(18]7):
(18.10) (ATYW A+ X 'Z)Az=c— ATy +puXle
+ATYW (b — Az — pY " te).

The system defined bf/ (18]10) is a systenmm@fquations im unknowns. It is called
the system ofiormal equations in dual formNote that dense columns do not pose a
problem for these equations. Indeed, for the example given above, we now get

* ok kK ok * ok x % k k x %
* * * ok * %
* * [ % *
* * % %
* * * *
* * * *
* k| % % =
* k% %
* * | *
* * * ok *
* * *
* * * *
* * ok *

While this system is larger than the one before, it is also sparse, and sparsity almo:s
always is more important than matrix dimensions. In this example, the dense ma
trix associated with the primal normal equations requéearithmetic operations to
factor, whereas the larger, sparser matrix associated with the dual normal equatior
requires just0. This is a small difference, but these are small matrices. As the ma-
trices involved get large, factoring a dense matrix takes on the ordet @perations,
whereas a very sparse matrix might take only on the orderagferations. Clearly, as
n gets large, the difference between these becomes quite significant.

It would be great if we could say that it is always best to solve the primal normal
equations or the dual normal equations. But as we've just seen, dense colufra®in
bad for the primal normal equations and, of course, it follows that dense rows are bax
for the dual normal equations. Even worse, some problems have constraint matrice
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A that are overall very sparse but contain some dense rows and some dense columr
Such problems are sure to run into trouble with either sets of normal equations. Fo
these reasons, it is best to factor the matrix in the reduced KKT system directly. Ther
it is possible to find pivot orders that circumvent the difficulties posed by both dense
columns and dense rows.

3. Step Direction Decomposition

In the next chapter, we shall discuss factorization techniques for symmetric ma-
trices (along with other implementation issues). However, before we embark on tha
discussion, we end this chapter by taking a closer look at the formulas for the stey
direction vectors. To be specific, let us look&t. From the primal normal equa-
tions [18.9), we can solve faky and then substitute the solution info (18.8) to get an
explicit formula forAz:

(18.11)Az = (D? — D?AT(E~2 + AD*AT)"1AD?) (c — ATy + pX'e)
+ D2AT(E=2 + AD?AT)=Y(b — Az — uY te),
where we have denoted iy the positive diagonal matrix defined by
D?*=Xx7"1
and we have denoted Wy the positive diagonal matrix defined by
E?=ywW™!

(defining these matrices by their squares is possible, since the squares have positi
diagonal entries). However, using the dual normal equations, we get

(18.12)  Az=(ATE2A+ D) (c— ATy+ pX'e)
+(ATE? A+ D72) T ATE(b— Ax — py " e).

These two expressions fdrz look entirely different, but they must be the same, since
we know thatAx is uniquely defined by the reduced KKT system. They are indeed
the same, as can be shown directly by establishing a certain matrix identity. This is
the subject of Exercise 18.1. There are a surprising number of published researc
papers on interior-point methods that present supposedly new algorithms that are i
fact identical to existing methods. These papers get published because the equivalen
is not immediately obvious (such as the one we just established).
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We can gain further insight into the path-following method by looking more
closely at the primal step direction vector. Form{ila (IB.11) can be rearranged as fol
lows:

Az =(D* - D*AT(E™* + AD*AT) ' AD?) ¢
+u(D*—D*AT(E7? + AD*AT) ' AD*) X e
—uD?AT(E=2 4+ AD?*AT) 'y e
+ D?AT(E2 + AD?*AT) " (b — Ax)
— D?AT (I — (B2 + AD*AT)'AD?A") y.
For comparison purposes down the road, we prefer to writé’thke that appears in

the second term containingas E~2W ~'e. Also, using the result of Exercie 1B.2,
we can rewrite the bulk of the last line as follows:

(I - (E~2+ AD*AT)'AD?AT) y = (B2 + AD*AT) ' E~%y
= (B2 4 AD*AT) .
Putting this all together, we get
Az = (D> — D*AT(E~? 4+ AD*AT)"'AD?) ¢
+pu(D* = D*AT(E2 + AD’AT)'AD?) X e
—uD?AT(E™2 4+ AD*AT)'E2W e
+D2AT(E—2 +AD2AT)_1p

=Azopr + pATcrr + AZpens,
where
Azopr = (D* — D*AT(E~? + AD*A") ' AD?) c,
Azcrr = (D? — D*AT(E? + AD*AT)"'AD?) X e
— D?*AT(E~2 + AD?AT) ' E2W e,
and

AIFEAS = D2AT(E72 + AD2AT)71p
In Chapte[ 2D, we shall show that these components:oifiave important connections
to the step directions that arise in a related interior-point method called the affine-
scaling method. For now, we simply establish some of their properties as they relate
to the path-following method. Our first result is thatp; is an ascent direction.

THEOREM18.1. ¢T Azgpr > 0.

PROOF. We use the result of Exercige 1.1 (with the rolegiadind D switched)
to see that
Axop'r = (ATEZA + D_2)_1C.
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Hence,

' Azopr = T (ATE?A+ D %) Le.
We claim that the right-hand side is obviously nonnegative, since the matrix sand-
wiched betweenr and its transpose is positive semidefiﬂ]ﬂadeed, the claim follows
from the definition of positive semidefiniteness: a mafBixs positive semidefinit
&T'B¢ > 0 for all vectors¢. To see that the matrix in question is in fact positive
semidefinite, we first note that” E2 A andD~2 are positive semidefinite:

TATER2AE = |EAE2 >0  and €7D 2% = D %¢|? > 0.

Then we show that the sum of two positive semidefinite matrices is positive semidefi-
nite and finally that the inverse of a symmetric positive semidefinite matrix is positive
semidefinite. To verify closure under summation, supposeRfdtand B(?) are pos-

itive semidefinite, and then compute

e(BW 4+ B®Ye = ¢TBWe 4 ¢TB®¢ > 0.

To verify closure under forming inverses of symmetric positive semidefinite matrices,
suppose thaB is symmetric and positive semidefinite. Then

B¢ =¢"B'BBT¢ = (B¢ B(B'¢) > 0,

where the inequality follows from the fact thBtis positive semidefinite anB—1¢ is
simply any old vector. This completes the proof. O

The theorem just proved justifies our referringtopr as astep-toward-optimality
direction. We next show thakzqe,s is in fact astep-toward-feasibility
In Exercisg 183, you are asked to find the formulas for the primal slack vector’s
step directionsAwepr, Awerr, aNd Awegas. It is easy to verify from these formu-
las that the pair§ Az opr, Awopr) and (Azcerr, Awerr) preserve the current level of
infeasibility. That is,
AAzopr + Awepr = 0
and
AAzcrr + Awergr = 0.

Hence, only the “feasibility” directions can improve the degree of feasibility. Indeed,
it is easy to check that

AAZeeps + Aweeas = p-

Finally, we considetAz.. If the objective function were zero (i.e=,= 0) and
if the current point were feasible, then steps toward optimality and feasibility would
vanish and we would be left with jugtx..z. Since our step directions were derived
in an effort to move toward a point on the central path parametrized e now see
that Azcrg plays the role of atep-toward-centrality

Uin fact, it's positive definite, but we don’t need this stronger property here.
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Exercises

18.1 Sherman—Morrison—Woodbury Formukassuming that all the inverses be-
low exist, show that the following identity is true:

(E7'+ ADATY "' = E - EA(ATEA+ DY) 1ATE.
Use this identity to verify directly the equivalence of the expressions given
for Az in (I8:13) and[(18.12).
18.2 Assuming that all the inverses exist, show that the following identity holds:
I —(E+ ADAT)'ADAT = (E+ ADAT)'E.
18.3 Show that

Aw = Awopr + pAwerr + Aweeas,
where
Awepr = —A (D* — D*AT(E™? + AD*A") ' AD?) ,
Awerg = —A (D* = D*AT(E? + AD*AT) " AD*) X e
+ AD*AT(E72 + AD?AT)'E2W e,
and
Awegas = p — AD?AT(E=2 + AD?AT)"1p.

Notes

The KKT system for general inequality constrained optimization problems was
derived by Kuhn & Tucker (1951). It was later discovered that W. Karush had proven
the same result in his 1939 master’s thesis at the University of Chi¢ago (Karush
1939)./ John[(1948) was also an early contributor to inequality-constrained optimiza-
tion. Kuhn’s survey paper (Kukin 1976) gives a historical account of the development
of the subject.






CHAPTER 19

Implementation Issues

In this chapter, we discuss implementation issues that arise in connection with the
path-following method.

The most important issue is the efficient solution of the systems of equations dis-
cussed in the previous chapter. As we saw, there are basically three choices, involvin
either the reduced KKT matrix,

—-E2 A
(19.1) B= AT p2]
or one of the two matrices associated with the normal equations:
(19.2) AD?AT + B2
or
(19.3) ATE?A+ D72

(Here,E2=Y 'WandD2=X"12)

In the previous chapter, we explained that dense columns/rows are bad for the
normal equations and that therefore one might be better off solving the system involv-
ing the reduced KKT matrix. But there is also a reason one might prefer to work with
one of the systems of normal equations. The reason is that these matrices are po:
tive definite. We shall show in the first section that there are important advantages ir
working with positive definite matrices. In the second section, we shall consider the
reduced KKT matrix and see to what extent the nice properties possessed by positiv
definite matrices carry over to these matrices.

After finishing our investigations into numerical factorization, we shall take up
a few other relevant tasks, such as how one extends the path-following algorithm tc
handle problems with bounds and ranges.

1. Factoring Positive Definite Matrices

As we saw in the proof of Theorgm 18.1, the matffrix (19.2) appearing in the primal
normal equations is positive semidefinite (and s¢ is (19.3), of course). In fact, it is
even better—it's positive definite. A matri& is positive definitef ¢7' B¢ > 0 for
all vectors¢ # 0. In this section, we will show that, if we restrict our row/column

315
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reordering to symmetric reorderings, that is, reorderings where the rows and column
undergo the same permutation, then there is no danger of encountering a pivot eleme
whose value is zero. Hence, the row/column permutation can be selected ahead of tirr
based only on the aim of maintaining sparsity.

If we restrict ourselves to symmetric permutations, each pivot element is a diago-
nal element of the matrix. The following result shows that we can start by picking an
arbitrary diagonal element as the first pivot element:

THEOREM19.1. If B is positive definite, theby;, > 0 for all i.
The proof follows trivially from the definition of positive definiteness:
b;i = €ZTB€1' > 0.

The next step is to show that after each stage of the elimination process, the remainin
uneliminated matrix is positive definite. Let us illustrate by breaking out the first
row/column of the matrix and looking at what the first step of the elimination process
does. Breaking out the first row/column, we write
a bT
b C

Here,a is the first diagonal element (a scaldr)s the column below:, andC' is the
matrix consisting of all ofB except the first row/column. One step of elimination (as
described in Chaptgj 8) transformsinto

a b7 ]
boT |-
b|C — 2
The following theorem tells us that the uneliminated part is positive definite:
THEOREM19.2. If B is positive definite, then so @& — bb? /a.

PROOF The fact thatB is positive definite implies that
a b’
b C Y

is positive whenever the scalaror the vectory is honzero (or both). Fix a vector
y # 0, and putz = —1bTy. Using these choices ifi (19.4), we get

(19.4) [z y" ] v

] =ax? 4+ 2yT bz + yTCy

1 1 boT
0< 5yTbbTy — 25yTbbTy +ylCy=y" (C’ — a) Y.

Sincey was an arbitrary nonzero vector, it follows ti@at- bb” /a is positive definite.
O

Hence, after one step of the elimination, the uneliminated part is positive definite.
It follows by induction then that the uneliminated part is positive definite at every step
of the elimination.
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Here’s an example:

2 -1 -1

-1 3-1-1

B = -1 2 -1
-1-1 3 -1
-1 -1 3

At the end of the four steps of the elimination (without permutations), we end up with

[ 2 1 ~1]
5 1

-1 2 -1 -1 -1
8 7 1

-1 5 -5 —3

7 11 11

-1-5 % —%

1 1 11

|l—2-5-% 1]

From this eliminated form, we extract the lower triangular matrix, the diagonal matrix,
and the upper triangular matrix to wrife as

- R 4 -1 - -

2 2 2 -1 1

5 5 5 1

-1 3 5 2 -1 -1 -3

— 8 8 8 7 1
B= -1 3 3 5 "5 3
1 -7 1 11 11 11

5 8 8 8 8
-1-3-3-% 1 1 1

As we saw in Chaptér] 8, it is convenient to combine the lower triangular matrix with
the diagonal matrix to get a new lower triangular matrix with ones on the diagonal.
But the current lower triangular matrix is exactly the transpose of the upper triangular
matrix. Hence, to preserve symmetry, we should combine the diagonal matrix with
both the lower and the upper triangular matrices. Since it only appears once, we mus
multiply and divide by it (in the middle of the product). Doing this, we get

1 2 1 -1 -1
1 5 2 2 1
-3 1 2 1 -5 -5 -5
_ 2 8 7 1
B= -5 1 5 1 -5 -3
2 7 11

2.1 u 1 -1

1 1 1
it -l 1] 1| 1]

The lower triangular matrix in this representation is usually denoted fand the
diagonal matrix byD (not to be confused with th® at the beginning of the chapter).
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Hence, this factorization can be summarized as
B=LDL"

and is referred to as ahD L -factorization Of course, once a factorization is found,
it is easy to solve systems of equations using forward and backward substitution a
discussed in Chaptgf 8.

1.1. Stability. We began our discussion of factoring positive definite matrices
with the comment that a symmetric permutation can be chosen purely with the aim of
preserving sparsity, since it is guaranteed that no pivot element will ever vanish. How-
ever, the situation is even better than that—we can show that whenever a pivot elemel
is small, so is every other nonzero in the uneliminated part of the same row/column
Before saying why, we need to set down a few technical results.

THEOREM19.3. If b;; denotes a diagonal element in the uneliminated submatrix
at some stage of an elimination anhg denotes the original value of that diagonal
element, thed < b;; < b;;.

PROOF. The positivity ofb;; follows from the fact the uneliminated submatrix is
positive definite. The fact that it is bounded abovebhyfollows from the fact that
each step of the elimination can only decrease diagonal elements, which can be se
by looking at the first step of the elimination. Using the notation introduced just after

Theorenf 1911,

2
Cii — = Cij-
a

O

THEOREM19.4. If B is symmetric and positive definite, thég| < +/b;;b;; for
alli #j.

PROOF Fix1i # j and let{ = re; + e;. Thatis,£ is the vector that's all zero
except for theth andjth position, where it's: and1, respectively. Then,

0< fTBf = biﬂ’z + Qbijr + bjj»

for all » € R. This quadratic expression is positive for all values @fand only if it

is positive at its minimum, and it's easy to check that it is positive at that point if and

Only if |b”| < \/biibjj- O
These two theorems, together with the fact that the uneliminated submatrix is

symmetric and positive definite, give us bounds on the off-diagonal elements. Indeed

consider the situation after a number of steps of the elimination. Using bars to denott

matrix elements in the uneliminated submatrix and letfidglenote an upper bound

on the diagonal elements before the elimination process began (which, without loss @
generality, could be taken a3, we see that, ib;; < ¢, then

(19.5) Bij < VeM.
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This bound is exceedingly important and is special to positive definite matrices.

2. Quasidefinite Matrices

In this section, we shall study factorization techniques for the reduced KKT ma-
trix (I9.3). The reduced KKT matrix is an example of a quasidefinite matrix. A
symmetric matrix is calleduasidefinitdf it can be written (perhaps after a symmetric
permutation) as

—FE A
AT D
where E and D are positive definite matrices. Quasidefinite matrices inherit some
of the nice properties of positive definite matrices. In particular, one can perform
an arbitrary symmetric permutation of the rows/columns and still be able to form a
factorization of the permuted matrix.

The idea is that, after each step of the elimination, the remaining uneliminated
part of the matrix is still quasidefinite. To see why, let's break out the first row/column

of the matrix and look at the first step of the elimination process. Breaking out the first
row/column of B, we write

i

—a =bT T
B=|-b-C G|,
f GT D

whereq is a scalarp and f are vectors, and’, D, andG are matrices (of the appro-
priate dimensions). One step of the elimination process transfBrinto

—a -7 fT
bb” bfT
—b|- (c ) g4 b
T
ploeme s Dt
The uneliminated part is

,(C,£> G+ b
a a
GT—I—# D_A'_#

Clearly, the lower-left and upper-right blocks are transposes of each other. Also, the
upper-left and lower-right blocks are symmetric, siri¢ceand D are. Therefore, the
whole matrix is symmetric. Theor.2 tells us that- bb”' /a is positive definite
andD + ffT /a is positive definite, since the sum of a positive definite matrix and
a positive semidefinite matrix is positive definite (see Exeicise] 19.2). Therefore, the
uneliminated part is indeed quasidefinite.

Of course, had the first pivot element been selected from the submainistead
of E, perhaps the story would be different. But it is easy to check that it's the same.



320 19. IMPLEMENTATION ISSUES

Hence, no matter which diagonal element is selected to be the first pivot element, th
resulting uneliminated part is quasidefinite. Now, by induction it follows that every
step of the elimination process involves choosing a pivot element from the diagonals
of a quasidefinite matrix. Since these diagonals come from either a positive definite
submatrix or the negative of such a matrix, it follows that they are always nonzero (but
many of them will be negative). Therefore, just as for positive definite matrices, an
arbitrary symmetric permutation of a quasidefinite matrix can be factored without any
risk of encountering a zero pivot element.
Here’s an example:

1 [ -1 —2 1
2 —2 2
(19.6) B=
3 -3
4| -2 12
5 1 2 1

(The blocks are easy to pick out, since the negative diagonals must be-fiom
whereas the positive ones are frdm) Let’s eliminate by picking the diagonals in the
order1,5,2,4,3. No permutations are needed in preparation for the first step of the
elimination. After this step, we have

1 [ -1 2 1]
P 2 2
3 3 1

4| -2 1 6 -2
51 1 2 —2 2]

Now, we move row/columrb to the pivot position, slide the other rows/columns
down/over, and eliminate to get

=W N ot =




Row/column2 is in the correct position for the third step of the elimination, and there-

2. QUASIDEFINITE MATRICES

fore, without further ado, we do the next step in the elimination:

Finally, we interchange rows/columfisand4 and do the last elimination step to get

1 5 2 4 3
1 [ -1 1 —2 ]
) 1 2 2 =2
2 —4
4 -2 =2 2 1
3 | 7
From this final matrix, it is easy to extract tiieD L7 -factorization of the permutation
of B:
1 5 2 4 3
1 -1 1 -2 ]
B:5 1 1 2
2 2 =2
41 -2 2 1
3 1—3_
1 5 2 4 3
1 1 11 -1 17 1 -1 2
5 -1 1 2 1 1 -1
2 11 —4 -1
4] 2 -1-35 1 5 13
3 s 1] -2 1

1 5 2 3 4
1 [ -1 2]
5 1 2 2 —9
P 4 P
3 3 1
4] -2 2 2/ 1 5]

As always, the factorization is computed so that one can solve systems of equation:
Given the factorization, all that is required is a forward substitution, a backward sub-
stitution, a scaling, and two permutations.
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2.1. Instability. We have shown that an arbitrary symmetric permutation of the
rows/columns of a quasidefinite matrix can be factored faL”. That is, mathe-
matically none of the pivot elements will be zero. But they can be small, and their
smallness can cause troubles not encountered with positive definite matrices. To e»
plain, let's look at an example. Consider the linear programming problem

maximize xz1+ o
subjectto xy +2x2 <1
201+ 19 <1
x1, 1220
and its dual
minimize y; + y2
subjectto gy + 2y > 1
21+ Y2 >1
Y1, Y2 2 0.
Drawing pictures, it is easy to see that the optimal solution is

Therefore, as the optimal solution is approached, the diagonal elemexits'id and
Y —'W approach zero. Therefore, at late stages in the path-following method, one is
faced with the problem of factoring the following reduced KKT matrix:

1 2 3 4

1 [ —¢ 1 2

B= 2 —e 2 1
3 1 2 4§ ’

4 2 1 8y

whereeq, €2, 61, andd, are small positive numbers. Consider what happens if we per-
mute the rows/columns so that the original diagonal elements appear in the following
order:1, 3, 4, 2. The permuted matrix is seen to be

1 3 4 2

1 —€1 1 2
B=3 1 6 2

4 2 0y 1

2 2 1 —e
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After the first two steps of the elimination, we have

—€1 1 2
1 &+4 2 2
(19.7) 2 4 4/e3 4/e1
2 € (62 + ;) a (51+ﬁ) 1- (51+ﬁ)
4/51 4

T 2T i)

Using exact arithmetic, the uneliminated part simplifies to

_46; _ 4

52 + 14+e€101 14+€161

_ 4 o _4e
1 1+4+€161 €2 1+4+€161

Here, the diagonal elements are small but not zero and the off-diagonal elements ai
close to—3. But on a computer that stores numbers with finite precision, the com-
putation comes out quite differently when thés and thed;’s are smaller than the
square root of the machine precision (i.e., abourt® for double-precision floating-
point numbers). In the elimination process, the parenthesized expressifpns |n (19.7
are evaluated before the other operations. Hence, in finite precision arithmetic, thes
expressions produce

4 4 1 1
0o+ — = — and 01+ —=—,
€1 €1 €1 €1
and so[(19]7) becomes
1 3 4 2
1 | —e 1 2
3 1 L2 2
€1 €1 ,
4 2 20 -3
2 2] =3 —461

which clearly presents a problem for the next step in the elimination process.

Now let's consider what happens if the elimination process is applied directly to
B without permuting the rows/columns. Sparing the reader the tedious details, the en
result of the elimination is the following matrix:

—€71 1 2
—€9 2 1
(19.8) 1 2 h+2i+2 242

2 2 \2
1 G+

2 2 4
2 1 ;+g 52+;+€2 (51+%+%)
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As before, in finite precision arithmetic, certain small numbers get lost:

4 4 1 1
524**:* and 514**:*
€1 €1 €1 €1
Making these substitutions ifi (19.8), we see that the final matrix produced by the
elimination process using finite precision arithmetic is

—€1 1 2
—€9 2 1

1 4 2 2

L2 o+ o148

2 1 2+2 0

Just as before, the fact that small numbers got lost has resulted in a zero appearir
on the diagonal where a small but nonzero (in this case positive) number belongs
However, the situation is fundamentally different this time. With the first ordering,
a —3 remained to be eliminated under the zero diagonal element, whereas with the
second ordering, this did not happen. Of course, it didn’t happen in this particular
example because tli@ppeared as the last pivot element, which has no elements below
it to be eliminated. But that is not the general reason why the second ordering doe
not produce nonzeros under zero pivot elements. In general, a zero (which should b
a small positive) can appear anywhere in the lower-right block (relative to the original
quasidefinite partitioning). But once the elimination process gets to this block, the
remaining uneliminated part of the matrix is positive definite. Hence, the estimate in
(I9.8) can be used to tell us that all the nonzeros below a zero diagonal are in fac
small themselves. A zero appearing on the diagonal only presents a problem if ther
are nonzeros below it that need to be eliminated. If there are none, then the eliminatio
can simply proceed to the next pivot element (see Exefrcis¢ 19.1).

Let's summarize the situation. We showed in the last chapter that the possibility of
dense rows/columns makes it unattractive to work strictly with the normal equations.
Yet, although the quasidefinite reduced KKT system can be used, it is numerically
less stable. A compromise solution seems to be suggested. One could take a stru
tured approach to the reordering heuristic. In the structured approach, one decides fir
whether it seems better to begin pivoting with elements from the upper-left block or
from the lower-right block. Once this decision is made, one should pivot out all the
diagonal elements from this block before working on the other block, with the excep-
tion that pivots involving dense rows/columns be deferred to the end of the elimination
process. If no dense columns are identified, this strategy mimics the normal equation
approach. Indeed, after eliminating all the diagonal elements in the upper-left block,
the remaining uneliminated lower-right block contains exactly the matrix for the sys-
tem of dual normal equations. Similarly, had the initial choice been to pivot out all
the diagonal elements from the lower-right block, then the remaining uneliminated
upper-left block becomes the matrix for the system of primal normal equations.
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With this structured approach, if no dense rows/columns are identified and de-
ferred, then the elimination process is humerically stable. If, on the other hand, som
dense rows/columns are deferred, then the factorization is less stable. But in practice
this approach seems to work well. Of course, one could be more careful and monito
the diagonal elements. If a diagonal element gets small (relative to the other unelim
inated nonzeros in the same row/column), then one could flag it and then calculate
new ordering in which such pivot elements are deferred to the end of the elimination
process.

3. Problems in General Form

In this section, we describe how to adapt the path-following algorithm to solving
problems presented in the following general form:

maximize T
(19.9) subjecttoa < Az < b
[ < z <.

As in Chaptef P, some of the data elements are allowed to take on infinite values
However, let us consider first the case where all the componentsbpt, andu are
finite. Infinities require special treatment, which shall be discussed shortly.

Following the derivation of the path-following method that we introduced in Chap-
ter[17, the first step is to introduce slack variables as appropriate to replace all inequa
ity constraints with simple nonnegativity constraints. Hence, we rewrite the primal

problem [[I9:p) as follows:

maximize Tz

subjectto Ax + f = b

—Az + p=—a
T+ t= u
—x 4+ g= -l

fip,t,g> 0.

In Chaptef P, we showed that the dual problem is given by

minimize bTv —aTq+u’s —1Th
subjectto AT(v—¢q) — (h—3s) = ¢
U7 q7 87 h Z 07
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and the corresponding complementarity conditions are given by

fivi=0 1=1,2,...,m,
piqi =0 1=1,2,...,m,
tjs; =0 j=12,...,n,
gih; =0 ji=12...,n.

The next step in the derivation is to introduce the primal—-dual central path, which
we parametrize as usual by a positive real parameteindeed, for each, > 0,
we define the associated central-path point in primal-dual space as the unique poil
that simultaneously satisfies the conditions of primal feasibility, dual feasibility, and
pu-complementarity. Ignoring nonnegativity (which is enforced separately), these con-
ditions are

Az + f=b
f+p=b—-a
r+it=u

—r+g=-l

ATy+s—h=c

y+q—v=0
FVe=pe
PQe=pe
TSe=pe
GHe= pe.

Note that we have replaced the primal feasibility conditiedx + p = —a, with the
equivalent condition that + p = b — a, and we have introduced into the dual problem
new variablegy defined byy = v — ¢q. The reason for these changes is to put the
system of equations into a form in whichand A7 appear as little as possible (so that
solving the system of equations for the step direction will be as efficient as possible).
The last four equations are thecomplementarity conditions. As usual, each
upper case letter that appears on the left in these equations denotes the diagonal mat
having the components of the corresponding lower-case vector on its diagonal. Th
system is a nonlinear system ®f + 5m equations irbn + 5m unknowns. It has a
unique solution in the strict interior of the following subset of primal-dual space:

(19.10) {(z, f,p,t,9,9,v,9,8,h) : f,p,t,9,v,q,8,h > 0}.

This fact can be seen by noting that these equations are the first-order optimality con
ditions for an associated strictly convex barrier problem.
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As 1 tends to zero, the central path converges to the optimal solution to both the
primal and dual problems. The path-following algorithm is defined as an iterative pro-
cess that starts from a point in the strict interior[of (19.10), estimates at each iteratior
a value ofu representing a point on the central path that is in some sense closer to th
optimal solution than the current point, and then attempts to step toward this central
path point, making sure that the new point remains in the strict interior of the the set
given in [19.10).

Suppose for the moment that we have already decided on the target value fo
p. Let (z,...,h) denote the current point in the strict interior pf (19.10), and let
(x+ Az, ..., h+ Ah) denote the point on the central path corresponding to the target
value ofy.. The defining equations for the point on the central path can be written as

AAz+Af =b—Ax— f D p
Af+Ap=b—a—-f—p =«

Ar+ At =u—x—t =T
—Ar+Ag=—-l+x—g =v
ATAy+As—Ah=c—ATy—s+h =0
Ay+Aqg—Av = —-y—q+v =0

FVTIAv+ Af = uVle— f—VIAVAS =: vy

QP 'Ap+Aq = uPle—q— P 'APAq =: 7,
ST 'At+As = pT~le — s — T 'ATAs =: v,

HG 'Ag+ Ah = uG~le — h — G'AGAR =: ~,,

where we have introduced notatigns . . , v;, as shorthands for the right-hand side ex-
pressions. This is almost a linear system for the direction ve¢tors. .., Ah). The
only nonlinearities appear on the right-hand sides of the complementarity equation:
(i.e., invyy,...,v). As we saw before, Newton’s method suggests that we simply
drop these nonlinear terms to obtain a linear system for the “delta” variables.

Clearly, the main computational burden is to solve the system shown above. It
is important to note that this is a large, sparse, indefinite, linear system. It is alsc
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symmetric if one negates certain rows and rearranges rows and columns appropriatel
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Av
As
Ah
Ag
Ay

Because this system is symmetric, we look for symmetric pivots to solve it. That
is, we choose our pivots only from the diagonal elements.
eliminateAv, Ap, Ag, andAt using the nonzero diagonalsFV =1, QP~!, HG1,
andST !, respectively, in any order without causing any nondiagonal fill-in. Indeed,

QP!

HG™!

the equations foAv, Ap, Ag, andAt are

(19.11)

Ax
Af
Ap
Ag

ST—l_ At

Av=VF (3~ Af)
Ap=PQ™ (v, — Ag)
Ag=GH (v, — Ah)
At =TS (v, — As),

and after elimination from the system, we get

(TS5 I
~GH™! —I
_pQ—l

A
I I AT
I I VF1

As
Ah
Agq

Az
LAS ]

—f

§§QQ‘EQT\1

Vs

It turns out that we can
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where again we have introduced abbreviated notations for the components of the righ
hand side:

Next we use the pivot elementsI’S—!, ~GH !, and—PQ~! to solve forAs,
Ah, andAgq, respectively:

(19.12) Ah=—HG (0 + Ax)

After eliminating these variables, the system simplifies to

Al Ay p
AT D Ax| =|o+ ST 14— HG v |,
I | E||Af B+ QP ta.
where
D=ST"'+HG!
and

E=VF'+QP '
Finally, we use the pivot elemenit to solve forA f,
(19.13) Af=E"Y3+QP 'a— Ay),

which brings us to the reduced KKT equations:

—-E~1A
AT |D

Up to this point, none of the eliminations have produced any off-diagonal fill-
in. Also, the matrix for system given ifi (I9]14) is a symmetric quasidefinite matrix.
Hence, the techniques given in Secfiolj 18.2 for solving such systems can be used. Tt
algorithm is summarized [n 19.1.

Ay

Ax

p—E7N(B+QP'4)

(19.14)
o+ ST 1% — HG i
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initialize (z, f, p,t,9,y,v,q, s, h) such thatf, p,t,g,v,q,s,h > 0
while (not optimal){

p=b— Az —w

c=c—ATy+z

vy=fTo+pq+tTs+g"h

uw=2a

n-+m
vr=pV e~ f
Vg =pP e —q
ve =puT e —s
yn=puG te—h
%zu—w—t—TSfl'ys
p=—l+2z—g—GH 'y,
d=b—a—f—p—PQ '
B=-y—q+v+VF 'y,
D=ST""+HG™!
E=VF'4+Qp!

—E7tA
AT D

p—ENB+QP'a)

solve:
o+ ST '+ —HG '»

Az

Ay} )

[

compute:A f using [I9.IB)As, Ak, Aq using [19.1P),
andAwv, Ap, Ag, At using [19.1]L)

Q:T(maXij {*% _ap o2

fi7 o ot g 17
AUj qu Asi Ah] }) B
et S e y A1
vj qi 8i hj

r — x+ Az, y—y—+0Ay, f— f+OASf, v— v+ 0Av
p<—p+0Ap, q— q+0Aq, t—t+ 0AtL, s— s+ 0As
g «— g+ 0Ag, h«— h+60Ah

FIGURE 19.1. The path-following method—general form.
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Exercises
19.1 The matrix ~ _
2 -2
1 -1
B=|-2 2
—1 2 -1
-1 2

is not positive definite but is positive semidefinite. Find a factorizaBos
LDLT, whereL is lower triangular with ones on the diagonal ahds a
diagonal matrix with nonnegative diagonal elements. If such a factorization
exists for every symmetric positive semidefinite matrix, explain why. If not,
give a counterexample.

19.2 Show that the sum of a positive definite matrix and a positive semidefinite
matrix is positive definite.

19.3 Permute the rows/columns of the matixgiven in [19.6) so that the diag-
onal elements fronB appear in the orde?, 3,4,5,1. Compute anLD L™ -
factorization of this matrix.

19.4 Show that, ifB is symmetric and positive semidefinite, thég| < \/b;;:b;;
forall ¢, j.

Notes

Most implementations of interior-point methods assume the problem to be formu-
lated with equality constraints. In this formulation, Lustig et al. (1994) give a good
overview of the performance of interior-point algorithms compared with the simplex
method.

The suggestion that it is better to solve equations in the KKT form instead of
normal form was offered independently by a number of researdhers (Gill et al. 1992,
Turnel{ 1991, Fourer & Mehrotfa 1991, Vanderbei & Carpénter 1993).

The advantages of the primal-dual symmetric formulation were first reported in
Vanderbei[(1994). The basic properties of quasidefinite matrices were first given in
Vanderbé€i[(1995).






CHAPTER 20

The Affine-Scaling Method

In the previous chapter, we showed that the step direction for the path-following
method can be decomposed into a linear combination of three directions: a directiol
toward optimality, a direction toward feasibility, and a direction toward centrality. It
turns out that these directions, or minor variants of them, arise in all interior-point
methods.

Historically, one of the first interior-point methods to be invented, analyzed, and
implemented was a two-phase method in which Phase | uses only the feasibility di-
rection and Phase Il uses only the optimality direction. This method is caifie
scaling While it is no longer considered the method of choice for practical imple-
mentations, it remains important because its derivation provides valuable insight intc
the nature of the three basic directions mentioned above.

In this chapter, we shall explain the affine-scaling principle and use it to derive
the step toward optimality and step toward feasibility directions. As always, our main
interest lies in problems presented in standard form. But for affine scaling, it is easiel
to start by considering problems in equality form. Hence, we begin by assuming that
the linear programming problem is given as

maximize ¢T z
(20.1) subjectto Az =10
x> 0.

We shall begin with the Phase Il algorithm. Hence, we assume that we have a feasibl
initial starting point,z°. For the affine-scaling method, it is important that this starting
point lie in the strict interior of the feasible set. That is, we assume that

Az’ =b and z° > 0.

1. The Steepest Ascent Direction

Since the affine-scaling principle is fundamentally geometric, it is useful to keep
a picture in mind. A typical picture far, = 1 andn = 3 is shown in Figurg 20]1. The
ultimate goal is, of course, to move fram to the optimal solutior:*. However, the
short-term goal is to move from® in some directiom\z that improves the objective
function. Such a direction is called ascent direction You probably recall from

333
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level setsof c'x

FIGURE 20.1. A typical feasible region when the problem is in
equality form,m = 1, andn = 3. The lines drawn on the feasible
set represent level sets of the objective function, @hdepresents
the starting point for the affine-scaling method.

elementary calculus that the best, i.e., steepest, ascent direction is given by the gradie
of the objective function. However, as we see in Figure|20.1, there is no reason a prior
for the gradient to “lie in” the feasible region. Hence, the steepest ascent direction
will almost surely cause a move to infeasible points. This is also clear algebraically.
Indeed,

Az + Az) = Ax® + AAz =b+ Ac#b

(unless Ac = 0 which is not likely).

To see how to find a better direction, let us first review in what sense the gradient
is the steepest ascent direction. Bieepest ascent directiemdefined to be the direc-
tion that gives the greatest increase in the objective function subject to the constrain
that the displacement vector has unit length. That is, the steepest ascent direction
the solution to the following optimization problem:

maximize cT (z° + Ax)

20.2
(20.2) subject to ||Az|? = 1.
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We can solve this problem using Lagrange multipliers. Indeed, if wg tinote the
Lagrange multiplier for the constraint, the problem becomes

max (2% + Az) — MAzxT Az —1).

Differentiating with respect td\x and setting the derivative to zero, we get
c—2) Az =0,
which implies that

1
Ax:ﬁcocc.

Then differentiating the Lagrangian with respectX@nd setting that derivative to
zero, we see that

|Az|* —1=0,
which implies that

|Az|| = +1.

Hence, the steepest ascent direction points in the direction of eitireits negative.
Since the negative is easily seen not to be an ascent direction at all, it follows that the
steepest ascent direction points in the direction. of

2. The Projected Gradient Direction

The problem with the steepest ascent direction is that it fails to preserve feasibility.
That is, it fails to preserve the equality constraidts = b. To remedy this problem,
let’s add these constraints {o (20.2) so that we get the following optimization problem:

maximize ¢’ (z° + Ax)
subject to |Az||* =1
A(x® + Az) = 0.
Again, the method of Lagrange multipliers is the appropriate tool. As before, let
denote the Lagrange multiplier for the norm constraint, and now introduce a vector

containing the Lagrange multipliers for the equality constraints. The resulting uncon-
strained optimization problem is

nax. (2 + Ax) = MAzT Az — 1) — yT (A(2° + Az) — D).
Differentiating this Lagrangian with respect for, A\, andy and setting these deriva-
tives to zero, we get

c—2MAz — ATy =0
1Az —1=0
A(2® + Az) —b=0.

The second equation tells us that the lengthAaf is one. Since we are interested
in the direction ofAxz and are not concerned about its length, we ignore this second
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equation. The first equation tells us that is proportional toc — ATy, and again,
since we aren’t concerned about lengths, we put 1/2 so that the first equation
reduces to

(20.3) Az =c— ATy.
SinceAz" = b, the third equation says that
AAx = 0.
Substituting[(20J3) into this equation, we get
Ac— AATy =0,
which, assuming thattA™ has full rank (as it should), can be solved foto get
y = (AAT) " Ac.

Now, substituting this expression info (20.3), we see that
Az =c— AT(AAT) 1 Ac.
It is convenient to lef” be the matrix defined by
P=1-AT(AAT)1A.
With this definition,Az can be expressed succinctly as
Ax = Pe.

We claim thatP is the matrix that maps any vector, suchcaso its orthogonal
projection onto the null space af. To justify this claim, we first need to define some
of the terms we've used. Thaull spaceof A is defined add € R" : Ad = 0}. We
shall denote the null space dfby N(A). A vector¢ is theorthogonal projectiorof
contoN(A) if it lies in the null space,

¢e N(A),
and if the difference between it ands orthogonal to every other vector iN(A).
That is,
d'(c—¢&) =0, forallde N(A).
Hence, to show thaPc is the orthogonal projection efonto the null space ofl, we
simply check these two conditions. Checking the first, we see that

APc = Ac — AAT(AAT) A,

which clearly vanishes. To check the second condition] le¢ an arbitrary vector in
the null space, and compute

dT(c — Pc) = d" AT(AAT) 1 Ac,

which also vanishes, sina# AT = (Ad)T = 0. The orthogonal projectiofc is
shown in Figuré 20]1.
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3. The Projected Gradient Direction with Scaling

The orthogonal projection of the gradient gives a good step direction in the sense
that among all feasibility-preserving directions, it gives the largest rate of increase
of ¢« per unit step length. This property is nice as long as the current pBirst
well inside the feasible set. But if it is close to a “wall,” the overall increase in one
step will be small, since even though the rate is large the actual step length will be
small, yielding a small overall increase. In fact, the increase will become arbitrarily
small as the point? is taken closer and closer to a “wall.” Hence, to get a reasonable
algorithm, we need to find a formula for computing step directions that steers away
from walls as they get close.

The affine-scaling algorithm achieves this affect as folloasale the variables
in the problem so that the current feasible solution is far from the walls, compute the
step direction as the projected gradient in the scaled problem, and then translate this
direction back into the original systenThe idea of scaling seems too simple to do
any good, and this is true if one tries the most naive scaling—just multiplying every
variable by one large number (such as the reciprocal of the smallest componét of
Such a uniform scaling does not change the picture in any way. For example, Figure
[20.3, which doesn’t show specific scales on the coordinate axes, would not change :
all. Hence, whether distance is measured in miles or in feet, the property of being
close to a wall remains unchanged.

Fortunately, the scaling we have in mind for the affine-scaling algorithm is just
slightly fancier. Indeed, the idea is to scale each variable in such a manner that it:
initial value gets mapped tb. That is, for eacly = 1,2,...,n, we introduce new
variables given by

X

&=

&3
<ol

Of course, this change of variable is trivial to undo:

x; = x?fj.
In matrix notation, the change of variables can be written as
(20.4) z = X,

Note that we are employing our usual convention of letting an upper-case letter stan
for a diagonal matrix whose diagonal elements come from the components of the
vector denoted by the corresponding lower-case letter. Clearly, under this change c
variables, the initial solutior® gets mapped to the vecterof all ones, which is at
least one unit away from each wall. Figure 20.2 shows an example of this scaling
transformation. Note that, unlike the trivial scaling mentioned above, this scaling
changes the way the level sets of the objective cut across the feasible region.
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FIGURE 20.2. The effect of affine scaling on projected gradients.

Making the change of variables given by (30.4)in (20.1), we find that the problem
in the scaled space is
maximize c? X0¢
subjectto AX% =10
£>0.
Clearly, it is a linear programming problem in standard form with constraint matrix
AX and vector of objective function coefficients” X°)7 = XCc. Letting A¢

denote the projected gradient of the objective function in this scaled problem, we set
that

A€ = (I - XOAT(AXOQAT)‘lAXO) XO%.

Ignore step length worries for the moment, and consider moving from the current
solutioné® = e to the following new point in the scaled problem:

€= +Ac
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Then transforming this new point back into the original unscaled variables, we get a
new pointz! given by

ot = X" = X (e + A¢) = 2” + XPAE.

Of course, the difference betweeh andz? is the step direction in the original vari-
ables. Denoting this difference kyz, we see that

Az =X° (I - XOAT(AX02AT)—1AX0) X0
(20.5) = (D - DA"(ADA")"'AD)c,

where
D= X%

The expression foAz given by [20.5) is called thaffine-scaling step directionOf
course, to construct the affine-scaling algorithm out of this formula for a step direc-
tion, one simply needs to choose step lengths in such a manner as to ensure “stric

feasibility of each iterate.
We end this section by illustrating some of the calculations on the following trivial
example:

maximize 2z + 3xo + 223
subjectto xy + xo+2x3=3

T1, T2, T3 Z 0.

This is precisely the problem shown in Figlire 20.2. As in the figure, let us assume tha

B NW =
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For later comparison, we compute the projected gradient (without scaling):

Pc=c— AT(AAT) 1 Ac
-1 -1

1 1
=3—1[112}1 [112]3
2] _2_ 2
i _1_
— {3 |1]2
6
L Jd _2_

|
— NI N

Now, in the scaled coordinate system, the gradient of the objective function is

1 2 2
0, __ 3 _ 9
X c= 5 31=12%
1
i) [2 3
and the constraint matrix is given by
1
0 _ —
AX_[112} 3 —[1§H
1
4
Using these, we comput&¢ as follows:
- o -1
2 1 1 2
— 19 3 3 1 3 3 1 9
A§*§7§{1§§]§ [155}5
1 1 1 1
L2 L2 2 2
2 1 5
— 19 3
=12~ |2]7?
1 1
2 2

1

\@ e

14
1
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Finally, Az is obtained by the inverse scaling:

Az = X°A¢
4
1 —7
= 3 9
2 14
1 1
4 14

In the next section, we discuss the convergence properties of the affine-scaling algc
rithm.

4. Convergence

In the previous section, we derived the affine-scaling step directionTo make
an algorithm, we need to introduce an associated step length. If the step were chose
so that the new point were to lie exactly on the boundary of the feasible region, then
the multiplier for Az, which as usual we denote Bywould be given by

= (e f-2)

But as always, we need to shorten the step by introducing a paraineter< 1 and

setting
—1
0=r (max {—Ax] }) .
J Zj

With this choice of, the iterations of the affine-scaling algorithm are defined by

T — x+ 0Az.

It turns out that the analysis of the affine-scaling algorithm is more delicate than
the analysis of the path-following algorithm that we discussed in Chpter 17. Hence
we simply state without proof the main results.

THEOREM20.1.

(a) If the problem and its dual are nondegenerate, then for every 1, the
sequence generated by the algorithm converges to the optimal solution.

(b) For » < 2/3, the sequence generated by the algorithm converges to an
optimal solution (regardless of degeneracy).

(c) There exists an example and an associated 1 for which the algorithm
converges to a nonoptimal solution.
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max

L))/

min

FIGURE 20.3. A few continuous paths of the affine-scaling algo-
rithm. At every point, the continuous path is tangent to the step
directionAz.

There is only one example currently known for which the affine-scaling algorithm
fails by converging to a nonoptimal solution. For this example, the failure occurs only
for all » > 0.995. It is not known whether there are examples of the algorithm failing
for all » > 2/3, although such a worst-case example seems likely to exist.

Convergence is only the first question. Once convergence is established, th
follow-up question is: how fast? For example, given a fixed tolerance, does the affine:
scaling algorithm produce a solution within this tolerance of optimality in a number of
iterations that is bounded by a polynomiakif Some variants of the path-following
method have this desirable property, so one would hope that the affine-scaling metho
would share it. Unfortunately, while no one has written down a detailed example yet,
there is strong evidence that the affine-scaling method does not have this property.

To explain the evidence, consider letting the step lengths in the affine-scaling al-
gorithm be extremely short, even infinitesimally short. In this case, the algorithm no
longer generates a sequence of points moving toward the optimal solution but rathe
makes a smooth curve connecting the starting point to the optimal solution. If we
let the starting point vary, then we get a family of curves filling out the entire inte-
rior of the feasible region and connecting each interior point to the optimal solution.
Figure[ 20.8 shows an example of a feasible region and some obtiimuous paths
Studying the continuous paths gives information about the discrete step algorithm
since, for each point, the step directiom\z at x is tangent to the continuous path
throughz. The important property that the continuous paths illustrate is that as one
gets close to a face of the feasible polytope, the continuous path becomes tangent
the face (see Exerci§e 2.1 for an algebraic verification of this statement). This tan
gency holds for faces of all dimensions. In particular, it is true for edges. Hence,
if one starts close to an edge, then one gets a step that looks a lot like a step of th
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simplex method. Therefore, it is felt that if one were to take a problem that is bad
for the simplex method, such as the Klee—Minty problem, and start the affine-scaling
algorithm in just the right place, then it would mimic the steps of the simplex method
and therefore tak@™ iterations to get close to the optimal solution. This is the idea,
but as noted above, no one has carried out the calculations.

5. Feasibility Direction

To derive a Phase | procedure for the affine-scaling algorithm, we consider a start
ing pointz? that has strictly positive components but does not necessarily satisfy the
equality constraintslz = b. We then let

p=b— Az’

denote the vector of infeasibilities. With these definitions under our belt, we introduce
the following auxiliary problem involving one extra variable, which we shall denote
by x (not to be confused with the initial solution vectdt):

maximize —x
subjectto Ax + xzgp=1">
x>0, zg > 0.

xO

1
is a strictly positive feasible solution to the auxiliary problem. Hence, we can apply the
affine-scaling algorithm to the auxiliary problem. If the optimal solution fas> 0,
then the original problem is infeasible. If, on the other hand, the optimal solution has
x§ = 0, then the optimal solution to the auxiliary problem provides a feasible starting
solution to the original problem (it may not be a strictly interior feasible solution, but
we shall ignore such technicalities in the present discussion).

Let us now derive a specific formula for the step direction vector in the auxiliary
problem. The vector of objective coefficients is

0
1’

4 0],

and the “current” solution can be denoted as

)

Clearly, the vector

the constraint matrix is
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Substituting these three objects appropriately into {20.5), we get

Az B X2 X2 AT
- g a

AIO

Exploiting heavily the fact that all the coefficients in the objective vector are zero
except for the last, we can write a fairly simple expressioner

Az = X2AT (AXQAT + gc(%ppT)i1 pxg.

The final simplification comes from applying the Sherman—Morrison—-Woodbury for-
mula (see Exercige 18.1) to the inverted expression above to discover that the vect
(AX2AT + 22pp™)~1p points in the same direction &4 X2 AT)~1p. That s, there

is a positive scalat such that

(AX2AT + a3pp") " p = a(AX?AT)

(see Exercisg 20.3). Since vector lengths are irrelevant, we can define the affine
scaling feasibility step direction as

(20.6) Az = X2AT (AX2AT) " p.

6. Problems in Standard Form
We return now to problems in standard form:
maximize ¢’z
subjectto Az < b
x> 0.

Introducing slack variables, we can write the problem equivalently as

] L)

(20.7) subjectto [ 4 I |

maximize [

x
w

I
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Writing down the affine-scaling step direction for this problem, we get

(el

<[A IHXQ » AT

')
D)

B X2
0
Therefore, in particular

Az = X?c— X2AT(AX?AT + W?)~LAX e,

Note that this formula forAz matches the formula foAzpr given in Sectior 1B]3,
except that the diagonal matriX? replacesX Z~! andW? replaces¥Y ~!. These
diagonal matrices are referred tosgsling matricesHence, the formula foAz given
above is often called thaffine-scaling step direction with primal scalingthereas
Azopris referred to as thaffine-scaling step direction with primal—-dual scaling

Similar connections can be established between the Phase | step direction derive
in this section and\xzeeas from Sectio{ I.B. Indeed, frorh (20.6), we see that the
feasibility step direction foi[ (20}7) is

> —1

:lXQWQ ([A I][X2 -

(- 1]2))

Again, looking just at the formula foAx, we see that
Az = XZAT(AXZAT + W?)~Hb — Az — w),
which coincides with\z s except thaf( 2 replacesX Z —! andW? replacedVYy —1.

Ax
Aw

which simplifies to
X2AT
W2

Ax

R (AX?AT + W)™ AX e
w

AT
I

AT
I

Az
Aw

Exercises

20.1 Step direction becomes tangent to each fadett Az denote the affine-
scaling step direction given by

Az = (X? - X?AT(AX?AT)TAX?) e
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This step direction is clearly a function of Fix j. Show that the limit as
x; tends to zero ofAx is a vector whosgth component vanishes. That is,

z;—0

20.2 Dual Estimates.Consider the following function, defined in the interior of
the polytope of feasible solutiods: : Az = b, = > 0} by

y(xr) = (AX2AT)1AX?c.

Consider a partition of the columns df= | B N] into a basic parB and a

nonbasic parlV, and, as we did in our study of the simplex method, partition
then-vectors analogously. Show that

lim y(z) = (BT) lep.
zn—0

20.3 Let A be anm x n matrix having rankn, and letp be an arbitraryn-vector.
Use the identity proved in Exercife 1B.1 to show that there exists a scalar
such that

(AAT + pp") "' p = a(AAT)p.
Hint: Be mindful of which matrices are invertible.

20.4 (So-called) Dual Affine-Scaling Metho@ompute the affine-scaling step-
direction vectorAz for problems in the following form:

maximize ¢T z
subjectto Az < b.

Notes

The affine-scaling algorithm was first suggested by Dikin (1967). He subse-
guently published a convergence analysis in Dikin (1974). Dikin’s work went largely
unnoticed for many years until several researchers independently rediscovered tt
affine-scaling algorithm as a simple variant of Karmarkar’s algorithm (Karmarkar
1984). Of these independent rediscoveries, only two papers offered a convergenc
analysis: one by Barnes (1986) and the other by Vanderbei ét al.|(1986). It is inter-
esting to note that Karmarkar himself was one of the independent rediscoverers, bt
he mistakenly believed that the algorithm enjoyed the same convergence properties :
his algorithm (i.e., that it would get within any fixed tolerance of optimality within a
specific number of iterations bounded by a polynomiatjn

Theorenj 20]1(a) was proved py Vanderbei et al. (1986). Part (b) of the Theorerr
was proved by Tsuchiya & Muramatsu (1992) who also show that the result is sharp
A sharper sharpness result can be found in Hall & Vandgrbei (1993). Part (c) of the
Theorem was established by Mascarehhas (1997).



NOTES 347

The first derivation of the affine-scaling feasibility step direction was given by
Vanderbei[(1989). The simple derivation given in Secfiiofi]20.5 is due to M. Meketon.

A recent book by Saigal (1995) contains an extensive treatment of affine-scaling
methods.






CHAPTER 21

The Homogeneous Self-Dual Method

In Chapter Iz, we described and analyzed an interior-point method called the
path-following algorithm. This algorithm is essentially what one implements in prac-
tice but as we saw in the section on convergence analysis, it is not easy (and perhay
not possible) to give a complete proof that the method converges to an optimal solu
tion. If convergence were completely established, the question would still remain as
to how fast is the convergence. In this chapter, we shall present a similar algorithm fou
which a complete convergence analysis can be given.

1. From Standard Form to Self-Dual Form

As always, we are interested in a linear programming problem given in standard
form

maximize ¢’z
(21.1) subjectto Ax < b
z>0
and its dual
minimize b”y
(21.2) subjectto ATy > ¢
y=>0.

As we shall show, these two problems can be solved by solving the following problem,
which essentially combines the primal and dual problems into one problem:

maximize 0
subject to — ATy + ¢ <0,
(21.3) Ax —bp <0,
—Tr + bTy <0,
z, y, ® > 0.

Note that, beyond combining the primal and dual into one big problem, one new vari-
able @) and one new constraint have been added. Hence, the total number of variable

349
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in (21.3) isn + m + 1 and the total number of constraintsis- m + 1. Furthermore,
the objective function and the right-hand sides all vanish. Problems with such right-
hand sides are calldtbmogeneousAlso, the constraint matrix for problern (Z1.3) is
skew symmetric. That is, it is equal to the negative of its transpose. Homogeneou:
linear programming problems having a skew symmetric constraint matrix are called
self-dual

In the next section, we shall give an algorithm for the solution of homogeneous
self-dual linear programming problems. But first, let’s note that a solutidn t0](21.3) in
which¢ > 0 can be converted into solutions fpr (21.1) gnd (P1.2). Indeerlet ¢)
be an optimal solution to problern (21.3). Suppose that 0. (The algorithm given
in the next section will guarantee that this property is satisfied wherfevef (21.1) anc
(21.2) have optimal solutioffs Put

©*=1z/¢ and y"=y/¢.
Then the constraints ifi (21.3) say that

— ATy + ¢ <0,
Ax* — b <0,
—cTz* 4+ bTy* < 0.

Also, z* andy* are both nonnegative. Thereforg, is feasible for[(2ZL]1) ang* is
feasible for[[21.R). From the weak duality theorem together with the third inequality

above, we get

CTLL'* — bTy*

Therefore,z* is optimal for the primal problen (21.1) and is optimal for the dual

problem[2Z1.R). As we will see later, the case whgre 0 corresponds to infeasibility
of either the primal or the dual problem (or both).

2. Homogeneous Self-Dual Problems
Consider a linear programming problem in standard form
maximize ¢’z
subjectto Ax < b
z>0
and its dual
minimize b”y
subjectto ATy > ¢
y > 0.

1The astute reader might notice that setting all variabl@sgmduces an optimal solution.
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Such a linear programming problem is calleglf-dualif m = n, A = —AT, and

b = —c. The reason for the name is that the dual of such a problem is the same a
the primal. To see this, rewrite the constraints as less-thans and then use the definir
properties for self-duality to get

ATy >c & —ATy <—-c & Ay<hb.
Similarly, writing the objective function as a maximization, we get
minb’y = —max—b'y = —maxcly.

Hence, ignoring the (irrelevant) fact that the dual records the negative of the objective
function, the primal and the dual are seen to be the same. A linear programming
problem in which the right-hand side vanishes is calldtbemogeneouproblem. It
follows that if a problem is homogeneous and self-dual, then its objective function
must vanish too.

For the remainder of this section, we assume that the problem under consideratio
is homogeneous and self-dual. Since the case- n = 1 is trivial (A = 0 in this
case), we assume throughout this sectionithat 2. Also, since the dual is the same
problem as the primal, we prefer to use the lettésr the primal slacks (instead of the
usualw). Hence, the primal can be written as

maximize 0
(21.4) subjectto Az + 2= 0
x,z>0.

The following theorem establishes some of the important properties of homoge-
neous self-dual problems.

THEOREM21.1. For homogeneous self-dual probld#i.4) the following state-
ments hold:

(1) It has feasible solutions and every feasible solution is optimal.
(2) The set of feasible solutions has empty interior. In fadty jt) is feasible,
thenzTz = 0.

ProoF (1)) The trivial solution(z, z) = (0,0), is feasible. Since the objective
function is zero, every feasible solution is optimal.

(2) Suppose thalz, z) is feasible for[(2Z1J4). The fact that is skew symmetric
implies thatt” A¢ = 0 for every vectok (see Exerci.l). In particulat, Az = 0.
Therefore, multiplyingdz+ 2 = 0 on the left byz”, we get) = 27 Az 4272 = 27 2.
This completes the proof. |

Part [2) of the previous Theorem tells us that homogeneous self-dual problems d
not have central paths.
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2.1. Step Directions.As usual, the interior-point method we shall derive will
have the property that the intermediate solutions it produces will be infeasible. Hence
let

plx,z) = Az + 2
denote the infeasibility of a solutiofx, z). Also, let

L r
wlz, z) = —Tz

The numbern(x, z) measures the degree of noncomplementarity betweand z.

Whenz andz are clear from context, we shall simply writefor p(x, z) and u for
p(z, z).
Step direction§ Az, Az) are chosen to reduce the infeasibility and noncomple-

mentarity of the current solution by a given facto) < § < 1. Hence, we consider
the nonlinear system that would make the infeasibility and noncomplementarity of
(x + Az, z + Az) bed times that of(z, 2):

Az 4+ Az) + (2 + Az) =6(Az + z),

(X +AX)(Z+AZ)e=du(z, 2)e.
As usual, this system is nonlinear in the “delta” variables. Dropping the nonlinear
term (appearing only in the second equation), we get the following linear system of
equations for the step directions:

(21.5) AAx + Az=—(1-9)p(z, 2),
(21.6) ZAz + XAz=6pu(x,z)e — X Ze.
With these step directions, we pick a step lengjind step to a new point:
T =x+ 0Ax, Z=2z+0Az
We denote the new-vector byp and the newu-value byj:
p=p(z,z) and p=pu(z,2).
The following theorem establishes some of the properties of these step directions.
THEOREM21.2. The following relations hold:
(1) AzTAz =0.
2 p=(1—-06+65)p.
@) a=(1-0+0)p.
(4) XZe—jpe=(1-0)(XZe— pe) + 02?AXAZe.
ProoF. (1) We start by multiplying both sides ¢f (21.5) on the lefthy”:
(21.7) AzT ANz + AzT Az = —(1 — §)AzTp.

The skew symmetry ofl (i.e., A = —AT) implies thatAz” AAz = 0 (see Exercise
[15.7). Hence, the left-hand side pf (21.7) simplifies nicely:

AxT AAz + AxTAz = AxT Az,
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Substituting the definition g into the right-hand side of (21.7), we get

—1=80Az"p=—(1-6AzT(Az + 2).
Next, we use the skew symmetry dfto rewrite Az” Ax as follows:

AxT Az = (Az)T Az = 2T AT Az = —2T AAx.
Assembling what we have so far, we see that
(21.8) AzTAz = —(1 = 0)(—2T AAzx + 2T Ax).
To proceed, we usg (21.5) to repladéz with —(1 — §)p — Az. Therefore,
—2TAAz + 2T Az =2T (1 = 6)p+ Az) + 2T Az
(21.9) =(1-8zTp+2TAz+ T Ax.
Again using the definition gf and the skew symmetry of, we see that
alp =2t (Az + 2) =272

The last two terms i (21].9) can be simplified by multiplying both side§ of [21.6) on
the left bye” and then using the definition gfto see that

dAr+ 2T Az =6un — 2Tz = (0 - a2
Making these substitutions ip (21.9), we get
—2TAAz +2TAx = (1 - 0)a" 2+ (6 —1)zTz =0.

Hence, from[(21]8), we see thAtr” Az vanishes as claimed.
(2) From the definitions of andz, we see that

p=A(x+ 0Az) + (2 + 0Az)
=Ax + z+ 0(AAz + Az)
=(1—-0+66)p.
(3) From the definitions of andz, we see that
#'z2=(z+0Ax)T (2 4 0A2)
=272+ 0T Az + 2T A2) + 02 AT Ax.
From part[(1) and(21}6), we then get
'z =22+ 0(0un — 272).
Therefore,
= P (1—0)u+ 6.
(@) From the definitions afnandz together with par{(3), we see that
XZe—fie= (X +0AX)(Z+0AZ)e — (1 -0+ 00)ue
=XZe+0(ZAx + XAz) 4+ 0?°AXAZe — (1 — 0 + 06)pe.



354 21. THE HOMOGENEOUS SELF-DUAL METHOD

Substituting[(21}6) into the second term on the right and recollecting terms, we get the
desired expression. O

2.2. Predictor-Corrector Algorithm. With the preliminaries behind us, we are
now ready to describe an algorithm. We shall be more conservative than we were i
Chapte I and define the algorithm in such a way that it keeps the components ¢
X Ze close to each other. Indeed, for edck 5 < 1, let

N(B) ={(z,2) > 0: || XZe — p(x, z)e|| < Bu(x,2)}.

Shortly, we will only deal with\'(1/4) andA/(1/2) but first let us note generally that
B8 < B implies that\V'(8) € N (3'). Hence, as a function ¢f, the N'(3)'s form an
increasing family of sets. Alsol (0) is precisely the set of pointg, z) for which
X Ze has all equal components.

The algorithm alternates between two types of steps. On the first iteration anc
subsequently on every other iteration, the algorithm perforpredictor step Before
a predictor step, one assumes that

(z,2) € N(1/4).

Then step directions are computed using 0 (i.e., with no centering) and the step
length is calculated so as not to go outsidé\fl /2):

(21.10) 0 = max{t : (x + tAz, z + tAz) € N(1/2)}.

On the even iterations, the algorithm performeaarector step Before a corrector
step, one assumes that

(z,2) € N(1/2)

(as is guaranteed by the predictor step’s step length). Then step directions are con
puted using = 1 (i.e., pure centering) and the step length paranmgigset tol.

The following theorem shows that the result of each step satisfies the preconditior
for the next step of the algorithm and thatlecreases on predictor steps while it stays
the same on corrector steps.

THEOREM21.3. The following statements are true:

(1) After a predictor step(z,z) € N(1/2) andg = (1 — 0)p.
(2) After a corrector step(z, z) € N (1/4) andp = p.

PROOF OFPART (). The formula forx follows from part () of Theorerp 21].2
by puttingd = 0. The fact tha{z, z) € A (1/2) is an immediate consequence of the
choice off. 0
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Before proving Par{{2) of the Theorem, we need to introduce some notation anc
prove a few technical results. Let

p=X"1272Aq,
q= X1/2Z71/2Az,

r=p+gq
=X"1V277V2(ZAx + XAz)
(21.11) =X"V277V2(5pe — X Ze).

The technical results are summarized in the following lemma.
LEMMA 21.4. The following statements are true:
@) [[PQell < 5lIr]>.
(2) If 6 = 0, then||r||? = np.
() If 6 = 1and(z, 2) € N(B), then||r||*> < B2u/(1 - B).

Proor (T First note thap”q = Az Az = 0 by Theorenj 21]{1). Hence,

Ir> =lp+al> =p"p+ 20" ¢+ "¢ =D (0 + &)
j

Therefore,

Il = Y @3 +q3)
j
> Z(p? +q37)?
—Z P} —4})* + 4pi4)
>4Zp]q]

:4||PQeH2.

Taking square roots yields the desired inequality.

@) Puttingd = 0 in @L.11), we see that = — X /2Z'/2¢. Therefore|r||> =
2T = N

Suppose thafr, z) € A (5). Whenever the norm of a vector is smaller than
some number, the magnitude of each component of the vector must also be smalle
than this number. Hencég;z; — p| < Sp. Itis easy to see that this inequality is
equivalent to

(21.12) (1 =B <zjz; < (14 B)p.
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Now puttingd = 1 in (21.13), we get
(zjzj — p)?
R
j 177
Therefore, using the lower bound given[in (21.12), we get the following upper bound:

1
m Z(%‘Zj —p)?

Finally, since(x,z) € N(3), we see that the above sum is bounded3By?. This
gives the claimed inequality. O

Ir]* <

PROOF OFTHEOREM[21.3(2). Since) = 1 in a corrector step, it follows from
Theoren) 212(4) thak Ze — jie = AXAZe = PQe. Therefore, part$ [1) anf](3) of
Lemmd 21.14 imply that

|XZe — fie]| = || PQel|

(21.13) = — L.

We also need to show thét, z) > 0. For0 <¢ <1, let
z(t) =z +tAx, 2z(t)=z+tAz, and pu(t) = p(z(t), z(t)).
Then from part[($) of Theorefm 2.2, we have
X(t)Z(t)e — p(t)e = (1 —t)(X Ze — pe) + 2 AXAZe.

The right-hand side is the sum of two vectors. Since the length of the sum of two
vectors is less than the sum of the lengths (i.e., bytibagle inequality, it follows
that

(21.14) [ X(HZ(1)e — p(d)ell < (1 - DX Ze — pe| + P|AXAZe]

(note that we've pulled the scalars out of the norms). Now, since) € N (1/2),

we have|| X Ze — pe|| < p/2. Furthermore, fron{ (21.13) we have tHak X AZe|| =
|PQe| < p/4. Replacing the norms in (21.]14) with these upper bounds, we get the
following bound:

(21.15) IX®ZMe = pt)ell < 1 -nF +25 < &
(the second inequality follows from the obvious facts #at t andy/4 < 11/2).
Now, consider a specific componetit follows from (2L.15) that

xj(t)z(t) — p(t) = —g.
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Sinced = 1, part [3) of Theorerh 21)2 tells us thatt) = v for all ¢. Therefore the
previous inequality can be written as

(21.16) (82 (t) > g > 0.

This inequality then implies that;(¢t) > 0 andz;(t) > 0 forall0 < ¢ < 1 (since
they could only become negative by passing throighhich is ruled out by[(21.16)).
Puttingt = 1, we get thatt; > 0 andz; > 0. Since the componentwas arbitrary, it
follows that(z, z) > 0. Therefore(z, z) € N (1/4). O

2.3. Convergence AnalysisThe previous theorem showed that the predictor-
corrector algorithm is well defined. The next theorem gives us a lower bound on the
progress made by each predictor step.

THEOREM21.5. In each predictor ste > ﬁ

PrROOF. Using the same notation as in the proof of Theofem|21.3, we have the
inequality:

(21.17) IX(0)Z(t)e — u(t)e] < (1 - D)X Ze — uel|
+t2|AX AZe|.
This time, however(z, z) € N'(1/4) andd = 0. Hence,
|XZe — pe|l < &
and, from partg (1) andl}(2) of Lemrha 2]1.4,
IaxAZe| = |PQe] < 5l = Snp

2
Using these two bounds ip (21]17), we get the following bound:
n
IX®Z(B)e - p(tel < (1 - +255.

Now, fix at < (2,/n)~!. For such &, we havet?n/2 < 1/8. Therefore, using the
fact thatt < 1/2 forn > 2, we get

IX®Z®e - pt)el <105 + 5
7 W
<(1=tZ& A
<@-nh+a-nk
—(1-nH
_ M)
2
Hence, as in the previous theorefm(t), 2(t)) € N (1/2). Sincet was an arbitrary
number less thafR,/n) 1, it follows thatd > (2,/n) . O
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Let (z(®), 2(F)) denote the solution after thgh iteration and let
pF) = p(x(k),z(k)) and p*) = u(x(k),z(k)).

The algorithm starts withe(®) = 29 = ¢. Therefore,u() = 1. Our aim is to
show that;(*) and p(*) tend to zero ag: tends to infinity. The previous theorem
together with Theorern 21.3 implies that, after an even number of iterationgksay
the following inequality holds:

k
p < (1o L)
= 2/

Also, since the corrector steps don't change the valye @ffollows that
M(Zk—l) _ M(Qk)_

From these two statements, we see that
lim M(k) =0.

k—oo

Now, considernp®). It follows from parts [(R) and{3) of Theore.2 that the
reduction in infeasibility tracks the reduction in noncomplementarity. Hence,

o) =y (9) ().

Therefore, the fact that®) tends to zero implies the same fdf).
In fact, more can be said:

THEOREM21.6. The limitsz* = limy_ o, () andz* = lim;,_ , 2(*) exist and
(z*, z*) is optimal. Furthermore, the vectoss and z* are strictly complementary to
each other. That s, for each z;2; = 0 but eitherz; > 0 or 27 > 0.

The proof is fairly technical, and so instead of proving it, we prove the following
theorem, which captures the main idea.

THEOREM 21.7. Suppose thatz, z) € N(3) and thatp(z, z) = pu(z, z)p®).
Then there exist positive constantscs, . . ., ¢, such that; + z; > ¢; > 0 for each
ji=1,2,...,n.

PROOF Puty = u(z,2) andp = p(z, z). Let (x*, z*) be a strictly complemen-
tary feasible solution (the existence of which is guaranteed by Thelorerh 10.6). We
begin by studying the expressiofiz* + 27 2*. SinceAz* + z* = 0, we have that

o a2 =T — 2T Ax*
=(—ATz + 2)T2~.

By the skew-symmetry ofi, we see that-ATz + 2 = Az + z = p. And, since
p = pup®, we get

(21.18) 2Tor 42T = up(O)Tx*.
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The faCtOI’p(O)T:c* is a constant (i.e., it does not dependaoar z). Let us denote it

by M. Since all the terms in the two products on the lef{in (2]L.18) are nonnegative, it
follows that each one is bounded by the right-hand side. So if we focus on a particulal
indexj, we get the following bounds:

(21.19) zjx;f <uM and mjz; < uM.
Now, we use the assumption that 2) € N(3) to see that
zjzj 2 (1= B)p.
In other wordsy < z;2;/(1 — 3), and so the inequalities ip (21]19) become

Sincex; andz; are strictly positive, we can divide by them (and the constants) to get
1— —
Tﬁx;k <z; and Jz]* < zj.
Putting
1- ﬂ * *
G = (xF +25),
we get the desired lower bound o + ;. O

2.4. Complexity of the Predictor-Corrector Algorithm. Of course, in practice
we don’t run an infinite number of iterations. Instead, we set a priori a threshold and
stop whenu (%) falls below it. The threshold is usually denoted dy* whereL is
some number. Typically, we want the threshold to be ahout, which corresponds
to L ~ 26.

As we saw before, after an even number of iterations, Zgythe p-value is
bounded by the following inequality:

k
a2 < (1o L)
= 2/

Hence, it suffices to pick & big enough to have

() =

Taking logarithms of both sides and solving fgrwe see that any

L
k> —r—a—
- log(l - gﬁ)
will do. Since—log(1 — z) > x, we get
2L\/n > %

—log(1 — m).
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Therefore, any: > 2L+/n will do. In particular,k = 2L+/n rounded up to the nearest
integer will suffice. Sincé: represents half the number of iterations, it follows that it
will take at most4L/n iterations for theu-value to fall below the threshold @f*.

This bound implies that the method igpalynomial algorithm since it says that any
desired precision can be obtained in a number of iterations that is bounded above by
polynomial inn (here,4L+/n is not itself a polynomial but is bounded above by say a
linear function inn for n > 2).

2.5. The KKT System. We end this section on homogeneous self-dual problems
by briefly discussing the KKT systern (21L.9)—(31.6). Solving this system of equations
is the most time consuming step within each iteration of the predictor-corrector al-
gorithm. There are several ways in which one can organize the computation. The
approach that most parallels what we have done before is first to (2148} for

(21.20) Az=X"Y~ZAx+ Spue — X Ze)
=—X"1'ZAz +opX"te -z,
and then to eliminate it fronfi (27.5) to get the followirggluced KKT system
(A-X"'2)Ax=—(1-8)p+2z—opuX e
In the next section, we apply the algorithm developed in this section to the homoge-
neous self-dual problem given Hy (21.3).

3. Back to Standard Form

We return now to the setup in Sect{gn 1. Letv, andy denote the slack variables
for the constraints in problerp (21.3):

maximize 0
subject to — ATy +cop + 2z =0,
(21.21) Az — b + w =0,
—cTz + by + ¢ =0,

I7y7¢527w’w20‘

We say that a feasible solutidf, 7, ¢, z, w, 1) is strictly complementarif z; +z; >
0 for all j, i; + w; > 0 for all i, and¢ + 1 > 0. Theore6 ensures the existence
of such a solution (why?).

The following theorem summarizes and extends the motivating discussion given
in Sectior{1.

THEOREM 21.8. Suppose thatz, 7, ¢, z, w, 1) is a strictly complementary fea-
sible (hence, optimal) solution @1.2])

(1) If ¢ > 0, thenz* = z/¢ is optimal for the primal problen{21.1) and

y* = /¢ is optimal for its dual21.2)
(2) If = 0, then either”z > 0 or b < 0.
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(@) If <z > 0, then the dual problem is infeasible.
(b) If b < 0, then the primal problem is infeasible.

PrRoOF. Part [1) was proved in Secti@h 1. For péit (2), supposedghat0. By
strict complementarityy > 0. Hencez andy satisfy
ATg>o,
(21.22) Az <0,
vy <tz
From the last inequality, we see that it is impossible to hdvg > 0 andc’z < 0.
That is, eithee”z > 0 orb”'y < 0 (or both). Suppose, without loss of generality, that
¢z > 0. We will prove by contradiction that the dual problem is infeasible. To this
end, suppose that there exists a vegtbr 0 such that
(21.23) ATy0 > ¢
Sincez > 0, we can multiply by it without changing the direction of an inequality. So
multiplying (2I.23) on the left by’ we get
i:TATyO >zle.
Now, the right-hand side is strictly positive. But inequalfty (21.22) together with the
nonnegativity oy implies that the left-hand side is nonpositive:
T ATy = (Az)Ty° <o.
This is a contradiction and therefore the dual must be infeasible. d
3.1. The Reduced KKT System.The right-hand side in the reduced KKT sys-

tem involves the vector of infeasibilities. We partition this vector into three parts as
follows:

o AT ¢ | |2 z ATy +chp+ 2
pl =1 A —b| |yl +|w|= Ax — bp +w
o e o W —cTe+ 0Ty + ¢
The reduced KKT system fdfr (23.3) is given by
—X"1'z AT c Az &
(21.24) A —Y'W b Ayl =1|h]|:
—c’ bT /| | A y
where
ol —(1—=68)o+2—0uX"‘te
pl=1-1-8p+w—duyle
gl —(1=8)y+v—du/o
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This system is not symmetric. One could use a general purpose equation solver t
solve it, but its special structure would be mostly ignored by such a solver. To exploit
the structure, we solve this system in two stages. We start by using the first two
equations to solve simultaneously fxr: and Ay in terms of A¢:

Az —X"1z —AT

S ) L)

Introducing abbreviating notations, we can write
Ax] [
fy

Ay
f:r: 9z
and =
fy] ! [gy]

are found by solving the following two systems of equations:

Cc

—b

9z
9y

(21.25) Ao,

where the vectors

f=

X'z AT | [f]| e
I A —Y_1W_ _fy_ _/3
and
[—x-1z7 —AT ] -gm- B [
A YW |g| |-b

Then we us€ (21.25) to eliminater and Ay from the last equation i (21.P4):

R EE

We then solve for\¢:
Tye 3T A
Ad = j? Jz T[l? Jy 79 )
gy —bTgy — /9
GivenA¢, (21.25) determinedAxz andAy. Once these vectors are known, (21.20) is
used to compute the step directions for the slack variables:
Az=—-X"1ZAzx+6uX te—z
Aw=-Y WAy +6uY te —w
A= =5 g+ b/~ v

We now see that the reduced KKT system can be solved by solving two systems o
equations forf andg. These two systems both involve the same matrix. Furthermore,
these systems can be formulated as quasidefinite systems by negating the first equati
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and then reordering the equations appropriately. For example, the quasidefinite syste

forgis
Gy _ —b
9z —C '

Therefore, the techniques developed in Chgpter 19 can be used to solve these syste
of equations. In particular, to solve the two systems, the quasidefinite matrix only
needs to be factored once. Then the two systems can be solved by doing two forwar
and two backward substitutions. Since factorization requires more computation thar
forward and backward substitutions, one would expect to be able to solve these tw
systems in much less time than if they were each being solved from scratch. In fact
it is often the case that one can solve two systems involving the same quasidefinit
matrix in little more time than is required to solve just one such system.
The full homogeneous self-dual method is summarized in Flgure 21.1.

-Y-'w A
AT X117

4. Simplex Method vs Interior-Point Methods

Finally, we compare the performance of interior-point methods with the simplex
method. For this comparison, we have chosen the homogeneous self-dual methc
described in this chapter and the self-dual simplex method (see Figlire 7.1). In the
interest of efficiency certain liberties have been taken with the implementations. For
example, in the homogeneous self-dual mettod, [17.6) is used to compute “long” ste|
lengths instead of the more conservative “short” step lengths in (21.10). The code
fragments implementing each of these two algorithms are shown in Apgehdix A.

A standard collection of test problems, the so-called NETLIB suite, were used in
the comparison. Problems in this collection are formulated with bounds and ranges:

minimize Tz
subjecttob < Ax < b+r
< z<u.
However, to keep the algorithms as simple as possible, they were implemented only fo

problems in our standard inequality form. Therefore, the problems from the NETLIB
suite were converted to standard form as follows:

— maximize —cTz — 7Tl

subjectto —Ax < —b+ Al
Ax < b+r— Al
< u-—1
xz > 0.
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initialize
(z,y,0,z,w, ) = (e,e,1,e,¢e,1)
while (not optimal){
p= "z +wTy+9¢)/(n+m+1)
5 {O, on odd iterations
1, oneven iterations
p=—(1-06)(Az —bd+w) +w—duY e
6=—-1-080)(-ATy+co+2)+2z—0uX"'e
F=—-(1=6)0"y—cz+¢)+¢ —ou/o
solve the twon + m) x (n + m) quasidefinite systems:

YW A fol _ | P
AT Xz f,} - [—&}
and
-Y~'w A gy | | —b
AT X1z gz] B |:—c:|

T T A~
Ap= L Lab futd
C go—b gy —v/¢

gz

_ {fx
Ay Ty 9y
Az=—-X""ZAz+6uX te—2
Aw=-Y 'WAy +éuY te—w

Ad

Ay = *%A¢+5u/¢*w

o max{t : (z(t),...,¥(t)) € N(1/2)}, on odd iterations
B 1, on even iterations
T x+ 0Ax, z—z+0Az

y —y+ 0Ay, w — w + 0Aw

¢ — ¢+ 0Ag, P — P+ 0AY

FIGURE 21.1. The Homogeneous Self-Dual Method.

Of course, this transformation is invalid when any of the lower bounds are infinite.
Therefore, such problems have been dropped in our experiment. Also, this trans
formation introduces significant computational inefficiency but, since it was applied
equally to the problems presented to both methods, the comparison remains valid.
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The results of our experiment are shown in Tgble]21.1. The most obvious obser
vation is that the simplex method is generally faster and that, for many problems, the
slower method is not more than 3 or 4 times slower. For problems in this suite, these
results are consistent with results reported in the literature. However, it must be note
that the problems in this suite range only from small to medium in size. The largest
problem, fit2p, has about 3000 constraints and about 14000 variables. By today
standards, this problem is considered of medium size. For larger problems, report
in the literature indicate that interior point methods tend to be superior although the
results are very much dependent on the specific class of problems. In the remainin
chapters of this book we shall consider various extensions of the linear programming
model. We shall see that the simplex method is particularly well suited for solving
integer programming problems studied in Chaptér 22 whereas interior point method:
are more appropriate for extensions into the quadratic and convex programming prob
lems studied in Chaptefs|23 and 24. These considerations are often more importal
than speed. There are, of course, exceptions. For example, the interior-point metho
is about 900 times faster than the simplex method on problem fit2p. Such a differenc
cannot be ignored.

When comparing algorithms it is always tempting to look for ways to improve
the slower method. There are obvious enhancements to the interior-point method use
in this implementation. For example, one could use the samé” factorization to
compute both the predictor and the corrector directions. When implemented properly
this enhancement alone can almost halve the times for this method.

Of course, the winning algorithm can also be improved (but, significant overall
improvements such as the one just mentioned for the interior-point method are not &
all obvious). Looking at the table, we note that the interior-point method solved both
fit2p and fit2d in roughly the same amount of time. These two problems are duals of
each other and hence any algorithm that treats the primal and the dual symmetricall
should take about the same time to solve them. Now, look at the simplex method’s
performance on these two problems. There is a factor of 36 difference between then
The reason is that, even though we have religiously adhered to primal-dual symmetn
in our development of the simplex method, an asymmetry did creep in. To see it, note

that the basic matrix is always a square submatrix 4ff |. That is, it is anm x m

matrix. If we apply the algorithm to the dual problem, then the basis matrixisn.
Hence, even though the sequence of iterates generated should be identical with the tv
problems, the computations involved in each iteration can be very differentifid

n are not about the same. This is the case for the fit2p/fit2d pair. Of course, one cal
easily think up schemes to overcome this difficulty. But even if the performance of the
simplex method on fit2p can be brought in line with its performance on fit2d, it will
still be about 25 times slower than the interior-point on this problem — a difference
that remains significant.
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Name Time Name Time

Simplex Interior Simplex Interior

Method Point Method Point
25fv47 2m55.70s 3m14.829| maros 1mo0.87s 3m19.43g
80bau3b 7m59.57s 2m34.84g| nesm 1m40.78s 6m21.289
adlittle 0m0.26s 0m0.47s|| pilot87 * *
afiro 0m0.03s 0mo0.11s| pilotnov * 4m15.31s
agg 0m1.09s 0m4.59s|| pilots *  32m48.15s
agg2 0m1l.64s 0m21.429| recipe 0m0.21s 0m1.04s
agg3 0ml.72s 0m26.529| sc105 0mo0.28s 0m0.375
bandm 0m15.87s 0m9.015| sc205 0m1.30s 0mo0.84s
beaconfd 0mo0.67s 0m6.42s|| sc50a 0mO0.09s 0mo0.175
blend 0mO0.40s 0m0.56s|| sc50b 0mo0.12s 0m0.15s
bnl1l 0m38.38s 0m46.099| scagr25 0m12.93s 0m4.444
bnl2 3m54.52s 10m19.043| scagr7 0m1l.16s 0m1.05s
boeingl 0m5.56s 0m9.14s|| scfxml 0m4.44s 0m7.80s
boeing2 0m0.80s 0m1.72s)| scfxm2 0m14.33s 0m18.84g
bore3d 0m1.17s 0m3.97s/| scfxm3 0m28.92s 0m28.929
brandy 0m5.33s 0m8.44s|| scorpion 0m3.38s 0m2.64s
czprob 0m50.14s 0m41.774| scrs8 0m7.15s 0m9.53s
d2q06¢ * 1h11m1.93s|| scsdl 0m0.86s 0m3.88sg
d6cube 2m46.71s 13m44.523| scsd6 0m2.89s 0m9.31s
degen2 0m17.28s 0m17.029| scsd8 0m28.87s 0m16.829
degen3 5m55.52s 3m36.739| sctapl 0m2.98s 0m3.08s|
dfloo1 8h55m33.05s ** || sctap2 0m7.41s 0m12.03g
e226 0m4.76s 0m6.65s|| sctap3 0m11.70s 0m17.189
etamacro 0m17.94s 0m43.403| seba 0m27.25s 0m11.90g
fffff800 0m10.07s 1m9.159| sharelb 0m2.07s 0m10.909
finnis 0m4.76s 0m6.17s|| share2b 0mo0.47s 0m0.71g
fitld 0m18.15s 0m11.633| shell 0m16.12s 0m29.45g
fitlp 7m10.86s 0m16.479| ship04l 0m3.82s 0m13.60g
fitad 1h3m14.37s 4m27.663| shipO4s 0m3.48s 0m10.81g
fitzp 36h31m31.80s 2m35.67§ ship08l 0m17.83s 0m39.069
forplan 0m3.99s * || ship08s 0m8.85s 0m19.64g
ganges 0m44.27s 0m34.894| ship12l 0m26.55s 1m8.629
gfrdpnc 0m11l.51s 0m8.465| shipl2s 0m16.75s 0m30.339
greenbea 22m45.49s 43m4.323| sierra 0m10.88s 0m42.899
growl5 0m8.55s 0m58.265| standata 0m0.57s 0m6.60s
grow22 0m11.79s 2m0.53g| standmps| O0m2.41s 0m13.445
grow?7 0m3.61s 0m13.579| stocforl 0m0.22s 0m0.92s
israel 0m1.83s 0m2.66s/| stocfor2 0m45.15s 0m40.43g
kb2 0mo0.15s 0m0.34s| woodlp 0m14.15s 7m18.474
lotfi 0m0.81s 0m3.36s/| woodw 1m48.14s 8m53.924
maros-r7 *  1h31m12.06s

TABLE 21.1. Comparison between the self-dual simplex method
and the homogeneous self-dual interior-point method. (*) denotes
numerical difficulties. (**) denotes insufficient memory.



EXERCISES 367

Exercises
21.1 Whenn = 1, the set\'(3) is a subset oR?. Graph it.

21.2 Suppose there is an algorithm for which one can prove that

k
(k) __a
“kg(l ﬂm>’

for everyk > 1, wheref (n) denotes a specific function af such ag' (n) =
n?, anda is a constant. In terms ef and f and the “precision’L, give a
(tight) upper bound on the number of iterations that would be sufficient to
guarantee that

u(k) <2 L

21.3 In Section[B of Chaptdr 19, we extended the primal-dual path-following
method to treat problems in general form. Extend the homogeneous self-
dual method in the same way.

21.4 Long-step variantLet
M(@B) ={(z,2) :minXZe > (1 — B)u(z,2)}.

(The notationmin X Ze denotes the scalar that is the minimum of all the
components of the vectoY Ze. Throughout this problem, given any vector
v, the notationmin v (max v) will denote the minimum (maximum) of the
components of.) Fix % < B < 1(says = 0.95). A long-stepvariant of
the homogeneous self-dual method starts with an infiiat) € M(3) and
in every iteration uses

§=2(1-p)
and
0 = max{t: (z + tAz,z + tAz) € M(B)}.
The goal of this exercise is to analyze the complexity of this algorithm by
completing the following steps.
(@) Show thatV'(3) ¢ M(B) € M(1) = {(z, z) > 0}.
(b) Show thatmax(—PQe) < ||r||?/4. Hint: Start by writing

)
Pt > Y pii
1:piq; <O
and then use the facts that ¢ = 0, p; + ¢; = r;, and that for any two
real numbers; andb, (a + b)? > 4ab (prove this).
(c) Show that if(z,2) € M(B), then|r||> < nu. Hint: Use 21.13)
to write [|7[|* = 3, (x;2; — du)*/x;2;. Expand the numerator, use
the definitions of, and ¢ to simplify, and then use the assumption that
(z,z) € M(B) to take care of the remaining denominator.
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(d) Show thatif(x, z) € M(5), then

B oy 4ﬁ5

min PQe” —

Hint: Using the same notation as in the proof of Theofem]21.3, fix
t < min{l, —B0u/ min PQe}, write

i (t)z(t) — p(t) = (1 = t)(wj2; — p) + t*Az; Az,

and then replace the right-hand side by a lower bound that is indepen-
dent of;j. From there, follow your nose until you get the first inequality.
The second inequality follows from pa{t) and (d).

(e) As usual letting:(*) denote the: value associated with the solution on
the kth iteration of the algorithm, show that

k
k) < (1 — @(1 — 5)) .

n

6 > min{1, —

(f) Give an upper bound on the number of iterations required tp.get<
2-L,

(g) Show tha¥ can be computed by solving(univariate) quadratic equa-
tions.

(h) A robust implementation of a quadratic equation solver uses the for-

mula
—b—~/b%—4dac
e, b >0,

e 0<0
for one of the two roots tax? + bz + ¢ = 0 (a similar formula is
used for the other one). Show that the two expressions on the right are
mathematically equal and suggest a reason to prefer one over the othe
in the particular cases indicated.

Notes

The first study of homogeneous self-dual problems appeared in Tucker (1956)
This chapter is based on the pagers Mizuno ét al. (1993), Ye ét al.|(1994), and Xu e
al] (1993). The step length formu[a(21].10) forces the algorithm studied in this chapter
to take much shorter steps than those in Chgpter 17. In general, algorithms that ar
based on steps that confine the iterate¥{@) are calledshort-step method#\ long-
stepvariant of the algorithm can be obtained by enlarging theé\&§gt). Such a variant
is the subject of Exercige 21.4. For this method, a worst case analysis shows that
takes on the order at steps to achieve a given level of precision. Xu €t[al. (1993)
describes an efficient implementation of the long-step variant.

The predictor—corrector method is a standard technique used in the numerical sc
lution of ordinary differential equations. Mehratfa (1992) (see also Mehtotra (1989))
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was the first to apply this technique in the context of interior-point methods, although
the related notion of forming power series approximations was suggested earlier b
N.K. Karmarkar and is described|in Adler et al. (1989).






Part 4

Extensions



It's hard. But it's harder to ignore it— C. Stevens



CHAPTER 22

Integer Programming

Many real-world problems could be modeled as linear programs except that some
or all of the variables are constrained to be integers. Such problems areintdled
ger programming problemsOne might think that these problems wouldn’t be much
harder than linear programming problems. For example, we saw in Chapter 13 that fo
network flow problems with integer data, the simplex method automatically produces
integer solutions. But that was just luck. In general, one can't expect to get integel
solutions; in fact, as we shall see in this chapter, integer programming problems turr
out to be generally much harder to crack than linear ones.

There are many important real-world problems that can be formulated as intege!
programming problems. The subject is so important that several monographs are de
voted entirely to it. In this chapter, we shall just present a few favorite applications
that can be modeled as integer programming problems and then we will discuss on
technique for solving problems in this class, caltednch-and-bound

1. Scheduling Problems

There are many problems that can be classifiestheduling problemsie shall
consider just two related problems of this type: the equipment scheduling and crew
scheduling problems faced by large airlines. Airlines determine how to route their
planes as follows. First, a number of specific fliggdsare defined based on market
demand. A leg is by definition one flight taking off from somewhere at some time
and landing somewhere else (hopefully). For example, a leg could be a flight from
New York directly to Chicago departing at 7:30M. Another might be a flight from
Chicago to San Francisco departing at 1p00. The important point is that these legs
are defined by market demand, and it is therefore not clear a priori how to put these
legs together in such a way that the available aircraft can cover all of them. That is,
for each airplane, the airline must put togethaoate that it will fly. A route, by
definition, consists of a sequence of flight legs for which the destination of one leg is
the origin of the next (and, of course, the final destination must be the origin of the
first leg, forming a closed loop).

The airline scheduling problems are generally tackled in two stages. First, reason
able routes are identified that meet various regulatory and temporal constraints (yol
can't leave somewhere before you've arrived there—time also must be reserved fo

373
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dropping off and taking on passengers). This route-identification problem is by no
means trivial, but it isn’t our main interest here, so we shall simply assume that a col-
lection of reasonable routes has already been identified. Given the potential route:
the second stage is to select a subset of them with the property that each leg is cover:
by exactly one route. If the collection of potential routes is sufficiently rich, we would
expect there to be several feasible solutions. Therefore, as always, our goal is to pic
an optimal one, which in this case we define as one that minimizes the total cost. Tt
formulate this problem as an integer program, let

1 if route j is selected,
J‘J‘ = .
0 otherwise,

1 if leg 7 is part of routej,
A5 = .
0 otherwise,

and
¢; = cost of using routg.
With these notations, thequipment scheduling probleisito
n
minimize Z CiT;
j=1
n
subjectto ) a;z; =1 i=1,2,...,m,
j=1
z; € 40,1} i=12...,n.

This model is often called set-partitioning problemsince the set of legs gets divided,
or partitioned, among the various routes.

The flight crews do not necessarily follow the same aircraft around a route. The
main reason is that the constraints that apply to flight crews differ from those for the
aircraft (for example, flight crews need to sleep occasionally). Hence, the problem ha:
a different set of potential routes. Also, it is sometimes reasonable to allow crews ta
ride as passengers on some legs with the aim of getting in position for a subsequel
flight. With these changes, tlieew scheduling problens

n
minimize " c;x;
j=1
n
subjecttoZaijsz 1 1=1,2,...,m,
j=1
Jlje{o,l} i=12,...,n.

This model is often referred to asat-covering problepsince the crews are assigned
S0 as to cover each leg.
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e@—0©

FIGURE 22.1. A feasible tour in a seven-city traveling salesman problem.

2. The Traveling Salesman Problem

Consider a salesman who needs to visit eachaifies, which we shall enumerate
as0,1,...,n — 1. His goal is to start from his home cit§}, and make a tour visiting
each of the remaining cities once and only once and then returning to his home. W
assume that the “distance” between each pair of citigs,is known (distance does
not necessarily have to be distance—it could be travel time or, even better, the cost ¢
travel) and that the salesman wants to make the tour that minimizes the total distance
This problem is called thegaveling salesman problenfrigurg 22.]L shows an example
with seven cities. Clearly, a tour is determined by listing the cities in the order in
which they will be visited. If we let; denote théth city visited, then the tour can be
described simply as

80 =10,51,82,...,8n-1-

The total number of possible tours is equal to the number of ways one can permut
then — 1 cities, i.e.,(n — 1)!. Factorials are huge even for small(for example,
50! = 3.041 x 10%). Hence, enumeration is out of the question. Our aim is to
formulate this problem as an integer program that can be solved more quickly than by
using enumeration.

It seems reasonable to introduce for eéchi) a decision variable;; that will be
equal to one if the tour visits cityimmediately after visiting city; otherwise, it will
be equal to zero. In terms of these variables, the objective function is easy to write:

minimize Y~ " ¢ijai;.
i
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®

FIGURE 22.2. Two disjoint subtours in a seven-city traveling sales-
man problem.

The tricky part is to formulate constraints to guarantee that the set of nomgeso
corresponds exactly to a bonafide tour. Some of the constraints are fairly obvious. Fo
example, after the salesman visits citye must go to one and only one city next. We
can write these constraints as

(22.1) ay=1, i=01,..,n-1
j

(we call them thego-to constraints Similarly, when the salesman visits a city, he
must have come from one and only one prior city. That is,

(22.2) ay=1, j=01,...,n-1

(by analogy we call these theome-from constrainjs If the go-to and the come-
from constraints are sufficient to ensure that the decision variables represent a tou
the traveling salesman problem would be quite easy to solve because it would jus
be an assignment problem, which can be solved efficiently by the simplex method
But unfortunately, these constraints are not sufficient, since they do not rule out the
possibility of forming disjoint subtours. An example is shown in Fidure[22.2.

We need to introduce more constraints to guarantee connectivity of the graph tha
the tour represents. To see how to do this, consider a specific tour

S0 =0,51,82,...,8,-1-

Lett; fori =0,1,...,n be defined as the number of the stop along the tour at which
city ¢ is visited; i.e., “when” city; is visited along the tour. From this definition, we
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seethaty =0, t5, =1, t5, = 2, etc. In general,
ts, =1, i=0,1,....,n—1,
so that we can think of thg’s as being the inverse of thg’s. For a bonafide tour,
t; =t +1, if ;5 =1.

Also, eacht; is an integer betweed andn — 1, inclusive. Hencet; satisfies the
following constraints:

t; >

t;i+1—n if.’)?ijzo,

(Note that by subtracting in thex;; = 0 case, we have effectively made the condition
always hold.) These constraints can be written succinctly as

(22.3) t; >t +1—n(l—x), >0, >1,i#}j.

Now, these constraints were derived based on conditions that a bonafide tour satisfie
It turns out that they also force a solution to be a bonafide tour. That is, they rule out
subtours. To see this, suppose to the contrary that there exists a solufion o (22.1
(22.3), and[(22]3) that consists of at least two subtours. Consider a subtour that doe
not include city0. Letr denote the number of legs on this subtour. Clearly; 2.

Now, sum [[2Z.B) over all arcs on this subtour. On the left, we get the sum of the
t;'s over each city visited by the subtour. On the right, we get the same sun.plus
Cancelling the sums from the two sides, we get that

0=,

which is a contradiction. Hence, the traveling salesman problem can be formulated a
the following integer programming problem:

minimize Z CijTij

irj
n
subjectto ) " x;; =1, i=0,1,....,n—1,
j=1
n
> ay=1, j=0,1,...,n—1,
i=1
t():O,
T € {071}7
t; € {0,1,2,...}.

Note that, for then-city problem, there are? + n variables in this formulation.
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3. Fixed Costs

The terms in an objective function often represent costs associated with engagin
in an activity. Until now, we've always assumed that each of these terms is a linear
function such agzxz. However, it is sometimes more realistic to assume that there is
a fixed cost for engaging in the activity plus a linear variable cost. That is, one such
term might have the form

0 ifz =0
c(x) = .
K+cx ifxz>0.

If we assume that there is an upper bound on the sizg thfen it turns out that such a
function can be equivalently modeled using strictly linear functions at the expense of
introducing one integer-valued variable. Indeed, supposeuttsaan upper bound on
thex variable. Lety denote &0, 1}-valued variable that is one when and only when
x > 0. Then

c(z) = Ky + cx.
Also, the condition thag is one exactly whem > 0 can be guaranteed by introducing
the following constraints:

z <uy
x>0
y€{0,1}.

Of course, if the objective function has several terms with associated fixed costs, thel
this trick must be used on each of these terms.

4. Nonlinear Objective Functions

Sometimes the terms in the objective function are not linear at all. For example,
one such term could look like the function shown in Figure P2.3. In Chapier 24, we
will discuss efficient algorithms that can be used in the presence of nonlinear objective
functions—at least when they have appropriate convexity/concavity properties. In this
section, we will show how to formulate an integer programming approximation to a
general nonlinear term in the objective function. The first step is to approximate the
nonlinear function by a continuous piecewise linear function.

The second step is to introduce integer variables that allow us to represent the
piecewise linear function using linear relations. To see how to do this, first we decom-
pose the variable into a sum,

rT=2x1+To+ -+ T,

wherez; denotes how much of the intervi@l x] is contained in théth linear segment
of the piecewise linear function (see Fig{ire 22.4). Of course, some of the initial seg-
ments will lie entirely within the interval0, z], one segment will lie partially in and
partially out, and then the subsequent segments will lie entirely outside of the interval.
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FIGURE 22.3. A nonlinear function and a piecewise linear approx-
imation to it.

FIGURE 22.4. A piecewise linear function.

Hence, we need to introduce constraints to guarantee that the iniiare equal to
the length of their respective segments and that after the straddling segment the sul
sequents;’s are all zero. A little thought reveals that the following constraints do the
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trick:

Liw; <z; < Ljwj—1  j=12,...,k

w():l
w; € {0,1} i=1,2,...,k
Z‘JZO j:1,2,...,k.

Indeed, it follows from these constraints thaf < w;_; for j = 1,2,...,k. This
inequality implies that once one of the’s is zero, then all the subsequent ones must
be zero. Ifw; = w;_; = 1, the two-sided inequality on; reduces td; < z; < L;.
Thatis,z; = L;. Similarly, if w; = w;_; = 0, then the two-sided inequality reduces
to 2; = 0. The only other case is when; = 0 butw;_; = 1. In this case, the
two-sided inequality becomes< z; < L;. Therefore, in all cases, we get what we
want. Now with this decomposition we can write the piecewise linear function as

K +cixy + oo + -+ - + cpxk.

5. Branch-and-Bound

In the previous sections, we presented a variety of problems that can be formulate
as integer programming problems. As it happens, all of them had the property that the
integer variables took just one of two values, namely, zero or one. However, there
are other integer programming problems in which the integer variables can be any
nonnegative integer. Hence, we define the stanotdeger programming probleras
follows:

maximize ¢’z
subjectto Ax < b
x>0
x has integer components

In this section, we shall present an algorithm for solving these problems. The algo-
rithm is calledbranch-and-boundit involves solving a (potentially) large number of
(related) linear programming problems in its search for an optimal integer solution.
The algorithm starts out with the following wishful approadirst ignore the con-
straint that the components ofbe integers, solve the resulting linear programming
problem, and hope that the solution vector has all integer componédt<ourse,
hopes are almost always unfulfilled, and so a backup strategy is needed. The simple
strategy would be to round each resulting solution value to its nearest integer value
Unfortunately, this naive strategy can be quite bad. In fact, the integer solution so ob:
tained might not even be feasible, which shouldn’t be surprising, since we know that
the solution to a linear programming problem is at a vertex of the feasible setand so i
is quite expected that naive movement will go outside of the feasible set.
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Optimal Solution
to LP-relaxation

qo
§ X

L

.

FIGURE 22.5. An integer programming problem. The dots repre-
sent the feasible integer points, and the shaded region shows the
feasible region for the LP-relaxation.

To be concrete, consider the following example:

maximize 17z + 1225
subjectto 10z, + Txo <40
1+ x2< 5
x1, x9> 0

x1, T2 integers

The linear programming problem obtained by dropping the integrality constraint is
called theLP-relaxation Since it has fewer constraints, its optimal solution provides
an upper bound® on the the optimal solutiog* to the integer programming prob-
lem. Figurd 226 shows the feasible points for the integer programming problem as
well as the feasible polytope for its LP-relaxation. The solution to the LP-relaxation is
at(z1,x2) = (5/3,10/3), and the optimal objective value285/3 = 68.33. Round-

ing each component of this solution to the nearest integer, wgge}, which is not

even feasible. The feasible integer solution that is closest to the LP-optimal solution
is (1,3), but we can see from Figufre 2P.5 that this solution is not the optimal solution
to the integer programming problem. In fact, it is easy to see from the figure that
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)
_

FIGURE 22.6. The feasible subregions formed by the first branch.

the optimal integer solution is eith¢t, 4) or (4,0). To make the problem interest-
ing, we've chosen the objective function to make the more distant p6ifd be the
optimal solution.

Of course, we can solve only very small problems by the graphical method: to
solve larger problems, an algorithm is required, which we now describe. Consider
variablez; in the optimal solution to the LP-relaxation. Its valuéjs. In the optimal
solution to the integer programming problem, it will be an integer. Hence, it will
satisfy either:; < 1orz; > 2. We consider these two cases separatelyH, etenote
the linear programming problem obtained by adding the constrairt 1 to the LP-
relaxation, and le, denote the problem obtained by including the other possibility,
z1 > 2. The feasible regions faP; and P, are shown in Figurg 23.6. Let us study
Py first. Itis clear from Figuré 226 that the optimal solution ifat, z2) = (1,4)
with an objective value af5. Our algorithm has found its first feasible solution to the
integer programming problem. We record this solution as#st-so-far Of course,
better ones may (in this case, will) come along later.

Now let’s considerP,. Looking at Figurd 22]6 and doing a small amount of
calculation, we see that the optimal solution iSat, z2) = (2,20/7). In this case,
the objective function value i§78/7 = 68.29. Now if this value had turned out to be
less than the best-so-far value, then we’d be done, since any integer solution that lie
within the feasible region foP, would have a smaller value yet. But this is not the
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PO: x1:1.67, x2:3.33

(=68.33
xlsl / ylzz
Pl: x1:1, x2:4 P2: x1:2, x2:2.86
(=65 (=68.29

x252 /

FIGURE 22.7. The beginnings of the enumeration tree.

case, and so we must continue our systematic search. Sjnee20/7 = 2.86, we
divide P, into two subproblems, one in which the constraint< 2 is added and one
with x5 > 3 added.

Before considering these two new cases, note that we are starting to develop
tree of linear programming subproblems. This tree is calle@theneration treeThe
tree as far as we have investigated is shown in Figurg 22.7. The double box &ound
indicates that that part of the tree is done: i.e., there are no branches emanating frol
P,—itis a leaf node. The two empty boxes bel@y indicate two subproblems that
have yet to be studied. Let's proceed by looking at the left branch, which correspond:
to adding the constraint, < 2 to what we had before. We denote this subproblem
by P;. Its feasible region is shown in Figre 2.8, from which we see that the optimal
solution is at(2.6,2). The associated optimal objective value6i&2. Again, the
solution is fractional. Hence, the process of subdividing must continue. This time we
subdivide based on the valuesaf. Indeed, we consider two cases: either< 2 or
T > 3.

Figure[22.9 shows the enumeration tree as it now stands. At this juncture, therg
are three directions in which we could proceed. We could either study the other brancl
underP, or work on one of the two branches sitting undgr If we were to system-
atically solve all the problems on a given level of the tree before going deeper, we
would be performing what is referred to agreadth-first searchOn the other hand,
going deep before going wide is calledlepth-first searchFor reasons that we shall
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l‘
0 ° \ — x;
0 1 2 3 4 5 6

FIGURE 22.8. The refinement ab, to Ps.

explain later, it turns out to be better to do a depth-first search. And, to be specific, le
us always choose the left branch before the right branch (in practice, there are muc
better rules that one can employ here). So our next linear programming problem is th
one that we get by adding the constraint that< 2 to the constraints that defindd.

Let us call this new problerf,. Its feasible region is shown in Figre 22.10. It is easy
to see that the optimal solution to this problentds2), with an objective value of8.

This solution is an integer solution, so it is feasible for the integer programming prob-
lem. But it is not better than our best-so-far. Nonetheless, we do not need to conside
any further subproblems below this one in the enumeration tree.

Since problemP, is a leaf in the enumeration tree, we need to work back up the
tree looking for the first node that has an unsolved problem sitting under it. For the cas
at hand, the unsolved problem is on the right branch under@athet us call this
problemPs. It too is depicted in Figure 22.]10. The optimal solutiorfds1.43), with
an optimal objective function value ©8.14. Since this objective function value is
larger than the value of the best-so-far integer solution, we must further investigate by
dividing into two possibilities, eithet, < 1 orzy > 2. At this point, the enumeration
tree looks like that shown in Figure 22]11.

Let P; denote the linear programming problem that we get on the left branch un-
der P;. Its feasible region is shown in Figure 22.12. The optimal solutiqi3.i 1),
and the associated objective valu&#sl. Again, the solution is fractional and has a
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PO: x1:1.67, x2:3.33
(=68.33

xlsl / xlzz

Pl: x1:1, x2:4 P2: x1:2, x2:2.86
(=65 (=68.29

FIGURE 22.9. The enumeration tree after solviRg

higher objective value than the best-so-far integer solution. Hence, it must be subdi
vided based om; < 3 as opposed ta; > 4. Denoting these two problems ¥

and P, their feasible regions are as depicted in Figure 22.13. The solutiéh t®
(3,1), and the objective value &3. This is an integer solution, but it is not better than
the best-so-far. Nonetheless, the node becomes a leaf, since the solution is integr:
Hence, we move on t&s. The solution to this problem is also integréd, 0). Also,

the objective value associated with this solutiofidswhich is a new record for feasi-

ble integer solutions. Hence, this solution becomes our best-so-far. The enumeratio
tree at this point is shown in Figure 22]14.

Now we need to go back and solve the problems umdeand P, (and any
subproblems thereof). It turns out that both these subproblems are infeasible, an
S0 no more subdivisions are needed. The enumeration tree is now completely fatf
omed and is shown in Figufe 22]15. We can now assert that the optimal solution tc
the original integer programming problem was found in problgm The solution is
(z1,z2) = (4,0), and the associated objective function valuéss
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=X1

FIGURE 22.10. The refinement dp; to Py.
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PO: x1:1.67, x2:3.33

(=68.33

xlsl/

Pl: x1:1, x2:4
(=65

D-BOUND

PZ: x1:2, x2:2.86

(=68.29

<
x2_2

P3: x1:2.6, x2:2

(=68.2

xlsz/

P s x1:2, x2:2
(=58

123

,
;

x1:3, x2:1.43

(=68.14

x;lr/

FIGURE 22.11. The enumeration tree after solvifig The double

\X 232

box aroundP, indicates that it is a leaf in the tree.

387
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FIGURE 22.13. The refinement d¥; to P; and Fs.
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PO: x1:1.67, x2:3.33

(=68.33
xlsl / ylzz
P %=1, x,=4 P, X,=2, x,=2.86
(=65 (=68.29
x252 / \x223
P3: x1:2.6, x2:2
(=68.2
xlsz / x123
P4: xl=2, x2:2 P5 x1=3, x2:1.43
(=58 (=68.14
x251/ \x222
P6: x1:3.3, x2:1
(=68.1
x153 / x124
P7: x1=3, x2=1 P8: x1=4, x2:O
7=63 (=68

FIGURE 22.14. The enumeration tree after solviRg P;, andPs.
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PO: x1:1.67, x2:3.33

(=68.33

xlsl/

Pl: x1:1, x2:4

PZ: x1:2, x2:2.86

\x223

Infeasible

(=65 (=68.29
x252 /
P3: x1:2.6, x2:2 Pg:
(=68.2
x152 / x123
P4: xl=2, x2:2 P5: Xy 3, x2:1.43
(=58 (=68.14
=y
P6: x1:3.3, x2:1 PlO'
(=68.1
x153 / x124

\ X232

. Infeasible

P8: x1=4, x2:O

(=68

FIGURE 22.15. The complete enumeration tree.
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There are three reasons why depth-first search is generally the preferred orde
in which to fathom the enumeration tree. The first is based on the observation tha
most integer solutions lie deep in the tree. There are two advantages to finding intege
feasible solutions early. The first is simply the fact that it is better to have a feasible
solution than nothing in case one wishes to abort the solution process early. But mor
importantly, identifying an feasible integer solution can result in subsequent nodes
of the enumeration tree being made into leaves simply because the optimal objectiv
function associated with that node is lower than the best-so-far integer solution. Mak-
ing such nodes into leaves is callpdiningthe tree and can account for tremendous
gains in efficiency.

A second reason to favor depth-first search is the simple fact that it is very easy
to code the algorithm as a recursively defined function. This may seem trite, but one
shouldn’t underestimate the value of code simplicity when implementing algorithms
that are otherwise quite sophisticated, such as the one we are currently describing.

The third reason to favor depth-first search is perhaps the most important. It
is based on the observation that as one moves deeper in the enumeration tree, ec
subsequent linear programming problem is obtained from the preceding one by simpl
adding (or refining) an upper/lower bound on one specific variable. To see why this
is an advantage, consider for example probmwhich is a refinement of,. The
optimal dictionary for problen®, is recorded as

__ 205 5 1
(=73 —3wi— 3w

1 7
—3W1+ 3wW2

1 10
+ g’lUl — ?wg.

xr1 = %
Tro = %0
ProblempP; is obtained fromP, by adding the constraint that > 2. Introducing a
variable,g;, to stand for the difference betwegpand this lower bound and using the
dictionary above to write:; in terms of the nonbasic variables, we get
9 1 1 n 7
=x1—2=—c- —-w —Ws.

g1 1 3 3 1 3 2
Therefore, we can use the following dictionary as a starting point for the solution of
Py

205 5 1
C =3 — gU}l — 5’[1)2
5 1
X1 3 §'UJ1 + gU}Q
10 1 10
Tro = §+§w17§w2
1
g1=—35— 3w+ fwy

This dictionary is dual feasible but primal infeasible. Therefore, the dual simplex
method is likely to find a new optimal solution in very few iterations. According to the
dual simplex method, variablg is the leaving variable ana is the corresponding
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entering variable. Making the pivot, we get the following dictionary:

__ 478 12 1
(=% —Fwi— 791
r1= 2 + o

20 1 10
Te= % = W1 70

1 1 3
we= 7+ Fwi+ 501

This dictionary is optimal for,. In general, the dual simplex method will take more
than one iteration to reoptimize, but nonetheless, one does expect it to get to a ne\
optimal solution quickly.

We end this chapter by remarking that many real problems have the property tha
some variables must be integers but others can be real valued. Such problems a
calledmixed integer programming problemt should be easy to see how to modify
the branch-and-bound technique to handle such problems as well.

Exercises

22.1 Knapsack ProblemConsider a picnicker who will be carrying a knapsack
that holds a maximum amoubbf “stuff.” Suppose that our picnicker must
decide what to take and what to leave behind. Fimething that might be
taken occupies; units of space in the knapsack and will bringamount of
“enjoyment.” The knapsack problem then is to maximize enjoyment subject
to the constraint that the stuff brought must fit into the knapsack:

n
maximize » _ c;x;
j=1

subject to Z a;x; <b
j=1
r;€{0,1}  j=12,...,n

This apparently simple problem has proved difficult for general-purpose

branch-and-bound algorithms. To see why, analyze the special case in whicl

each thing contributes the same amount of enjoymentci.es, c for all 7,

and takes up exactly two units of space, ig.= 2 for all j. Suppose also

that the knapsack holdsunits of stuff.

(&) What is the optimal solution whenis even? whem is odd?

(b) How many subproblems must the branch-and-bound algorithm con-
sider whem: is odd?

22.2 Vehicle RoutingConsider the dispatching of delivery vehicles (for example,
mail trucks, fuel-oil trucks, newspaper delivery trucks, etc.). Typically, there
is a fleet of vehicles that must be routed to deliver goods from a depot to
a given set ofn drop-points. Given a set of feasible delivery routes and
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the cost associated with each one, explain how to formulate the problem of
minimizing the total delivery cost as a set-partitioning problem.

22.3 Explain how to modify the integer programming reformulation of continu-
ous piecewise linear functions so that it covers piecewise linear functions

having discontinuities at the junctions of the linear segments. Can fixed
costs be handled with this approach?
Notes

Standard references for integer programming include the classic text by Garfinke
& Nemhauser (1972) and the more recent text by Nemhauser & Wolsey| (1988).






CHAPTER 23

Quadratic Programming

In Chaptef 2R, we studied a generalization of the linear programming problem in
which variables were constrained to take on integer values. In this chapter, we conside
a generalization of a different kind. Namely, we shall study the class of problems that
would be linear programs except that the objective function is permitted to include
terms involving products of pairs of variables. Such terms are cgliedratic terms
and the problems we shall study are caligdratic programmingproblems.

We have two reasons for being interested in quadratic programming problems
First, on the practical side, an important model for portfolio optimization in finance
requires one to be able to solve quadratic programming problems. We shall discuss th
model in detail. The second reason for our interest is that the quadratic programming
problem forms a bridge to the much broader subject of convex programming that we
shall take up in Chaptér P4.

1. The Markowitz Model

Harry Markowitz received the 1990 Nobel Prize in Economics for his portfolio
optimization model in which the tradeoff between risk and reward is explicitly treated.
We shall briefly describe this model in its simplest form. Given a collection of poten-
tial investments (indexed, say, froiio n), let R; denote the return in the next time
period on investmeny, j = 1,...,n. In general,R; is a random variable, although
some investments may be essentially deterministic.

A portfolio is determined by specifying what fraction of one’s assets to put into
each investment. That is, a portfolio is a collection of nonnegative numiers=
1,...,n, that sum to one. The return (on each dollar) one would obtain using a given

portfolio is given by
R = Z IjRj.
J

Therewardassociated with such a portfolio is defined as the expected return:

ER = Z]}]ERJ
J

If reward were the only issue, then the problem would be trivial: simply put everything
in the investment with the highest expected return. But unfortunately, investments

395
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with high reward typically also carry a high level of risk. That is, even though they
are expected to do very well in the long run, they also tend to be erratic in the short
term. Markowitz defined thask associated with an investment (or, for that matter, a
portfolio of investments) to be the variance of the return:

Var(R) =E(R — ER)?

=E > (R —ER))
i
2

=E (> R | |
j

whereR; = R; —ER;. One would like to maximize the reward while at the same time
not incurring excessive risk. In the Markowitz model, one forms a linear combination
of the mean and the variance (parametrized herg)land minimizes that:

2

minimize —» " a;ER; + uE | Y ;R;
J J
subjectto » ;=1
J
2;>0  j=1,2,...,n

Here,u is a positive parameter that represents the importance of risk relative to reward
high values ofu tend to minimize risk at the expense of reward, whereas low values
put more weight on reward.

Itis important to note that by diversifying (that is, not putting everything into one
investment), it might be possible to reduce the risk without reducing the reward. To
see how this can happen, consider a hypothetical situation involving two investment:
A and B. Each year, investment A either goes20f; or goes down 0%, but unfor-
tunately, the ups and downs are unpredictable (that is, each year is independent of tf
previous years and is an up year with probabilif2). Investment B is also highly
volatile. In fact, in any year in which A goes @9%, investment B goes dowr0%,
and in the years in which A goes dowf%, B goes upR0%. Clearly, by putting half
of our portfolio into A and half into B, we can create a portfolio that goe$%pev-
ery year without fail. The act of identifying investments that are negatively correlated
with each other (such as A and B) and dividing the portfolio among these investments
is calledhedging Unfortunately, it is fairly difficult to find pairs of investments with
strong negative correlations.

Solving problem[(Z23]1) requires knowledge of the joint distribution of &ihés.
However, this distribution is not known theoretically but instead must be estimated
by looking at historical data. For example, Taple 23.1 shows annual returns from

(23.1)
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Year us us S&P  Wilshire NASDAQ Lehman EAFE Gol
3-Month Gov. 500 5000 Composite Bros.
T-Bills Long Corp.
Bonds Bonds

1973 1.075 0.942 0.852 0.815 0.698 1.023 0.851 1.677
1974 1.084 1.020 0.735 0.716 0.662 1.002 0.768 1.722
1975 1.061 1.056 1.371 1.385 1.318 1.123 1.354 0.760
1976 1.052 1175 1.236 1.266 1.280 1.156 1.025 0.960
1977 1.055 1.002 0.926 0.974 1.093 1.030 1.181 1.200
1978 1.077 0.982 1.064 1.093 1.146 1.012 1.326 1.295
1979 1.109 0978 1.184 1.256 1.307 1.023 1.048 2.212
1980 1.127 0.947 1.323 1.337 1.367 1.031 1.226 1.296
1981 1.156 1.003 0.949 0.963 0.990 1.073 0.977 0.688
1982 1.117 1465 1.215 1.187 1.213 1.311 0981 1.084
1983 1.092 0985 1.224 1.235 1.217 1.080 1.237 0.872
1984 1.103 1.159 1.061 1.030 0.903 1.150 1.074 0.825
1985 1.080 1.366 1.316 1.326 1.333 1.213 1562 1.006
1986 1.063 1309 1.186 1.161 1.086 1.156 1.694 1.216
1987 1.061 0.925 1.052 1.023 0.959 1.023 1.246 1.244
1988 1.071 1086 1.165 1.179 1.165 1.076 1.283 0.861
1989 1.087 1212 1.316 1.292 1.204 1.142 1.105 0.977
1990 1.080 1.054 0.968 0.938 0.830 1.083 0.766 0.922
1991 1.057 1193 1.304 1.342 1.594 1.161 1.121 0.958
1992 1.036 1.079 1.076 1.090 1.174 1.076 0.878 0.926
1993 1.031 1.217 1.100 1.113 1.162 1.110 1.326 1.146
1994 1.045 0.889 1.012 0.999 0.968 0.965 1.078 0.990

TABLE 23.1. Returns per dollar for each of eight investments over
several years. That i8] invested in US 3-Month T-Bills on January
1, 1973, was wortl§1.075 on December 31, 1973.

1973 to 1994 for eight different possible investments: U.S. Three-Month T-Bills, U.S.
Government Long Bonds, S&P 500, Wilshire 5000 (a collection of small company
stocks), NASDAQ Composite, Lehman Brothers Corporate Bonds Index, EAFE (a
securities index for Europe, Asia, and the Far East), and GoldRl.gf) denote the
return on investmenjin year1972 4 ¢t. One way to estimate the me#m®; is simply

to take the average of the historical returns:

T
1
ER; = = > R;lt).
t=1

There are two drawbacks to this simple formula. First, whatever happened in 197z
certainly has less bearing on the future than what happened in 1994. Hence, giving a
the past returns equal weight puts too much emphasis on the distant past at the exper
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of the recent past. A better estimate is obtained by using a discounted sum:

£R, = Zia P Ri(0)
PORIY L

Here,p is a discount factor. Putting = 0.9 gives a weighted average that puts more
weight on the most recent years. To see the effect of discounting the past, conside
the Gold investment. The unweighted average retuinli29, whereas the weighted
average isl.053. Most experts in 1995 felt that @3% return represented a more
realistic expectation than B.9% return. In the results that follow, all expectations
are estimated by computing weighted averages ysiad).9.

The second issue concerns the estimation of means (not variances). An investme|
that returnd.1 one year and.9 the next has an (unweighted) average returh, t¢iiat
is, no gain or loss. However, one dollar invested will actually be woith)(0.9) =
0.99 at the end of the second year. Whild% error is fairly small, consider what
happens if the return 8.0 one year and thef.5 the next. Clearly, the value of one
dollar at the end of the two years(i8.0)(0.5) = 1, but the average of the two returns
is (2.0 + 0.5)/2 = 1.25. There is a very significant difference between an investment
that is flat and one that yields28% return in two years. This is obviously an effect
for which a correction is required. We need to avera@eand0.5 in such a way that
they cancel out—and this cancellation must work not onlyRfoérand0.5 but for every
positive number and its reciprocal. The trick is to average the logarithm of the returns
(and then exponentiate the average). The logarithm has the correct effect of cancellin
a returnr and its reciprocal:

1
logr +log — = 0.
r
Hence, we estimate means from Tgble P3.1 using

Zle pT~tlog Rj(t)>

ZtT:1 pTt
This estimate for Gold gives an estimate of its returd.af, which is much more in
line with the beliefs of experts (at least in 1995).

Tableg 23.2 shows the optimal portfolios for several choicgs. dfhe correspond-
ing optimal values for the mean and standard deviation (which is defined as the squar
root of the variance) are plotted in Figlire 23.1. Lettingary continuously generates
a curve of optimal solutions. This curve is called #féicient frontier Any portfolio
that produces a mean-variance combination that does not lie on the efficient frontie
can be improved either by increasing its mean without changing the variance or by
decreasing the variance without changing the mean. Hence, one should only invest i
portfolios that lie on the efficient frontier.

Of course, the optimal portfolios shown in Taple 23.2 were obtained by solving
(23.3). The rest of this chapter is devoted to describing an algorithm for solving qua-
dratic programs such as this one.

ER; = exp (
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w | Gold US Lehman NASDAQ S&P EAFH Mean Std.
3-Month Bros. Composite 500 Dev.

T-Bills Corp.

Bonds
0.0 1.000 | 1.122 0.227
0.1 0.603 0.397| 1.121 0.147
1.0 0.876 0.124| 1.120 0.133
2.0 0.036 0.322 0.549 0.092 1.108 0.102
4.0 0.487 0.189 0.261 0.062 1.089 0.057
8.0 0.713 0.123 0.117  0.047 1.079 0.037
1024.0 | 0.008 0.933 0.022 0.016 0.0221.070 0.028

TABLE 23.2. Optimal portfolios for several choicesaf

24 EAFE
22 NASDAQ | M0
Composite
[ )
20
18
16 Long Wilshire
=0.1
14 W
50071
12
10
8
6
4| T-Bills
< [ ]
2 |Golg H=1024

FIGURE 23.1. The efficient frontier.

2. The Dual

We have seen that duality plays a fundamental role in our understanding anc
derivation of algorithms for linear programming problems. The same is true for qua-
dratic programming. Hence, our first goal is to figure out what the dual of a quadratic
programming problem should be.



400 23. QUADRATIC PROGRAMMING

Quadratic programming problems are usually formulated as minimizations. There
fore, we shall consider problems given in the following form:

minimize ¢’z + 27 Qx
(23.2) subjectto Ax > b
x> 0.

Of course, we may (and do) assume that the mafrils symmetric (see Exercise
[23.2). Note that we have also changed the sense of the inequality constraints fror
our usual less-than to greater-than. This change is not particularly important—its only
purpose is to maintain a certain level of parallelism with past formulations (that is,
minimizations have always gone hand-in-hand with greater-than constraints, while
maximizations have been associated with less-than constraints).

In Chapter b, we derived the dual problem by looking for tight bounds on the
optimal solution to the primal problem. This approach could be followed here, but
it seems less compelling in the context of quadratic programming. A more direct
approach stems from the connection between duality and the first-order optimality
conditions for the barrier problem that we examined in Ch4pter 16. Indeed, let us star
by writing down the barrier problem associated wjth (23.2). To this end, we introduce
a nonnegative vectar of surplus variables and then subtract a barrier term for each
nonnegative variable to get the following barrier problem:

minimize ¢’z + $27Qx — py_;logzy — p) 2, logw;
subjecttoAxz — w = b.

Next, we introduce the Lagrangian:

1
T T
fla,wy)=cz+ 52" Qr~ uZlogfvj - MZIngi
J 7
+yT(b— Az + w).
The first-order optimality conditions for the barrier problem are obtained by differen-
tiating the Lagrangian with respect to each of its variables and setting these derivative
to zero. In vector notation, setting to zero the derivative with respect te viagiables
gives
c+Qr—pX te— ATy =0.
Similarly, setting to zero the derivatives with respect todhandy variables gives
— W le+y=0
b— Az +w=0,
respectively. As we did in our study of linear programming problems, we now intro-
duce a new vector given by
2z =pX e
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With this definition, the first-order optimality conditions can be summarized as

ATy+2-Qr=c

Ar —w=1b
XZe=pe
YWe= pe.

From the last two conditions, we see that the dual problem involves-eettor of
variablesz that are complementary to the primal variablesnd anm-vector of vari-
ablesy that are complementary to the primal slack variahles Because of these
complementarity conditions, we expect that the variablesid z are constrained to

be nonnegative in the dual problem. Also, to establish the proper connection betwee
the first-order optimality conditions and the dual problem, we must recognize the first
condition as a dual constraint. Hence, the constraints for the dual problem are

ATy +2—-Qr=c
Y,z > 0.

It is interesting to note that the dual constraints involvenavector x that seems as

if it should belong to the primal problem. This may seem odd, but when understood
properly it turns out to be entirely harmless. The correct interpretation is that the
variablez appearing in the dual has, in principle, no connection to the variable
appearing in the primal (except that, as we shall soon see, at optimality they will be
equal).

The barrier problem has helped us write down the dual constraints, but it does no
shed any light on the dual objective function. To see what the dual objective function
should be, we look at what it needs to be for the weak duality theorem to hold true. In
the weak duality theorem, we assume that we have a primal feasible sqlution
and a dual feasible solutidm, y, z). We then follow the obvious chains of equalities:

y' (Ax) = y" (0 +w) =bTy +y"w
and
AT)Te =(c—24+Qx)Tz =cTo — 2o + 27 Qu.
Now, sincey” (Azx) = (ATy)Tz, we see that
0<yTw+Te=c"e+27Qr —bTy

=(Tz+ %xTQx) — "y — éxTQx).
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From this inequality, we see that the dual objective functid is— 327 Q. Hence,
the dual problem can be stated now as

maximize b”y — 127 Qx
subjectto ATy + 2z — Qz = ¢
y, 2> 0.

For linear programming, the fundamental connection between the primal and dua
problems is summarized in the Complementary Slackness Theorem. In the next se
tion, we shall derive a version of this theorem for quadratic programming.

3. Convexity and Complexity

In linear programming, the dual problem is important because it provides a cer-
tificate of optimality as manifest in the Complementary Slackness Theorem. Under
certain conditions, the same is true here. Let us start by deriving the analogue of th
Complementary Slackness Theorem. The derivation begins with a reiteration of the
derivation of the Weak Duality Theorem. Indeed,(lefw) denote a feasible solution
to the primal problem and létz, y, z) denote a feasible solution to the dual problem
(we have put a bar on the dualto distinguish it from the one appearing in the pri-
mal). The chain of equalities that form the backbone of the proof of the Weak Duality
Theorem are, as always, obtained by writifgAz two ways, namely,

y" (Az) = (ATy) Tz,
and then producing the obvious substitutions
y (Ar) = y" (b+w) =bTy +yTw
and
AT)Te =(c—24+Q)Te =T — 2Ta + 27 Qu.
Comparing the ends of these two chains and using the fact thaybattand:* = are
nonnegative, we see that
(23.3) 0<yTw+z2Te=cTo+z7Qx —bTy.

So far, so good.

Now, what about the Complementary Slackness Theorem? In the present contex
we expect this theorem to say roughly the following: given a solutioinw*) that is
feasible for the primal and a solutign*, y*, 2*) that is feasible for the dual, if these
solutions make inequality (23.3) into an equality, then the primal solution is optimal
for the primal problem and the dual solution is optimal for the dual problem.

Let's try to prove this. Letx, w) be an arbitrary primal feasible solution. Weak
duality applied to(«, w) on the primal side an¢l:*, y*, z*) on the dual side says that

o+ 2T Qu — by* > 0.
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But for the specific primal feasible solutigm*, w*), this inequality is an equality:
T+ 2T Qu — b y* = 0.
Combining these, we get
e + a:*TQsc* <"z +27Qu.

This is close to what we want, but not quite it. Recall that our aim is to show that the
primal objective function evaluated at is no larger than its value at That is,

1 1
ot + ix*TQx* <cle+ QxTQx.

It is easy to get from the one to the other. Starting from the desired left-hand side, we
compute as follows:

1 1
ch* + if*TQIII* _ ch* + ZL'*TQ.T* _ §x*TQ.’L'*

1
<z + 27" Qu - ix*TQx*

1 1 1
=clx+ §xTQa? — §$TQCL' + x*TQ:U — ix*TQa:*

=cle+ %xTQx - %(m —2)TQ(x — z¥).

The last step in the derivation is to drop the subtracted term on the right-hand side o
the last expression. We can do this if the quantity being subtracted is nonnegative
But is it? In general, the answer is no. For example) ifvere the negative of the
identity matrix, then the expressidn — z*)7Q(z — 2*) would be negative rather
than nonnegative.

So itis here that we must impose a restriction on the class of quadratic program
ming problems that we study. The correct assumption igghaipositive semidefinite.
Recall from Chaptdr 18 that a matiiXis positive semidefiniti

eTQe>0  forall & e R™.

With this assumption, we can finish the chain of inequalities and conclude that
1 1
e + ix*TQx* <clx+ ExTQx.

Sincex was an arbitrary primal feasible point, it follows theit (together withw*)
is optimal for the primal problem. A similar analysis shows tifa{together withz*
andz*) is optimal for the dual problem (see Exerdise 23.4).

A quadratic programming problem of the form (23.2) in which the maf}iis
positive semidefinite is called@nvex quadratic programming probleffhe discus-
sion given above can be summarized in the following theorem:



404 23. QUADRATIC PROGRAMMING

THEOREM 23.1. For convex quadratic programming problems, given a solution
(z*,w*) that is feasible for the primal and a solutign*, y*, z*) that is feasible for
the dual, if these solutions make inequal(8.3) into an equality, then the primal
solution is optimal for the primal problem and the dual solution is optimal for the
dual problem.

To see how bad things are whéhis not positive semidefinite, consider the fol-
lowing example:

minimize Y. ;(1 — ;) + Y, ¢jz;

(23.4) )
subjectto0 < z; <1, ji=1,2,...,n.

We assume that the coefficients, j = 1,2,...,n, are small. To be precise, we
assume that
lej| < 1, i=12,...,n.
Let f(x) denote the value of the objective function at paintSetting the gradient to
zero,
Vflx)=e—2x+c=0,
we see that there is one interior critical point. It is given by
x=(e+c)/2
(the assumption thatis small guarantees that thidies in the interior of the feasible
set:0 < z < 1). However, this critical point is a local maximum, since the matrix of
second derivatives is2I. The algebraic details are tedious, but if we look at Figure
[23.2, itis easy to be convinced that every vertex of the feasible set is a local minimum
While this particular problem is easy to solve explicitly, it does indicate the essential
difficulty associated with nonconvex quadratic programming problems—namely, for
such problems one may need to check every vertex individually, and there may be a
exponential number of such vertices.

The situation for convex quadratic programming problems is much better, since
they inherit most of the properties that made linear programs efficiently solvable. In-
deed, in the next section, we derive an interior-point method for quadratic program-
ming problems.

4. Solution Via Interior-Point Methods

In this section, we derive an interior-point method for quadratic programming
problems. We start from the first-order optimality conditions, which we saw in the last
section are given by

ATy 4+ 2-Qr=c
Ax—w=0b
XZe=pe
YWe = pe.
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s

FIGURE 23.2. The objective function fof (23.4) in the case where
n =2

Following the derivation given in Chapfer|17, we repléeew, y, z) with (z+Az, w+
Aw,y + Ay, z + Az) to get the following nonlinear system {f\z, Aw, Ay, Az):

ATAy+ Az —QAz=c— ATy —24+Qr =10
AAzx — Aw=b— Az +w =:p
ZAx + XAz+ AXAZe=pe— XZe
WAy +YAw+ AYAWe = pue — YWe.

Next, we drop the nonlinear terms to get the following linear system for the step di-
rections(Ax, Aw, Ay, Az):
ATAy+ Az — QAz =0
AAx — Aw=p
ZAx+ XAz=pe — XZe
WAy +YAw=pe —YWe.

Following the reductions of Chapfer|18, we use the last two equations to sole for
andAw to get

Az = XY pue — XZe — ZAx)
Aw =Y (e — YWe — WAy).
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We then use these expressions to elimidateand Aw from the remaining two equa-
tions in the system. After elimination, we arrive at the followneguced KKT system

(23.5) ATAy — (X 'Z+Q)Az=0 —pX e+ 2
(23.6) ANz + Y 'TWAy=p+pY e —w.

Substituting in the definitions gfando and writing the system in matrix notation,
we get

—(X"1Z+Q) AT Az c— ATy —pXle+ Qx
A YW |Ay b— Az +puYle .

A summary of the algorithm is shown in Figure 23.3. It should be clear that

the quadratic term in the objective function plays a fairly small role. In fact, the

convergence analysis given in Chagtef 17 can be easily adapted to yield analogot
results for quadratic programming problems (see Exefcisg 23.6).

5. Practical Considerations

For practical implementations of interior-point algorithms, we saw in Chapier 18
that the difficulties created by dense rows/columns suggest that we solve the reduce
KKT system using an equation solver that can handle symmetric indefinite system:
(such as those described in Chaptef 19). Quadratic programming problems give u
even more reason to prefer the reduced KKT system. To see why, let us reduce th
system further to get a feel for the normal equations for quadratic programming.

If we use [[23.5) to solve foAz and then eliminate it fronj (23.6), we get

Ar=—(X""Z+Q) " (c— ATy +Qz — pX e — ATAy)
and the associated system of normal equations (in primal form):
(AXT1Z+Q) ' AT + Y 'W) Ay =b— Az + pY e
+AXZ+Q) " (c— ATy + Qz — nXle).

As we saw in Chaptdr 18, the most significant disadvantage of the normal equation
is that they could involve a dense matrix even when the original constraint matrix is
sparse. For quadratic programming, this disadvantage is even more pronounced. No
the matrix of normal equations has the nonzero pattewti(d@ + Q)= ' AT, whereD
is a diagonal matrix. Ifp is a diagonal matrix, then this matrix appearing between
A and AT is diagonal, and the system has the same structure as we saw for linea
programming. But if@ is not a diagonal matrix, then all hope for any sparsity in
AD+ Q) tAT islost.

Fortunately, however, the dual form of the normal equations is likely to retain
some sparsity. Indeed, to derive the dual form, we [use](23.6) to solveifand then
eliminate it from [23.5). The resultis

Ay=yw~! (b— Az + pY 'e — AAz)
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initialize (z,w,y,z) > 0

while (not optimal){
p=b—Ar+w
o=c— ATy — 2+ Qux

v = sz—i—yTw

=9
H n+m

solve:
[—(X—1Z+Q) AT ] [Ax

Ay

c— ATy —uXte+Qx
b— Az +pY le

A Yy-lw
Az = X" pue — XZe — ZAx)
Aw =Y (e — YWe — WAY)

Az;  Aw; Ay, Az )\ !
9:r<maxij{— x],—ﬁ— Ui —Zj}) A1l

T wg Ty Zj
T — x+0Ax, w — w + 0Aw
y—y+ 0Ay, z— z+0Az

_

FIGURE 23.3. The path-following method for quadratic program-
ming problems.

and
— (X_IZ +Q+ ATYW_lA) Az=c—ATy+Qz —pnXle
—ATYW T (b— Az + pY ).

Now the matrix has a nonzero pattern4f A + Q. This pattern is much more likely
to be sparse than the pattern we had above.

As mentioned earlier, there is significantly less risk of fill-ir¢Jfis diagonal. A
quadratic programming problem for which is diagonal is called aeparable qua-
dratic programming problemit turns out that every nonseparable quadratic program-
ming problem can be replaced by an equivalent separable version, and sometimes tf



408 23. QUADRATIC PROGRAMMING

replacement results in a problem that can be solved dramatically faster than the orig
nal nonseparable problem. The trick reveals itself when we remind ourselves that th
problems we are studying are convex quadratic programs, and so we ask the questio
how do we know that the matri is positive semidefinite? Or, more to the point, how
does the creator of the model know tligtis positive semidefinite? There are many
equivalent characterizations of positive semidefiniteness, but the one that is easiest |
check is the one that says tlais positive semidefinite if and only if it can be factored

as follows:

Q= FTDF.
Here F'is ak x n matrix andD is ak x k diagonal matrix having all nhonnegative
diagonal entries. In fact, the model creator often started Wigmd D and then formed
@ by multiplying. In these cases, the matix will generally be less dense than
Q. And if k is substantially less than, then the following substitution is almost
guaranteed to dramatically improve the solution time. Introduce new varighigs
setting

y = Fzx.

With this definition, the nonseparable quadratic programming proljlem]| (23.2) can be
replaced by the following equivalent separable one:

minimize ¢’z + $y” Dy
subject to Ax>b
Fr—y=0
x> 0.
The cost of separation is the addition/ohew constraints. As we said before jif
is small and/orF' is sparse, then we can expect this formulation to be solved more
efficiently.
To illustrate this trick, let us return to the Markowitz model. Recall that the qua-

dratic terms in this model come from the variance of the portfolio’s return, which is
given by

Var(R) = E(Z l‘jRj)z

Here,
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fort=1,2,...,7T,and

R;(t) = R;(t) = Y _ p(t)R;(t).
t=1
If we introduce the variables,

y(t)zzxj}?j(t), t=1,2,...,T,
J

then we get the following separable version of the Markowitz model:

T
maximize Z z,ER; — sz(t)y(t)Q
i t=1

J
subjectto Y z;=1
j
y(t) =Y, wR(t),  t=1,2,....T,
z; >0 j=1,2,...,n.
Using specific data involvin§00 possible investments ar2d historical time periods,

the separable version solvé8 times faster than the nonseparable version using a
QP-solver called LOQO.

Exercises

23.1 Show that the gradient of the function

f(z) = §$TQ$
is given by

Vi(z) = Qu.

23.2 Suppose thaf) is ann x n matrix that is not necessarily symmetric. Let
Q= 4(Q + Q7). Show that
(@) z7Qxz = 27 Quz, for everyz € R", and

(b) Q is symmetric.

23.3 Penalty Methods.
(a) Consider the following problem:

minimize {27 Qx
subjecttoAx = b,

where( is symmetric, positive semidefinite, and invertible (these last
two conditions are equivalent to saying tliais positive definite). By
solving the first-order optimality conditions, give an explicit formula
for the solution to this problem.
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(b) Each equality constraint in the above problem can be replaced by a
penalty termadded to the objective function. Penalty terms should be
small when the associated constraint is satisfied and become rapidly
larger as it becomes more and more violated. One choice of penalty
function is the quadratic function. Thyguadratic penalty problens
defined as follows:

o1 A
minimize §xTQx +50- Az)T (b — Az),

where) is a large real-valued parameter. Derive an explicit formula for
the solution to this problem.

(c) Show that, in the limit aa tends to infinity, the solution to the quadratic
penalty problem converges to the solution to the original problem.

23.4 Consider a convex quadratic programming problem. Supposéithat*)
is a feasible solution for the primal and that', y*, 2*) is a feasible solution
for the dual. Suppose further that these solutions make inequality (23.3) into
an equality. Show that the dual solution is optimal for the dual problem.

23.5 A real-valued functionf defined orR” is calledconvexf, for everyz,y €
R™, and for every) < ¢t < 1,

[tz + (1 —t)y) <tf(z)+ (1 —1)f(y).

Show that the function
1
flz)=c"z+ §$TQI, r e R",
is convex ifQ is positive semidefinite.
23.6 Extend the convergence analysis given in Chgpter 17 so that it applies to con
vex quadratic programming problems, and identify in particular any steps
that depend ol being positive semidefinite.

23.7 Consider the quadratic programming problem given in the following form:
minimize ¢’z + ;27 Qx
subjecttoAx > b,

(i.e., without assuming nonnegativity of thevector). Show that the formu-
las for the step directionAx and Ay are given by the following reduced
KKT system:

-Q AT
A Wy-1

Ax
Ay

c— ATy + Qx

23.7
(23.7) b— Az +puYle
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Notes

The portfolio optimization model presented in Secfiolf 3.1 was first introduced
byMarkowitZ [1959). He received the 1990 Nobel Prize in Economics for this work.

Quadratic programming is the simplest class of problems from the subject callec
nonlinear programming. Two excellent recent texts that cover nonlinear programming
are those by BertseKds (1995) and Nash & Soéfer (1996). The first paper that extende
the path-following method to quadratic programming was Monteiro & Adler (1989).
The presentation given here follovs Vanderbei (1999).






CHAPTER 24

Convex Programming

In the last chapter, we saw that small modifications to the primal—dual interior-
point algorithm allow it to be applied to quadratic programming problems as long as
the quadratic objective function is convex. In this chapter, we shall go further and
allow the objective function to be a general (smooth) convex function. In addition,
we shall allow the feasible region to be any convex set given by a finite collection of
convex inequalities.

1. Differentiable Functions and Taylor Approximations

In this chapter, all nonlinear functions will be assumed to be twice differentiable,
and the second derivatives will be assumed continuous. We begin by reiterating a fe\
definitions and results that were briefly touched on in Chapter 16. First of all, given a
real-valued functiory defined on a domain iR™, the vector
2]
anl(x)

)
anz(x)

Viz) =

ai-J; (x)
is called thegradientof f atz. The matrix

8%f 8% f 8% f
Tzf(x) 0x10x2 (.f) T 9z10zn (Z‘)
*f *f *f

Hf(;z;) = 63;28.7_;1 ( ) T:Eg('r) T 8.7;203?‘71 z
i 9% f 8% f
Tz 007 (L) Bapom; (2) 0 gz (2)

is called theHessianof f at x. In dimensions greater than one, the gradient and
the Hessian are the analogues of the first and second derivatives of a function in on
dimension. In particular, they appear in the three-term Taylor series expansfon of
about the point:

f(z+ Az) = f(z) + Vf(z) Az + %AxTHf(x)AJ: + . (Ax).

413
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The last term is called the remainder term. The value of this expansion lies in the fac
that this remainder is small whehz is small. To be precise, the remainder has the
following property:
re(Az)
Ax—0 ||A.13||2 n

This result follows immediately from the one-dimensional three-term Taylor series
expansion applied tg(t) = f(z + tAz) and the chain rule (see Exercjse 24.8).

2. Convex and Concave Functions

There are several equivalent definitions of convexity of a function. The definition
that is most expedient for our purposes is the multidimensional generalization of the
statement that a function is convex if its second derivative is nonnegative. Hence, we
say that a real-valued function defined on a domaiRtnis convexif its Hessian is
positive semidefinite everywhere in its domain. A function is cattedcaveif its
negation is convex.

3. Problem Formulation

We shall study convex optimization problems posed in the following form:

minimize ¢(x)
subject toa;(z) > b;, 1=1,2,...,m.

Here, the real-valued functiot(-) is assumed to be convex, and thereal-valued
functionsa;(-) are assumed to be concave. This formulation is the natural extension
of the convex quadratic programming problem studied in the previous chapter, excep
that we have omitted the nonnegativity constraints on the variables. This omission is
only a matter of convenience since, if a given problem involves nonnegative variables
the assertion of their nonnegativity can be incorporated as part ohthenlinear
inequality constraints. Also note that once we allow for general concave inequality
constraints, we can take the right-hand sides to be zero by simply incorporating ap
propriate shifts into the nonlinear constraint functions. Hence, many texts on conve»
optimization prefer to formulate the constraints in the faipz) > 0. We have

left the constant$; on the right-hand side for later comparisons with the quadratic
programming problem of the previous chapter. Finally, note that many convex and
concave functions become infinite in places and therefore have a natural domain the
is a strict subset dR™. This issue is important to address when solving practical prob-
lems, but since this chapter is just an introduction to convex optimization, we shall
assume that all functions are finite on allRyt.
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At times it will be convenient to use vector notation to consolidatertheon-
straints into a single inequality. Hence, we sometimes express the problem as

minimize ¢(z)
subjectto A(z) > b,

whereA(-) is a function fromR™ into R™ andb is a vector inR™. As usual, we letv
denote the slack variables that convert the inequality constraints to equalities:

minimize c(x)
subjectto A(z) —w=1"5

w > 0.

4. Solution Via Interior-Point Methods

In this section, we derive an interior-point method for convex programming prob-
lems. We start by introducing the associated barrier problem:

minimize c(x) — p ), log w;
subject toa;(z) — w; = b;, 1=1,2,...,m.

The Lagrangian for this problem is given by

Lz, w,y) = uzlogwﬁZyz i — ai(x) + w;).

Equating to zero the derivative @f with respect to each of its variables, we get the
following set of first-order optimality conditions:

oL 80 aaz
—_ i :0, .:1,2,..., )
5z, = 7, " 2 Vg, J "
oL

:_7+y1 :07 7;:1’2,...,m,
3wi w;
oL
87y2:bl_az<a’;)_’_u}l :0, 7::172,...7m.

The next step is to multiply thégh equation in the middle set hy; and then replace
x with z + Az, y by y + Ay, andw by w + Aw to get the following system:

Oc

8ai .
A i + Ay)— Ax) =0, =1,2,....m,
oz, —(z+ Az) — Z(y + y)aw‘(z+ x)=0 J n

i J

—p+ (w; + Aw;) (yi + Ay;) =0, i=1,2,....m,
bi — a;i(x + Az) + w; + Aw; =0, 1=1,2,...,m.
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Now we view this set of equations as a nonlinear system in the “delta” variables and
linearize it by replacing each nonlinear function with its two-term Taylor series ap-
proximation. For exampl&lc/0z;(x + Ax) gets replaced with

Oc Oc 9%c

A Axy,.
Ox; gz, & TR~ Ox; oz, @ F — OOy, (w) A
Similarly, 0a;/0x;(x + Ax) gets replaced with
da; da; 0%a;
3 A 3 7 A
Ox; (@4 Ax) ~ Ox; (@) + — Ow;0xy, (@) A

Writing the resulting linear system with the delta-variable terms on the left and every-
thing else on the right, we get

aal Oa;
Z};( aljaxk Z axa ) :””Z e j_zi:yiaxj

yzsz + szyz = [ — WY

da;
Z ank—Awi:bi—ai—Fwi.
a 6xk

(Note that we have omitted the indication that the functigns, and their derivatives
are to be evaluated at)

As usual, the next step is to solve the middle set of equations faAthés and
then to eliminate them from the system. The reduced system then becomes

Bal B _aai
z};( 69@6’33;€ Zy’@a:@ )Amk+z j_zi:yzaxj

Oa; i
) EAw o+ Ay =b -+
— Oy, Yi Yi

and the equations for th&w,’s are

Awi:—%AyH—ﬁ—wi, 1=1,2,...,m.
i Yi
At this point it is convenient to put the equations into matrix form. If we generalize our
familiar gradient notation by lettin§ A(x) denote then x n matrix whose(s, j)th
entry isda;/0x ; (x), then we can write the above system succinctly as follows:
Ve(z) — VA(z)Ty

(24.1)
Az B
Ay | | b= A(x)+pY e

—He(x) + ), yiHa;(x) VA(z)T
VA(x) wy -1
Now that we have step directions, the algorithm is easy to describe—just compute
step lengths that preserve strict positivity of thes and they,’s, step to a new point,
and iterate.
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5. Successive Quadratic Approximations

It is instructive to notice the similarity between the system given above and the
analogous system for the quadratic programming problem posed in the analogous forr
(see Exercisp 23.7). Indeed, a careful matching of terms reveals that the step direc
tions derived here are exactly those that would be obtained if one were to form a certail
quadratic approximation at the beginning of each iteration of the interior-point algo-
rithm. Hence, the interior-point method can be thought of asaessive quadratic
programming algorithm In order to write this quadratic approximation neatly, #et
andy denote the current primal and dual variables, respectively. Then the quadratic
approximation can be written as

— )T He(z)(x — )

v —2)" (3 viHai(2)) (v - 2)
subject to A(Z) + VA(Z)(x — Z) > b.

minimize ¢(z) + Ve(z)T (z — 2) +

To verify the equivalence, we first observe that this problem is a quadratic program
whose linear objective coefficients are given by

Ve(T) — He(Z)Z + (Z yiHai(:E)> z,
whose quadratic objective coefficients are given by
He(z) - > yiHai(z),

and whose right-hand side vector is given by
b— A(z)+ VA(z)zZ.

Substituting these expressions into the appropriate placgsin (23.7), We ggt (24.1).

Looking at the quadratic terms in the objective of the quadratic programming
approximation, we see that the objective is convex, since we assumed at that start th
cis convex, each; is concave, and the dual variables multiplying the Hessians of the
constraint functions are all strictly positive.

6. Merit Functions

Itis perhaps a little late to bring this up, but here’s a small piece of adslesys
test your knowledge on the simplest possible exarii that in mind, consider the
following trivial convex optimization problem:

minimizey/1 + z2.

This problem has no constraints. Looking at the graph of the objective function, which
looks like a smoothed out version pf|, we see that the optimal solutioni$ = 0.
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What could be easier! There areqés nor anyw;’s and equatior] (24] 1) becomes just
—He(x)Azx = Ve(z),
wherec(z) = /1 + z2. Taking the first and second derivatives, we get

T 1

Substituting these expressions into the equatiodderand simplifying, we get that
Az = —z(1 4+ 2?).

Since there are no nonnegative variables that need to be kept positive, we can tal
unshortened steps. Hence, lettiri§) denote our current point and**1) denote the
next point, we have that

2D = ) L Ag = —(2(0))3,

That is, the algorithm says to start at any paifft! and then replace this point with
the negative of its cube, replace that with the negative of its cube, and so on.

The question is: does this sequence converge to zero? It is easy to see that tt
answer is yes ifz(?)| < 1 but no otherwise. For example, if we start witf) = 1/2,
then the sequence of iterates is
k (k)
0 0.50000000
1 -0.12500000
2
3

0.00195313
-0.00000001

If, on the other hand, we start at®) = 2, then we get the following wildly divergent
sequence:
(k)
2
-8
512
3 -134,217,728

Here is what goes wrong in this example. For problems without constraints, our algo-
rithm has an especially simple description:

From the current point, use the first three terms of a Taylor se-
ries expansion to make a quadratic approximation to the objective
function. The next point is the minimum of this quadratic approx-
imation function.

N B O|&F
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14 T T T
sqrt(x**2 + 1) ——

12 L sqrt(5)+2*(x-2)/sqrt(5)+(x-2)**2/(2*sqrt(5)**3) - |

-10 -5 0 5 10

FIGURE 24.1. The functiore(x) = V1 + 22 and its quadratic ap-
proximation atr = 2.

Figure[24.] shows a graph of the objective function together with the quadratic ap-
proximation atz(?) = 2. It is easy to see that the next iterate is-a. Also, the
further from zero that one starts, the more the function looks like a straight line and
hence the further the minimum will be to the other side.

How do we remedy this nonconvergence? The key insight is the observation
that the steps are always in the correct direction (i.e, a descent direction) but the
are too long—we need to shorten them. A standard technique for shortening steps i
situations like this is to introduce a function calletharit functionand to shorten steps
as needed to ensure that this merit function is always monotonically decreasing. Fo
the example above, and in fact for any unconstrained optimization problem, we can us
the objective function itself as the merit function. But, for problems with constraints,
one needs to use something a little different from just the objective function. For
example, one can use the logarithmic barrier function plus a constant times the squat
of the Euclidean norm of the infeasibility vector:

U(z,w) = c(z) — Zlog(wi) + B||b — A(z) + w||*.

Here, is a positive real number. One can show thatdaufficiently large the step
directions are always descent directions for this merit function.
A summary of the algorithm is shown in Figyre 24.2.
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initialize (z, w, y) so that(w, y) > 0
while (not optimal){
set up QP subproblem:
A=VA(x)
b=>b— A(z) + VA(z)x
c=Ve(x) — He(z)z + (3, viHai(x)) x
Q= He(x) - ¥, yiHay(x)

p=b—Ar+w

oc=c— ATy +Qx

v=ylw

M:(Sn—i—m

solve:
-Q AT Az c— ATy + Qzx
A YW Ay B b—Ax—,quJ

Aw =Y Y pue - YWe - WAYy)

Az, Aw; Ay )\
9:r(maxij{—xj,—w ,— Y }) !
Z; W; Yi
do{

2" =2+ 0Az,
w"" = w + 0Aw
Y=y +0Ay
0—06/2
twhile (O (z"W w"Y) > U(z, w) )

FIGURE 24.2. The path-following method for convex program-
ming problems.
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7. Parting Words

A story is never over, but every book must have an end. So, we stop here mindful
of the fact that there are many interesting things left unsaid and topics unexplored. W
hope we have motivated the reader to pursue the story further without our assistance-
by reading other books and/or research papers and even perhaps making his or her o
contributions. Cheers.

Exercises

24.1 Piecewise Linear Approximatiosiven real numberg; < by < --- < by,
let f be a continuous function dR that is linear on each intervéll;, b;+1],
i =20,1,...,k (for convenience we ldiy = —oo andb,1 = 00). Such a
function is callecpiecewise lineaand the numbers are callecbreakpoints
Piecewise linear functions are often used to approximate (continuous) non-
linear functions. The purpose of this exercise is to show how and why.
(a) Every piecewise linear function can be written as a sum of a constant

plus a linear term plus a sum of absolute value terms:

k
f(x) =d+ao +Zai|x— bil.
=1
Let ¢; denote the slope of on the intervalb;, b;11]. Derive an explicit
expression for each of thg’s (includingao) in terms of the;’s.

(b) Interms of the:;’s, give necessary and sufficient conditions fao be
convex.

(c) Interms of they;’s, give necessary and sufficient conditions fdo be
convex.

(d) Assuming thatf is convex and is a term in the objective function for
a linearly constrained optimization problem, derive an equivalent lin-
ear programming formulation involving at mastextra variables and
constraints.

(e) Repeat the first four parts of this problem usingx(x — b;, 0) in place
of ‘(E — bz|

24.2 Let f be the function of 2 real variables defined by
flx,y) = 2® = 2zy +°.
Show thatf is convex.

24.3 A function f of 2 real variables is calledrmonomialif it has the form

m, n

f(z,y) =™y
for some nonnegative integersandn. Which monomials are convex?



422 24. CONVEX PROGRAMMING

24.4 Let ¢ be a convex function of a single real variable. Llfebe a function
defined orR™ by the formula

f(z) = ¢(a’z +b),
whereq is ann-vector and is a scalar. Show thgtis convex.

24.5 Which of the following functions are convex (assume that the domain of the

function is all of R™ unless specified otherwise)?

(@) 422 — 12zy + 93>

(b) 2% + 2zy + 2

(c) =%y?

@) 2* —y?

(e) evv

(f) 6127?!2

@ = on{(z,y):y > 0}

24.6 Given a symmetric square matu the quadratic form™ Az = 3=, . a;;z;;
generalizes the notion of the square of a variable. The generalization of the
notion of the fourth power of a variable is an expression of the form

fl@) =" aijmzizjog.
i,J,k,1

The four-dimensional array of numbers = {a;; : 1 < i < n,1 <
j<n1l<k<mn1l<Il<n}iscalled ad-tensor As with quadratic
expressions, we may assume tHat symmetric:

a‘L]kl = a]kll = e .. = alklj

(i.e., giveni, j, k., [, all 4! = 24 premutations must give the same value for

the tensor).

(a) Give conditions on the 4-tensdrto guarantee that is convex.

(b) Suppose that some variables, gg'g, are related to some other vari-
ables, say;’s, in a linear fashion:

Yi = Z fijzj.
J

Expressy_, y; in terms of thez;’s. In particular, give an explicit ex-
pression for the 4-tensor and show that it satisfies the conditions derived
in part (a).

24.7 Consider the problem

minimize az; + x2

subjectto/e? + z? < xs.
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where—1 < a < 1.
(a) Graph the feasible se{:(azl,xg) e+t < $2}. Is the problem

convex?
(b) Following the steps in the middle of p. 391 of the text, write down the

first-order optimality conditions for the barrier problem associated with

barrier parameter > 0.
(c) Solve explicitly the first-order optimality conditions. Let; (1), z2(u))

denote the solution.
(d) Graph the central patky; (1), 22(1)), asp varies from0 to oco.
24.8 Multidimensional Taylor’s series expansioBiven a functiong(¢) defined
for real values of, the three-term Taylor’s series expansion with remainder
is

gt + At) =g(t) + ¢’ (t) At + %g"(t)AtQ + ri(At).

The remainder term satisfies
. Tt(At)
Alwltrilo At?
Let f be a smooth function defined d&i*. Apply the three-term Taylor’s
series expansion t9(t) = f(z + tAz) to show that

f(z+Az) = f(z) + Vf(z) Az + %AxTHf(x)Ax + . (Ax).

=0.

24.9 Consider the following convex programming problem:
minimize o
subject toz? + 23 < 1.
(a) Find the quadratic subproblem if the current primal solutid@iszs) =
(1/2,—2/3) and the current dual solution js= 2.

(b) Show that for arbitrary current primal and dual solutions, the feasible
set for the convex programming problem is contained within the feasi-

ble set for the quadratic approximation.

Notes

Interior-point methods for nonlinear programming can be traced back to the pio-
neering work of Fiacco & McCormick (1968). For more on interior-point methods for
convex programming, s€e Nesterov & Nemiroysky (1993) or den Hertog|(1994).

The fact that the step directions are descent directions for the merit funition

proved irf Vanderbei & Shanhp (1999).






APPENDIX A

Source Listings

The algorithms presented in this book have all been implemented and are publicly
available from the author’s web site:

http://lwww.princeton.edu/ rvdb/LPbook/

There are two variants of the simplex method: the two-phase method as showr
in Figure[6.]1 and the self-dual method as shown in Figure 7.1. The simplex codes
require software for efficiently solving basis systems. There are two options: the eta
matrix approach described in Sectjdn|8.3 and the refactorization approach described i
Sectior] §.5. Each of these “engines” can be used with either simplex method. Hence
there are in total four possible simplex codes that one can experiment with.

There are three variants of interior-point methods: the path-following method as
shown in Figuré¢ 1711, the homogeneous self-dual method shown in Figufe 21.1 (mod
ified to take long steps), and the long-step homogeneous self-dual method describe
in Exercis¢ 214 of Chapter 1.

The source code that implements the algorithms mentioned above share as muc
common code as possible. For example, they all share the same input and outpt
routines (the input routine, by itself, is a substantial piece of code). They also share
code for the common linear algebra functions. Therefore, the difference between twc
methods is limited primarily to the specific function that implements the method itself.

The total number of lines of code used to implement all of the algorithms is about
9000. That is too many lines to reproduce all of the code here. But the routines tha
actually lay out the particular algorithms are fairly short, only about 300 lines each.
The relevant part of the self-dual simplex method is shown starting on the next page
It is followed by a listing of the relevant part of the homogeneous self-dual method.

425
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A. SOURCE LISTINGS

1. The Self-Dual Simplex Method

*

Main loop

for (iter=0; iter<MAX_ITER; iter++) {

I
* STEP 1: Find mu

mu = -HUGE_VAL;
col_in = -1;
for (7=0; j<n; j++) {
if (zbar_N[] > EPS2) {
if ( mu < -z_N[jl/zbar_N[j] ) {
mu = -z_N[j)/zbar_NIj];
col_in = j;

}
}
col_out = -1;
for (i=0; i<m; i++) {
if (xbar_B[i] > EPS2) {
if ( mu < -x_BJil/xbar_B[i] ) {
mu = -x_BJi]/xbar_B][i];

col_out = i;
col_in = -1;
}
}
}
if ( mu <= EPS3) { /* OPTIMAL */
status = 0;
break;
}
if (col_out >=0) {
/
* 1T
* STEP 2: Compute dz = -(B N) e
* N i
* where i = col_out
!
vec[0] = -1.0;
ivec[0] = col_out;
nvec = 1;

btsolve( m, vec, ivec, &nvec );

Nt_times_z( N, at, iat, kat, basicflag, vec, ivec, nvec,
dz_N, idz_N, &ndz_N );

/
* STEP 3: Ratio test to find entering column

!/

col_in = ratio_test( dz_N, idz_N, ndz_N, z_N, zbar_N, mu );

if (col_in == -1) { /* INFEASIBLE */
status = 2;
break;

}

/

* -1

* STEP 4: Compute dx =B N e
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j = nonbasics[col_in];

for (i=0, k=ka[j]; k<ka[j+1]; i++, k++) {
dx_B[i] = alkl;
idx_B[i] = ia[k];

ndx_B = i;

bsolve( m, dx_B, idx_B, &ndx_B );

} else {

/
* -1

* STEP 2: Compute dx =B N e
* B j

j = nonbasics[col_in];

for (i=0, k=ka[j]; k<ka[j+1]; i++, k++) {
dx_B[i] = alk];
idx_B[i] = ialk];

}
ndx_B = i;

bsolve( m, dx_B, idx_B, &ndx_B );

/
* STEP 3: Ratio test to find leaving column *
!

col_out = ratio_test( dx_B, idx_B, ndx_B, x_B, xbar_B, mu );

if (col_out == -1) {  /* UNBOUNDED *

status = 1;
break;
}
I
* 1T
* STEP 4: Compute dz = -(B N) e
* N i
*

vec[0] = -1.0;
ivec[0] = col_out;
nvec = 1;

btsolve( m, vec, ivec, &nvec );

Nt_times_z( N, at, iat, kat, basicflag, vec, ivec, nvec,
dz_N, idz_N, &ndz_N );

I

*

* STEP 5: Put t = x /dx *
* | | *
*

* t = x /dx *
* | | *
* s =2z /dz *
* i *
*

* s =z /dz *
N R

427
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for (k=0; k<ndx_B; k++) if (idx_B[k]

t =

x_BJ[col_out]/dx_B[k];

tbar = xbar_B[col_out]/dx_B[k];

for (k=0; k<ndz_N; k++) if (idz_N[K]

s = z_NJcol_in]/dz_|
sbar = zbar_N[col_in}/dz_N

NIK];
[KI;

/

col_out) break;

col_in) break;

/
*
* STEP 7: Setz =2z -s dz =z -sdz
* N N N N N
* z =s z =s
* i i
* X =x -tadx =x -tdx
* B B B B
* X =t X =t
* i i
!

for (k=0; k<ndz_N; k++) {

j = idz_N[K];

z_N[j] -= *dz_N[K];

zbar_N[j] -= sbar*dz_NIK];
}
z_N[col_in] =s;

zbar_N[col_in] = sbar;

for (k=0; k<ndx_B; k++) {
i = idx_BIK];
x_BIi] =t

}

x_B[col_out] =t
xbar_B[col_out] = tbar;

*dx_B[K];
xbar_BJ[i] -= tbar*dx_B[k];

!

* STEP 8: Update basis

i= basics[col_out];
j = nonbasics[col_in];
basics[col_out] I
nonbasics[col_in] = i;
basicflagl[i] -col_in-1;
basicflagl[j] col_out;

/

* STEP 9: Refactor basis and print statistics

/

from_scratch = refactor( m, ka, ia, a, basics, col_out, v );

if (from_scratch) {

primal_obj = sdotprod(c,x_B,basics,m) + f;

printf("%8d
fflush(stdout);

%14.7e %9.2e \n", iter, primal_obj, mu );
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2. The Homogeneous Self-Dual Method

/
* Main loop *

for (iter=0; iter<MAX_ITER; iter++) {

/
* STEP 1: Compute mu and centering parameter delta.
!

mu = (dotprod(z,x,n)+dotprod(w,y,m)+phi*psi) / (n+m+1);

if (iter%2 == 0) {

delta = 0.0;
} else {
delta = 1.0;

}

/
* STEP 1: Compute primal and dual objective function values.

)

primal_obj = dotprod(c,x,n);
dual_obj = dotprod(b,y,m);

!

* STEP 2: Check stopping rule.

if (mu < EPS) {
if ( phi > EPS ) {

status = 0O;
break; I* OPTIMAL */
else
if ( dual_obj < 0.0) {
status = 2;
break; /* PRIMAL INFEASIBLE */
}
else
if ( primal_obj > 0.0) {
status = 4;
break; /* DUAL INFEASIBLE */
else
{
status = 7; /* NUMERICAL TROUBLE */
break;
}

}

/
* STEP 3: Compute infeasibilities.

smx(m,n,A kA,iA x,rho);
for (i=0; i<m; i++) {
rho[i] = rholi] - b[i]*phi + wii];

normr = sqrt( dotprod(rho,rho,m) )/phi;
for (i=0; i<m; i++)
rho[i] = -(1-delta)*rho[i] + wli] - delta*mul/y[i];

smx(n,m,At,kAt,iAt,y,sigma);
for (j=0; j<n; j++) {
sigma[j] = -sigmalj] + c[jJ*phi + z[j];
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norms = sqrt( dotprod(sigma,sigma,n) )/phi;
for (j=0; j<n; j++) {
sigma[j] = -(1-delta)*sigma[j] + z[j] - delta*mu/x[j];

gamma = -(1-delta)*(dual_obj - primal_obj + psi) + psi - delta*mu/phi;

I
* Print statistics.

/

printf("%8d  %14.7e  %8.1le %l14.7e¢  %8.le %8.1le \n",
iter, primal_obj/phi+f, normr,
dual_obj/phi+f,  norms, mu );
fflush(stdout);

/

* STEP 4: Compute step directions.

for (j=0; j<n; j++) { Dli] = z[J/x[i; }
for (i=0; i<m; i++) { E[i] = w[i/y[i]; }

Iditfac(n, m, kAt, iAt, At, E, D, kA, iA, A, v);

for (j=0; j<n; j++) { ]
for (i=0; i<m; i++) { fy[i]

-sigmal[j]; }
rhofi]; }

forwardbackward(E, D, fy, fx);

for (j=0; j<n; j++) { ox[i] = -c[l; }
for (i=0; i<m; i++) { gy[i] = -b[i]; }

forwardbackward(E, D, gy, gx);

dphi = (dotprod(c,fx,n)-dotprod(b,fy,m)+gamma)/
(dotprod(c,gx,n)-dotprod(b,gy,m)-psi/phi);

for (=0; j<n; j++) { dx[] = fx[] - gx[i]*dphi; }
for (i=0; i<m; i++) { dy[i] = fy[] - gy[i]*dphi; }
for (j=0; j<n; j++) { dz[j] = delta*mu/x[j] - z[j] - D[*dx[j]; }

for (i=0; i<m; i++) { dw[i] = delta*muly[i] - w[i] - E[i]*dy[i]; }
dpsi = delta*mu/phi - psi - (psi/phi)*dphi;

/

* STEP 5: Compute step length (long steps).

theta = 0.0;

for (j=0; j<n; j++) {
if (theta < -dx[j}/x[j]) { theta
if (theta < -dz[j)/z[j]) { theta

-dx[x[l: }
-dz[ijz[i]; }

for (i=0; i<m; i++) {
if (theta < -dy[il/y[i]) { theta = -dy[il/y[i]; }
if (theta < -dw[iJ/w[i]) { theta = -dw[i}/w[i]; }

}
theta = MIN( 0.95/theta, 1.0 );

!

* STEP 6: Step to new point

for (j=0; j<n; j++) {
X[l = x[i] + theta*dx[j;
zZ[j] = z[j] + theta*dz[j];

for (i=0; i<m; i++) {

ylil = y[i] + theta*dy[i];
wii] = w[i] + theta*dwli];



2. THE HOMOGENEOUS SELF-DUAL METHOD

phi = phi + theta*dphi;
psi = psi + theta*dpsi;






Answers to Selected Exercises

[I.3: See Exercise 2.19.

R.I: (21,22, 73,24) = (2,0,1,0), { = 17.

2.2 (1'1,1'2) = (1,0), C = 2.

[E: (1‘17.’);‘2,,@3) = (0,0.5, 1.5), C =-3

2.4: (x17.%‘2,I3) = (07 1,0), ¢(=-3

2.8: (.’131,1‘2) = ( ,1),(2 5.

[2.8: Infeasible.

[2.4: Unbounded.

238 (z1,22) = (4,8),¢ = 28.

@: (.%‘17.’172,,@3) = (1.5,2.5,0), C = 10.5.

m: (371,33‘2,.733,.134) = (0,0,0,1), C =9.

[m: (I12,$13,$147I23,I 24, .Z‘34) = (1 0,0 O 1) C 6.

[ﬂ' (1):v = (2,4,0,0,0,0,8), &* = 14. ( )x unchanged¢* = 12.2. (3)
) =

= (0,8,0,0,0,10,10), &*

[ﬂ Acy € (—00,1.2], Acy € [-1.2,00), Acs € [-1,9], Acy € (—00,2.8].

9.1 (xl,l‘g) = (075)

0.2 (.5(11, X9,X3,T4,T5,L6, L7, 338) = (0, 6,1,15,2,1,0, O)

[10.8: The fundamental theorem was proved only for problems in standard
form. The LP here can be reduced to standard form.

[I1.3: A should hidea or b with probabilitiesb/(a + b) anda/(a + b), respec-
tively. B should hide: or b with equal probability.

S

[I2.1: Slope =2/7, intercept =1.

[I2.2: Slope =1/2, intercept =0.

[d2.1: (2) 340. (3) =* is chosen so that the number of months in which extra
workers will be used is equal to the number of months in the cycle (12) times
the inhouse employee cost ($17.50) divided by the outhouse employee cos
($25) rounded down to the nearest integer.

[M12.8: UsingL!, g = 8.976. With L2, g = 8.924.

433



434 ANSWERS TO SELECTED EXERCISES

[I3.8: The optimal spanning tree consists of the following arcs:

{(a,0),(b,¢),(c, f), (f,9), (d,9), (d,e), (g,h)}.
The solution is not unique.
I63: 21 = (1+2u+ /1 +4p2) /2,
2y = (1 —2u+ 1+ 4u2) /2
—2u/ (—(1 o)+ 1+ 4u2) .
[16.2: Letc = cosd. If ¢ # 0, thenz; = (c— 20+ \/W) /2¢c, else
x1 = 1/2. Formula forz, is the same except thabs 6 is replaced byin 6.
[16.3: max{cTz + >ojrilogw; 4+ 37, silogw; : Az < b,z > 0}.
[I73: Usingd = 1/10 andr = 9/10:
(1) x = (545,302,644)/680, y=(986,1049)/680,
= (131, 68),/680, z = (572,815,473)/680.
(2) = (3107, 5114, 4763) /4250, y = (4016, 425)/4250,
= (2783,6374) /4250, z = (3692, 1685, 2036) /4250.
(3) x = (443, 296) /290, (263, 275, 347) /290,
=
(
=(1

y=
209, 197, 125)/290 = (29,176)/290.

=

=

(4) x=1(9,12,8,14)/10, 18)/10,
)/10, 9,6,11,5)/10.
[19.1:
- ; o ;
1 1
L=|-1 1 , D= 0
-1 1 1
—-11 0
[19.3: i l i i
C ; F L, ;
1 -3
L= -3 1 , D= z
-1 1 3
44 %]
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