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= bTpp?7 L, 9)

In (9) let b be the unit matrix, Then (9) can be used to determine 7'y,
which is then used in (8) to generate 7. Once T has been determined,
then (6) is used to determine the a;, 7 = 1,---,p.

Tue MODIFIED SYSTEM

By taking advantage of the structure of 6 and B, it is possible to
represent (4) and (5) in another way. Let z(k) be defined by

——z(k)
z2(k — 1)
v(k) = (10)
2k—(p—1))

where z(k) is an m vector, and therefore the process v(k) is com-
pletely described by

p—1

2k + 1) = 3 ajuek — ) (11)
i=0

ylk) = 2(k) + w(k). (12)

The problem of estimating the state (k) given ¥ (/) has now been

transformed to estimating the states z(k — 7),7 = 0,---,p — 1,
given Y(I) of the process described by (11), where
z(k/1)
kM) = (13)

2k — (»— 1/

In using the estimators in [10] and [11] to obtain the estimates
z(k _]/l)l] = 0)"':17 -1, Vz(%])l] = 0,"',]7 -1, 1 = O:"';j:
will be necessary, where

V:(3,5) = Ez(—1)2"(—3).
V.(4,7) is the 4jth m X m submatrix of V,, where
Vo= TV.TT.

ExXAMPLE

For comparison purposes, consider a system described by (1), and
let

0.0 1.0 1.0 0.0
0.0 1.0 0.0 —1.0
$= 10 —-1.0 1.0 1.0
—4.05 0.9 —-5.2 —2.8

= (1.0 0.0 2.0 1.0].
The use of (9), (8), and (6) results in

a; = —0.8, —0.5, —0.1, —0.75, j=1---4

and therefore a fourth-order system has been transformed to an alter-
nate state-space representation, which is a scalar system with three
delay terms.

To illustrate the usefulness of the procedure, its on-line computa-
tional requirements are compared to those of the Kalman filter.
The Kalman filter is applied to the system described by (1) to obtain
estimates of the state z(k) given Y (I). Using (11) as the system
description, the filtering technique developed in [10] along with (13)
is applied to obtain the same estimates given the same measure-
ments. For this example, the state estimation computing time is re-
duced by more than 90 percent of that required by the Kalman
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filter. In addition, 60 percent fewer storage locations are required by
the filtering variables.

CoNCLUSION

For optimum linear estimation of the state of a class of linear-
discrete systems, a technique that requires less on-line computer time
and memory than a Kalman filter has been developed. The procedure
involves only one off-line computation, the determination of a linear
transformation. It also involves the use of a linear filter for linear-
discrete systems with time delays. A numerical example was in-
cluded to demonstrate that computer time and memory require-
ments can be reduced. However, the larger m is, the less will be the
computational advantage of this technique.

Although this procedure has been developed for time-invariant
systems, an analogous technique for time-varying systems can
readily be obtained.
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On Innovation Sequence Testing of the Kalman Filter
DRAYTON D. BOOZER axp WILLIE L. MC DANIEL, JR.

Abstract—Sequentially proven statements are given showing that
the whiteness of the innovation sequence of a steady-state Kalman
filter is not a sufficient condition for the optimality of the filter.
Simulation results are given which verify each of the statements.
Definite conclusions are reached concerning the identification of a
class of systems by using the output sequence.

I. INTRODUCTION

In a recent paper Mehra [1] has shown that a necessary and suffi-
cient condition for the optimality of the Kalman filter is that the
innovation sequence he white (see also [2], [3]). The assumption
made in arriving at this result was that the ¢ matrix of the system
was known and the variances of the state and observation noise
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TECHNICAL NOTES AND CORRESPONDENCE

sequences were to be identified. If these assumptions are changed
(suppose, for example, that the ¢ matrix is not known), then one
reaches quite a different result. The purpose of this correspondence
is to show that the whiteness of the steady-state Kalman filter inno-
vation sequence is not a sufficient condition for optimality when the
¢ matrix of the system is not known.

II. STATEMENT OF THE PROBLEM

Consider a second-order single-output linear discrete system de-
scribed by

x(n 4+ 1)
y(n)

I

ox(n) -+ w(n) (L)
Ax(n) 4 v(n) (2)

where w(n) and »(n) are white Gaussian zero-mean noise sequences
whose covariance matrices are

W = Blw®)wT(n)] = [H;U I;’)zo] @

Q = E[v*(n)]. (4)

The problem is to show that for this system the whiteness of the
steady-state Kalman filter innovation sequence is not a sufficient
condition for optimality when ¢ is not known.

III. SoLuTION TO THE PROBLEM

The solution to the problem posed is given in a sequence of state-
ments in a format similar to [1]. The material in this section draws
heavily from [2] and much of the close detail has been omitted.

Statement 1: Consider the system deseribed in (1)-(4). If A, W, and
the autocorrelation coefficients of y(n) are known, the ¢ matrix of
the system can be determined only to within one linear transforma-
tion, which is given by

_ 1 l:A12W11 — AW
AWy + A2 Wo 24, 4:Wa

24, 4.Wy,; :I @)
AW — AW,

where the only two solutions, ¢, and ¢, are related by

P,

é1 = P,"1g,P,. (6)
Proof: The autocorrelation coefficients of y(n) are defined by
Cr £ Elym)y(n — k)] (0
and for the preceding system are
Co = ALAT 4 Q (8)
Cr = A¢*LAT, E>1 9)

where ¢ is set to ¢1 and L is the steady-state covariance matrix given
by

L £ Elx(n)xT(n)] (10)
and for the preceding system is
L = ¢pLnT + W. (11)
Substituting (6) into (11) yields
L* = ¢l *¢T + P,WPST (12)
where
L* = P,LP,T. (13)
Since W is known, it is required that
W = P.WPS/. (14)

The autocorrelation coefficients of the starred system are

159
Co* = AL¥AT + @ (15)
Ci* = ApL*AT, kE>1. (16)
Now from (6) it follows that
Pu™ = ¢y P, 7}
for all m. Using (13) and (17) in (15) and (16) yields
Co* = AP,LP,TAT 4+ @ (18)
Cip* = AP pFLP,TAT, k> 1. (19)
Since A4 is known, it is required that
4 = AP, (20)
Therefore
Ci* = Gy, k>0 (21)

The output autocorrelation coefficients are identical for both ¢ and
¢ of (6) if and only if (14) and (20) are satisfied. Solving these five
nonlinear algebraic equations yields two solutions: that given by
(5) and the trivial case Ps = I.

Statement 2: If a Kalman filter with any assumed ¢ matrix is con-
nected to the system of Satement 1, the autocorrelation coefficients
of the innovation sequence will be identical for system ¢ matrices
related by the transformation P;.

Proof: This assertion follows since Kailath [3] has shown that
the Kalman filter innovation sequence contains the same information
as the system output sequence, only in a less correlated form. The
extension of Statement 1 to the innovation sequence is immediate.

Statement 3: The whiteness of the innovation sequence is a neces-
sary, but not sufficient, condition for the optimality of the steady-
state Kalman filter.

Proof: The necessary condition is shown by examination of the
equations for the autocorrelation coefficients of the innovation se-
quence when the ¢ matrix is not known. Define

>

L & Elx(n)xT(n)] (22)
P 2 E#v,n — x(n + D][xT(n + 1)] (23)
M & Elfrn — x(n + 1)][£%a — x(r + 1)]7 (24)
¢* = o+ A¢ (25)
y & ¢*[I — KA (26)

where ¢* is the Kalman filter ¢ matrix and K is the corresponding
Kalman gain. .

For the system of Statement 1 with a Kalman filter attached, these
covariance matrices for the steady-state case are

L =¢Le" + W (27)
P = yPypT + ApLpT — W (28)
M = yM~T + ¢*EQKT¢* + W + ApL(Ag)T

+ vP(4g)* + [vP(Ap)T]T. (29)

The autocorrelation coefficients for the innovation sequence »(n) are
defined by

Cf 2 Elv(n)v(n — k)] (30)
and can be shown to be (see [2])
CY = AMAT + Q (31)
O = A(G*FMAT + A[(¢*F — ¢*]PTAT
k—1
— A @PHECh s, k21 (32)
p=0
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TABLE 1
Karman FinTER ERrOR SigNAL CORRELATION COEFFICIENTS

. 0.500 0.816 v - 1 0
" = - 0 1
-0.600 0.400
A = 1 0}
EXAMPLE 1 EXAMPLE 2
0.500 0.816 0.500 -0.816
¢ -0.600 0.400 0.600 0.400
cf 3.1780 3.1787
cf ~0.0002 0.0004
o ~0.0001 0.0000
cf 0.0000 0.0000
£
c, 0.0000 0.0000
£
c 0.0000 0.0000

The necessary condition for the case in which ¢ is known and the
noise varianees are unknown was shown by Mehra [1]. The negative
assertion follows from Statement 2 since the filter ¢ matrix can be
equated to ¢y, one of the two possible ¢ matrices generating the out-
put sequence. The innovation sequence will be white, since the system
is optimal. However, Statement 1 provides another ¢ matrix ¢;,
which yields the same output as ¢1. Therefore, from Statement 2 the
innovation sequence must remain white,

IV. SmmuraTiON RESULTS AND CONCLUSION

In order to verify Statement 3, (27)-(32) were coded. If 4, = O,
the transformation matrix of Statement 1 is

p-[) )
0 -1

This transformation changes the sign of the off-diagonal elements of
the ¢ matrix. In Table I are listed the first six autocorrelation coeffi-
cients for the cases ¢ = p*and ¢ = P,~1¢*P,, Notice that both cases
yield white-noise sequences (small numbers were caused by the con-
vergence criteria used in solving (27)-(29) iteratively). Only the
system of Example 1 is optimal with

tr [M] = 3.6163

(33)

I

whereas

tr [M] = 9.3342

I

for Example 2.

The simulation results confirm the fact that the whiteness of the
Kalman filter innovation sequence is not & sufficient condition for
optimality, although a sufficient condition has been stated for the
case in which the ¢ matrix is known and suboptimality is caused by
incorrect variances.
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New Linear Smoothing Formulas
BRIAN D. O. ANDERSON anp S. CHIRARATTANANON

Abstraci—Formulas are given expressing the smoothed estimate
of the state of a noisy linear system in terms of filtered estimates of
the state, for both continuous and discrete time.

We begin by defining the various quantities of interest. We are
given the system

dst)

= F{)z() + G@u() (1)
y@) = H'(@)z() + (@) (2)
with 4(-) and »(- ) zero-mean white Gaussian processes such that
Elu(@u’(r)] = Q@)¥¢E — 7)
Elu(@p'(r)] = R@)$¢ — 1)

and with R(f) nonsingular for all {. It is assumed that (1) and (2)
apply for { > &, that z(f) is Gaussian with mean %, and covariance
Py, and that (%), u(-), and 9(- ) are mutually independent.

As is well known, the quantity #(t/t) = E{z@t)/y(r), o < 7 < t}
may be computed as follows. Define P(¢) by

P = PF' + FP — PHR-'H'P + GQG’,
and K (t) by

P(l) = Po (3)

K = PHR. 4)
Then
= F¢ — K(H'E ~ y)
= (F — KEH) + Ky, 2(h/b) = . 8)

Suppose that & > {. Then in [1, eq. (28)] it is shown that the
quantity £(t/b) = E{xz(t)/y(r), &t < 7 < b} is given by

b
Z(t/b) = £(t/t) + P(l‘-)f &g/ (RO)H(T)E X (7)p(r)dr  (6)
14

where ®x(-,) is the transition matrix associated with F — KH’, and
the innovation process »(¢) is defined by

¥(t) = y(t) — H'D)L/1). p)

Equations (6) and (7) imply that a smoothed estimate £({/b) can
be regarded as a linear functional of the measurements y(7) for
t < r < b and the filtered estimate £(r /1) for{ < = < b. The content
of our main result is that £(£/b) can be regarded as a linear functional
of only the filtered estimate £(r/7) for{ < 7 < b.

Theorem: With all quantities as defined previously, suppose that
P(7) is nonsingular for { € 7 £ b. Then the following formula ex-
presses £(t/b) as a linear functional of £(7/7),t < 7 < b:

#(t/b) = P()2x’(b,1)P~1(b)£(b/b)
b
+ P@) f ek ()P (r)G(PR(N)G (NP~ 7)E(r/7) dr. (8)
t

Proof: From the filter equation (5) and the definition (7) of
»(-) we see that

£@/8) — F(OE(E/E) = K@®)e(t) = POHEGORE)(E).
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