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D = bT,pp1.  (9 1 
In (9) let b be  the  unit matrix. Then (9) can be used to determine T,, 
which is then used in (8) to generate T .  Once T h s  been determined, 
then (6) is used to determine the ai, j = 1,. - .,p. 

THE MODIFIED SYSTEN 

By t.aking advant.age of the  structure of B and B, it is possible to 
represent (4) and ( 5 )  in another xvay. Let z ( k )  be defined by 

v ( k )  = (10) 

where z(k) is an nt vector, and therefore the process v ( k )  is com- 
pletely described by 

z(k + 1) = aj+lz(k - j) (11) 
P-1 

i = O  

y(k) = z(k) + w(k) .  (12) 

The problem of estimating  the  state r ( k )  given Y(I)  has now been 
transformed to est,imating the  states z(k - j), j = O,. .  ’ , p  - 1, 
given Y(1) of t.he process described by (ll), where 

f ( k / l )  = T-’ I 
In using the   e sha to r s  in [lo] and 1111 to obt,ain the est,imates 
^z(k - j /Z), j  = O,...,p - 1, Vs(ilj)l j = O,...,p - 1, i = O , . . . , j ,  
will be necessary, where 

VZ(i,j) = Ez( - i)ZT( - j ) .  

Vz(i,j) i s  the ijth m X m submatrix of V,,, where 

V ,  = TV’,TT. 

filter. In addition, 60 percent fewer storage locat,ions are required by 
the filtering variables. 

CONCLUSION 
For  optimum linear  estimation of the  state of a class of linear- 

discrete  systems,  a  technique  t.hat  requires less on-line computer time 
and memory t.han a Kalnlan  filter  has been developed. The procedure 
involves only one off-line computat,ion, the determination of a linear 
transformation. It, also involves the use of a  linear  filter for linear- 
discrete  systems wit.h time delays. A numerical example was in- 
cluded to  demonstrate  that computer time  and memory  require- 
ments can be reduced. However, the larger m is, the less will be  the 
computational advantage of this technique. 

Although  this  procedure has been developed for  time-invariant 
systems, an analogous technique for time-varying systems can 
readily be obtained. 
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EXAMPLE 
For comparison purposes, consider a  system described by  (I), and On Innovation Sequence Testing of the Filter 

let 

r 0.0 1 . 0  1.0 0 .01  
DRAYTON D. BOOZER AXD WILLIE L. MC DANIEL, JR. 

9 = [ ;:: -;:: ;:: -;::I 
-4.05 0.9  -5 .2  -2.8 

D = [1.0 0 .0  2.0 1.01. 

The use of (9), (8), and (6) results in 

aj = -0.8, -0.5, -0.1, -0.75, j = 1,-.. ,4, 

and t.herefore a  fourth-order  system has been transformed to  an alter- 
nate  statespace representation, which is a scalar  system with  three 
delay  terms. 

To  illustrate  the usefulness of the procedure, its on-line con1put.a- 
tional requirements are compared to those of the  Kalnlan filter. 
The  Kalman filter is applied to the system described by (1) t o  obtain 
estimates of the  state z ( k )  given Y(Z). Using (11) as the system 
descript.ion, the filtering  technique developed in [lo] along with (13) 
is applied to obtain t,he same estimates given the same measure- 
ments. For  this example, the  state estimation  computing t.ime is re- 
duced by more than 90 percent of t,hat required by  the Kalman 

Absfract-Sequentially proven statements  are given showing that 
the  whiteness of the innovation sequence of a steady-state  Kalman 
a t e r   i s  not a  sullicient condition for  the optimality of the filter. 
Simulation results are given which verify each of the  statements. 
Definite conclusions are reached  concerning the  identzcation of a 
class of systems by using  the  output sequence. 

I. INTRODUCTION 
In  a recent. paper  Mehra [I] has shown t.hat a necessary and suffi- 

cient condit.ion for t.he optimality of the  Kalman filter is that t.he 
innovation sequence be white (see also [2], [3] ). The  as-umption 
made in  arriving  at. this result was that.  the 4 mat.rix of the  system 
vas known and t.he variances of the  state  and observation noise 
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sequences were to  be identified. If these assumptions are changed 
(suppose, for example, that   the + matrix is not known), then  one 
reaches quite a different result.  The purpose of t,his correspondence 
is to  show that  the whit,eness of the  steady-state  Kalman f?lt,er inno- 
vation sequence is not a sufficient condition  for opt,imality when the 
6 matrix of the  system is not known. 

11. STATEMENT OF THE PROBLEN 
Consider a second-order single-output  linear  discrete system de- 

scribed by 

x(n + 1 )  = 4x(n) + w(n) ( 1 )  

y(n) = Ax(n) + v(n) (2 ) 

where w(n) and ~ ( n )  are  white Gaussian zero-mean noise sequences 
whose covariance matrices  are 

The problem  is to show that for  this  system  the whiteness of the 
st.eady-st,ate Kalman filter innovation sequence is not a sufficient. 
condition  for optimality when + is not known. 

111. SOLUTION TO THE PROBLEX 
The solution to t.he problem posed is given in a sequence of state- 

ments in  a  format,  similar to [ I ] .  The  material  in  this section  draws 
heavily  from [2]  and much of the close det,ail has been omitted. 

Statement I :  Consider the  system described in ( l t ( 4 ) .  If A ,  W, and 
the autocorrelation coefficients of y(n) are known, t,he + matrix of 
the  system can be determined only  to wit.hin one linear  transforma- 
tion, which is given by 

P -  l [  3 ( 5 )  
Al2Wn - Az2Wzz  2A1AzW11 

- AlZWll + Az2W2z  2A1AzW22 Az2Wzz - A12W1 

where the  only two  solutions, $1 and +z, are rela.ted by 

+1 = P,-1+2P,. (6)  

Proof: The  autocorrelation coefficients of y(n) are defined by 

c k  A E[y(nk/(n - k ) ]  (7) 

a.nd for  the preceding system  are 

Co = ALAT + Q (8) 

Ck = A+lkLAT, k 2 1 (9 ) 

where + is  set  to $1 and L is the  steady-state covariance matrix given 
by 

L 4 E[x(n)xT(n)]  (10) 

and  for  the preceding system is 

L = +1&1T + w 
Substituting (6)  into ( 1 1 )  yields 

L* = +%L*+nT + P,WPsT ( 1 2 )  

where 

L* = P*LP,T. 

Since W is known, it is required that  

w = PsWPsT 

The autocorrelation coefficients of the  starred  system  are 

Co* = AL*AT + Q (15) 

C k *  = A+zkL*AT, k 2 1 .  (16) 

Now from ( 6 )  it  follows that 

PsQ1m = +zmP* (1’7) 

for all m. Using (13) and (17) in ( 1 5 )  and (16) yields 

Co* = APSLPSTAT + Q (18) 

C k *  = AP&kLP,TAT, k 2 1. (19) 

Since A is known, it is required that  

A = AP,.  (20) 

Therefore 

ck* = c k ,  k 2 0. (21 1 

The  output aut,ocorrelation coefficients are  identical for both +I and 
+z of ( 6 )  if and  only if (14) and (20) are sat.isfied. Solving t.hese five 
nonlinear algebraic equations  yields two solutions: that given by 
( 5 )  and  the  trivial case P ,  = I .  

Statement 2: If a Kalman filt.er with  any assumed + matrix is con- 
nected t.o the  system of Satement, 1 ,  the autocorrelation  coefficienk 
of the innovat,ion sequence will be identical for system + matrices 
related  by  the  transformation P,. 

Proof: This assertion follows since Kailath [3] has shown that  
the  Kalman filter innovat.ion sequence contains t.he same information 
as the  system  output. sequence, only in a lees correlated  form. The 
extension of Statement 1 to  the innovat,ion sequence is immediate. 

Statement 3: The whiteness of the  innovation sequence  is a neces- 
sary,  but  not sufficient,, condition for the  optimality of the st,eady- 
state  Kalman filter. 

Proof: The necessary condition  is shown by  examination of t.he 
equations for t,he  autocorrelation coefficients of the  innovation se- 
quence  when the + matrix is not known. Define 

L 2 E[x(n)xT(n)l  (22) 

P A E[xlt+1 - x(n + l)l[xT(n + 111 (23) 

M A E[x^”,+l - x(n + 1)] [4* ,+1  - x(n + 1)IT  (24) 

+* A + + A +  (25) 

y 4 +*[I - KA]  (26)  

where +* is the  Kalman filter + nlat,rix and K is t,he corresponding 
Kalman gain. 

For the  system of Statement 1 with a Kalman filt,er att,ached, these 
covariance matrices for the steady-stat.e case are 

L = + & T + W  (27) 

P = yP+T + A+LqbT - W (28) 

1M = yMrT + +*KQKT+*T + Fir + A+L(&IT 

+ rp(A+)* + [ - Y P ( A + ) ~ ] ~ .  (29) 

The autocorrelation coefficients for the  innovation sequence v ( n )  are 
deihed  by 

C d  2 E [ v ( n ) v ( . n  - k)] (30) 

and can be shown to  be (see I21 ) 

Cd = AMAT + Q (31) 

Ckf = A(+*)‘MAT + A[(+*)k - @]PTAT 

- A ( + * ) ~ + ~ K C ~ L ~ A ,  k 2 1 .  (32) 
k - 1  

p = o  
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TABLE I New Linear Smoothing Formulas 
K~LMAN FILTER ERROR SIGNAL CORRELATION COEFFICIENTS 

BRIAN D. 0. ANDERSON AND S. CHIRARATTANANON 

Q* = [ 0.500 0 .8 ’q  w = [; ;] Abstmct-Formulas are given expressing  the smoothed estimate 

-0.600 0.400 of the  state of a noisy linear  system in terms of atered  estimates of 
A = 11 01 the  state, for both  continuous and  discrete time. 

EXAMPLE 1 EXAMPLE 2 

I We begin by defining the various quantities of interest. We are 
0.500 -0.816 

0.600 0.400 0 
given the  system 

*) = F(t)z(t) + G(t)u(t) 
3.1780 3.1787 at (1) 

c,’ 

c: 

c: -0.0001 

c: 0.0000 

-0.0002 

c4 

C, 0.0000 

f 0.0000 

f 

0.0004 

0.0000 

0.0000 

0.0000 

0.0000 

The necessary condition  for the case in which 4 is known and  the 
noise variances are unknown was shown by  Mehra 111, The  negative 
assertion follows from Statement 2 since the filter 4 matrix can be 
equated to  41, one of the two possible 4 matrices generating the  out- 
put sequence. The innovation  sequence m i l l  be white,  since the  system 
is optimal. However, Statement 1 provides another 4 matrix 42, 
which yields the  same  output as $1. Therefore, from Statement 2 the 
innovation sequence must  remain white. 

IV. S ~ A T I O N  RESULTS AND CONCLUSION 

In  order to verify Statement 3, (27)-(32) were coded. If A? = 0, 
the transformation matrix of Statement 1 is 

P, = [’ 0 1  
0 -1 * 

(33) 

This transformat.ion changes the sign of the off-diagonal elements of 
the .$ mat,rix. In  Table I are  listed  the f i s t  six autocorrelation coeffi- 
cients for the w e s  4 = +* and 4 = P,-l+*P,. Notice  that.  both cases 
yield white-noise sequences (small  numbers mere caused by  the con- 
vergence crit.eria used in solving (27)-(29) iteratively). Only the 
system of Example 1 is optimal  with 

t.r [ M I  = 3.6163 

whereas 

t r  [111] = 9.3342 

for Example 2. 
The simulation  results confirm the  fact  that  the whiteness of the 

Kalman filter innovation sequence  is not a sufEcient condition  for 
optimality,  although a sufficient condition has been  st.ated for the 
case in which the 9 matrix is known and  suboptimslity is caused by 
incorrect  variances. 
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f l [ V ( t ) U ‘ ( r ) ]  = R(t)6(t - 7 )  

and with Rlt) nonsingular  for all t. It is assumed that (1) and (2) 
apply for t 1 to, that z(to) is Gaussian with mean fo and covariance 
PO, and that z(tO), u( . ) ,  and v (  .) are  mutually independent. 

As is well known, the  quantity ?(t / t )  = E { z ( t ) / y ( ~ ) ,  fo 5 7 < t ]  
may  be computed as follows. D e h e  P(t )  by 

P = PF’ f FP - PHR-IH’P + GQG’, P ( t )  = Po (3) 

and K ( t )  by 

K = PHR-1. (4) 

Then 

i = F L  - K(H’2 - I/) 
= ( F  - RH‘)$ f Kg, $(tu/ to)  = f a .  (5 )  

Suppose that b > f .  Then in [I, eq. (28)] it is shown that the 
quantity L(t/b) = E ( z ( t ) / y ( ~ ) ,  to 5 T < b}  is given by 

?( t /b)  = $( t / t )  + p(t)  o K ‘ ( . r , t ) r r ( T ) R - l ( T ) V ( T ) d T  (6) Lb 
where a=(. , ) is the  transition  matrix amociated with F - RH’, and 
the innovation process ~ ( t )  is defined by 

v ( t )  = y ( t )  - H’(t)g(t/t). (7) 

Equations (6) and (7) imply that a  smoothed  estimat,e ?( t /b)  can 
be regarded as a h e a r  functional of the measurements Y ( T )  for 
t < T < b and the filtered estimate L(T /T)  for 1 5 T < 6. The  content 
of our main result is that ?(t /b)  can be regarded as a linear functional 
of only the filtered estimate ? ( T / T )  for 1 5 T < b. 

Theorem: With all quantities as defined previously, suppose that  
P ( T )  is nonsingular for t 5 T 5 b. Then  the following formula ex- 
presses ?(t/b) as a linear  functional of L ( T / T ) ,  t < T < b: 

$( t /b)  = P(t)~K’(b,t)P-l(b)L(b/b) 

+ p ( t )  ib +K’(T,~)P-~(T)G(T)Q(T)G’(T)P-~(T)L(T/T) d T .  (8) 

Proof: From  the Mter equation (5) and  the deiinition (7) of 
V( - ) we see that 

i ( t / t )  - F(t)?(t/ t)  = K ( f ) v ( f )  = P(t)H(f)R-’(t)v(t). 
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