Introduction

The objective of this document is to offer insight into some numerical algorithms of Gauss Elimination Method and investigate their perfomance. For a demonstration we will use only 4×4 coefficient matrixes A, namely systems of four linear equations in the four unknowns.
Some words about using this document :
click button to execute an operation;
type input into input - fields
read output from output - fields
All algorithms are from book
"Computing linear algebra" by Semoushin I.V. and Kulikov G.U.
This document created by
Nasibullin T.G., UISU, e-mail : nasibullin@rambler.ru

Algorithm 1. LU - expansion on a method of Gauss

Initial matrix : A =

\square select the main element

Reset
Random Test

Run

LU - expansion :

Inverse matrix :
Invert

Solving of System of Linear Equations $\mathrm{Ax}=\mathrm{b}$:

b =

X =

Algorithm 2. LU - expansion on a method of Gauss

Initial matrix : A =

\square select the main element

Lu - expansion :

Eliminate x 1
Eliminate x 2
Eliminate $\times 3$

Solving of System of Linear Equations $\mathrm{Ax}=\mathrm{b}$:
b $=$

Inverse matrix :

\square
\square
\square

位

Invert

Algorithm 3. LŪ - expansion on a method of Gauss(by rows)

Initial matrix : A =

\square select the main element

Reset
Random
Test

LU - expansion :

Inverse matrix :
Invert

Solving of System of Linear Equations $A x=b$:

Run

Eliminate $\times 1$
Eliminate $\times 2$
Eliminate $\times 3$
\square

$\mathrm{x}=$

Algorithm 4. L \bar{U} - expansion under compact scheme of Kraut

Initial matrix : A =

\square select the main element

Reset
Random
Test

L \bar{U} - expansion :

Inverse matrix :
Invert

Solving of System of Linear Equations $A x=b$:
b =

$$
x=
$$

Run

Algorithm 5. LU - expansion under compact scheme of Kraut

Initial matrix : A =

\square select the main element

Reset
Random
Test
$\bar{L} U$ - expansion :

Invert

Run

Step 1
Step 2
Step 3
Step 4

Step 4

Inverse matrix :

Solving of System of Linear Equations $A x=b$:

b =
$x=$

Algorithm 6. LU - expansion under compact scheme "row by row"

Initial matrix : A =

\square select the main element

Reset
Random
Test
LU - expansion :

Inverse matrix :

Solving of System of Linear Equations $A x=b$:
$\mathrm{b}=$
X =

Run

Invert

Algorithm 7. $L \bar{U}^{-1}$ - expansion on a method of Jordan

Initial matrix : A =

\square select the main element

Reset
Random Test
$L^{-1}-$ expansion :

Inverse matrix :

Solving of System of Linear Equations $\mathrm{Ax}=\mathrm{b}$:
b =

$\mathrm{x}=$

Eliminate x 1
Eliminate x 2
Eliminate x 3
Change sign

Run

Eliminate $\times 1$
Eliminate x2

$$
\begin{array}{|l|}
\hline \text { Eliminate } \times 3 \\
\hline \text { Change sign } \\
\hline
\end{array}
$$

