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Human Body Temperature Daily
Variation: Time Series Modeling,
Simulation, and Estimation

SEMUSHIN Innokentiy!, TSYGANOVA Yuliya!, SKOVIKOV
Anatoli', KROLIVETSKAYA Yuliya! and PETROVA Elena!

1 Ulyanovsk State University
School of Mathematics and Information Technology
42 Leo Tolstoy Str., Ulyanovsk, Russia
‘ kentvsem@gmail.com

The talk deals with a set of mathematical models for human body daily
temperature variation (HBDTV). The set is built with the purpose of subse-
quent fitting the models to experimental data by using our adaptive Kalman
filtering technique [1]. The end goal of this research is to solve two main
problems: (1) satisfactory model parameters identification and (2) quickest
change point detection. Some averaged charts of HBDTV obtained from the
healthy adults are used as a benchmark data. Measurement errors and many
other factors affecting HBDTV, are taken into account by using stochastic
differential and difference equations. The paper is structured by the follow-
ing pattern: from deterministic models to stochastic models and then to
stochastic disctete-time models. In conclusion, time series simulation and
computational experiments with the filter are discussed.

1 Baseline model

Human body temperature regulation is a great example of how the homeo-
static mechanism works. Consider human body temperature daily variation
as it can be seen in many sources, for instance, in ANTRANIK.org (Fig. 1).

Consider the experimental data similar to Fig. 1 as a sample from a
continuous-time stochastic process. Decompose it into the following additive
components:

e 0,, a mathematical expectation of temperature variation relative to
daily mean temperature 6*, for example, 8* = 36.7 °C,
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Table 4: Experimental results for estimating parameter A (N stands for hours

of measurements collection).

N

MEAN

RMSE

MAPE

0.5

0.01673842
0.01668899
0.01677946
0.01669467
0.01665221
0.01670608
0.01664612
0.01669707

0.00176175
0.00128099
0.00007005
0.00005602
0.00004990
0.00004936
0.00004899
0.00004534

8.53495848
6.00706384
3.24514550
2.80900894
2.37861756
2.40873864
2.43864040
2.20453053

Table 5: Experimental results for estimating parameter o (N stands for hours

of measurements collection).

N

MEAN

RMSE

MAPE

0.5

0.32169022
0.31693915
0.30406180
0.27961800
0.29865439
0.29767603
0.29723777
0.29601063

0.34800311
0.30205901
0.18993025
0.12641243
0.08187854
0.06173083
0.03914056
0.03366058

96.09089193
81.97886696
49.42388770
32.91595681
22.40155093
16.00851023
10.35061636
9.09541878

daily variation adaptive stochastic modeling.

The baseline HBTDV model has been patterned after the physical data
available. The adaptive model 21*(#), a replica of the Kalman filter for the
standard observable data model, has been specified.

Computational experiments have been made to demonstrate the applica-
bility of our Active Principle of Adaptation to bioinformatics problems.
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Table 6: Experimental results for estimating parameters p (N stands for

hours of measurements collection).

N MEAN RMSE MAPE

05| 7= _8:%?32‘;?3_ 0.28056287 | 85.14674225
1 | s= :g:(l’igg%g?: 0.27826336 | 84.28790200
3 5= g:%ggggé‘;: 0.22572801 | 65.65149641
6 5= :g:g;ggggg‘é: 0.16211670 | 44.23780054
12| s= :g:g;ggg;gg: 0.08541397 | 22.48302905
2% || 5= :g:géggggfg: 0.06480563 | 17.75995499
8| 5= :g:g;gggggg: 0.03909148 | 10.45862558
72| 5= g:g;gggggg- 0.03539374 | 9.21590355
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