Mike W Sobolewski, CS TTU

Michael W. Sobolewski

profession: Professor
Director of SORCR Lab

office: CP 310
phone: (806) 742-1194
mobile: (806) 441-9999

fax: (806) 742-3519
e-mail: sobol@cs.ttu.edu

URL http://sobol.cs.ttu.edu/

s-mail: Computer Science
Texas Tech University
Box 43104
Boston and 8 th St.
Lubbock, TX 79409-3104

Search

Campus

TEXAS TECT

CHNIVIEFITY

RESEARCH
The computer is the network of service peers.

SORCER - S0As and Systems (theses)
network protocols and security
distributed and autonomic computing
knowledge representation

intelligent network agents

mobile computing
information/knowledge sharing
service-oriented programming

object oriented programming
interactive graphics and Uls
concurrent engineering

TEACHING
The class is the network of discovery peers.

network security (FO2)

computer networks (S03, FO4, FO5)
advanced network programming (S03)
peer-to-peer computing (F03)
computer science seminar (FO3)
mobile computing (S04)

00O Programming in Java

(Sull 03, FO4, S06)

communication networks (S05, FOE)

» design patterns (FO5)



AnoHc Jeknuii-npe3enTanuii Majikiaa Cob0Jj1eBCKOro
2224 mag 2007 1.

1. B. Cemymmmn !

Vavanoeckutl 2ocydapecmeentniti yrusepcumem, Yavawnosck, ya. JI. Toacmozo, 42

1 SORCER: BbruyncauTejbHbIl 1 MeTa-BbIYUCINTEJIbHBIN VIHTEprpuna

AnHOTanUsa. DTa TEMA WCCJIEIyeT CeTeBble BBIMUCIEHUS C TOYKU 3PEHUS TPEX OCHOBHBIX
BBIYUCIUTELHBIX T1aTdopM. Jlobasg Takas rrardopMa COCTOUT U3 BUPTYAJIbHBIX BBIYHC-
JINTEJILHBIX PECYPCOB, CPEJIbl MPOIPAMMUPOBAaHUs, TO3BOJISIONIEN pa3padaThIBATh CETEBbIE
[IPUJIOYKEHUS, U CETEBOIl OIePAIMOHHON CUCTEMBI JIId MCIIOJIHEHUS MT0JIb30BATEILCKUX TPO-
rpaMM U O0JIerIeHus TPOIIEeCca PEIIeHUsT CJIOZKHBIX 3a/1a4 10Jb3oBaTe . OOCyKIAI0TCS TpH
1aTHOPMBI: BBIYUC/IATEIbHAS CETh, CeTh i MeTa-Bbrancyennii u Uureprpus (Unrepcers,
OpraHm3aTop MeKceTeBoro Bzammoeicrsust). CepBUC IPOTOKOJ-OPUEHTHPOBAHHbBIC APXU-
TEKTYPbl ITPOTUBOIIOCTABJIAIOTCH CEPBUC OOBEKTHO OPUEHTUPOBAHHBLIM APXUTEKTypaM, 3a-
tem nipegicrasisgercs SORCER mera-Borancnrebuast cerb, OCHOBAHHAS HA CEPBUC O0BEKT-
HO OpHMEHTHPOBAHHON mapajurme. B 3akimouenne obbsacusiercs, Kakum oopazom SORCER ¢
ero KOpHeBbIMU cepBucamu u deieparuBHoil (pailJIoBoi cCTEMOM MOZKeT ObITh UCIIOJIb30BaH
JIn0O B Ka4eCTBE TPAJMITMOHHON BBIYUC/IUTEILHON ceTH, JInbo Kak HTepceTh — HEKOTOPDIi
ruOPUT BHIMUCIUTETHHON U MeTa-BbIYUCIUTETHHON CEeTH.

1. SORCER: Computing and Metacomputing Intergrid

Abstract. This paper investigates Grid computing from the point of view three basic
computing platforms. The platform consists of virtual compute resources, a programming
environment allowing for the development of grid applications, and a grid operating system

Email address: innokentiy_v.sem@ulsu.ru (I1. B. Cemymmn).

URL: http://staff.ulsu.ru/semoushin/ (I1. B. Cemymmn).
! Buzur a-pa Maiixna Co6os1eBCKOro IpoBOAnTCA B Ilane Boinosnenns Memopamgyma o Corpy -
HUYeCcTBe MexK 1y THCTUTYTOM KOMIIBIOTEPHBIX KccienoBannii CaMapcKoro rocyaapCTBEHHOIO a3po-
kocmmaeckoro yuusepeurera (CI'AY) um. C. I1. Koposesa, Camapa, Poccusi, PakynbreTom Mare-
MaTUKU 1 HHGOPMAIIMOHHBIX TEXHOJIOTUH Y/IbSHOBCKOIO TOCYIapcTBeHHOro yausepcurera (Yal'V),
Vibsuosck, Poccus u Kadenpoit Boraucinreboit Texuukn Texacckoro TeXHUYECKOro YHUBEPCH-
rera (TTY) u Jlaboparopueii cepsuc-opuenTupoBaHHbIxX BbruncsuTesbubix cpej (SORCER), Jla6-
ook, Texac, CIIIA.

Ilepemano B HUY Ynl'V 17 anpesrst 2007 1.



to execute user programs and to make solving complex user problems easier. Three platforms
are discussed: compute Grid, metacompute Grid and Intergrid. Service protocol-oriented
architectures are contrasted with service object-oriented architectures, then the SORCER
metacompute Grid based on the service object-oriented paradigm is presented. Finally, we
explain how SORCER, with its core services and federated file system, can be used as a
traditional compute Grid and an Intergrid—a hybrid of compute and metacompute Grids.

2 Mera-BbIuncieHus ¢ BbI3oBoM deneparusHoro merona (FMI)

Anvoranus. CepBuc npoBaiijiepbl PErHCTPUPYIOT HOCPEIHUKOB (proxies), B TOM 9HCJIE,
UHTEJIJIEKTYAJIbHBIX OCPEIHUKOB, IIyTeM BHEJIPEHUs MPU3HAKA IMOTIUHEHHOCTUH C HUCIOJIb-
30BaHMEM JIBEHAIATH MeTOJIOB, ucciegoBanubix B jaboparopun SORCER. Beimosnenne
JIERCTBUIl BEpXHEr0 YPOBHS O3HAYAECT JMHAMUYECKYIO (hejIepaIiio JIOCTYITHBIX B TEKYIIN
MOMEHT BPEMEHU IIPOBAIEPOB B CEPBUC KOHTEKCTAX BCEX BJIOZKEHHBIX JIPYT B JIpyra U CO-
BOKYITHO ITPOTEKAIONTNX TPo1ieccoB. CepBUCHI BBIZBIBAIOTCS TIepe/iaieil KOMaH 1 O JefCTBUAX
IpoBaiijiepaM KOCBEHHBIM 00pa30M — 4epe3 OObEKTHBIX MOCPEHUKOB, KOTOPbIE SIBJISIOT-
¢ MTOCPETHUKAME JIOCTYIIA, TTO3BOJIAIONMMU CEPBUC ITPOBaiijiepaM 00eCIednuTh COOJIOICHUE
cTparerun O€30IAaCHOCTU IIPH IIPEJIOCTaBJICHUU JIOCTyIa K cepBucaMm. Korja mgoctym pas-
peIlieH, TOr/a olepariusi, Opee/ieHHas HEKOTOPBIM ITPU3HAKOM, BBI3BIBACTCS TIOCPEICTBOM
repejadn ee TOYHOU Komnuu. BbhI3oB degepaTuBHOrO MeToja I03BOJIAeT pean3oBaTh P2P
(peer-to-peer) cpejy mocpeacTBoM uHTEpdeiica cepBUCOB, PACITMPEHHON MOJYJILHON Opra-
Hu3anuu Boi3oBa jeficteuil (Exertions) u ucnosnureneit neiicrsuii (Exerters), a Tak:ke pac-
HMIAPSIEMOCTHU 110 IPOEKTHOMY THUILY YTPOCHHONW KOMAH/IbI.

2. Metacomputing with Federated Method Invocation

Abstract. Service providers register proxies, including smart proxies, via dependency injec-
tion using twelve methods investigated in SORCER. Executing a top-level exertion means
a dynamic federation of currently available providers in the network collaboratively process
service contexts of all nested exertions. Services are invoked by passing exertions on to
providers indirectly via object proxies that are access proxies allowing for service providers
to enforce a security policy on access to services. When permission is granted, then the
operation defined by a signature is invoked by reflection. FMI allows for the P2P environment
via the Service interface, extensive modularization of Exertions and Exerters, and extensibi-
lity from the triple command design pattern.




3 OpI‘aHI/IBaI_lI/ISI ImocpeagHm4iecrTBa CEpPBHUCOB C IIOMOIIIbIO BHeJAPpEeHMNd IIPpU3HaKa
IIOJYNMHEHHOCTN

AwnunHoTtarusi. YydiieHus B TEXHUKE PACIPEJICJICHHBIX BBIYUCICHUN W TEXHOJOTUH, KOTO-
pble JIeJA0T 9TO BO3MOXKHBIM, IMPHUBEIN K 3HAYUTETLHOMY YCOBEPIIEHCTBOBAHUIO CPEJICTB
IIPOMEKYTOYHOI'O 3BEHA, T. €. CPEJICTB, HAXOIANINXCA MEXK/Ly alllapaTHBIM U ITPOrPAMMHBIM
obecrieuenneM, — K YIy4IIeHUIO UX (PYHKITMOHAJIHLHOCTU U KAYeCTBa, IIPEKJIE BCEro, MOCPE/I-
CTBOM CETEBOIl OpPraHW3aIi 1 MPOTOKOI0B. OJIHAKO, CTUJIb PACIIPEIEICHHOTO TPOTPaMMU-
pOBaHUs OCTAETCH TAKUM 2Ke, KaK JIeCATD, JIBAIIATD, JlayKe TPUJIATh JeT TOMY Ha3a . Bosib-
IIAHCTBO MPOI'PAMM BCE €IIe MUIMIETC CTPOKa 3a CTPOKOI MPOrpaMMHOIO KOJIa Ha A3BIKE,
nojiobuo porpammaM Ha Fortran, C, C++, wm Java. 9Tu nporemaypHOro Thra Iporpam-
MBI MOT'YT PacCMATPUBATHCA KaK 0ODIe PecypChbl CETU M UCIOJIb30BAThHCA COODIIA 110 BCEMY
Mupy paboTHuKaMu HayKu u obpaszoBanus. OTHAKO, I STOTO HET OTBEYAIONINX CYIIECTBY
Jiesia METOJI0JIONHIA IPOrpaMMUPOBaHusI, KOTOPbIE 1T03BOJIMIN Obl 3(P(MHEKTUBHO 110JIb30BATH-
¢ 9TUMU TIPOIE/IYPHBIMU PecypcaMu KakK HEKUM IOTEHIIMAJIbHO OIPOMHBIM U JIOCTYITHBIM
JUI BCEX XPAHUJIMINEM JIJIsi MeTa-BbIYUC/ICHHUH, UCK/II0Yas HAIIMCAHUE ITPOIPAMMHOIO KOJ/Ia
BPYYHYIO — KakK pa3 TO, 4TO JIeJIAJIOCh JeCATUIeTUus Ha3aj. Peajim3aliisi 9TOro MmOTEHIIH-
aJla MeTa-KOMITBIOTUHTa TPeOYyeT 3HAYUTE/ILHBIX YCOBEPIIEHCTBOBAHUN B TEXHOJIOTMH BbI-
qucsennii. Yrodnl apdexkTuBHO padboTarh B OOJBIINX, PACIPEIeJeHHbIX CpeJiax, IPYIIIbI
IapaJijieIbHOrO0 MHXKUHUPUHTA HYXKJIAIOTCA B HEKOH CEPBUC OPUEHTHUPOBAHHONW METOJI0JI0-
rund nporpaMmupoBanus. Hy»KHbI Takzke: OOIIMiT MPOIECC MPOCKTUPOBAHUSA, ITPEIMETHO-
HE3aBUCHMOE [PEJICTABIeHIEe IPOEKTOB U O0Ie KPUTEPUH MPUHATUS (IPOEKTHBIX) perle-
nwii. [locpennyaecTBO cePBUCOB C TIOMOIIBIO BHEJPEHUs MPU3HAKA MOJYMHEHHOCTH MOYKET
OBITH UCIIOJIB30BAHO JIJIA PEIeHust TPo0JIeM, BbIJBUTAEMbBIX ITapaUIMOil MeTa-BbIYUCICHU I
JIJIE KOMILJIEKCHOM pacIpe/ie/IeHHON BBICOKOTOYHON ONTUMMU3AIUNA NHXKEHEPHDBIX ITPOEKTOB.

3. Service Proxying with Dependency Injection

Abstract. Improvements in distributed computing, and the technologies that enable them,
have led to significant improvements in middleware functionality and quality, mainly through
networking and protocols. However, the distributed programming style is the same as ten,
twenty, even thirty years ago. Most programs are still written line by line of code in languages
like Fortran, C, C++, and Java. These procedural programs can be considered as common
grid resources and shared by research and education communities worldwide. However, there
are no relevant programming methodologies to utilize efficiently these procedural resources
as a potentially vast and shared grid repository for metacomputing, except through the
manual writing of code — just as it was done decades ago. Realization of the potential
of metacomputing requires significant improvements in computing technology. To work
effectively in large, distributed environments, concurrent engineering teams need a service-
oriented programming methodology along with common design process, discipline-indepen-
dent representations of designs, and general criteria for decision making. Proxying with
dependency injection can be used to address several fundamental challenges posed by the
emerging metacomputing paradigm for complex distributed high fidelity engineering design
optimization.




4 Jini-nnardopma: Mogaeap nporpamMmupoBanud, nadpactpykrypa u Jini ERI

Annoramusa. O JINI™ TEXHOJIOI'MU. Texnosorusa Jini — 3T0 OTKPBITad TPOrpaMMHas
ApPXUTEKTypa, KOTOpas JeJaeT BOZMOXKHBIM CBA3BIBAHUE 110 CETH JIjI TOCTPOCHUS PacIpe-
JIEJIEHHBIX CUCTEM, B BBICOKOH CTEIeHM MPUCIOCODIEHHBIX K U3MEHEHUSIM. DTa TEXHOJIOTH
MOZKeT OBITh UCTIOJIL30BAHA JIJIs CO3/IAHUS TEXHUIECKUX CUCTEM, KOTOPbIE 00JIa/Ial0T CII0CO0-
HOCTBIO K MACIITAOUPOBAHUIO, PA3BUTHIO U TMOKOMY M3MEHEHHIO, YTO OOBIYHO U TpedyeTcsd
B Ccpejlax ¢ JMHAMUYECKUM BpEeMeHeM BbINoJiHeHud. Texnosorusg Jini nepBoHadaabHO CO-
37aBaJiach Kopriopanueit Sun Microsystems u 6bLta nepegana B Jini CommunitySM B 1999
roay. OHa HaxXoIUTCs B ¢CBOOOMHOM JOCTyIIe U IpoaBuraerca wienamn Coobmecrsa Jini ge-
pe3 orkpoIThiii Jini Community Decision Process. 9ra jexius MoxkeT OBbITH II0JI€3HA B TOM
CMBICJIC, 9TO MO3BOJIUT MOHATH, modeMmy u Kax JINI™ TECHNOLOGY ucnomn3yercs B
SORCER st ynpapjienus JuHAMIIECKUME (DejiepaliusMi CEPBICOB.

4. Jini Platform: Programing Model, Infrastructure, Jini ERI

Abstract. ABOUT JINI™ TECHNOLOGY. Jini technology is an open software architec-
ture that enables Java dynamic networking for building distributed systems that are highly
adaptive to change. It can be used to create technology systems that are scalable, evolvable,
and flexible, as typically required in dynamic runtime environments. Jini technology was
originally created by Sun Microsystems, and was contributed by Sun to the Jini Community-
SM in 1999. It is freely available and is advanced by members of the Jini Community through
the open Jini Community Decision Process. This lecture might be useful to understand why
and how JINI™ TECHNOLOGY is used in SORCER to manage dynamic federations of
services.




SORCER: Computing and Metacomputing Intergrid

Michael Sobolewski

Computer Science, Texas Tech University
Lubbock, Texas

sobol@cs.ttu.edu

Abstract— This paper investigates Grid computing from the
point of view three basic computing platforms. The platform
consists of virtual compute resources, a programming
environment allowing for the development of grid applications,
and a grid operating system to execute user programs and to
make solving complex user problems easier. Three platforms are
discussed: compute Grid, metacompute Grid and Intergrid.
Service protocol-oriented architectures are contrasted with
service object-oriented architectures, then the SORCER
metacompute Grid based on the service object-oriented
paradigm is presented. Finally, we explain how SORCER, with
its core services and federated file system, can be used as a
traditional compute Grid and an Intergrid—a hybrid of compute
and metacompute Grids.

1. INTRODUCTION

The term “Grid computing” originated in the early 1990s as
a metaphor for making computer power as easy to access as
an electric power grid. Today there are many definitions of
Grid computing with a varying focus on architectures,
resource management, access, virtualization, provisioning,
and sharing between heterogeneous compute domains. Thus,
diverse compute resources across different administrative
domains form a Grid for the shared and coordinated use of
resources in dynamic, distributed, and virtual computing
federations [8]. Therefore, the Grid requires a platform that
describes some sort of framework to allow software to run
utilizing virtual federations. These federations are dynamic
subsets of departmental Grids, enterprise Grids, and global
Grids, which allow programs to run. Different platforms of
Grids can be distinguished along with corresponding types of
virtual federations. However, in order to make any Grid-based
computing possible, computational modules have to be
defined in terms of platform data, operations, and relevant
control strategies. For a Grid program, the control strategy is a
plan for achieving the desired results by applying the platform
operations to the data in the required sequence, leveraging the
dynamically federating resources. We can distinguish three
generic Grid platforms, which are considered below.

Each programming language reflects a relevant abstraction,
and usually the type and quality of the abstraction implies the
complexity of problems we are able to solve. For example, a
procedural language provides an abstraction of an underlying
machine language. An executable file represents a computing
component whose content is meant to be interpreted as a
program by the underlying platform. A request can be
submitted to a Grid resource broker to execute a program in a
particular way, e.g, parallelizing it and collocating it
dynamically to the right processors in the Grid. That can be

done, for example, with the Nimrod-G [22] Grid resource
broker scheduler or the Condor-G [4], [38] high-throughput
scheduler. Both rely on Globus/GRAM [8] (Grid Resource
Allocation and Management) protocol. In this type of grid,
called a compute Grid, executable files are moved around the
Grid to form virtual federations of required processors. This
approach is reminiscent of batch processing a series of
programs ("jobs") on a computer without human interaction in
the era when operating systems were not yet developed.

A Grid programming language is the abstraction of
hierarchically organized networked processors running a Grid
computing program—metaprogram—that makes decisions
about programs such as when and how to run them. Nowadays
the same computing module abstraction is usually applied to a
Grid computing module as is applied to single computer
module while they are structurally completely different
entities. Most Grid modules are still written as monolithic
programs using compiled languages such as FORTRAN, C,
C++, Java, and scripting languages such as Perl and Python.
The current trend is to have these programs and scripts define
Grid computational modules. Thus, most Grid computing
modules are developed using the same abstractions and, in
principle, run the same way on the Grid as on a single
processor. There are presently no Grid programming
methodologies to deploy a metaprogram that will dynamically
federate all needed resources in the Grid according to a
control strategy using some Grid algorithmic logic. Applying
the same programming abstractions to the Grid as to a single
computer does not foster transitioning from the current phase
of early Grid adopters to public recognition, and then to mass
adoption phases.

The reality at present is that Grid resources are still very
difficult for most users to access, and that detailed
programming must be carried out by the user through
command line and script execution to carefully tailor jobs on
each end to the resources on which they will run or for the
data structure that they will access. This produces frustration
on the part of the user, delays in adoption of Grid techniques,
and a multiplicity of specialized “grid-aware” tools that are
not, in fact, aware of each other that defeat the basic purpose
of the Grid.

Instead of moving executable files around the Grid, we can
autonomically provision the corresponding computational
components as uniform services on the Grid. All Grid services
can be interpreted as instructions (metainstructions) of the
metacompute Grid. Now we can submit a metaprogram in
terms of metainstructions to the Grid platform (operating
system) that manages a dynamic federation of service

This is a DRAFT document and continues to be revised. The latest version can be found at
http://sorcer.cs.ttu.edu/publications/papers/sorcer-intergrid.pdf. Please send comments and remarks to
sobol@cs.tt.edu.



providers and related resources and enables the metaprogram
to interact with the providers according to the metaprogram
control strategy.

Thus, we can distinguish three types of Grids depending on
the nature of computational components: compute Grids
(cGrids), metacompute Grids (mcGrids), and the hybrid of the
previous two—Intergrids (iGrids). Note that cGrid is a virtual
federation of processors (roughly CPUs) that execute
submitted executable files with the help of a Grid resource
broker. However, a mcGrid is a federation of service
providers managed by the mcGrid operating system. Thus, the
latter approach requires a metaprogramming methodology
while in the former case the conventional procedural
programming languages are used. The hybrid of both cGrid
and mcGrid abstractions allows for iGrid to execute both
programs and metaprograms as depicted in Fig. 1.

Intergrid Applications

Metacompute Grid P3
mcP3 Applications ¢
mcP2 Metacompute OS Compute

Grid
| Applications
mcP1-3 Service Providers
mcP1-2 Cybernodes
Resource Scheduler cP2
mcP1-1 Network Resources/Processors cP1

Fig. 1 Three types of Grids: compute grid, metacompute grid, and
Intergrid. Platform layers: P1 resources, P2 resource management, P3
programming environment. A cybernode provides a lightweight dynamic
virtual processor, turning heterogeneous compute resources into
homogeneous services available to the metacomputing OS [22].

One of the first mcGrids was developed under the
sponsorship of the National Institute for Standards and
Technology (NIST)—the Federated Intelligent Product
Environment (FIPER) [7], [25], [28], [29]. The goal of FIPER
is to form a federation of distributed services that provide
engineering data, applications and tools on a network. A
highly flexible software architecture had been developed
(1999-2003), in which engineering tools like computer-aided
design (CAD), computer-aided engineering (CAE), product
data management (PDM), optimization, cost modeling, etc.,
act as federating service providers and service requestors. The
Service-Oriented Computing Environment (SORCER) [35],
[31], [34], [33], [1] builds on top of FIPER to introduce a
metacomputing operating system with all basic services
necessary, including a federated file system, to support

service-oriented programming. It provides an integrated
solution for complex metacomputing systems.

The paper is organized as follows. Section II provides a
brief description of a service-oriented architecture used in
Grid computing with a related discussion of distribution
transparency;  Section III  describes the SORCER
metacomputing philosophy and mcGrid; Section IV describes
SORCER cGrid, Section V the metacomputing file system,
and Section VI SORCER iGrid; Section VII provides
concluding remarks.

II. SOA =SPOA + SOOA

Various definitions of a Service-Oriented Architecture
(SOA) leave a lot of room for interpretation. Nowadays SOA
becomes the leading architectural approach to most Grid
developments. In general terms, SOA is a software
architecture using loosely coupled software services that
integrates them into a distributed computing system by means
of service-oriented programming. Service providers in the
SOA environment are made available as independent service
components that can be accessed without a priori knowledge
of their underlying platform or implementation. While the
client-server architecture separates a client from a server,
SOA introduces a third component, a service registry. In SOA,
the client is referred to as a service requestor and the server as
a service provider. The provider is responsible for deploying a
service on the network, publishing its service to one or more
registries, and allowing requestors to bind and execute the
service. Providers advertise their availability on the network;
registries intercept these announcements and add published
services. The requestor looks up a service by sending queries
to registries and making selections from the available services.
Queries generally contain search criteria related to the service
name/type and quality of service. Registries facilitate
searching by storing the service representation and making it
available to requestors. Requestors and providers can use
discovery and join protocols to locate registries and then
publish or acquire services on the network. We can distinguish
the service object-oriented architectures (SOOA), where
providers, requestors, and proxies are network objects, from
service protocol oriented architectures (SPOA), where a
communication protocol is fixed and known beforehand by
the provider and requestor. Using SPOA, a requestor can use
this fixed protocol and a service description obtained from a
service registry to create a proxy for binding to the service
provider and for remote communication over the fixed
protocol. In SPOA a service is usually identified by a name.
If a service provider registers its service description by name,
the requestors have to know the name of the service
beforehand.

In SOOA (see Fig. 2), a proxy—an object implementing
the same service interfaces as its service provider—is
registered with the registries and it is always ready for use by
requestors. Thus, the service provider publishes the proxy as
the active surrogate object with a codebase annotation, e.g.,

This is a DRAFT document and work in progress. Version: 04/07/2007



URLs to the code defining proxy behavior (RMI and Jini ERI
[5]). In SPOA, by contrast, a passive service description is

Requestor : Network

Originated |
from

Network |

Service
Registry

Service
| Provider
1
= 7:}\, - \/
I : c4
| Code
| Server
I —_———————

Fig. 2 Service object-oriented architecture

registered (e.g., an XML document in WSDL for Web/Globus
services [21], [37], or an interface description in IDL for
CORBA); the requestor then has to generate the proxy (a stub
forwarding calls to a provider) based on a service description
and the fixed communication protocol (e.g., SOAP in
Web/Globus services, IIOP in CORBA [26]). This is referred
to as a bind operation. The binding operation is not needed in
SOOA since the requestor holds the active surrogate object
obtained from the registry.

Web services and Globus services cannot change the
communication protocol between requestors and providers
while the SOOA approach is protocol neutral [41]. In SOOA,
the way an object proxy communicates with a provider is
established by the contract between the provider and its
published proxy and defined by the provider implementation.
The proxy’s requestor does not need to know who implements
the interface or how it is implemented. So-called smart
proxies (Jini ERI) grant access to local and remote resources.
They can also communicate with multiple providers on the
network regardless of who originally registered the proxy,
thus separate providers on the network can implement
different parts of the smart proxy interface. Communication
protocols may also vary, and a single smart proxy can also
talk over multiple protocols including application specific
protocols.

SPOA and SOOA differ in their method of discovering the
service registry. SORCER uses dynamic discovery protocols
to locate available registries (lookup services) as defined in
the Jini architecture [14]. Neither the requestor who is looking
up a proxy by its interfaces nor the provider registering a
proxy needs to know specific locations. In SPOA, however,
the requestor and provider usually do need to know the
explicit location of the service registry—e.g., a URL for RMI
registry, a URL for UDDI registry, an IP address of a COS

Name Server—to open a static connection and find or register
a service. In deployment of Web and Globus services, a UDDI
registry is sometimes even omitted (WSDL descriptions are
shared via files outside of the system); in SOOA, lookup
services are mandatory due to the dynamic nature of objects
identified by service types. Interactions in SPOA are more like
client-server connections (e.g., HTTP, SOAP, IIOP) in many
cases with no need to use service registries at all.

Crucial to the success of SOOA is interface
standardization. Services are identified by interfaces (service
types); the exact identity of the service provider is not crucial
to the architecture. As long as services adhere to a given set of
rules (common interfaces), they can collaborate to execute
published operations, provided the requestor is authorized to
do so.

Let’s emphasize the major distinction between SOOA and
SPOA: in SOOA, a proxy is created and always owned by the
service provider, but in SPOA, the requestor creates and owns
a proxy which has to meet the requirements of the protocol
that the provider and requestor agreed upon a priori. Thus, in
SPOA the protocol is always a generic one, reduced to a
common denominator—one size fits all—that leads to
inefficient network communication in some cases. In SOOA,
each provider can decide on the most efficient protocol(s)
needed for a particular distributed application.

Service providers in SOOA can be considered as
independent network objects finding each other via a service
registry using object types (interfaces) and communicating
through message passing. A collection of these object sending
and receiving messages—the only way these objects
communicate with one another—looks very much like a
service object-oriented distributed system.

Do you remember the eight fallacies of network
computing[6]? We cannot just take an object-oriented
program developed without distribution in mind and make it a
distributed system, ignoring the unpredictable network
behavior. Most RPC systems, except Jini [14], hide the
network behavior and try to transform local communication
into remote communication by creating distribution
transparency based on a local assumption of what the network
might be. However, every single distributed object cannot do
that in a uniform way as the network is a distributed system
and cannot be represented completely within a single entity.

The network is dynamic, can’t be constant, and introduces
latency for remote invocations. Network latency also depends
on potential failure handling and recovery mechanisms, so we
cannot assume that a local invocation is similar to remote
invocation. Thus, complete transparency distribution—by
making calls on distributed objects as though they were
local—is impossible to achieve in practice. The distribution is
simply not just an object-oriented implementation of a single
distributed object; it’s a metasystemic issue in object-oriented
distributed programming. In that context Web/Globus service
define distributed objects, but do not have anything common
with object-oriented distributed systems.

This is a DRAFT document and work in progress. Version: 04/07/2007



Exertion-based programming [31], [29] was introduced to
handle the metasystemic distribution in SORCER by using
indirect remote method invocation with no service provider
explicitly specified in a network request called an exertion.
Specific infrastructure objects support exertion-oriented
programming. That infrastructure defines SORCER’s
distributed object modularity, extensibility, and reuse of
service-oriented components consistent with the relevant
metacomputing granularity and dependency injection—key
features of object-oriented distributed programming that are
usually missing in SPOA programming environments.

III. SORCER METACOMPUTING GRID

SORCER is a federated service-to-service (S2S)
metacomputing environment that treats service providers as
network objects with well-defined semantics of a federated
service object-oriented architecture (FSOOA). It is based on
Jini semantics of services [14] in the network and the Jini
programming model [5] with explicit leases, distributed events,
transactions, and discovery/join protocols. While Jini [15], [16]
focuses on service management in a networked environment,
SORCR is focused on exertion-oriented programming and the
execution environment for exertions.

As described in Section II, SOOA consists of three major
types of network objects: providers, requestors, and registries.
The provider is responsible for deploying the service on the
network, publishing its service to one or more registries, and
allowing requestors to access its service. Providers advertise
their availability on the network; registries intercept these
announcements and cache proxy objects to the provider
services. The requestor looks up proxies by sending queries to
registries and making selections from the available service
types. Queries generally contain search criteria related to the
type and quality of service. Registries facilitate searching by
storing proxy objects of services and making them available to
requestors. Providers use discovery/join protocols to publish
services on the network, requestors use discovery/join
protocols to obtain service proxies on the network. SORCER
uses Jini discovery/join protocols to implement its FSOOA.

In SOOA, a service provider is an object that accepts

<M Metacompute Grid Applications (Exertions, Uls)

P2 Metacompute OS (System Services)

Tasker, Jobber, Spacer
Grider, Caller, Methoder

P1-6
FileStorer, MetadataSforer, ByteStorer
Replicator, Sweeper, Tracker, Spliter,
Persister, Cataloger

Q Autenticator, Authorizer, Policer

WsRpcRelayer, WsDocRelayer,

JxtaRelayer, Surrogator

P1-5

P1-4

Cybernodes

43 Jini Network Objects (Interfaces)

7

SOAP
HTTP
HoP
TCPAP
UDPAP
RPC/XDR

P1-2 Computer Networks (Protocols)

P1-1

Processors (Machine Instructions)

Fig. 3 SORCER layered platform, where P1 resources, P2 resource
management, P3 programming environment

remote messages from service requestors to execute an item of
work. These messages are called service exertions. An
exertion encapsulates service data, operations, and control
strategy. A task exertion is an elementary service request, a
kind of elementary remote instruction (elementary statement)
executed by a single service provider or a small-scale
federation. A composite exertion called a job exertion is
defined hierarchically in terms of tasks and other jobs, a kind
of network procedure executed by a large-scale federation.
The executing exertion is a service-oriented program that is
dynamically bound to all needed and currently available
service providers on the network. This collection of providers
identified in runtime is called an exertion federation. This
federation is also called an exertion space. While this sounds
similar to the object-oriented paradigm, it really isn’t. In the
object-oriented paradigm, the object space is a program itself;
here the exertion space is the execution environment for the
exertion that is a service-oriented distributed program. This
changes the programming paradigm completely. In the former
case the object space is hosted by a single computer, but in the
latter case the service providers are hosted by the network of
computers.

The overlay network of service providers is called the
service provider grid and an exertion federation is called a
virtual metacomputer. The metainstruction set of the
metacomputer consists of all operations offered by all service
providers in the grid. Thus, a service-oriented program is
composed of metainstructions with its own service-oriented
control strategy and service context [42] representing the
metaprogram  parameters. Service signatures  specify
metainstructions in SORCER. Each signature primarily is
defined by a service type (interface name), operation in that
interface, and a set of attributes. Three types of signatures are
distinguished: PROCESS, PREPROCESS, and
POSTPROCESS. A PROCESS signature—only one allowed
per exertion—defines the dynamic late binding to a provider
that implements the signature’s interface. The service context
describes the data that tasks and jobs work on. Exertion-
oriented programs (metaprograms) can be created
interactively [32] and allow for a dynamic federation to
transparently coordinate their execution within the grid. The
exertion federation can be interactively monitored and
exertions debugged during execution [34], [20]. Please note
that these metacomputing concepts are defined differently in
classical grid computing where a job is just an executing
process for a submitted executable code with no federation
being formed for the executable.

In a federated service environment, the system is not made
up of just a single service, but the cooperation of many
services. A service exertion may consist of hierarchically
nested exertions that require different service types. A service
can be broken down into small component services instead of
being one monolithic all-in-one service. These smaller
component services—treated as virtual ~metacomputer
instructions—can then be distributed among different hosts to

This is a DRAFT document and work in progress. Version: 04/07/2007



allow for reusability, and load

balancing.

Each SORCER provider (peer) implementing the common
Servicer interface, offers services to other peers [31] on the
object-oriented overlay network. These services are exposed
indirectly by methods in well-known public remote interfaces
and considered as elementary (tasks) or compound (jobs)
statements of the FSOOA. Requestors do not need to know
the exact location of a provider beforehand; they can find it
dynamically by discovering service registries (lookup
services) and then looking up a needed service implementing
required service types.

Despite the fact that every Servicer can accept any exertion,
Servicers have well defined roles in the SORCER S2S
platform (see Figure 3):

a) Taskers — process service tasks

b) Jobbers — process service jobs

c) Contexters — provide service contexts for APPEND
Signatures

d) FileStorers — provide access to federated file system
providers [33], [1], [2], [39]

e) Catalogers — Servicer registries

f) Persisters — persist service contexts, tasks, and jobs to be
reused for interactive exertion-based programming

g) Spacers — manage exertion spaces shared across Servicers
for space-based computing [9]

h) Relayers — gateway providers; transform exertions to native
representation, for example integration with Web services
and JXTA

i) Autenticators, Authorizers, Policers, KeyStorers — provide
support for service-oriented security

j) Auditors, Reporters, Loggers — support for accountability,
reporting and logging

k) Griders, Callers, Methoders — support conventional grid
computing (in c¢Grids)

1) Generic ServiceTasker and ServiceJobber implementations
are used to configure domain specific providers via
dependency injection—configuration files for smart
proxying and embedding business objects, called service
beans, into service providers.

An exertion can be created interactively [32] or
programmatically (using SORCER APIs), and its execution
can be monitored and debugged [34], [20] in the overlay
service network via service user interfaces (Service Ul [40])
attached to providers and installed on the fly by service
browsers [13]. Service providers do not have mutual
associations prior to the execution of an exertion; they come
together dynamically (federate) for all nested tasks and jobs in
the exertion. Domain specific providers within the federation,
or task peers called Taskers, execute service tasks. Jobs are
coordinated by rendezvous peers: a Jobber or Spacer, two of
the SORCER core services (see Fig. 3 for details), of the
SORCER platform. However, a job can be sent to any service
provider (peer). A peer that is not a Jobber type is responsible
for forwarding the job to an available job peer in the SORCER

scalability, reliability,

grid and returning results to the requestor. Thus implicitly,
any peer can handle any job or task. Once the job execution is
complete, the federation dissolves and the providers disperse
to seek other exertions to join.

An Exertion is invoked by calling on its exert method. The
SORCER API defines the following three related operations:

1. Exertion.exert(Transaction):Exertion - join the federation

2. Servicer.service(Exertion, Transaction):Exertion — request a
service in the federation initiated by the receiver

3. Exerter.exert(Exertion, Transaction):Exertion — execute the
component exertion by the target provider in the federation

This Triple Command pattern [31], [12] defines various
implementations of these interfaces: Exertion (metaprogram),
Servicer (generic peer provider), and Exerter (service provider
exerting a particular type of Exertion). This approach allows
for the P2P environment [23] via the Servicer interface,
extensive modularization of Exertions and Exerters, and
extensibility from the triple design pattern so requestors can
submit any service-oriented programs (exertions) they want
with or without transactional semantics. The triple Command
Pattern is used as follows:

1. An invoked by  calling
Exertion.exert(Transaction). The Exertion.exert operation
implemented in ServiceExertion uses ServiceAccessor to
locate in runtime the provider matching the exertion’s
PROCESS signature .

exertion can be

2. If the matching provider is found, then on its access proxy
(which can also be a smart proxy) the
Servicer.service(Exertion, Transaction) method is invoked.

3. When the requestor is authenticated and authorized by the
provider to invoke the method defined by the exertion’s
PROCESS signature, then the provider calls its own exert
operation: Exerter.exert(Exertion, Transaction).

4. Exerter.exert method calls exert on either of ServiceTasker or
ServiceJobber (depending on the type of the exertion: either
Task or Job) that by reflection calls the method specified in
the PROCES signature (interface and selector) of the
exertion. All application domain methods of any
application interface (custom Tasker interfaces) have the
same signature: a single Context type parameter and a
Context type return vale. Thus a custom interface looks like
an RMI interface with the above simplification on the
common signature for all interface methods.

The fundamentals of exertion-oriented programming and
SORCER federated method invocation are described in [31].
In Fig. 4 four use cases are presented to illustrate push vs.
pull exertion-oriented computing. We assume that an exertion
is a job with two component exertions executed in parallel (a
and b). The Job exertion can be submitted directly to either
Jobber (use cases: 1. access is PUSH, and 2. access is DROP)
or Spacer (use cases: 3. access is PUSH, and 4. access is
DROP) depending on the exertion’s interface defined in its

This is a DRAFT document and work in progress. Version: 04/07/2007



1.1 exert {access=PUSH}
2.1 exert faccess=DROP}.

2. 1.2b push

1.2a push
g 2. 3.3b push

33apush

2.2a drop

2.2b drop ‘ 22 pul

Service
Accessor

- —_—

22a1a pull “Q
4.1 1a pull

Service Requestor 7 2.2b.1b pull

7 4.1.1b pull
3.1 exert faccess=PUSH}
4.1 exert {access=DROP}

Fig. 4 Push vs. Pull exertion computing

PROCES signature. In cases 1 and 2 the signature is Jobber
and in cases 3 and 4 the signature is Spacer. The exertion’s
ServicerAccessor delivers the right service proxy, either for a
Jobber or Spacer. Depending on the access type of the parent
exertion, all the component exertions are pushed to relevant
providers according to their signatures (case 1 and 3), or
dropped into the exertion space by the Jobber (case 2) and
Spacer (case 4). In the cases 2 and 4, the component exertions
are pulled from the exertion space by providers matching their
signatures as soon as they are available to do any processing
(case 2 and 4). Thus Spacers provide efficient load balancing
for processing the exertion space.

IV.SORCER COMPUTING GRID

Also, SORCER supports a traditional approach to grid
computing similar to those found in Condor [4] and Globus
[37]. Here, instead of exertions being executed by services
providing business logic for requested exertions, the business
logic comes from the service requestor's executable programs
that seek compute resources on the network.

The cGrid-based services in the SORCER environment
include Grider collaborating Jobber for compute grid job
submission, and Caller and Methoder services for task
execution [31]. Callers execute conventional programs via a
system call as described in the Caller’s service context of the
submitted task. Methoders download required Java code (task
method) from requestors to process any submitted context
accordingly with the downloaded code. In either case, the
business logic comes from requestors; it is conventional
executable code invoked by Callers with the standard Caller’s
service context or mobile Java code executed by Methoders
with any service context provided by the requestor.

The SORCER cGrid with Methoders was used to deploy an
algorithm called Basic Local Alignment Search Tool
(BLAST) to compare newly discovered, unknown DNA and
protein sequences against a large database with more than 3
gigabytes of known sequences. BLAST (C++ code) searches
the database for sequences that are identical or similar to the
unknown sequence. This process enables scientists to make
inferences about the function of the unknown sequence based
on what is understood about the similar sequences found in
the database. Many projects at the USDA—ARS’s Livestock
Issues Research Unit, for example, involve as many as 10,000
unknown sequences, each of which must be analyzed via the
BLAST algorithm. A project involving 10,000 unknown

sequences requires about three weeks to complete on a single
desktop computer. The S-BLAST implemented in SORCER
[18], a federated form of the BLAST algorithm, reduces the
amount of time required to perform searches for large sets of
unknown sequences. S-BLAST is comprised of BlastProvider
(with the attached BLAST Service UI), Jobbers, Spacers, and
Methoders. Methoders in S-BLAST download Java code (a
service task method) that initializes a required database before
making system call for the BLAST code. Armed with the S-
BLAST’s c¢Grid and 17 commodity computers, projects that
previously took three weeks to complete can now be finished
in less than one day.

The SORCER c¢Grid with Griders, Jobbers, Spacers, and
Callers has been successfully deployed with the Proth program
(C code) and easy-to-use zero-install Service Uls attached to a
Grider and the SORCER federated file system.

V. SORCER FEDERATED FILE SYSTEM

The SILENUS federated file system [1], [2] was designed
and developed to provide data access for metaprograms. It
complements the file store developed for FIPER [33] with the
true P2P services. The SILENUS system itself is a collection
of service providers that use the SORCER framework for
communication.

In classical client-server file systems, a heavy load may
occur on a single file server. If multiple grid requestors try to
access large files at the same time, the server will be
overloaded. In a P2P architecture, every host is a client and a
server at the same time. The load can be balanced between all
peers if files are spread across all of them. The SORCER
architecture splits up the functionality of the metacomputer
into smaller service peers (Servicers), and this approach was
applied the distributed file system as well.

The SILENUS federated file system is comprised of several
network services that run within the SORCER environment.
These services include a byte store service for holding file
data, a metadata service for holding metadata information
about the files, several optional optimizer services, and facade
services to assist in accessing federating services. SILENUS is
designed so that many instances of these services can run on a
network, and the required services will federate together to
perform the necessary functions of a file system. SILENUS
service can be broadly categorized into gateway components,
data services, and management services.

The SILENUS facade service provides a gateway service to
the SILENUS Grid for requestors that want to use the file
system. Since the metadata and actual file contents are stored
by different services, there is need to coordinate
communication between these two services. The facade
service itself is split into a provider component, called the
coordinator, and a smart proxy component that contains
needed inner proxies provided dynamically by the coordinator.
These inner proxies facilitate P2P communications for file
upload and download between the requestor and SILENUS
federating services like metadata and byte stores.

This is a DRAFT document and work in progress. Version: 04/07/2007



Core SILENUS services have been successfully deployed
as SORCER services along with WebDAV and NFS adapters.
The SILENUS file system scales very well with a virtual disk
space adjusted as needed by the corresponding number of
required byte store providers and the appropriate number of
metadata stores required to satisfy the needs of current users
and service requestors. The system handles several types of
network and computer outages very well by utilizing
disconnected operation and data synchronization mechanisms.
It provides a number of user agents including a zero-install
file browser (service Ul) attached to the SILENUS Facade.
This file browser with file upload and download functions is
combined with an HTML editor and multiple viewers for
documents in HTML, RTF, and PDF formats. Also a simpler
version of SILENUS file browser is available for smart MIDP
phones.

SILENUS supports storing very large files [39] by
providing two services: a splitter service and a tracker service.
When a file is uploaded to the file system, the splitter service
determines how that file should be stored. If a file is
sufficiently large enough, the file will be split into multiple
parts, or chunks, and stored across many byte store services.
Once the upload is complete, a tracker service keeps a record
of where each chunk was stored. When a user requests to
download the full file later on, the tracker service can be
queried to determine the location of each chunk and the file
can be reassembled to the original form.

VI. SORCER 1GRID

Relayers are SORCER gateway providers that transform
exertions to native representations and vice versa. The
following Exertion gateways have been developed: JxtaRelayer
for JXTA, and WsRpcRelayer and WsDocRelayer for for RPC
and document style Web services, respectively. Relayers
exhibit native and mcGrid behavior. Some native cGrid
providers play SORCER role (SORCER wrappers) thus, are
available in the iGrid along with mcGrid providers. Also,
native cGrid providers via own relayers can access iGrid
services (bottom-up).

The iGrid-integrating framework is depicted in Fig 5,
where horizontal native technology grids (bottom) are
seamlessly integrated with horizontal SORCER mcGrids via
the SORCER operating system services. Through the use of
open standards-based communication—IJini, Web Services,
Globus/OGSA, and Java interoperability—iGrid leverages
SORCER mcGrid’s SOOA with its inherent protocol, location,
and provider implementation neutrality, along with
architectural qualities—flexibility, scalability, and adaptability
for Intergrid computing.

VIL

A Grid is not just a collection of distributed objects; it’s the
network of objects. From an object-oriented point of view, the
network of objects is the problem domain of object-oriented
distributed programming that requires relevant abstractions in
the solution space. The SORCER architecture shares the
features of grid systems, P2P systems and provides a platform

CONCLUSIONS

for  procedural programming and  service-oriented
metaprogramming. Exertion-based programming introduces
new network abstractions with federated method invocation in
SOOA. Service providers register proxies, including smart
proxies, via dependency injection using twelve methods
investigated in SORCER. Executing a top-level exertion
means a dynamic federation of currently available providers in
the network collaboratively process service contexts of all
nested exertions. Services are invoked by passing exertions on
to providers indirectly via object proxies that act as access
proxies allowing for service providers to enforce a security
policy on access to services. When permission is granted, then
the operation defined by a signature is invoked by reflection.
SORCER allows for the P2P computing via the common
Service interface, extensive modularization of Exertions and
Exerters, and extensibility from the triple command design
pattern. The SORCER federated file system is modularized
into a collection of distributed providers with multiple remote
Facades. Fagades supply uniform access points via their smart
proxies available dynamically to file requestors. A Fagade’s
smart proxy encapsulates inner proxies to federating providers
accessed directly (P2P) by file requestors.

The SORCER iGrid has been successfully tested in
multiple concurrent engineering, large-scale distributed
applications [25], [27], [3], [10], [11], [17], [19]. Due to the
large-scale complexity of the evolving iGrid environment, it is
still a work in progress and continues to be refined and
extended by the SORCER Research Group at Texas Tech
University [35] in collaboration with Air Force Research Lab,
WPAFB.

O@% .
: JXTA iGrid : . :

SORCER mcGrid

: JXTA cGrid : — - — 2 H
'./.ﬁ\. OGW
-

<> Native Provider
<> SORCERIGrid
<> SORCER mcGrid
< Native cGrids

——— Service Requestor

<> Service Relayer

<> SORCER Service Provider
<> SORCER Wrapper Provider

Fig. 5 Integrating and wrapping c¢Grids with SORCER mcGrids. Two
requestors, one in JXTA iGrid, one in OGSA iGrid submits exertion to a
corresponding relayer. Two federations are formed that include providers
from all the two horizontal layers below the iGrid layer (as indicated by
continues and dashed links).

ACKNOWLEDGMENT

I would like to thank all my students in the SORCER
Research Group [36] for their motivation, innovation, and
excitement they generate when working on the iGrid
development. Without their research efforts, it would not be
possible to integrate so many different views of Grid
computing and to validate so many diverse and controversial
opinions on distributed objects and iGrid computing.

REFERENCES

This is a DRAFT document and work in progress. Version: 04/07/2007



[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

(21]

Berger, M., Sobolewski, M., SILENUS — A Federated Service-oriented
Approach to Distributed File Systems, In Next Generation Concurrent
Engineering [30]. pp. 89-96, 2005.

Berger, M., Sobolewski, M., Lessons Learned from the SILENUS
Federated File System, Proceeding of the 14th Conference on
Concurrent Engineering, Sdo José dos Campos, Brazil, Springer Verlag,
2007.

Burton S.A., Tappeta R., Kolonay R.M., Padmanabhan D., Turbine
Blade Reliability-based Optimization Using Variable-Complexity
Method, 43 AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, April 2002, Denver, Colorado.
AIAA 2002-1710, 2002.

Condor: High Throughput Computing,
http://www.cs.wisc.edu/condor/condor globus.html.
March 15,2007.

Edwards W .K., Core Jini, 2nd ed., Prentice Hall, ISBN: 0-13-089408,
2000.

Fallcies of Distributed Computing. Available at:
http://en.wikipedia.org/wiki/Fallacies of Distributed Computing.
Accessed on: March 15, 2007.

FIPER: Federated Intelligent Product EnviRonmet. Available at:
http://sorcer.cs.ttu.edu/fiper/fiper.html. Accessed on: March 15, 2007.
Foster 1., Kesselman C., Nick J., S. Tuecke S., The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems
Integration., Open Grid Service Infrastructure WG, Global Grid Forum,
June 22, 2002. Available at:
http://www.globus.org/alliance/publications/papers/ogsa.pdf. Accessed
on: March 15,2007.

Freeman, E., Hupfer, S., & Arnold, K. JavaSpaces™ Principles,
Patterns, and Practice, Addison-Wesley, ISBN: 0-201-30955-6 (1999)
Goel S., Shashishekara, Talya S.S., Sobolewski M., Service-based P2P
overlay network for collaborative problem solving, Decision Support
Systems, Volume 43, Issue 2, March 2007, pp. 547-568, 2007.

Goel, S, Talya S., and Sobolewski, M., Preliminary Design Using
Distributed Service-based Computing, In Next Generation Concurrent
Engineering [30], pp. 113-120, 2005.

Grand M., Patterns in Java, Volume 1, Wiley, ISBN: 0-471-25841-5,
1999.

Inca X™ Service Browser for Jini Technology. Available at:
http://www.incax.com/index.htm?http://www.incax.com/service-
browser.htm. Accessed on: March 15, 2007.

Jini architecture specification, Version 1.2., 2001. Available at:
http://www.sun.com/software/jini/specs/jinil.2html/jini-title.html.
Accessed on: March 15, 2007.

Jini, Wikipedia. Available at: http://en.wikipedia.org/wiki/Jini.
Accessed on: March 15, 2007.

Jini.org, Available at: http://www.jini.org/.

Accessed on: March 15, 2007.

Kao K.J., Seeley C.E., Yin Su, Kolonay R.M., Rus T., Paradis M.J.,
Business-to-Business  Virtual Collaboartion of Aircraft Engine
Combustor Design, Proceedings of DETC’03 ASME 2003 Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference, Chicago, Illinois USA, Sept. 2003.

Khurana V., Berger M., Sobolewski M., A Federated Grid
Environment with Replication Services. In Next Generation
Concurrent Engineering [30], pp. 97-103, 2005.

Kolonay, R.M., Sobolewski, M., Tappeta, R., Paradis, M., Burton, S.
2002, Network-Centric MAO Environment. The Society for Modeling
and Simulation International, Westrn Multiconference, San Antonio,
TX, 2002.

Lapinski, M., Sobolewski, M., Managing Notifications in a Federated
S2S Environment, International Journal of Concurrent Engineering:
Research & Applications, Vol. 11, pp. 17-25, 2003.

McGovern J., Tyagi S., Stevens M.E., Mathew S., Java Web Services
Architecture, Morgan Kaufmann, 2003.

Available at:
Accessed on:

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]
[37]

[38]

[39]

[40]

[41]

[42]

Nimrod: Tools for Distributed Parametric Modelling. Availabel at:
http://www.csse.monash.edu.au/~davida/nimrod/nimrodg.htm.
Accessed on: March 15, 2007.

Oram Andy, Editor, Peer-to-Peer:
Disruptive Technology, O'Reilly (2001)
Project Rio, A Dynamic Service Architecture for Distributed
Applications. Available at: https:/rio.dev.java.net/. Accessed on:
March 15,2007.

Rohl, P.J., Kolonay, R.M., Irani, R.K., Sobolewski, M., Kao, K. A
Federated Intelligent Product Environment, AIAA-2000-4902, 8th
AIAA/USAF/NASA/ISSMO  Symposium on  Multidisciplinary
Analysis and Optimization, Long Beach, CA, September 6-8, 2000.
Ruh W.A., Herron T., Klinker P., IIOP Complete: Understanding
CORBA and Middleware Interoperability, Addison-Wesley (1999)
Sampath R., Kolonay R.M, Kuhne C.M., “2D/3D CFD Design
Optimization Using the Federated Intelligent Product Environment
(FIPER)  Technology”, AIAA-2002-5479, 9th AIAA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Atlanta,
GA, Sept. 2002

Sobolewski M., Federated P2P services in CE Environments,
Advances in Concurrent Engineering, A.A. Balkema Publishers, 2002,
pp. 13-22,2002.

Sobolewski M., FIPER: The Federated S2S Environment, JavaOne,
Sun's 2002 Worldwide Java Developer Conference, 2002. Available at:
http://sorcer.cs.ttu.edu/publications/papers/2420.pdf.

Accessed on: March 15, 2007.

Sobolewski M., Ghodous P. (Eds), Next Generation Concurrent
Engineering. Proceeding of the 12th Conference on Concurrent
Engineering: Research and Applications, ISPE/Omnipress (2005)
Sobolewski M., Metacomputing with Federated Method Invocation,
Technical Report SL-TR-11, March 2007. Available at:
http://sorcer.cs.ttu.edu/publications/papers/FMI.pdf.
April 5,2007.

Sobolewski M., Kolonay R., Federated Grid Computing with
Interactive Service-oriented Programming, International Journal of
Concurrent Engineering: Research & Applications, Vol. 14, No 1., pp.
55-66 ,2006.

Sobolewski, M., Soorianarayanan, S., Malladi-Venkata, R-K. 2003,
Service-Oriented File Sharing, Proceedings of the IASTED Intl.,
Conference on Communications, Internet, and Information technology,
pp- 633-639, Nov 17-19, Scottsdale, AZ. ACTA Press, 2003.
Soorianarayanan, S., Sobolewski, M., Monitoring Federated Services
in CE, Concurrent Engineering: The Worldwide Engineering Grid,
Tsinghua Press and Springer Verlag, pp. 89-95, 2004.

SORCER Research Group. Available at: http://sorcer.cs.ttu.edu/.
Accessed on: March 15, 2007.

SORCER Research Topics. Available at: http://sorcer.cs.ttu.edu/theses/.
Accessed on: March 15, 2007.

Sotomayor B., Childers L., Globus® Toolkit 4: Programming Java
Services, Morgan Kaufmann (2005)

Thain D., Tannenbaum T., Livny M.. Condor and the Grid. In Berman
F., Hey A.J.G., Fox G., editors, Grid Computing: Making The Global
Infrastructure a Reality. John Wiley , 2003.

Turner A., Sobolewski M., FICUS - A Federated Service-Oriented File
Transfer Framework, Proceeding of the 14th Conference on Concurrent
Engineering, Sdo José dos Campos, Brazil, Springer Verlag (2007)

The Service UI Project. Available at:
http://www.artima.com/jini/serviceui/index.html.

Accessed on: March 15, 2007.

Waldo J., The End of Protocols, Available at:
http://java.sun.com/developer/technical Articles/jini/protocols.html.
Accessed on: March 15, 2007.

Zhao, S., and Sobolewski, M., Context Model Sharing in the FIPER
Environment, Proc. of the 8th Int. Conference on Concurrent
Engineering: Research and Applications, Anaheim, CA , 2001.

Harnessing the Benefits of

Accessed  on:

This is a DRAFT document and work in progress. Version: 04/07/2007



Metacomputing with Federated Method Invocation

Michael Sobolewski

Texas Tech University
SORCER Research Group
http://sorcer.cs.ttu.edu

sobol®@cs.ttu.edu

Abstract

Six generations of RPC systems can be distinguished in-
cluding Federated Method Invocation (FMI) presented in
this paper. Some of them—CORBA, Java RMI, and
Web/Globus services—support distributed objects. How-
ever, creating object wrappers implementing remote inter-
faces doesn’t have a great deal to do with object-oriented
distributed programming. Distributed objects developed
that way are usually ill-structured with missing core object-
oriented traits: encapsulation, instantiation, inheritance, and
network-centric messaging by ignoring the real nature of
networking. A distributed system is not just a collection of
distributed objects—it’s the network of objects. In particu-
lar, the object wrapping approach does not help to cope
with network-centric messaging, invocation latency, object
discovery, dynamic object federation, fault detection, re-
covery, partial failure, etc. The Jini™ architecture does not
hide the network; it allows the programmer to deal with the
network reality: leases for network resources, distributed
events, transactions, and discovery/join protocols to form
federations. A service-oriented architecture presented in
this paper implements FMI to support metaprogramming.
The triple Command pattern implantation uses Jini service
management and Rio dynamic provisioning for managing
the network of FMI objects.

Categories and Subject Descriptors C.2.4 [Distributed
Systems]: Distributed Applications, D.1.3 [Concurrent
Programming]: Distributed Programming, D.2.11 [Soft-
ware Architectures]: Domain Specific Architectures,
D.2.2 [Design Tools and Techniques]: Object-oriented
design methods.

General Terms Design, Experimentation, Languages.

Keywords object oriented distributed programming; serv-
ice oriented architectures; federated service object pro-
gramming, metacomputing;

1. Introduction

Socket-based communication forces us to design distrib-
uted applications using a read/write (input/output) inter-
face, which is not how we generally design non-distributed
applications based on procedure call (request/response)
communication. In 1983, Birrell and Nelson devised re-
mote procedure call (RPC) [2], a mechanism to allow pro-
grams to call procedures on other hosts. So far, six RPC
generations can be distinguished:

1. First generation RPCs — Sun RPC (ONC RPC) [24] and
DCE RPC, which are language, architecture, and OS in-
dependent;

2. Second generation RPCs — CORBA [25] and Microsoft
DCOM-ORPC, which add distributed object support;

3. Third generation RPC — Java RMI [21] is conceptually
similar to the second generation but supports the seman-
tics of object invocation in different address spaces that
are built for Java only. RMI fits cleanly into the lan-
guage with no need for standardized data representation,
external interface definition language, and with behav-
ioral transfer that allows remote objects to perform
operations that are determined at runtime;

4. Fourth generation RPCs — Jini Extensible Remote Invo-
cation (Jini ERI) [20] with dynamic proxies, smart prox-
ies, network security, and with dependency injection
defining exporters, end points, and security;

5. Fifth generation RPCs — Web/Globus Services RPC
[18,35] and the XML movement;

6. Sixth generation RPC — Federated Method Invocation
(FMI), presented in this paper, allows for network invo-
cations on multiple federating hosts (virtual metacom-
puter) in the SORCER environment [33].

All the RPC generations are based on a form of service-
oriented architecture (SOA) discussed in Section 2. How-
ever, CORBA, RMI, and Web/Globus services are in fact

This is a DRAFT document and continues to be revised. The latest version can be found at
http://sorcer.cs.ttu.edu/publications/papers/FMI.pdf. Please send comments and remarks to
sobol@cs.tt.edu.



object-oriented wrappers of network interfaces that hide
distribution and ignore the real nature of network through
classical abstractions of object-oriented programming using
existing network technologies. The fact that object-oriented
languages are used to create these object wrappers doesn’t
mean that developed distributed objects have a great deal to
do with object-oriented distributed programming. For ex-
ample, CORBA defines many services, and implementing
them using distributed objects does not make them well
structured with core object-oriented traits: encapsulation,
instantiation, inheritance, and network-centric messaging.
Similarly in RMI, marking objects with the Remote inter-
face does not help to cope with network-centric messaging,
object discovery, dynamic federation, fault detection, re-
covery, partial failure, etc.

Building on the object-oriented distributed paradigm is
the Federated Service Object-Oriented (FSOO) paradigm
exemplified by the Jini architecture [13] in which the net-
work objects come together on the fly to play their prede-
fined roles. In the Service-ORiented Computing
EnviRonmet (SORCER) developed at Texas Tech Univer-
sity [33], a service provider is a remote object that accepts
network requests—called exertions—from service request-
ors to execute an elementary item of work called a service
task or a composite item of work called a service job. An
exertion, either a task or job, can federate on multiple hosts
according to its encapsulated data, operations, and control
strategy.

An exertion submitted to any provider in SORCER be-
comes an executing FSOO program that is dynamically
bound to all relevant and currently available service pro-
viders on the network. The providers that dynamically par-
ticipate in this invocation are collectively called an exertion
federation. This federation is also called a virtual meta-
computer since federating services are located on multiple
physical compute nodes held together by the FSOO infra-
structure so that, to the individual exertion requestor, it
looks and acts like a single computer.

The SORCER environment provides the means to create
interactive FSOO programs [29] and execute them using
the SORCER runtime infrastructure presented in Section 3.
Exertions can be created using interactive user interfaces
downloaded on the fly from service providers. Using these
interfaces, the user can execute and monitor the execution
of exertions within the FSOO metacomputer. The exertions
can be persisted for later reuse, allowing the user to quickly
create new applications or programs on the fly in terms of
existing exertions.

SORCER is based on the evolution of concepts and les-
sons learned in the FIPER project [5,26,27], a $21.5 million
program founded by NIST (National Institute of Standards
and Technology). Initial exertion-based programming con-
cepts introduced in FIPER have been practically used in
many concurrent engineering applications [29,8,9,16,23].

Academic research on exertion-oriented programming has
been established at the SORCER Laboratory, TTU, [33]
where twenty SORCER related research studies have been
investigated so far [34]. The current version of FMI used in
SORCER is described in this paper.

The paper is organized as follows. Section 2 provides a
brief description of a service oriented architecture with a
related discussion of distribution transparency; Section 3
describes the SORCER methodology; Section 4 presents
federated method invocation; Section 5 provides conclud-
ing remarks.

2. SOA and Distribution Transparency

Various definitions of a Service-Oriented Architecture
(SOA) leave a lot of room for interpretation. In general
terms, SOA is a software architecture using loosely coupled
software services that integrates them into a distributed
computing system by means of service-oriented program-
ming. Service providers in the SOA environment are made
available as independent service components that can be
accessed without a priori knowledge of their underlying
platform or implementation. While the client-server archi-
tecture separates a client from a server, SOA introduces a
third component, a service registry, as illustrated in Figure
1. In SOA, the client is referred to as a service requestor
and the server as a service provider. The provider is re-
sponsible for deploying a service on the network, publish-
ing its service to one or more registries, and allowing
requestors to bind and execute the service. Providers adver-
tise their availability on the network; registries intercept
these announcements and add published services. The re-
questor looks up a service by sending queries to registries
and making selections from the available services. Queries
generally contain search criteria related to the service
name/type and quality of service. Registries facilitate
searching by storing the service representation and making
it available to requestors. Requestors and providers can use
discovery and join protocols to locate registries and then
publish or acquire services on the network. We can distin-
guish the service object-oriented architectures (SOOA),
where providers, requestors, and proxies are network ob-

Service
Registry

Discover
Find

Discover
Publish

Service
Provider

Service

Requestor Execute

Figure 1. Service oriented architecture.

This is a DRAFT document and work in progress. Version: 03/31/2007



jects, from service protocol oriented architectures (SPOA),
where a communication protocol is fixed and known be-
forehand by the provider and requestor. Based on that pro-
tocol and a service description obtained from the service
registry, the requestor can bind to the service provider by
creating a proxy used for remote communication over the
fixed protocol. In SPOA a service is usually identified by a
name. If a service provider registers its service description
by name, the requestors have to know the name of the serv-
ice beforehand.

In SOOA, a proxy—an object implementing the same
service interfaces as its service provider—is registered with
the registries and it is always ready for use by requestors.
Thus, in SOOA, the service provider publishes the proxy as
the active surrogate object with a codebase annotation, e.g.,
URLs to the code defining proxy behavior (RMI and Jini
ERI). In SPOA, by contrast, a passive service description is
registered (e.g., an XML document in WSDL for
Web/Globus services, or an interface description in IDL for
CORBA); the requestor then has to generate the proxy (a
stub forwarding calls to a provider) based on a service de-
scription and the fixed communication protocol (e.g.,
SOAP in Web/Globus services, IIOP in Corba). This is
referred to as a bind operation. The binding operation is not
needed in SOOA since the requestor holds the active surro-
gate object obtained from the registry.

Web services and Globus services cannot change the
communication protocol between requestors and providers
while the SOOA approach is protocol neutral [38]. In
SOOA, how an object proxy communicates with a provider
is established by the contract between the provider and its
published proxy and defined by the provider implementa-
tion. The proxy’s requestor does not need to know who
implements the interface or how it is implemented. So-
called smart proxies (Jini ERI) grant access to local and
remote resources; they can also communicate with multiple
providers on the network regardless of who originally reg-
istered the proxy. Thus, separate providers on the network
can implement different parts of the smart proxy interface.
Communication protocols may also vary, and a single
smart proxy can also talk over multiple protocols including
application specific protocols.

SPOA and SOOA differ in their method of discovering
the service registry (see Figure 1 and 2). SORCER uses
dynamic discovery protocols to locate available registries
(lookup services) as defined in the Jini architecture [12].
Neither the requestor who is looking up a proxy by its in-
terfaces nor the provider registering a proxy needs to know
specific locations. In SPOA, however, the requestor and
provider usually do need to know the explicit location of
the service registry—e.g., the IP address of an ONC/RPC
portmapper, a URL for RMI registry, a URL for UDDI
registry, an IP address of a COS Name Server—to open a
static connection and find or register a service. In deploy-

Requestor : Network

Originated |
from | 4 Proxy
Network 1 -~ Object Service
1 Registry

2 service
Service
: Provider
1
\:;lk\t\f* \/
| Code ©
| Server

Figure 2. Service object-oriented architecture.

ment of Web and Globus services, a UDDI registry is
sometimes even omitted (WSDL descriptions are shared
via files outside of the system); in SOOA, lookup services
are mandatory due to the dynamic nature of objects identi-
fied by service types. Interactions in SPOA are more like
client-server connections (e.g., HTTP, SOAP, IIOP), in
many cases with no need to use service registries at all.

Crucial to the success of SOOA is interface standardiza-
tion. Services are identified by interfaces (service types);
the exact identity of the service provider is not crucial to
the architecture. As long as services adhere to a given set of
rules (common interfaces), they can collaborate to execute
published operations, provided the requestor is authorized
to do so.

Let’s emphasize the major distinction between SOOA
and SPOA: in SOOA, a proxy is created and always owned
by the service provider, but in SPOA, the requestor creates
and owns a proxy which has to meet the requirements of
the protocol that the provider and requestor agreed upon a
priori. Thus, in SPOA the protocol is always a generic one,
reduced to a common denominator—one size fits all—that
leads to inefficient network communication in some cases.
In SOOA, each provider can decide on the most efficient
protocol(s) needed for a particular distributed application.

Service providers in SOOA can be considered as inde-
pendent network objects finding each other via a service
registry and communicating through message passing. A
collection of these object sending and receiving mes-
sages—the only way these objects communicate with one
another—looks very much like a service object-oriented
distributed system.

Do you remember the eight fallacies of network comput-
ing? [4] We cannot just take an object-oriented program
developed without distribution in mind and make it a dis-
tributed system, ignoring the unpredictable network behav-

This is a DRAFT document and work in progress. Version: 03/31/2007



ior. Most RPC systems, except Jini [3], hide the network
behavior and try to transform local communication into
remote communication by creating distribution transpar-
ency based on a local assumption of what the network
might be. However every single distributed object cannot
do that in a uniform way as the network is a distributed
system and cannot be represented completely within a sin-
gle entity.

The network is dynamic, can’t be constant, and intro-
duces latency for remote invocations. Network latency also
depends on potential failure handling and recovery mecha-
nisms so we cannot assume that a local invocation is simi-
lar to remote invocation. Thus complete transparency
distribution—by making calls on distributed objects as
though they were local—is impossible to achieve in prac-
tice. The distribution is not just an object-oriented imple-
mentation of a single distributed object; it’s a metasystemic
issue in object-oriented distributed programming.

Exertion-based programming was introduced [27] to
handle the metasystemic distribution in SORCER by using
indirect remote method invocation with no service provider
explicitly specified in the network request (exertion). Spe-
cific infrastructure objects support exertion-oriented pro-
gramming combined with FMI. That infrastructure defines
SORCER’s distributed object modularity, extensibility, and
reuse of service-oriented components consistent with the
relevant metacomputing granularity and dependency injec-
tion—key features of object-oriented distributed program-
ming that are usually missing in SPOA programming
environments.

3. Federated Service Object-oriented
Computing Environmet: SORCER

SORCER s a federated service-to-service (S2S) metacom-
puting environment that treats service providers as network
objects with well-defined semantics of a federated service
object-oriented architecture (FSOOA). It is based on Jini
semantics of services [12] in the network and Jini pro-
gramming model with explicit leases, distributed events,
transactions, and discovery/join protocols. While Jini fo-
cuses on service management in a networked environment,
SORCR is focused on exertion-oriented programming and
the execution environment for exertions.

As described in Section 2, SOOA consists of three major
types of network objects: providers, requestors, and regis-
tries. The provider is responsible for deploying the service
on the network, publishing its service to one or more regis-
tries, and allowing requestors to access its service. Provid-
ers advertise their availability on the network; registries
intercept these announcements and cache proxy objects to
the provider services. The requestor looks up proxies by
sending queries to registries and making selections from the
available service types. Queries generally contain search

criteria related to the type and quality of service. Registries
facilitate searching by storing proxy objects of services and
making them available to requestors. Providers use discov-
ery/join protocols to publish services on the network, re-
questors use discovery/join protocols to obtain service
proxies on the network. SORCER uses Jini discovery/join
protocols to implement its FSOOA and FMI.

In SOOA, a service provider is an object that accepts
remote messages from service requestors to execute an item
of work. These messages are called service exertions. A
task exertion is an elementary service request, a kind of
elementary remote instruction (elementary statement) exe-
cuted by a single service provider or a small-scale federa-
tion. A composite exertion called a job exertion is defined
hierarchically in terms of tasks and other jobs, a kind of
network procedure executed by a large-scale federation.
The executing exertion is a service-oriented program that is
dynamically bound to all needed and currently available
service providers on the network. This collection of provid-
ers identified in runtime is called an exertion federation.
This federation is also called an exertion space. While this
sounds similar to the object-oriented paradigm, it really
isn’t. In the object-oriented paradigm, the object space is a
program itself; here the exertion space is the execution en-
vironment for the exertion that is a service-oriented distrib-
uted program. This changes the programming paradigm
completely. In the former case the object space is hosted by
a single computer, but in the latter case the service provid-
ers are hosted by the network of computers.

The overlay network of service providers is called the
service provider grid and an exertion federation is called a
virtual metacomputer. The metainstruction set of the meta-
computer consists of all operations offered by all service
providers in the grid. Thus, a service-oriented program is
composed of metainstructions with its own service-oriented
control strategy and service context representing the metap-
rogram parameters [39]. The service context describes the
data that tasks and jobs work on. Exertion-oriented pro-
grams (metaprograms) can be created interactively [29] and
allow for a dynamic federation to transparently coordinate
their execution within the grid. Please note that these meta-

Web Exertion Clients

Utilities and Templates

Requestor  Service Uls Intraportal Extraportal

Infrastructure Providers
Jobber, Tasker, Spacer , Grider, Caller, Methoder, Cataloger, Notifier, Logger,
Reporter, Authenticator, Authorizer, Auditor, Policer, KeyStorer, Surrogater,
Persister, FileStorer, SILENUS & FICUS Providers

SORCER Core :
Sevicer, ServiceProvider, ServiceProviderBean Persistence
ExertionDelegate, ServiceAccessor

File Store

Provisioning
& Activation

Exertion Layer

J2EE, Jini, Rio, GApp

Figure 3. SORCER layered functional architecture.

This is a DRAFT document and work in progress. Version: 03/31/2007



computing concepts are defined differently in classical grid
computing where a job is just an executing process for a
submitted executable code with no federation being
formed.

In a federated service environment, the system is not
made up of just a single service, but the cooperation of
many services. A service exertion may consist of hierarchi-
cally nested exertions that require different service types. A
service can be broken down into small component services
instead of being one monolithic all-in-one service. These
smaller component services—treated as virtual metacom-
puter instructions—can then be distributed among different
hosts to allow for reusability, scalability, reliability, and
load balancing.

Each SORCER provider offers services to other peers
[19] on the object-oriented overlay network. These services
are exposed indirectly by methods in well-known public
remote interfaces and considered as elementary (tasks) or
compound (jobs) statements of the FSOOA [26,27]. Re-
questors do not need to know the exact location of a pro-
vider beforehand; they can find it dynamically by
discovering service registries (lookup services) and then
looking up a needed service implementing required service
types.

An exertion can be created interactively [29] or pro-
grammatically (using SORCER APIs) and their execution
can be monitored and debugged in the overlay service net-
work [32]. Service providers do not have mutual associa-
tions prior to the execution of an exertion; they come
together dynamically (federate) for all nested tasks and jobs
in the exertion. Specialized providers within the federation,
or task peers, execute service tasks. Jobs are coordinated by
a rendezvous or job peer called a Jobber, one of SORCER
infrastructure services [26]. However, a job can be sent to
any service provider (peer). A peer that is not a Jobber type
is responsible for forwarding the job to one of available job
peers in the SORCER grid and returning results to the re-
questor.

Thus implicitly, any peer can handle any job or task.
Once the job execution is complete, the federation dis-
solves and the providers disperse to seek other exertions to
join. Also, SORCER supports a traditional approach to grid
computing similar to those found in Condor [36] and
Globus [35]. Here, instead of exertions being executed by
services providing business logic for requested exertions,
the business logic comes from the service requestor's ex-
ecutable programs that seek compute resources on the net-
work.

Grid-based services in the SORCER environment in-
clude Grider services collaborating with Jobber services for
traditional grid job submission, and Caller and Methoder
services for task execution [15]. Callers execute conven-
tional programs via a system call as described in the service
context of a submitted task. Methoders download required

Java code (task method) from requestors to process any
submitted context accordingly with the downloaded code.
In either case, the business logic comes from requestors; it
is conventional executable code invoked by Callers with
the standard Caller’s service context or mobile Java code
executed by Methoders with any service context provided
by the requestor. A functional layered SORCER architec-
ture is presented in Figure 3.

4. Federated Method Invocation (FMI)

Each programming language provides a specific computing
abstraction. Procedural languages are abstractions of as-
sembly languages. Object-oriented languages abstract ele-
ments in the application domain that refer to “objects” as
their representation in the corresponding solution space.
The object-oriented distributed programming should allow
us to describe the distributed problem in terms of the intrin-
sic unpredictable network problem instead of in terms of
distributed objects that hide the notion of the network.

What intrinsic distributed abstractions are defined in
SORCER? Well, service providers are “objects”, but they
are specific objects—they are network objects with a net-
work state, network behavior, and network type(s). There is
still a connection to distributed objects: each service pro-
vider looks like a distribute object (compute node) in that it
has a network state, network behavior, and network
types(s). Service providers act also as network peers[19];
they are replicated and dynamically provisioned for reli-
ability to compensate for network failures [22]. They can
be found dynamically in runtime by type(s) they imple-
ment. They can federate for executing a specific network
request called an exertion and perform hierarchically nested
(component) exertions. An exertion encapsulates service
data, operations, and control strategy. Once the exertion’s
invocation is complete, the federation dissolves and the
providers disperse to seek other exertions. The exertion can
incorporate multiple nested exertions where a precedence
relation is defined by a parent-child relationship. The same
provider can perform multiple exertions concurrently and
any provider that implements the matching service type can
be selected for performing the exertion associated with this
type. The component exertions may need to share context
data of ancestor exertions, and the top-level exertion is
complete only if all nested exertions are successful.

With that very concise introduction to the abstractions of
exertion-based programming, let’s look in detail at how
Federated Method Invocation (FMI) is structured and how
it works with exertions.

4.1 Service Messaging and Exertions

In object-oriented terminology, a message is the single
means of passing control to an object. If the object re-
sponds to the message, it has an operation and its

This is a DRAFT document and work in progress. Version: 03/31/2007



class Exertion /

Sedalizable Exception
«interfacex o atio... ExertionException
Confext Exertion:Access «enumeration» X
Signature::Type «enumeration» N N

add Assosiation (Sting, Sting) : Context e Exertion:Sirategy [ |1 e enxerion)
Fdd Altd hute (Sting) © void «2NUM» . o o
addExcepﬁof?(Excg;ﬁonJ : void ALEL] PROCESS «enims : Ei:::::iiz:p::::g:::g) Exertion)
addException(Sting, Exception) : void PREPROCESS SEQENTIAL + ExerionException(Sting, Thrawable)
addPoperty(Sting) : void POSTPROCESS G + getCause() Tph bl *

: etCause() : Throwable
addRelation (Sting) : void cinterfaces APPEND CONCURRENT + getExertionO: Exertion
gppend Subcontext(Context) : Context Entry
append Subcontext(Context, Sting) : Context defin
equals(Olject, Olject) : hoolean efines defines defines
getDescription() : Sting -exertion
getiinks() : Enumeation — —
gethariedPaths(Sting) : Enumeration Sedalizahle Sedalizahle
gethiame() : Sting «interfacex «interfacex
getPaths() : Enumeration Signature Exerfion
getPaths(Sting) : Enumeration 3 . "
CREAR B SR add Attrihute Entry) : void e"fgf’f:i;°”,§j’,ff°”‘°" Serializable

; ; P : getContext() : Contex
getRmpertylaiie (Striny§Sting ) iStiag getAccessType() : Exedion Access getame() : Sting Requestid

getRelations() : Enumeration
getSubcontext(Sting) : Context
getSulyectPath() : Sting
getSulyectValue() : Olject
getTuple (Sting, Sting) : Sting
getlalue(Sting) : Olyject
getlalue (Sting, Oyect) : Olyect
getlalues() : Enumeration
isARtibute (Sting) : hoolean H !
isPopedy(Sting) : hoolean H H
isRelation (Sting) : hoolean é H

getAltibutes()  List<Entry=
getCodhase() : Sking
getame () : Sting
getSenice Type() : Sting

getPmocessSignature () © Signatumre
getSenicen]) : Senvicer
getSignatures() : List<Signature =
getStategy() | Exedion. Strategy <
getType() : Signature. Type isdoh() : hoolean pashicode Ot
setAccess Type (Exertion Access) . void setSenvicer(Servicer) : void + toStingQ: String
setCodehase(Sting) : void ‘ﬂ\

set Tyoe (Signature. Type) : void A A H

id: ObjID = new ObjID)

+ equalgObject): boolean

o+ o+ o+ o+ o+ +
+

+ o+ o+ o+ o+ o+

wusen

wap(Sting, Sting, Comtext) : void clnterfaces

putinoutialue (Sting, Olject) : Olject ServiceExertion A syacExerion

‘putCutValue (Sting, Oject) : Ohject #context |# signatures: List<Signature> = new ArrayList) : g::ﬁ?&iﬁ:xﬁ"?&sﬂigﬂse?

ﬁz: Z::::Eg::i %:Z? .S‘Sﬁ:jt Onect + addSignature(Signature) : Signature + getRequesthis() : Set ) )

restove Attribute (String) - void + removeSignature(Signature) : Signature i ‘3’929‘?9'”9“%“’”%'7”9#“) : Exedion

) 8 Gl + setContext(Context) : void + get Tota.’Done.f?equesfso . mt. .
e + setSignatures(List<Signature>) : void +  getTotalPendingRequests() : int

removelath (Oject) : Olyect + islastRequestDone() : hoolean

removePath(Sting) : void + mguest(Transaction) : Exedion

removePopedy(Sting) : void
removeRelation (Sting) : void

setDeschption (Sting) : void <>
setin(Sting) : Context
setihout(Sting) : Context
setName (Sting) : void
setOut(Sting) : Context

Task Job

exertions: List<Exerion> = Collections.syn...

P T e

. . . ) . wusexn
setSulyect(Sting, Oject) ;void | - = . + addExerion(Exertion): Exertion
Sedalizable : " o
. + getExertions() : List<Exertion>
throws «interfaces + removeExetion(Exertion) : Exertion
Link + setExerions(List<Exertion>) : void

Exception

eguals(Oect, Olyect) : hoolean
getName() : Sting

getOffset() : Sting

isFetched () : hoolean

isFetched (hoolean) : void
istocal() : hoolean
setContext(Context) : void
setName (Sting) : void
setOffset(Sting) : void

ContextException

ContextException()
ContextException(String)
ContextException(Exception)
ContextException(String, Exception)
getEmbeddedException() : Exception
gethessage() : String

+ o+ o+ o+ o+

+ o+ o+ o+ +

Figure 4. The Exertion interface and related subset of FMI interfaces/classes: the abstract class ServiceExertion with two
abstract subclasses: Task and Job along with FMI parameters defined by the Context interface and signatures defined by the
Signature interface.

implementation (method) for that message. The equivalent only way to send data from one object to another. Each
in procedural programming languages to a message is the message specifies the name of the receiving object, the
function call. The message means neither the function as it name (selector) of operation to be invoked, and any paever,
is nor the signature of the function, but to send the message in the unreliable network of objects, the receiving object
means roughly to call the function. Because object data is might not be present or can go away at any time. Thus, we
encapsulated and not directly accessible, a message is the should postpone receiving object identification as late as

This is a DRAFT document and work in progress. Version: 03/31/2007



class Algorithmic Logic /

Job «interfacex
Exerfion wusen

«interfacex
Servicer

+ exeri(Transaction): Exerion
+ getExertions]) : List<Exertion>
+ isTree(Set): boolean S:j

+ exer(Transaction): Exerion
+ isTree(): boolean

+ senice(Exerion, Transaction) : Exertion

i -
ServiceExerfion i lFExertion SuSSo = Null Exertion
+ exert{Transaction): Exerion {]— + exert{Transaction): Exerion + exert(Transaction): Exertion
+ isTree(): boolean + isTree(Set): boolean wusen ;"1?
+ isTree(Set): boolean + isTrue(): boolean I L
L .
— WhileExetion & sinterfacen
25
Condifional
] ] + exer(Transaction) : Exetion [ ~-"=""==""="""" [:’
+ exer(Transaction): Exerion + isTee(Sef): boolean + isTrueQ): boolean
+ isTree(Set): boolean + isTrue(): boolean '

Figure 5. Flow control exertions, conditional IfExertion and looping WhileExertion, used in SORCER.

possible. Grouping related messages per one request for the
same data set makes a lot of sense due to network invoca-
tion latency and common errors in handling. These obser-
vations lead us to service-oriented messages called
exertions that encapsulate both multiple service signatures
and data as a service context. In other words, an exertion
primarily consists of one or more operations and the data
upon which the operations should be performed. Two exer-
tion types are distinguished: elementary and composite
exertion called service task and service job respectively
(see Figure 4). There are two ways of invoking exertions.
In the first case, an Exertion can be invoked by calling Exer-
tion.exert(Transaction). The second way is explained in Sub-
section 4.6.

4.2 Service Signatures

An exertion initiates the dynamic federation of all
needed service providers dynamically—as late as possi-
ble—as specified by signatures of top-level and nested ex-
ertions. Thus, FMI is defined as exerting an exertion, which
is essentially an indirect invocation of network methods
specified by the exertion signatures and service context.
SORCER service providers and requestors usually commu-
nicate via FMI.

A service Signature is defined by:

* signature name

* service type — Java interface name

* selector of the service operation — operation name of the
service type (Java interface)

* operation type — Signature.Type: PROCESS (default),
PREPROCESS, POSTPROCESS
* service access type — Signature.Access; PUSH (default)
direct binding to Jobbers or Taksers, or DROP using
Spacer (see Figure 4)
* priority
* execution time flag — if true, the execution time is re-
turned in the service context
* notifyees — list of email addresses to notify upon com-
pleted)
* service attributes — requestor’s attributes matching pro-
vider’s registration attributes
An exertion can comprise of a collection of PREPRROC-
ESS and POSTPROCESS signatures, but only one PROC-
ESS signature. The PROCESS signature defines the
binding provider for the exertion.

4.3 Exertion Types

A Task is the analog of a statement in conventional pro-
gramming languages—here an elementary step of the exer-
tion-oriented program. Thus, it is a minimal unit of
structuring in exertion-oriented programming. If the pro-
vider responds to a Task, it has a method for the task's
PROCESS signature. Other signatures associated with the
Task provide for preprocessing and postprocessing by the
same or federating providers. An APPEND signature pro-
vides for the context received from the provider identified
by this signature to be appended in runtime to the task’s
currently processed service context. Appending a service

This is a DRAFT document and work in progress. Version: 03/31/2007




context allows a requestor to use actual data in runtime not
available to the requestor when a task is submitted. A Task
is the single means of passing control to a PROCESS pro-
vider. Note that a task is a batch of operations that operate
on the same service context—a Task shared execution
state—and all operations of the Task, as defined by signa-
tures, can be executed by the same provider or a group of
federating providers coordinated by the PROCESS pro-
vider—the provider identified by the PROCESS signature
of the Exertion.

A Job is the analog of a procedure in conventional pro-
gramming languages—here a federated procedure in an
exertion-oriented program. It is a composite of exertions
(see Figure 4) that makeup the federated procedure. The
following flow control exertion types define algorithmic
logic of exertion-oriented programming:
¢ Exertion

* NullExertion
* AsyncExertion
* AsyncServiceExertion
¢ ServiceExertion
¢ ServiceTask
¢ Servicelob
¢ IfExertion
* WhileExertion
* ForExertion
* DoExertion
* ThrowExertion
* TryExertion

* BreakExertion

- Context
D Signature

- @ Federation Member

Signature type: #~ /preprocess, /a7/process, / zpostprocess, gvappend

Figure 6. A job federation. The red line (the first from the
left) indicates the originating FMI invocation: Exer-
tion.exert(Transaction) or Servicer.service(Exertion, Transac-
tion). The root job with component exertions is depicted
below the provider grid (a cloud). Late bindings of all sig-
natures are indicated by dashed lines that define the job’s
initial federation (metcomputer).

* ContinueExertion
Currently implemented flow control Exertion types in
SORCER are depicted in Figure 5.

4.4 Knowledge Representation and Service Context

The implementation of natural language knowledge defini-
tion and editing critically depends on the intricacy of trans-
lation between natural language constructs and internal
knowledge representation structures. This is a function of
the chosen knowledge representation method. In the per-
cept formalism, an entity of the world is treated as the im-
age given by perception, and that image is called a percept.
A percept conceptualization is the semantic counterpart of
the syntactic level of the knowledge description theory
called percept calculus [30]. A service context, based on
the percept conceptualization, is a data structure that de-
scribes service provider ontology along with related data. A
service ontology is controlled by provider vocabulary that
describes objects and the relations between them in a pro-
vider's namespace within a specified service domain of
interest. A requestor submitting an exertion to a provider
has to comply with that ontology. In the percept conceptu-
alization, attributes and their values are used as atomic con-
ceptual primitives, and complements are used as molecular
ones. A complement is an attribute sequence (path) with a
value at the last position. An elementary percept property
consists of a percept subject and a set of percept comple-
ments, and usually corresponds to a simple sentence of
natural language.

A service context is a tree-like structure described con-
ceptually in the EBNF conceptual syntax specification as
follows:

1. context = [ subject ":"] complement { complement }.

2. subject = element.

3. complement = element ";".

4. element= path [ "=" value ].

5. path = attribute { "/" attribute } [ { "<" association ">"
Y 1[0{"/" attribute } ].

. value = object.

. attribute = identifier.

. relation = domain product.

. association = domain tuple.

10. product = attribute { "|" attribute }.

11. tuple = value { "|" value 3.

12. attribute = identifier.

13. domain = identifier.

14. association = identifier.

15. identifier = letter { letter | digit 3.

O 00N O

A relation with a single attribute is called a property and is
denoted as attribute | attribute.

To illustrate the idea of context, lets consider the follow-
ing context example (graphically depicted in Figure 7):

laboratory/name = SORCER: university=TTU;
university/department/name=CS;

This is a DRAFT document and work in progress. Version: 03/31/2007



university/department/room/number=20B;

university/department/room/phone/number=806-742-

university/department/room/phone/ext=237;

director <person | Mike | W | Sobolewski>
/email=sobol@cs. ttu.edu;

person | firstname | initial | lastname.

A context leaf node, or data node is where the actual
data resides. The service context—all context paths—
denotes an application domain namespace, and a context
model [39] is its context with data nodes appended to its
context paths. A context path is a hierarchical name for a
data item in a leaf node. Note that Context can be repre-
sented as an XML document—what has been done in
SORCER for interoperability—but the power of object
Contexts comes from the fact that any Java object can be
naturally used as a data node. In particular exertions them-
selves can be used as data nodes and then executed and
controlled by providers to run complex iterative programs,
e.g., nonlinear multidisciplinary optimization [16].

4.5 Service-to-Service (S2S) Computing

Tasks are usually executed by providers of the Tasker type
(task peer). A Job contains a service context called control
context that describes the control strategy for the Job. Dedi-
cated service providers of the Jobber type (job peer also
called rendezvous peer), interpret and execute a job's con-
trol context in terms of the job's nested exertions accord-
ingly. A Jobber manages a shared context (shared execution
state) for the job federation and provides a substitution for
input context parameter mappings. A Jobber creates a fed-
eration of required service providers (Taskers and Jobbers)
in runtime. A SORCER peer (Servicer) that is unable to
execute an Exertion for any reason forwards the Exertion to
any available Servicer matching the exertion’s PROCESS
signature and returns the resulting exertion back to its re-
questor. In Figure 6, a job federation is illustrated with late
bindings for all signatures in all component exertions.

name

' laboratory

| university [

H r
[ director |} person e 1 Mike | W | Sobolewski !

I TTU | I department l I email |

/\

| name l [ room |

[ sobol@cs ttu.edu

I phone |

/|\
ext

I 20B I l number ]

| cs | l number l

[ 808-742-1194 | [ 237 |

Figure 7. Example of a service context.

class Servicer /

winterfaces binds ServicerAccessor

Servicer <
- accessor: DynamicAccessor
+ sendce(Exerion, Transaction) : Exedion
<i' b + getSenicenSignature) : Senvicer
R \ + setAccessorProvidenDynamicAccessor) : void
Johher Tasher
Remote Remote
winterfacen winterfacen “acoessor
Remofetobber RemofeTasker «interfacexs
A A OynamicAccessor
' H + getSenvicer(Signature) : Servicer
ServiceJobber ServiceTasker

«interfaces
Exerfer

+ exerExetion, Traasaction) : void

Figure 8. FMI Servicers: Tasker and Jobber with the
name service provider interface—DynamicAccessor.

All SORCER service providers are service peers as they
implement the top-level Servicer interface (see Figure 8).
As aresult, each Servicer can initiate a federation created in
response to Servicer.service(Exertion, Transaction). Servicers
come together to form a federation participating in execu-
tion of the same exertion. When the exertion is complete,
Servicers leave the federation and seek a new exertion to
join. Note that the same exertion can form a different fed-
eration for each execution due to the dynamic nature of
looking up Servicers by their implemented custom inter-
faces. The hierarchy of SORCER Servicer types is defined
as follows (see Figure 8, interfaces names in italic below):

e Servicer (defines S2S)
* Tasker
e Jobber
* Provider extends Remote and Monitorable
* AdministrableProvider
¢ ServiceProvider
(implements discovery, join, and monitoring)
¢ ServiceTasker
(implements Tasker and Exerter)
¢ Servicelobber
(implements Jobber and Exerter))
* Exerter (not Remote)
ServiceAccessor uses DynamicAccessor as a naming service
provider for FMI. The naming service provider furnishes a
means to dynamically locate service providers on the net-
work. The SORCER ProviderAccessor implements Dynami-
cAccessor using the SORCER Cataloger service with the
Jini Discovery and Lookup Services.

Despite the fact that every Servicer can accept any exer-
tion, Servicers have well defined roles in SORCER S2S
exertion-oriented programming (see Figure 3):

a) Taskers — process service tasks

b) Jobbers — process service jobs

c¢) Contexters — provide service contexts for APPEND Sig-
natures

This is a DRAFT document and work in progress. Version: 03/31/2007



d) FileStorers — provide access to federated file system
providers [31,1]

e) Catalogers — Servicer registries

f) Persisters — persist service contexts, tasks, and jobs to be
reused for interactive exertion-based programming

g) Spacers — manage exertion spaces shared across
Servicers for space-based computing [7]

h) Relayers — gateway providers, transform exertions to na-
tive representation, for example integration with Web
services and JXTA

i) Autenticators, Authorizers, Policers, KeyStorers — pro-
vide support for service-oriented security

j) Auditors, Reporters, Loggers — support for accountabil-
ity, reporting and logging

k) Griders, Callers, Methoders — support conventional grid
computing

1) Generic ServiceTasker and ServiceJobber implementa-
tions are used to configure domain specific providers
via dependency injection—configuration files for smart
proxying and inserting business objects called service
beans.

4.6 FMI Triple Command Pattern

Polymorphism lets us encapsulate a request—in FMI an
exertion—then establish the signature of operation to call
and vary the effect of calling the underlying operation by
varying its implementation. The Command design pattern
[10] establishes an operation signature as an interface and
defines various implementations of the interface. In FMI,
the following three operations are defined:

1. Exertion.exert(Transaction):Exertion - join the federation

2. Servicer.service(Exertion, Transaction):Exertion — request
a service in the federation initiated by the receiver

3. Exerter.exert(Exertion, Transaction):Exertion — execute the
component exertion by the target provider in the federa-
tion

The Triple Command pattern defines various implementa-

tions of these interfaces: Exertion, Servicer, and Exerter. This

approach allows for the P2P environment [8] via the

Servicer interface, extensive modularization of Exertions

and Exerters, and extensibility from the triple design pattern

so requestors can submit any service-oriented programs

(exertions) they want with or without transactional seman-

tics. Note that both ServiceTasker and ServiceJobber are

Servicers and Exerters (see Figure 8 for details); more pre-

cisely their proxies are remote objects of the Servicer type

only while the provider itself (local object) is both of

Servicer and Exerter type.

FMI triple Command Pattern is used as follows:

1. An exertion can be invoked by calling Exer-
tion.exert(Transaction). The Exertion.exert operation im-

plemented in ServiceExertion uses ServiceAccessor to
locate in runtime the provider matching the exertion’s
PROCESS signature (see Figure 8 for classes involved).

2. If the matching provider is found, then on its access
proxy (that can also be a smart proxy) the
Servicer.service(Exertion, Transaction) method is invoked.

3. When the requestor is authenticated and authorized by
the provider to invoke the method defined by the exer-
tion’s PROCESS signature, then the provider calls its
own exert operation: Exerter.exert(Exertion, Transaction).

4. Exerter.exert method calls exert either of ServiceTasker or
ServiceJobber (depending on the type of the exertion: ei-
ther Task or Job) that by reflection calls the method
specified in the PROCES signature (interface and selec-
tor) of the exertion. All application domain methods of
any application interface (custom Tasker interfaces)
have the same signature: a single Context type parameter
and a Context type return vale. Thus a custom interface
looks like an RMI interface with the above simplifica-
tion on the common signature for all interface methods.

In the FMI approach, a requestor can create any Exer-
tion, composed from any hierarchically nested Exertions,
with any service provider supplied anthology. The context
anthologies along with object proxies and their object at-
tributes are network-centric; they are part of the provider’s
registration so can they be accessed via Cataloger or lookup
services by any requestor on the network, e.g., service
browsers [11] or custom service Ul user agents [37] provid-
ing interactive exertion-oriented programming. In SOR-
CER, using these zero-install service Uls, the user can
define data for downloaded ontology and create a task/job
to be executed on the virtual metacomputer.

Individual Providers, in particular Taskers and Jobbers,
implement their own exert(Exertion, Transaction) methods
according to their service semantics, in SORCER imple-
mented by ServiceTasker and ServiceJobber respectively.
SORCER specific domain providers either subclass
ServiceTasker or ServiceJobber, or by dependency injection
(using Jini configuration methodology) configure either one
with one of 12 proxying methods developed in SORCER.
In general, many different types of taskers and jobbers can
be used in SORCER at the same time (currently one
ServiceTasker and one ServiceJobber implementation exists)
and exertions via their signatures will make appropriate
choices as to what virtual metacomputer to run.

Invoking an exertion, let’s say ext, is similar to invoking
an executable program ext.exe at the command prompt. If
we use the Tenex C shell (tcsh), invoking the program is
equivalent to: tcsh ext.exe, i.e., passing the executable
ext.exe to tcsh. Similarly, to invoke a metaprogram using
FMI, in this case the exertion ext, we call ext.exert(null) if

This is a DRAFT document and work in progress. Version: 03/31/2007



no transactional semantics is required. Thus, the exertion is
the metaprogram and the network shell at the same time,
which might first come as a surprise, but close evaluation
of this fact shows it to be consistent with the meaning of
object-oriented federated programming. Here, the virtual
metacomputer is a federation that does not exist when the
exertion is created. Thus, the notion of the virtual meta-
computer is enclosed in the exertion exemplified by FMI.

The observation concluding that the exertion is the
metaprogram and the network shell at the same time brings
us back to the distribution transparency issue discussed in
Section 2. It might appear that Exertion objects are network
wrappers as they hide network intrinsic unpredictable be-
havior. However, Exertions are not distributed objects, as
do not implement any remote interfaces; they are local ob-
jects. Servicers are distributed objects and there are many
types of Servicers addressing different aspects of network-
ing. The network intrinsic unpredictable network behavior
is addressed by the SORCER object-oriented distributed
infrastructure: Taskers, Jobbers, Catalogers, Spacers, File-
Storers, Authenticators, Authorizers, Policers, etc. The
Servicer-based infrastructure facilitates exertion-oriented
programming and metaprograms execution using presented
FMI and allows for constructing reliable object oriented
distributed systems from unreliable distribute components -
Servicers.

5. Conclusions

A distributed system is not just a collection of distributed
objects—it’s the network of objects. From an object-
oriented point of view, the network of objects is the prob-
lem domain of object-oriented distributed programming
that requires relevant abstractions in the solution space. The
exertion-based programming introduces new network ab-
stractions with federated method invocation in SOOA.
Service providers register proxies, including smart proxies,
via dependency injection using twelve methods investi-
gated in SORCER. Executing a top-level exertion means a
dynamic federation of currently available providers in the
network collaboratively process service contexts of all
nested exertions. Services are invoked by passing exertions
on to providers indirectly via object proxies that are access
proxies allowing for service providers to enforce a security
policy on access to services. When permission is granted,
then the operation defined by a signature is invoked by
reflection. FMI allows for the P2P environment via the
Service interface, extensive modularization of Exertions and
Exerters, and extensibility from the triple command design
pattern. The presented FMI has been successfully tested in
multiple concurrent engineering, large-scale distributed
applications.

Acknowledgments

I would like to thank all my students in the SORCER Re-
search Group [34] for their motivation, innovation, and
excitement they generate when working with exertion-
based programming. Without their research efforts, it
would not be possible to integrate so many different views
of distributed programming and to validate so many diverse
and controversial opinions on distributed objects and ob-
ject-oriented distributed computing.

References

[1] Berger, M., and Sobolewski, M., SILENUS — A Federated
Service-oriented Approach to Distributed File Systems, In
Next Generation Concurrent Engineering [28]. pp. 89-96
(2005)

[2] Birrell, A. D. & Nelson, B. J., Implementing Remote Proce-
dure Calls, XEROX CSL-83-7, October 1983.

[3] Edwards W.K., Core Jini, 2nd ed., Prentice Hall, ISBN: 0-13-
089408 (2000)

[4] Fallcies of Distributed Computing. Available at:
http://en.wikipedia.org/wiki/Fallacies of Distributed Compu
ting. Accessed on: March 15, 2007.

[5] FIPER: Federated Intelligent Product EnviRonmet. Available
at:  http://sorcer.cs.ttu.edu/fiper/fiper.html. Accessed on:
March 15, 2007.

[6] Foster L., Kesselman C., Tuecke S., The Anatomy of the J.
Supercomputer Applications, 15(3) (2001)

[71 Freeman, E., Hupfer, S., & Arnold, K. JavaSpaces™ Princi-
ples, Patterns, and Practice, Addison-Wesley, ISBN: 0-201-
30955-6 (1999)

[8] Goel S., Shashishekara, Talya S.S., Sobolewski M., Service-
based P2P overlay network for collaborative problem solv-
ing, Decision Support Systems, Volume 43, Issue 2, March
2007, pp. 547-568 (2007)

[9] Goel, S, Talya S., and Sobolewski, M., Preliminary Design
Using Distributed Service-based Computing, Proceeding of
the 12th Conference on Concurrent Engineering: Research
and Applications, ISPE, Inc., pp. 113-120 (2005)

[10] Grand M., Patterns in Java, Volume 1, Wiley, ISBN: 0-471-
25841-5(1999)

[11] Inca X™ Service Browser for Jini Technology. Available at:
http://www.incax.com/index.htm?http:/ www.incax.com/serv
ice-browser.htm. Accessed on: March 15, 2007.

[12] Jini architecture specification, Version 2.1. Available at:
http://www.sun.com/software/jini/specs/jinil.2html/jini-
title.html. Accessed on: March 15,2007 (2001)

[13] Jini, Wikipedia. Available at:
http://en.wikipedia.org/wiki/Jini.
Accessed on: March 15, 2007.

[14] Jini.org, Available at: http://www.jini.org/.
Accessed on: March 15, 2007.

This is a DRAFT document and work in progress. Version: 03/31/2007



[15] Khurana V., Berger M., Sobolewski M., A Federated Grid
Environment with Replication Services. In Next Generation
Concurrent Engineering [28].

[16] Kolonay, R.M., Sobolewski, M., Tappeta, R., Paradis, M.,
Burton, S. 2002, Network-Centric MAO Environment. The
Society for Modeling and Simulation International, Westrn
Multiconference, San Antonio, TX (2002)

[17] Lapinski, M., Sobolewski, M., Managing Notifications in a
Federated S2S Environment, International Journal of Concur-
rent Engineering: Research & Applications, Vol. 11, pp. 17-
25(2003)

[18] McGovern J., Tyagi S., Stevens M.E., Mathew S., Java Web
Services Architecture, Morgan Kaufmann (2003)

[19] Oram Andy, Editor, Peer-to-Peer: Harnessing the Benefits of
Disruptive Technology, O'Reilly (2001)

[20] Package net.jini.jeri. Available at:  https://java.sun.com/pro-
ducts/jini/2.1/doc/api/net/jini/jeri/package-summary.html.
Accessed on: March 15, 2007.

[21] Pitt E., McNiff K., java.rmi: The Remote Method Invocation
Guide, Addison-Wesley Professional (2001)

[22] Project Rio, A Dynamic Service Architecture for Distributed
Applications. Available at: https://rio.dev.java.net/. Accessed
on: March 15, 2007.

[23] Rohl, P.J., Kolonay, R.M., Irani, R.K., Sobolewski, M., Kao,
K. A Federated Intelligent Product Environment, AIAA-
2000-4902, 8th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Long Beach,
CA, September 6-8 (2000)

[24] RPC: Remote Procedure Call Protocol Specification Version
2. Available at:  http://www.ietf.org/rfc/rfc1831.txt  (1995).
Accessed on: March 15, 2007.

[25]Ruh  W.A., Herron T., Klinker P., IIOP Complete: Under-
standing CORBA and Middleware Interoperability, Addison-
Wesley (1999)

[26] Sobolewski M., Federated P2P services in CE Environments,
Advances in Concurrent Engineering, A.A. Balkema Pub-
lishers, 2002, pp. 13-22 (2002)

[27] Sobolewski M., FIPER: The Federated S2S Environment,
JavaOne, Sun's 2002 Worldwide Java Developer Conference,
2002. Available at:
http://sorcer.cs.ttu.edu/publications/papers/2420.pdf.
Accessed on: March 15, 2007.

[28] Sobolewski M., Ghodous P. (Eds), Next Generation Concur-
rent Engineering. Proceeding of the 12th Conference on Con-
current  Engineering:  Research and  Applications,
ISPE/Omnipress (2005)

[29] Sobolewski M., Kolonay R., Federated Grid Computing with
Interactive Service-oriented Programming, International
Journal of Concurrent Engineering: Research & Applications,
Vol. 14, No 1., pp. 55-66 (2006)

[30] Sobolewski, M., Percept Conceptualizations and Their
Knowledge Representation Schemes, Ras Z.W. and
Zemankova M. (Eds.) Methodologies for Intelligent Systems,
Lecture Notes in Al 542, Berlin: Springe-Verlag, pp. 236-245
(1991)

[31] Sobolewski, M., Soorianarayanan, S., Malladi-Venkata, R-K.
2003, Service-Oriented File Sharing, Proceedings of the
IASTED Intl., Conference on Communications, Internet, and
Information technology, pp. 633-639, Nov 17-19, Scottsdale,
AZ. ACTA Press (2003)

[32] Soorianarayanan, S., Sobolewski, M., Monitoring Federated
Services in CE, Concurrent Engineering: The Worldwide En-
gineering Grid, Tsinghua Press and Springer Verlag, pp. 89-
95 (2004)

[33] SORCER Research Group. Available at:
http://sorcer.cs.ttu.edu/. Accessed on: March 15, 2007.

[34] SORCER Research Topics. Available at:
http://sorcer.cs.ttu.edu/theses/. Accessed on: March 15, 2007.

[35] Sotomayor B., Childers L., Globus® Toolkit 4: Programming
Java Services, Morgan Kaufmann (2005)

[36] Thain D., Tannenbaum T., Livny M.. Condor and the Grid. In
Fran Berman, Anthony J.G. Hey, and Geo rey Fox, editors,
Grid Computing: Making The Global Infrastructure a Reality.
John Wiley (2003)

[37] The Service Ul Project. Available at:
http://www.artima.com/jini/serviceui/index.html.
Accessed on: March 15, 2007.

[38] Waldo J., The End of Protocols, Available at:
http://java.sun.com/developer/technical Articles/jini/protocols
.html. Accessed on: March 15, 2007.

[39] Zhao, S., and Sobolewski, M., Context Model Sharing in the
FIPER Environment, Proc. of the 8th Int. Conference on
Concurrent Engineering: Research and Applications, Ana-
heim, CA (2001)

This is a DRAFT document and work in progress. Version: 03/31/2007



"
-
-

v Sy
WA A s




applications
computing power files data
- storage F

£ 3 -.:1'_.
%’ 1 ) Z 010101044

& 543 :“::"-Ii'u il 10 ',{}"L__}u :
310 FiE T i i

/161838 1




e to '.'I\/I'etaC'o-_m puting




£ SOA = SPOA +SOOA

Service
Registry

Discovery

| Discovery
Find

Publish

Service A

Requestor Execute Provider



~ SOOA - Network Centricity

Requestor | Network

Originated

from ~ Mobi
Mobile
Network | A~ Proxy

e Object

Service
Registry

Service

Service
Provider

C3

I Code
I Server




& . 1. Static proxy — created explicitly before it is used (rmic)

2. Dynamic proxy — no need to create it statically in advance (RMI vs.
Jini ERI)

# | 3. Remote proxy — shields the requestor object from the fact that the
2 underlying object is remote

e Access (protection) proxy — enforces a security policy on access to a
% service or data-providing object (Sevicer)

5. Facades — a facade grants access to multiple underlying objects
(Servicer + AdminProxy + server)

¥ 6. Virtual proxy — performs lazy initialization of expensive back-ends
e (Service Ul — UlDesrcriptor)

7. Smart proxy - grants access to local (fat) and remote resources

: = 8. Bootstrap proxy — trusted proxy, created from local codebase (proxy
G verification)

! 9. Hybrid proxy — combination of the above types E



FEaBEEReEEREREEERERERBEES

SORCERtha
_————-'-----.—--.'-_

LR R R R NN

SORCER grid &

j

SORCER core

J

Service Requestor

Service Broker

SORCER Service Provider
SORCER Wrapper Provider

ale  HNative Provider

o= Technology wrapper-grids: Jini, JXTA,

CORBA, Web Services, Grid Services, MNET
< = SORCER.grid

< = Technology native grids



~ TheRuntime Environment

« SORCER (Eclipse) workspace

 Jini services (usually available on the network)
— Lookup service (reggie)
— JavaSpace (outrigger)
— Transaction Manager (mahalo)
— Event Mailbox (mercury)
— Lease Renewal (norm)
— Lookup Discovery (fiddler)

 Webster (HTTP class server) - 1Grid/bin/webster/bin
e Service browser (Inca X) - iGrid/bin/incax/bin

« SORCER services - iGrid/bin/sorcer/bin

e Custom services - iGrid/bin/<serviceName>/bin



Proxylng with

Dependency Injectlon

. smartProxy

S . serverType ; .

 serverExporter :
=

/ A
provider
proxy
no exporter exporter
Twelve cases ‘ I

studied server serverType %



Prowders Implementlng
Remote Interfaces -

subclas of
ServiceProvider

Provider = Server
Direct calls can be forbidden with indirect service calls
Servicer#service(Exertion) :Exertion E



Arlthmetlclmpllnuﬂenuﬂns

ArlthmetlcRemote

————————————————————————————————————

. Adder | " Subtractor | | Multiplier ! Divider |
AN A A AN
-------------------------- Arlthmetlc Z]:::::::::::::___________

————————————————————

jeri and jrmp

——————————————

- _______ZX ____________
ArithmeticProviderlmpl_Stub j

ServiceProvider

<——

Arythmometer

uses

A

ArithmeticProviderimpl




& Providers with Service Beans

ServiceProvider

Provider = ServiceProvider + beans;
bean - implements service methods in its exposed (not Remote)
Interfaces.
Beans are not servers, they are not exported. E



 Service Beans

beans

Adderimpl Subtractorimpl Multiplierimpl Dividerimpl

ServiceProvider

beans = new String[] {
"'sorcer.arithmetic.AdderImpl™,
"sorcer.arithmetic.Subtractorimpl™,
"sorcer.arithmetic.Multiplierimpl’,
"'sorcer.arithmetic.Dividerimpl™ };



- Providers with EXpQrted,SerVeLrS‘ --

Server
Proxy

ServiceProvider

Provider = ServiceProvider + server,
server and serverExporter entries defined, and

server is not Partner type E



RemoteArlthmometer

Implements ArlthmetlcRemote

server
iAdderi i Subtractor | Multiplier ! | Divider !
A A A AN
 RRRRLEELELEESSE Arlthmetlc oI Remote
_______ Zr_ —— Z}
Arythmometer -----o-----4 ArithmeticRemote
_____ AA

T

RemoteArythmometer |[----------------

RemoteArythmometer_Stub

// RMI object
server = new RemoteArithmometer();
// exported with

ServiceProvider

serverExporter = new JrmpExporter(0);

T



Prowders with
Exported Partnershlp Servers

Server
Proxy

Server

getPartner() ServiceProvider
getAdmin()

Provider = ServiceProvider + server,
server and serverExporter entries defined, and

server implements Partner E



RemoteArlthmometerInuﬂenuﬂns

ArlthmetlcRemote and
~Partnership

e T et T P : partner
. Adder | : Subtractor ' Multiplier :: Divider |
B A A o
-------------------------- Arlthmetlc 4 Regote
. Administrable | | Servicer | Zr :
""""" & B
Arythmometer emmenes . ArithmeticRemote !
' Quter <P ------- Partner; AT A
---------------- = T
' Remote <}-: RemotePartner ! RemoteArythmometer [------------------
A N N
; ; D Partnershlp
"""""" PartnerArythmometer f---: PartnerArythmometer_Stub

// RMI object
server = new PartnerArithmometer(); : _
// exported with ServiceProvider

serverExporter = new JrmpExporter(0); E




Provrders e
Wrth not Exported Servers

Registering
Provider
(Partner)

_/

ServiceProvider

Provider = ServiceProvider + server,
server entry defined; no serverkExporter entries defined, and
server is not Partner type



RemoteArlthmometer Implements
ArlthmetlcRemote

-not Exported

....... T | n

Arythmometer L------------1+ ArithmeticRemote !
T """ AN AN
RemoteArythmometer |-------------------------- : |
uses

A

RemoteArythmometer_Proxy ServiceProvider

// RMI service type
serverType = “sorcer.arithmetic.RemoteArithmometer”;

// exported with
//serverkExporter = new JrmpExporter(0);



' Smart Proxies - Fat Proxy

Registering
Provider

ServiceProvider

Provider = ServiceProvider + smartProxy;
requestor invokes local calls only;
smartProxy is not Partnership type, and
ServiceProvider maintains the proxy registration. E



Arlthmometer Implements

Arlthmetlc (ho Remote)

--------------------------------------------

—————————————

+ Adder | ' Subtractor : ' Multiplier ! Divider
A A A N
-------------------------- Arlthmetlc
PN
Arythmometer ServiceProvider

smartProxy = new Arithmometer();

fat



~ Outer Smart Proxies

Semismart Proxies

Registering

Provider -
Partner

ServiceProvider

Provider = ServiceProvider + smartProxy
Requestor invokes local calls only;
smartProxy implements Partnership, and
ServiceProvider maintains the proxy registration. E



SemlsmartArlthmometer

Implements Outer

semismart

__________________________

. Administrable | ! Servicer !
_________ A A
Outer <P ------- Partner | - > Partnership
_________________ A
Arythmometer A :
SemismartArythmometer f------' ServiceProvider

smartProxy = new SemismartArithmometer(); E



Smart Proxres
Wrth Exported Servers

Smart
Proxy
Server

Proxy Server

ServiceProvider

Provider = ServiceProvider + smartProxy + server,
server and serverExporter entries defined, and
server is not Partnership type;
smartProxy implements Partnership, and
ServiceProvider maintains the smartProxy registration.

T



SmartArlthmometerInwﬂenuﬂns

Averager

Arythmometer | Partner

SemismartArythmometer
/\

______ 2§:_____J

Averagerimpl ¢

smart

. Remote |

I i

---| Averagerimpl_Stub

uses

A

SmartArythmometer

smartProxy = new SmartArithmometer();

server = new Averagerlmpl();

serverExporter = new JrmpExporter(0);

ServiceProvider




| 'Smart Proxies
.-W|th Partnershlp Servers

Proxy Proxy

Smart Server —

Prv
Proxy

>

ServiceProvider

getPartner()

Provider = ServiceProvider + smartProxy + server;
requestor invokes local calls only;
server and serverExporter entries defined, and
server implements Partnership
smartProxy implements Outer, and
ServiceProvider maintains the smartProxy registration.



~ SmartAr i thmometer Implements
Ave‘r'ager '- Averager Implements
Partnership.- =

~ ] smart smart-partner
| Proxy [T :
220 Arythmometer . Quter | ;omtoeo- {> Averager | > Remote |

A

Averagerimpl ;--1>: Partner

= : A
SemismartArythmometer ; ! ;
: PartnerAveragerimpl '

- PartnerAveragerimpl_Stub ------------ |
A

uses
SmartArythmometer ServiceProvider

smartProxy = new SmartArithmometer();

server = new PartnerAveragerimpl();
serverExporter = new JrmpExporter(0);



Smart PrOX|es
Wlth not Exported Servers

Server . .
Proxy Registering

Provider

>
x
o
S
a
Z
o

—
Admin
Proxy

ServiceProvider

Provider = ServiceProvider + smartProxy + server,
server entry defined; no serverExporter entries defined, and
server is Partnership type;
smartProxy implements Outer, and
ServiceProvider maintains the smartProxy registration. E



RemoteArlthmometer Implements

ArlthmetlcRemote
-not Exported -

_____________________________

Averagerimpl

1

PartnerAveragerimpl

___________

Arythmometer | Outer | | |
? & |
---] PartnerAveragerimpl_Stub |----------:
1 A
. ' uses ) :
SemismartArythmometer ServiceProvider

A

uses

smartProxy = new SemismartArithmometer();
// RMI service type
serverType = “sorcer.arithmetic.RemoteArithmometer”;

// exported with
//serverExporter = new JrmpExporter(0);



~ Proxying with Taskers

tasker

Task
ASKEl Tasker

Proxy

ServiceProvider

f; Tasker Task (ArithmeticTask) implements Tasker

¥ Tasker Method (ArithmeticMethod)

Tasker executes inserted Tasker Method E



~ Proxying with Callers

caller

Il
caller Caller

Proxy

ServiceProvider

:;:CaHerTaskvwﬂ1CallerContext implements Caller

Callers make a context-based system call E



~ Caller Service Context

arameters

O—’URI ®
= O — string

B  x — src/bin/bytecode/call
| <attribute name>[ — array attribute




. SORCERResearch Domain

e Service-Oriented Programming
e Service-Oriented Computing Environment

e Service-Oriented Programming Development
Tools

 Service-Federated Assurance and Security
o Self-Aware Service Federations

« Autonomic Service Federations

« Service Federated Intergrids

« Metacomputing Service-Oriented MAO

« SORCER Theses



http://sorcer.cs.ttu.edu/theses/index.html




Grid interactive service-oriented programming environment

R.M. Kolonay
Air Force Research Laboratory, WPAFB OH

M. Sobolewski
Texas Tech University, Lubbock TX

ABSTRACT: Improvements in distributed computing, and the technologies that enable them, have led to sig-
nificant improvements in middleware functionality and quality, mainly through networking and protocols.
However, the distributed programming style has changed little over the years. Most programs are still written
line per line of code in languages like C, C++, and Java. These conventional programs that can provide grid
operations and grid data can be considered as common grid resources and shared by research and education
communities worldwide. However, there are no relevant programming methodologies to utilize efficiently
these shared service providers as a potentially vast grid repository, except through the manual writing of code.
Realization of the potential of grid computing requires significant improvements in grid programming meth-
odologies. The Grid Interactive Service-Oriented (GISO) methodology is presented that provides a program-
ming environment with development tools that permit interactive (point-and-click), true grid programming,
thus permitting the different elements of programming to be stored, reused, aggregated, and executed with a
level of concurrency and grid-level control strategy not achievable in the conventional programming lan-

guages.

1 INTRODUCTION
From the beginning of networked computing, the
desire has existed to develop protocols and methods
that facilitate the ability of people and automatic
processes across different computers to share infor-
mation and knowledge across heterogeneous sys-
tems. As ARPANET (Postel and Sunshine 1981)
began through the involvement of the NSF (Postel &
Reynolds 1987, Lynch & Rose 1992) to evolve into
the Internet for general use, the steady stream of
ideas became a flood of techniques to submit, con-
trol, and schedule jobs across distributed systems
(Lee 1992). The latest in these ideas is the grid
(Foster 2002, Kesselman et al. 2002, Tuecke et al.
2002, Foster et al. 2001), to be used by a wide vari-
ety of different users in a non-hierarchical manner to
provide access to powerful aggregates of resources
(Foster & Kesselman 1999), Grimshaw, & Wulf
1997). Grids, in the ideal, are intended to be ac-
cessed for computation, data storage and distribu-
tion, and visualization and display, among other ap-
plications without consideration for the specific
nature of the hardware and underlying operating sys-
tems on the resources on which these jobs are car-
ried out (Smarr 1997, NRC 1993).

The reality at present, however, is that grid re-
sources are still very difficult for most users to ac-
cess, and that detailed programming must be carried

out by the user through command line and script
execution to carefully tailor jobs on each end to the
resources on which they will run, or for the data
structure that they will access. This produces frus-
tration on the part of the user, delays in adoption of
grid techniques, and a multiplicity of specialized
“grid-aware” tools that are not, in fact, aware of
each other that defeat the basic purpose of the grid.

The need for further improvements in grid comput-
ing is clear, and requires significant further im-
provements in grid programming technology. By
inspection of the above paradigm, it is clear that in-
cremental improvements in the scripts and submis-
sion techniques will not suffice. A new grid
interactive  service-oriented (GISO) integrated
development environment (IDE) that is based on
evolution of the concepts and lessons learned in the
FIPER project (Sobolewski 2002, Lapinski & Sobo-
lewski 2002), Rohl et al. 2000), a $21.5 million pro-
gram founded by the United States National Institute
of Standards and Technology (NIST), is presented.
It provides an environment that will permit true in-
teractive click-and-drag grid programming through
the manipulation of graphical elements that repre-
sent object-oriented grid resources, thus permitting
the different elements of grid program to store, re-
use, aggregate, and execute with a level of concur-

97



rency and grid-level control strategy not achievable
in the conventional programming languages.

The presented GISO programming approach is
characterized as follows:

1. Service-oriented grid programming is
achieved by applying the object-oriented
concepts directly to the grid as a repository
of network objects (method and context
providers)

2. Service-oriented execution infrastructure
enabling dynamic federations of grid pro-
viders to execute service-oriented pro-
grams

3. Provisioning and deploying grid objects
with an autonomic behavior, enabling grid
objects to be instantiated and managed on
compute resources available through the
grid using an adaptive quality of service
model

4. An open, web-based environment in which
existing proprietary applications and ana-
lytical packages are integrated through
Java-based wrappers that handle grid proc-
esses and data distributed across different
locations.

2 GISO CONCEPTUAL FRAMEWORK

Building on the object-oriented paradigm the ser-
vice-oriented paradigm, in which the objects are dis-
tributed, or more precisely they are network objects
and play some predefined roles. A service provider
IS an object that accepts messages from service re-
questors to execute an item of work — a task. The
task object is a service request — a kind of elemen-
tary grid instruction executed by a service provider.
A service jobber is a specialized service provider
that executes a job — a compound request in terms of
tasks and other jobs. The job object is a service-
oriented program that is dynamically bound to all
relevant and currently available service providers on
the grid. This collection of grid providers dynami-
cally identified by a jobber is called a job federation.
This federation is also called a job space. While this
sounds similar to the object-oriented paradigm, it
really isn’t. In the object-oriented paradigm the ob-
ject space is a program itself; here the job space is
the execution environment for the job itself and the
job is a service-oriented program. This changes the
game completely. In the former case the object space
is a virtual computer, but in the latter case the job
space is the virtual network. This virtual network or
grid federation is the jobs’ execution environment
and the job object is a service-oriented program. In
other words, we apply the object-oriented concepts
directly to the grid in the service-oriented manner.

The GISO framework is built on the top of the
FIPER Technology (Kolonay et al. 2002) middle-
ware. The GISO environment provides the means to
create interactive service-oriented programs and
execute them without writing a line of source code.
Jobs and tasks are created using web-based user in-
terfaces. Also via web-based interfaces the user can
execute and monitor the execution of jobs or tasks.
The jobs and tasks are persisted for later reuse. This
feature allows the user quickly to create new appli-
cations or programs on the fly in terms of existing
tasks and jobs.

In all, GISO development tools provide (see Figure
1) accessibility through web-centric architecture;
self-manageability using federated grids, scalability
via network centricity, and adaptability with the
power of mobile code inserted for execution through

Generic GISO Agent GISO Programming

and
Development Tools
(GISO IDE)

GISO Programs

Domain Services

Figure 1.
service providers.

GISO layered architecture

In this paper the focus is on the GISO program-
ming and developed tools identified in Figure 1.

3 GISO PROGRAMMING AND
DEVELOPMENT TOOLS

The peer-to-peer (P2P) service-oriented framework
presented targets multiparty grid transactions. A col-
lection of all registered service providers (active and
inactive) is called a service grid. A nested transac-
tion is composed of a federation of providers that
come together for completing a transaction. A trans-
action consists of a set of tasks with specific prece-
dence relationships. When performing a nested
transaction, be it either a banking transaction or an
engineering analysis, there are three basic compo-
nents that can be identified. These are; the process
or series of steps that must be executed to complete
the transaction, a specification of the action to be
taken in each step of the process, and the informa-
tion/data associated with each step in the process
(both input and output). Within FIPER the program
objects that represent the components of a nested
transaction are FiperExertions (FiperJob and Fiper-
Task), FiperMethod, and FiperContext. The basic
work unit within the FIPER programming environ-
ment is an exertion. Each exertion contains a Fiper-
Method and a FiperContext object. The Fiper-

98



Method specifies what action that is to be taken in a
given step in the process.  The FiperContext con-
tains all the data the FiperMetod operates on or gen-
erates. The FiperContext also holds attributes for the
data much like MIME types that identify the appli-
cation(s) the data

is associated with, its format (text, binary etc.), and
other user defined modifiers. A FiperJob defines the
process. It consists of one or more exertions, the
execution strategy for the process (sequential, paral-
lel, looping and conditionals), and the map-
ping/relationship of data between exertions. The hi-
erarchy of these classes is shown in Figure 2. It is
worth nothing that recursion of FiperJobs is sup-
ported. That is any of the FiperTasks within a Fiper
Job can be a FiperJob itself.

The relationship between the FIPER program ob-
jects and the general description of a nested transac-
tion is as follows; a FiperJob represents the process,
the FiperMethod represents the action, and a Fiper-
Context represents the data/information. The Fiper-
Task acts as a container holding the FiperMethod
and FiperContext creating the basic unit of work that
IS passed between various service providers.

FiperJob

Exertion
FiperMethod

/ Airfoil

FiperContext

Exertion
FiperMethod

Platform

FiperContext

-— Shank
FiperMethod

Dovetail
ControlContext e

Figure 2.
Program Object Hierarchy

Figure 3.
Turbine Blade Geometry

As an example of a nested transaction in the
FIPER Environment consider the following engi-
neering application, the mechanical analysis of a gas
turbine component. The component, a turbine blade
is shown in Figure 3. The process of performing a
mechanical analysis consists of the following ac-
tions; generate solid geometry, descretize the ge-
ometry into a finite element model (FEM), apply
boundary conditions to FEM, apply materials to
FEM, and solve the FEM for structural stresses. The
necessary input data for each action and the resulting
output data are shown in Figure 4. Also depicted in
Figure 4 is the association between the three compo-
nents of a nested transaction and the FIPER program
objects.

To create the necessary program objects (Fiper-
Context, FiperMethod, FiperTask, and FiperJob) for
a nested transaction in the FIPER environment a col-
lection of web browser user agents has been devel-
oped. It is not necessary to use these user agents
for the development and execution of a FiperJob.
Any standalone application can perform program-
matically the same steps to create the necessary ob-

Process

Turbine Analysis

Actions Data

AutoShank Seed Geometry Part,

AutoShank Parameters
Generate Soid Shank

(AutoShank, Autoshank)
AutoShank Solid G eometry Part

Descretizaion Strategy
Distretize Solid G eometry Into F EM
{ICEM, Mesh)
Turbine Blade FEM

Boundary Condiion (BC) Model
Apply Boundary Condiions to FEM
(SIESTA, Appty BCs)
Turhine Blade FEM wi BCs

Materials Model

Apply Materials to FEM

(SESTann M) Tuhine Blade FEK w/ BCs &

Materials

Mechanical Solution Strategy
Solve FEM for Mechanical Stresses

I I L) Turhine Bladk FE M Element &

Noda Sresses

jects and act as a service requestor to submit the
Figure 4. Process for the Mechanical Analysis of
a Turbine Blade

A} FIPER Launcher - Mickasalt Internet Explover

=18 =l

| Fle Edt View Fawetss Took Hel |“
| ek ~ & < @D [5] A} | DSerch [iFeverkes (Bristory | e b B8] - [ 2 |
| Adress [42] batp: ifiposciov.crd. o coneZEa8 Tiper 1 pes el =] @ ||
W T |

Mame; |[C4D Hads!

Description: |Tursne Blade Pararnetic GAD Model Dala =

Meonitor
N::n:ww- =

» Bockmarks Domain: [cee <]

* Personal .

¥ Context FiperContext Sub Demaln: [fewomarics =
Access Class: [1-punic =

* Task FIPERTaszk
* Job FIPERJcb
" EsportControl  Good Unkil oaczér003 | @] ACL

Help
* Utilitles
» Davelopment
Scope
= Frivate  Systom © Fublc

Java Applet 'Window

. |
[# Dutcome in Browser
soborigent go.on BRIRSAE

&) oone
Figure 5. FIPER Launcher and New Context Dia-
logue

FiperJob for execution. The following sections il-
lustrate the usage of the web user agents to create
and execute the necessary FIPER program objects to
perform the mechanical analysis of the turbine
blade. Figure 5 shows the Fiper launcher page once
logged into the Fiper environment. Here it can be

{7 Lozl intraret

99



seen that there are separate selections for the above
described program objects, FiperContext, FiperTask,
and FiperJob. The FiperMethod object is created
within the FiperTask menu selection.

3.1 Context Editor

The Context Editor allows the end-user to specify
the data or references to the data along with attrib-
utes associated with the data. \When creating a new
context the end-user is presented with the dialog that
requires the following fields. The Name and De-
scription fields are user defined, the Domain and
Subdomain are selected from a drop down menu.
The Access field is a company internal access classi-
fication and the Export Control box indicates if the
data is export controlled. The ACL button produces
an Access Control List (ACL) dialogue that allows
the end-user to assign read, write, and execute per-
missions on this program object based on userid or
role. Once the end-user completes the New Context
Dialogue and selects OK the Context Editor then
appears. Figure 6 shows the Context Editor along
with the context for the first action or task in the
Turbine Mechanical Analysis Job represented in

Context Mame Domain  Subdomain

D

CAD Model, CAE, Solid Mechanics

E-  CADModel

Context Node
E AutaShank OUtpit (Solid Shank) 4=

L & autoShank Output:Empty{ug,binary,solid.tags] 4 Data Hode
Autoshank Param Input
L & putoshank Parameter Nodefautoshank text 1

Autoshank Seed Part
L & autoshank Seed Node[ugbinary,autoshank.seed]

Delete | Add Context Node | Add Data Nade | [ii

Figure 4.

Figure 6 also illustrates that the FiperContext is a
tree structure with Context Nodes and Data Nodes.
The Data Nodes are further identified as either input
">" or output "<". The editor allows the end-user
the ability to create, edit, or delete Context Nodes
and Data Nodes in the FiperContext.

3.2 FiperTask Editor

From the Fiper launcher in Figure 5 the end-user se-
Figure 6. FiperContext Editor

lects Task, New, and completes the New Task Dia-
log to gain access to the Task Editor shown .
Recalling that the FiperTask is the fundamental
building block or work unit in the FIPER Environ-
ment which contains the action and data for a nested
transaction (reference Figure 4), the Methods field
represents the action and the Context field repre-
sents the data. To view/edit more detail on theses
fields the end user selects “Update Content” which
produces an editor (see Figure 7). Figure 7 shows
the definition of the FiperMethod and the Context

10 Features —* control Gontext | Jon Context | nsen Task | insertJo |

that is used for the selected task, Generate Solid
Shank. The fields Interface, Command, Provider,
and Method Type define the Method. The Inter-
face and the Provider are used as the attributes to lo-
cate a service within the environment with the cur-
rent implementation. The context for this task is the
CAD Model Context presented in Figure 6. Once all
the actions/FiperTasks have been defined for a given
process/FiperJob the FiperJob itself can then be con-
structed.

3.3 FiperJob Editor

Command Task View

Generate Solid Shank +—_ Tack Name

FiperMethod Definition y -
p Contexts CAD Model, Task Domain, Task Sub Domain
Matfiod
Intertace: fiperprovier autoshani ¢ & B
" il AutoShank Oupn (Sokd Shark)
Command: autoshank 3 L,Mmmwpﬁmmuwmwmm
Autoshank Param Input
LT - & hutoshank Parametar Nodsfautoshank text jaranieter]
Providar: ALTOSHANK 4 ey
- CunTte;‘tfur #utashank Seed Part
Method Type: Frocess P L L # nutashai Seed Node{ ipbinary,auoshank. saed]

Fortal URL | iobile Agent MM

edhods:

Interface

1
el v ishcte Atach Confext

Delete | Add Contestiode | Add Datahiode | Update Data Node

Conted

o] ]

Jarva Al Windawy

Figure 7. FiperTask, FiperMethod and FiperContext Edi-
tor

Figure 8 illustrates the creation of the FiperJob
represented in Figure 4. It contains all the tasks,
Generate Solid Shank, Mesh Shank, Apply Bound-
ary Conditions, Apply Materials, and Perform Stress
Analysis.

Figure 8. FiperJob Editor

The Job Editor lists all FiperTasks associated
with the job along with the FiperTask’s Name and
FiperMethod Attribute information (Provider Name
and requested provider’s type - interface). The
Task and Job Editor features allow the end user to
add additional FiperTasks or FiperJobs by either
browsing existing program objects or creating new

Domain Subdomain  Job Name

CAF, Solid Mechanics, Turbine Analysis
Name Methods
— Generate Solid Shank  {AUTOSHANK, fiper.provider.autoshank.AutoshankProto

{

Job — Mesh Shank {ICEM, fiperprovider icem lcemMeshProtocal, icemMest
= {
{
{

Tasks — Apply Boundary Condition {SIESTA, fiper. provider.siesta SiestaBoundatyConditionf

— Apply Materials SIESTA, fiper.provider.siesta.SiestaMaterialsProviderPn
— Perform Stress Analysis {ANSYS, fiper provider.ansys.AnsysProtocol, executeAns

Create a new Jobh Create anew Task
and add to Job and add to Job

< [ il

|

Feun oo |

Task Editor
Features

Job Editor

4
| Addden | AddTaSKr | \

Browse & Add Task to Jo Browse & Add Job to Job



objects on the fly. The Job Editor features also en-
able the specification of the Control Context and the
JobContext. The ControlContext specifies the flow
and method of execution of the FiperJob. The final
step before a FiperJob can be executed is to define
the flow of data between tasks in the job. This is
done using the JobContext dialog, which can be in-
voked from the Job Editor features on the Job Editor
Dialog in Figure 8.

The FiperJob Context dialog for the Turbine
Analysis Job is shown in Figure 9. Here the Job is
shown with each task and the context for each task
in a hierarchical tree structure. The data flow from
one task to the other is defined by dragging one
Fiper DataNode onto another Fiper DataNode. In
Figure 16 this has occurred by dragging the Auto-
Shank Output Solid Shank Node contained in Task0
onto the Solid Shank unnamed Fiper DataNode in
Taskl.

Turbine Analysis“

Joh ———® = = job.Turbine Analysis
Task 0 ———W 5+ — task[0]-Generate Solic Shank
& contest0]-CAD Model
L Autoshank Param Input
Contextd Le Nod T
= AutoShatik Output (Solii Shank)
L % Shank Solid Empty { ughinarysolid tags }
5 Autoshank Seed Part
Le P

.crd.ge.comfiper

Task1— 5 — taski1) Mesh Shank
& context{0]-Discrete Model
/ -3 Llcem Replay
# play Node cril. ineBl

Context 1 =+ Solid Shank [Oulput Trom Autoshank)

Ls Empty { joh-Turbine Analysistask]0]-Generate Solid Shankicontext[0]-CAD Model/AutoSha
=+ Shank Tagued UIF (ICEM OUTPUT)

L # Shank Tagged UIF:Empty { siestadextmesh.tag.uif }
=+ — task]2]-Apply Bounidary Condition

[ context{0]-Turbine Blade Mechanical Anabysis
2 — taskl3]-Anply Materials
I & context[0]- Turbine Blade Mechanical Anabysis

= taskl4]-Perform Stress Analysls

& contexti0]-Results

dl I |

_[ Parameter x| | Fropedias | FiperTyne rSa.tPaI;rrLelarsF na
i)!i[ Cancel

Drag and Drop shows that this
Input will come from taski,
AutoShank Output Node

[Jva Applet window

Figure 9. Fiper JobContext Dialog

Once the data flow has been defined in the JobCon-
text the FiperJob is now ready for execution. To
submit the job to the Fiper Environment the Run Job
button is selected in the Job Editor (Figure 8). A
typical engineering analysis or design job could take
anywhere from a few hours up to several days or
even weeks. With jobs running this long it is critical
that the end-user have access to the status of the job
and control over the job as it executes. This is the
function of the Job Monitor.

3.4 FiperJob Monitor

The most critical capability that GISO programming
will need from an end-users perspective is the ability

to interact with the process/FiperJob once it has been
submitted to the environment. Using a GISO IDE
will require a cultural change within the end-user
community. Today's state of practice is that typical
designers and analysts execute single standalone ap-
plications either on their desktop or submit the runs
to a major shared resource (MSR) computing envi-
ronment. In either case the end-user is executing ap-
plications individually and if a failure occurs they
know at least which application the failure occurred
within. Also, when running locally or in a MSR the
end-user usually has some or all control over the
running application and can closely monitor the pro-
gress of the execution by monitoring log files and or
output files from the application. In the GISO IDE
the end-user is now combining many application to
perform a nested transaction and submitting the exe-
cution of the nested transaction to the network,
which could easily take days or weeks to complete.
In the GISO IDE the end-user may have no idea
where the execution is taking place and worse will
have no feedback as to the state of progress of the
process. In the GISO IDE the end-user surrenders all
control to the environment, a precarious proposition
for a designer who is accustomed to having com-
plete control of the applications they are running.
With these facts in mind a few essential functional-
ities are identified for GISO programming that are
necessary for end-user to accept such a working en-
vironment. The end-user must be able to monitor
the progress of the process and obtain intermediate
results from a given task. The end-user must be able
to control the process once it is submitted to the en-
vironment by stopping, suspending, or terminating
the process. For a suspended GISO program the end-
user must be able to edit not only the data within the
process but also the process itself by adding or delet-
ing tasks. After any edits to the data or process the
end-user must be able to resume the process from
any task within the process not necessarily the task
the process was suspended at. If the process fails the
end-user must obtain meaningful information that
specifies where the failure occurred and what action
needs to be taken to correct the problem. This last
requirement puts a significant burden on the service
provider developers to properly trap exceptions and
translate them into meaningful information for the
end-user.

In the FIPER Environment the monitoring/client
process interaction is done using the Job Monitor.
Figure 10 shows the Turbine Analysis Job running
in the Job Monitor. The Job Monitor can be viewed
as an "interactive debugger for program objects or
services on the network”. The Job Monitor shows
the progress of the process (green complete,
green/yellow running, red failed, yellow suspended).
It also displays intermediate information from a task
(by viewing the job context) if the provider returns
such information. The client is also able to stop,

101



suspend, step and resume a running job. In addition,
for a given suspended or completed job, the client
has access to a drop down menu that allows full edit
capability of the data in the job or the job/process it-
self. Data can be changed, tasks can be ed-
ited/added/deleted and the job resumed from any
task.

Jobs Job Turbine Anatysis FAILED EETE
T | Add Task,

Nane [ M|
lF Generale Solld Ghank  (AUTOSHANK, fiper provider.auioshank Auios P—
Updabs Job.
I wesh shank {ICEM, i provider o lcamMeshProtocsl| e v
- Apply Boundary Condition{SIESTA, fiper provider siesta SiestaBoundan|  Save kb
I Apphy Materials {EIESTA, e provider shesta Sesfaaterels] o0 o
™ Perfarm Stress Analysis (ANSYS, fperprovider ansys ANsySProtos, | e s
Full Job Edit Capability ——»
Sart kb
4 o Pamelb
T [ e
info| | cortent| Refiesh | | Noffiations 03

Refresh Jobs | B Job

Job Execution =
Controls |

Figure 10. FiperJob Monitor

b | Fauze ol | Resumne Job | Siep Job | Job Cnnten|

4 CONCLUDING REMARKS

In the GISO approach object-oriented concepts are
applied to the network and grid-oriented programs.
A job is a service-oriented program executed in a
federated service-oriented environment across mul-
tiple virtual organizations. Jobs are created using
friendly, interactive web-based graphical interfaces.
Jini connection technology from Sun Microsystems
enables federated, platform independent, real world
grids. It allows us to create GISO programs that
process a whole aircraft engine as a virtual object-
oriented product control structure that can be ma-
nipulated by multidisciplinary teams as network-
centric, active, evolving product. New shared pro-
grams and engineering applications can be assem-
bled as needed on the fly by integrating new capa-
bilities into existing workflows, systems, devices
and applications. The presented web-centric GISO
IDE reduces the costs of solving business problems
as well as of establishing and maintaining online
business relationships. Services are provided by
shared low cost, easy to develop service providers
and are integrated into the core business of an enter-
prise. An experimental version of presented ap-
proach was successfully deployed at GE Aircraft
Engines.

REFERENCES

Foster, I. & Kesselman, C. eds.1999. “The Grid:
Blueprint for a New Computing Infrastructure,” Mor-
gan Kaufmann Publishers, San Francisco CA.

Foster, 1., C. Kesselman, C., Tuecke, S. 2001. The
Anatomy of the Grid: Enabling Scalable Virtual Or-
ganizations.. International J. Supercomputer Applica-
tions, 15(3), 2001. Defines Grid computing and the
associated research field, proposes a Grid architecture,
and discusses the relationships between Grid tech-
nologies and other contemporary technologies.

Foster, I. & Kesseman, C. 2002. The Physiology of the
Grid: An Open Grid Services Architecture for Distrib-
uted Systems Integration. Open Grid Service Infra-
structure WG, Global Grid Forum, June 22, 2002. (ex-
tended version of Grid Services for Distributed
System Integration).

Grimshaw, A. S. & Wulf W. A. 1997. “The Legion vi-
sion of a worldwide virtual computer”, Communica-
tions of the ACM, 40(1), 39-45.

Hafner, K. & Lyon, M. 1996. “Where Wizards Stay Up
Late,” (a history of Internet development), Simon and
Schuster, New York.

Kolonay, R.M., Sobolewski M., Tappeta, R., Para-
dis, M., Burton, S. 2002. Network-Centric
MAO Environment, The Society for Modeling
and Simulation International, 2002 Westrn Multi-
conference, San Antonio, Texas, Jan 27-31.

Lapinski M. & Sobolewski, M. 2002. “Managing Notifi-
cations in a Federated S2S Environment,” Interna-
tional Journal of Concurrent Engineering: Research &
Applications, December.

Lee, J. ed. 1992 “Time-Sharing and Interactive Comput-
ing at MIT,” IEEE Annals of the History of Comput-
ing 14:1

Lynch, D.L. & Rose, M.T. 1992. “Internet System hand-
book,” Addison-Wesley, reading, MA.

National Research Council 1993. Reports relevant to
early grid research include the following: “National
Collaboratories: Applying Information Technology
for Scientific Research,” National Academy Press,
Washington D.C.

Postel, J., Sunshine, C. & Cohen, D. 1981. “The ARPA
Internet Protocol,” Computer Networks 5:261-271.
Postel, J. & Reynolds, J. 1987. “Request for Comments
Reference Guide (RFC1000),” Internet Engineering

Task Force.

Smarr L.1997. “Computational infrastructure: Toward the
21st century,” Special issue on plans for a National
Technology Grid, Communications of the ACM 40,
11

Sobolewski, M. 2002. FIPER: The Federated S2S
Environment, JavaOne, Sun’s 2002 Worldwide Java
Developer Conference, San Francisco, 2002.

Rohl P. J., Kolonay, R.M., Irani, R.K., Sobolewski, M.,
Kao, K. 200. “A Federated Intelligent Product Envi-
ronment, AIAA-2000-4902, 8th AIAA [USAF/
NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Long Beach, CA, Sep-
tember 6-8.

Tuecke S., Czajkowski, Foster, ., Frey,J., Gra-
ham, S., Kesselman, C. 2002. Grid Service Specifi-
cation. Open Grid Service Infrastructure WG, Global
Grid Forum, Draft 2.

102



AlAA-2000-4902

A FEDERATED INTELLIGENT PRODUCT ENVIRONMENT

Peter J. Rdhl*, Raymond M. Kolonay', Rohinton K. Irani, Michael Sobolewski, Kevin Kao
General Electric Corporate Research and Devel opment
Schenectady, NY 12301

Michael W. Bailey'
GE Aircraft Engines
Cincinnati, OH 45215

Abstract

The concept of a federation of distributed devices
on a network which enter the federation through a
process of "discover" and "join", by which they register
with a service request broker and publish the services
which they perform is gplied to engineering software
tools. A highly flexible computer architecture is
developed, leveraging emerging web technologies like
Sun Microsystems' Jini™, RMI, JavaSpaces, in which
engineering software tools like CAD, CAE, PDM,
optimization, cost modeling, etc. act as distributed
service providers and service requestors. The individual
services communicate via so-called context models,
which are abstractions of the master model data of a
particular product. A human user interacts with the
framework through athin client like a web browser from
anywhere in the world, where proper security measures
to prevent unauthorized access to proprietary data is
maintained. The paradigm of the CAD Master Model is
extended with the introduction of the Intelligent Master
Model (IMM), which, in addition to the what, captures
the why and how of a design through the use of
knowledge-based engineering tools. An initial example,
the mechanical analysis of a turbine engine blade, is
implemented.

Introduction

Turbine engine development is a highly coupled
multidisciplinary process. In a market with ever
increasing demands in terms of life cycle cost,
environmental aspects (noise, emissions, and fuel
consumption), and performance, the availability of
accurate analytical tools during the design processis a
given and ceases to be a discriminator between the
various competitors™? It is, therefore, the application of
these tools and their automated interaction in a robust

* Member AIAA

T Senior Member, AIAA

Copyright © 2000 General Electric Company.
Published by American Institute of Aeronautics and
Astronautics, Inc., with permission.

computational environment, which may decide over
success or failure of a specific project through reduction
of design cycle time and avoidance of costly rework
because of availability of high-fidelity information earlier
in the design process. At the same time, especialy in a
multi-national company, design increasingly takes place
at spatially distributed locations, potentially all over the
world, where all participants in the design process need
constant real-time access to all relevant up-to-date
product information. In light of these challenges, GE has
teamed with Engineous Software, BFGoodrich, Parker
Hannifin, Ohio Aerospace Institute, and Ohio and
Stanford Universites in a four-year effort to develop a
“Federated Intelligent Product EnviRonment” (FIPER)
under the sponsorship of the National Institute for
Sandards and Technology-Advanced Technology
Program (NIST-ATP™), see Figure 1. FIPER strives to
“drastically reduce design cycle time, and time-to-market
by intelligently automating elements of the design
process in a linked, associative environment, thereby
providing true concurrency between design and
manufacturing. This will enable distributed design of
robust and optimized products within an advanced
integrated web-based environment”?.

Thelntelligent Master Model

FIPER draws extensively on GE Aircraft Engines
Common Geometry Strategy, the Linked Model
Environment (LME) and top-down Product Control
Structure (PCS)* (Figure 2) using Unigraphics® (UG)
WAVE functionality, but tries to extend these efforts
with the capture of designer’s knowledge in Knowledge
Based Engineering (KBE) systems to create the
“Intelligent Master Model” (IMM). In the following
paragraphs, we will give a brief overview over the

American Institute of Aeronautics and Astronautics



Faur- .5 Milllon Pregram

Fedearatad Ir Product Ervi nt (FIPER]

Intelligent Master Modeling
(' A Product - Linkad
% :. . conrol Vcddl (=]
by ; . OAI Stuciurs Envdronment i

Technology Servicas ~ Ditusicn
» Knowsdge-based - Robust design
engnasting = Cost madeling T
Luldisciplinary « Sirulaton engne Demaonstrations

opdrmization Produchility GE Alreraft Engines
HPe1sadadn " DSnio - dgma

Engineous
‘ Sullware

Stantord Nuwersity

Deliverables

lodaling sottwars
sierm

:
:
B

et Enging
BF Goadrich
Naceila

Parker'Hannifin
FLel NDzzie

=l

= Reducad fme-o-market
« Reducad design cyds ime
= Sy sigma quality

* Cpimal usts and e Early Adopters
System Innovations

~ Fedsraled product emroament

« idligen masier modal

- Wulidisciplinary design opimization
~ Robus! dssim snvronment T
= CAD numpgwur_.- AledSignal

Ohie University

Engineuus
‘ Software

Common Geometry Strategy and the terms introduced

above.
Figure 1. The FIPER Project
.'-‘; _ ‘ Large Sy=iam Level
I
Ajremit Ergine
e | e
Subryeiom Lowd
I ! | | l
it | e ot ety | D;E,T&: | Combusior i i F;g::w P;vlig;:'m |
| |
' | E=IE=C)
Figure 2: Product Control Structure
GEAE Common Geometry Strategy The GEAE Common Geometry initiative started four

years ago as a logical extension to Productivity Tools
which had been under development since the early

2
American Institute of Aeronautics and Astronautics



nineties. It was realized that merely automating what
was essentialy a serial process had limitations and a
fundamental paradigm shift was required. Bottomup
design may be optimal from a part perspective but does
not necessarily lead to optimal system design. As
initially conceived, the GEAE Common Geometry
strategy objective was to make a single geometric
representation common to all product creation activities
from product concept through preliminary and detail
design to manufacturing and services. However, to fully
exploit the concept, knowledge has to be fused with
feature-based parametric CAD (Figure 3), an
environment linking CAD to engineering analysis, the
LME (Figure 4) and a PCS to render it an Intelligent
Master Model. This permits a top-down approach to
design which permits system level requirementsto flow
down to drive the design. The IMM is a mgor
enhancement to the master model concept, elevating the
functionality of today’s CAD systemsto anew level.

Traimal — T,
Sirucural —
Fld == "
Boundary Dorndfacn .« 1 d
Paramiirs — Foaloes )
s phing. Srningy
Cietaling Deaign

Figure 3: The Master Model Supports Feature-Based
Modeling for Design and Manufacturing

Simulation Cube Product Data Management
PDW Engine (POM) Syslem ’
System Assembly - Keeps rack of madels, resuks,
I—I—I and revisions
;) Assembly:
Assembly + Agsemibly of MM
I Eempanarl:
A | I I I I I + Conswained using mating
T, ' Stg.1 | | Sig. 2 E:I sl:: candifions
| Disk Disk
Master Model Parts:
- 3D
mduci defnition detal
Disk/Gaal j 1SD£IH +  Fully paramatric
Analysis ﬁ"
Contact Contexi
= Confext Models:
*  Assambly contaming diek a5
Companant
Stg. 1 Disk = Al context models address
Disk ™ Caost Conlext the same geometry
Cost = Assomatwe geomedry
Model preparalion for analysis
Fatums Analysis Modals:
- Poe * Gentet motels Imptad o
appropria ]
'“‘#;“;;;J:“ . ng?hage use of mode
{optimization el i

Figure 4: Linked Model Environment

The PCS alows top-down control of the design. It
enables the lead engineer to lay out the overall system
configuration and control changes in a top-down
fashion. It facilitates what-if analysis at the conceptual,
preliminary, and detailed design levels by alowing the
designer to make parametric changes in the overal
system layout and space allocation to evaluate one
configuration versus another. Common Geometry refers
to the notion that all disciplines involved in the design

3

and manufacturing process have access to and use the
same (evolving) geometric representation of the
product. Realizing that different disciplinary engineering
design and analysis tools require geometry at different
levels of detail, the concept of a “context model” was
introduced. The context model represents a disciplinary
context -specific, yet fully associative, “view” of the
master model geometry. Feature suppression is
extensively used in context models. For example, a bolt

American Institute of Aeronautics and Astronautics



hole, which is important for the stress analyst, may not
be required for a thermal analysis and therefore be
suppressed in the thermal context model. Another
context or “view” of the bolt hole are the manufacturing
processes and cost to produce it. These context models
are then linked to the respective disciplinary analysis
tools, e.g. FEA, CFD, cost, producihility, etc, inthe LME
, see Figure 4.

System Level Layout with Integrated Design (SOLID)

The pilot projects to evaluate IMM functionality
were described in Reference 4. To demonstrate the top-
down design approach, a compressor was built using
the feature based parametric CAD and WAVE
functionality in Unigraphics. The following year this
was extended to a full core engine comprising a
compressor, combustor and high pressure turbine. The
resulting model was called SOLID (System Level Layout
with Integrated Design). Several lessons were |earned
during the pilot which were incorporated not only in the
SOLID core but in Unigraphics enhanced functionality.
The SOLID coreisshownin Figure5.

Figure 5: Complete Engine Core Model

Knowledge Based Engineering

KBE is a technology that allows an engineer to
create a product model based on rules that capture the
methodology used to design, configure, and assemble
products. KBE facilitates the capture of the intent
behind the product design by representing the why and
how, in addition to the what of a design, see Figure 6.
The knowledge captured could include everything from
high-level, non-geometric engineering rules,
manufacturing  constraints,  dependencies  and
relationships to parametric geometry definition. The
geometric description is only one view of the
information associated with the total product model.

Links can also be established to standard parts
catalogs, material databases, analysis tools, empirical
knowledge, and design handbooks. Effectively, one can
house, and ultimately archive, corporate design
practices as well as design and manufacturing
engineers’ expertise which can then be used by non-
experts in a consistent manner to produce correct-first-
time designs. Once the product model has been created,
it can be used to rapidly create a new instance of the
design when the product specifications change. In
addition, various outputs, including analysis context
models, etc. would be automatically created.

Figure 6: Knowledge-Based Engineering Extends the
Master Model Concept

In the FIPER environment KBE is being used to
intelligently modify the PCS, drive changes to
parameters that define cross-sections and features and
thereby intelligently scale a complete aircraft engine or
components of the engine. To accomplish this, the
approach being used within the Unigraphics system is
to imbed the KBE language Intent™® to drive
generative and variational design. While variational
design creates a new design by intelligently scaling an
existing design, generative design creates a new design
based on a set of rules without the use of existing
geometry. Rules management is also being addressed
by incorporating them in a Product Data Management
(PDM) system so that they are well documented,
categorized and easily searchable.

Another use of KBE that is being pursued is for the
formulation and execution of the MultiDisciplinary
Optimization (MDQO) problem. Here knowledge will be
used to guide the decomposition of the overall
optimization problem into smaller, more manageable,
sub-problems, and to integrate the solutions of the sub-
problemsinto an overall system level design.

The initial approach to KBE was the encapsulation
of rules about the product in the form of the XESS
spreadsheet functionality contained within Unigraphics.
These spreadsheets are linked to the geometry such
that design rules and practices are parameterized to

American Institute of Aeronautics and Astronautics



drive geometry. In addition exernal analysis codes such
as those used for engine disk design can be executed.
Thus an increase in airflow through the compressor
would initiate an aerodynamic resizing of blades and
vanes, resulting in a blade and platform resizing
combined with disk redesign. Upon initiation of the
UG/WAVE update, the whole compressor would rubber
band to accommodate the increased airflow.

It was realized there that were limitations to the
utilization of spreadsheets to capture the knowledge
required to accomplish intelligent scaling of the engine
core. GEAE evaluated several KBE packages to find the
desired functionality. In the meantime Unigraphics
Solutions entered into an agreement with Heide
Corporation to integrate their Intent™ software into
Unigraphics as"UG Knowledge Fusion". The reason for
this is that for complex products the number of rules
gets large very quickly and consequently difficult to
manage. There are two types of KBE rules, Generative
and Checking. Generative rules would for example
change the nunber of stages in the compressor from 9
to 7 stages whereas the Checking rules would check
that the disk bore stress and burst margin conform to
design practices and run the appropriate codes to
validate this requirement.

FIPER Architecture

Fundamental to the FIPER project is its web-based
distributed software architecture. FIPER federates
processes, tools, methods, documents, or knowledge
bases and data into a dynamic, distributed Intelligent
Master Model with its underlying services. Some
services are generic (for example optimization
algorithms, or knowledge-based systems), and thus, are
not associated with a particular IMM context but are
globaly available within FIPER. Members of a
federation agree on basic notions of administration,
identification, and policy. The resulting federation
provides the simplicity of access, ease of administration
and support for sharing services provided by a large
monolithic system, while retaining the flexibility, and
control provided by a plug-and-play environment.

FIPER supports three centricities and deploys three
neutralities. FIPER’s three centricities are network
centricity, service centricity, and web centricity. FIPER
is composed of various service providers; any of these
can come and go and the system can respond to
changes in its environment in a reliable way (network
centricity). The services connected to FIPER discover
each other and cooperate in a distributed environment
(service centricity). Users can request to use multiple
services and check the status of their submissions in

different locations through HTTP portal with thin web
clients (web centricity).

The three neutralities FIPER deploys are location
neutrality, protocol neutrality, and implementation
neutrality, Figure 7. Services need not be co-located;
they are discovered and joined, which simplifies
management of the entire software environment
(location neutrality). In addition, the way clients
communicate with a service provider is not essential. A
service proxy can use any protocol, for example, Remote
Method Invocation (RMI), 11OP or even a plain socket
communication. Clients are not aware of what protocols
are used and where the implementations reside (protocol
neutrality). Furthermore, the clients who use the FIPER
services do not need to know what languages are used
and how a service is implemented (implementation
neutrality). In al, FIPER provides accessibility through
web centric architecture, self-manageability using
federated services, scalability via network centricity,
and adaptability with the power of plugging-and-
playing capability.

FIPER
Federation of Services

|

location
neutrality)
discover _ register
andjoin - “.and publish
Client protocol @ Psrer".ige
ovider
(protocol
neutrality) (implementation
neutrality)

Figure 7: FIPER's Three Neutralities

FIPER' s federated architecture is based on Java and
Sun’s emerging Jini™ software system (Figure 8). The
overall goal isto turn the network into a flexible, easily
administered tool on which resources can be found by
humans or computational clients. The Jini™ system
consists of:

1. A set of components that provides the infrastructure
for federating servicesin adistributed environment

2. A programming model that supports the production
of reliable distributed environment

3. The functionality to register services and resolve
service requests

American Institute of Aeronautics and Astronautics



Java and the emerging Jini™ technology are at the
heart of this technology. Services are found and
resolved through a “lookup” service (Figure 8). New
services are added to the look-up service by a process
called discovery and join. When plugged into the
environment, the service first uses a discovery protocol
to locate an appropriate lookup service and then joins,
or registers, with the lookup service. Services can
communicate with any other generic service in the entire
federated product space. In the case of FIPER, thisis
achieved by an IMM context, user, or service posting a
need which is resolved by alookup service. The lookup
service connects the requesting entity to an entity that
has the functionality to supply the service. Figure 8
illustrates thisin a given space with four services; CAD,
KBE, Optimization and Robust Design, and the
Simulation Engine. Each service provider must be Java
wrapped in order to join the federation, but it can have
its own framework of execution. A service could be
based on RMI, CORBA, Java Native Interface (INI),

« (

Advantages

= Dyramic
Ermiranment

* Pheg-and-play
inleroparabildy

= Extensible

= Maintanabia

< X Q x
C) JlnlLuukup

Bervice

Links reque-sl-ar with
sarvica provider

Communication Fwough serice
profoco such as Java RAMI™

Microsoft COM/DCOM, even simple socket

connection.

or

Clients define and submit their jobs via web
browsers. A FIPER service manager then dispatches
each job into tasks. These tasks can be executed
sequentially, in paralel, or combination of both in the
FIPER environment, depending on their input/output
data dependency. If a parallel strategy is chosen, tasks
are dropped into spaces (by using JavaSpaces, for
example) for distributed computation. Each service
provider agent, if present, picks up appropriate tasks
and generates results back to the spaces. On the other
hand, FIPER provides a service catalog for direct task
execution. The catalog discovers al FIPER services and
maintains a list of currently active ones. Appropriate
registered service providers will then be selected to
perform tasks. Finally, a service manager collects all the
outputs and informs the FIPER notification manager
about the outcome. The results are presented to the
clients when they request.

., '--h_ —

-;

Figure 8: Web-Based FIPER Architecture

This environment promotes concurrency and
ensures that current and consistent information is
employed throughout the distributed system. The
dynamic nature of this approach allows services to be
added (for example, support for an additional CAD
system) or withdrawn from a federation at any time. The
federated environment enables transparent
communication between the globally distributed IMM
contexts and services, thus providing the means to
solve distributed complex tasks such as intelligent
scaling of entire systems (e.g., an aircraft engine) and
MDO problems.

Engineering Services

6

The basic premise of FIPER is that everything is on
the network and everything on the network is viewed as
a service. With this in mind FIPER can contain any
“service” needed to support a product throughout its
life cycle. For example, services for customer
requirements, design, manufacture, sales, distribution,
maintenance, and disposal can all be supported by
FIPER. For the purpose of the NIST project FIPER will
focus on the services necessary for the design and
manufacture of a product. Specifically the domains of
Design for Six Sigma (DFSS)/MDO, CADI/KBE,
Engineering Analysis &  Sensitivities, Pre/Post
processing, and Data Repositories will be addressed.

American Institute of Aeronautics and Astronautics



This isillustrated in Figure 9. For an initial application
the services required for the mechanical analysis of an
aircraft turbine component will be developed. These
services consist of associative parametric solid
geometry modeling, meshing, boundary/initial condition

design environment. Tools for these different services
are selected based on many varying criteria ranging
from “best in class’ to corporate mandate. Figure 10
shows the relationship of these services. Although a
very simple case, it can be used to demonstrate the

application, and analysis solution. Although all of these FIPER “service” paradigm in a distributed
services could potentially be provided by one  heterogeneous computing environment.
monolithic system, this is rarely the case in today’s
DFSS/MDO CAD/KBE Engineering Analysis Pre/Post Processing
r- > System Level / PD Level - _>|
1 In-house - -==4 _>I
1 : 1
FTTTTTToTTTTooe > '
: [ — : 1
:_ 7 MDO __:__l: :>.I _>| ] :__ > Mechanical Analysis |~ . >| :
: -1 B '>I ' ) | ANSYS, NASTRAN | = — = = — 1> Meshing = ANSYS, ICEMCFD, >
: : : : r _I.> CAD = UG, in-house | : |-> SIESTA, PATRAN :
! ! [ 1 !
BN L AR ! ) :
1 | | 1 ]
: : \y | 11 : : r- > LIFE = SIESTA, >: 1 :
1 L _| = 1 ' other 1
: :_? Optimization |- — = 4 _?r>: : \I/ : | 1 |
R ! A . S (=
I A I s 2 | EPER
] 1 ata
o ' | : I | Access
[ : : | : : : 4\ : :__ > Thermal = in-house, =" _>| 1 |
" ! Y JI_>I | E : X . PThermal, ANSYS | __ _ : >4 :
! roximation [~ = = F 21| 1 1 1 1
™ -_-_->-:“r>| ' ' Lo . S| e oeeee- >
N _l_| ' ] S
: : /'\ | : : L : : | :- Processing 1
ll 1 [ DET = SOLID, AS, MS, LLS, '>[ = AERO =APNASA, in-house > 1 |
i Boundary Layer Cod d
1 : : 11 ISOBLADE, Tool Verification | _J_ _ >l euntarviayeroce - I =1 :
TS L I T I 1 !
L-s DFSS —-5}-)-—>I e - - F-=--F-—=--—— - — - - :—>: :
- -2 1 1 1 1 |
|
: : : Producibilty [T T T T T T 7T _>| : !
| \ 1 > QPATS | ___l :_>| |
| | 1 I 1 |
I I 1 ! !
I I [ | 1 !
| oo Lo !
I l I Cost --------->I 1 ‘
| | L_ > $COMPEAT | _ _ o _____ :_>, :
(R S - g S >

Figure 9: Services Package Diagram

7

American Institute of Aeronautics and Astronautics



Service: Assoc. Param. Solid Modeling
Provider: UG/Open API
Computer: HP WS
Location: Evendale, OH
\ 4
Service: Meshing
Provider: Patran
Computer:  Sun ultrab
Location: Schenectady, NY
A 4
Service: Boundary Condition Application
Provider: GEAE SIESTA
Computer: HP WS
Location: Evendale, OH
A 4
Service: Mechanical Analysis
Provider: ANSYS
Computer:  SGI origin
Location: Schenectady, NY

Figure 10: Analysis Flow Chart
Parametric Solid Geometry Service

This service generates the necessary solid
geometry that will be meshed and analyzed. In this
example the provider for this is a Unigraphics User
Function (UFUNC) program that requires an initial seed
part and a parametric data fle as input. With these
inputs the program constructs a three-dimensional solid
of the component and associates attributes or “tags’
with various geometric entities (surfaces, edges, etc.).
These tags will be identifiable and used by other
services in the system such as meshing and boundary
condition application. The UG UFUNC program is
“wrapped” as a FIPER service and deployed on a Unix
workstation in aremote location.

Meshing Service

The meshing service discretizes a given
component. As input, it requires a geometric entity and
some information describing a strategy for meshing the
supplied geometry. The meshing strategy contains
information such as mesh seeding parameters and
element types. These attributes are mapped to the
geometry via the associated geometric tags. For the
present case MSC PATRAN’ is the service provider. A
wrapper is written for PATRAN that takes the meshing
strategy information and generates PATRAN PCL. With
the PCL the wrapper invokes PATRAN which in turn
produces a mesh for the given geometry. The service

8

exports the meshed geometry in the form of a PATRAN
neutral file. As shown in Figure 10, the meshing service
resides on alocal Unix work station. It is worthwhile to
note that all the geometric tags that were created in the
solid geometry service are transferred onto the
descritized geometry. Thus, the tags can continue to be
used to identify particular attributes of the model. These
will be availableto other services.

Boundary Condition Application

The boundary condition service applies a set of
boundary conditions to a given meshed geometry or
group of geometries. It requires as input a descritized
geometry (PATRAN neutral file is one acceptable
format) and information describing the boundary
conditions to be applied (specified displacements,
temperatures, etc.). Here, a GEAE in-house application
called SIESTA is the service provider. SIESTA is
wrapped as a FIPER service and published at a remote
Unix workstation. The wrapper accepts as input a
PATRAN neutral file and generic boundary condition
information. The wrapper produces SIESTA native
commands that apply the specified boundary conditions
to the meshed model. Asin the case of the meshing the
geometric tags are utilized to associate boundary
conditions to particular geometric features. The output
from this service is in a form suitable for a particular
engineering analysis application such as ANSY S8

Analysis Solution

Once the model has been meshed, boundary
conditions applied, and materials selected, the model is
ready for solution. This service takes the specified input
and invokes the appropriate solver on the model. In the
current study ANSYS® is wrapped as a FIPER service.
The wrapper takes as input an ANSY S® input file and
simply issues a system call which executes ANSYS®.
The results of the service are returned in the form of
VRML (Virtual Reality Modeling Language) files that
summarize the results. The ANSYS® service is located
on alocal high end compute server.

Use Cases

In order to determine the required functionality of
FIPER, a set of use cases was developed. The use
cases were divided into three major categories. System
level analysis/design, sub-system analysis/design, and
component analysis/design. FIPER should be flexible
enough to handle requirements in all these regions. The
use cases are represented by use case diagrams and
sequence diagrams. Standard terminology as specified
in the Unified Modeling Language (UML)? is used. A
use case diagram and a sequence diagram for the

American Institute of Aeronautics and Astronautics



mechanical analysis of aturbine component is shownin
Figures 11 and 12.

Use Case Diagram

% UG/UFUNC
% Mechanical AnM

VO > % SIESTA

Analyst \
% PATRAN
% ANSYS
Figure 11: Use Case Diagram
Analyst FIPER UG/UFUNC proxy PAT proxy  SIETA proxy ANSYS proxy
| 1 | | il
User -
requests | system requests mechanical from ANSYS proxy | |
stress
[ ANSYS requests PREPT |
[T
LSiesla requeststagged meshed part |

Patran requests tagged solid part

< Analysis results returned ‘{

Figure 12: Sequence Diagram for Turbine Mechanical
Analysis

The system level use cases focus on the
“intelligent scaling” of a given system, for example an
entire gas turbine engine. Intelligent scaling refersto the
resizing of the system based on the use of a KBE
system. The KBE contains rules ranging from standard
design practices, simple empirical equations, to the
invocation of high-end engineering analysis codes.
Once the system level resizing is complete, FIPER
should support the ability to “zoom” in on a given
component or subsystem and perform a detailed
analysisto verify the results produced by the intelligent
scaling. The sub-system use cases address a collection
of components and employ preliminary level analysis
applications along with some detailed analysis level
applications. These use cases also include the use of
formal optimization techniques to aid in performing
robust and optimal design.

The last class of use cases, component level
analysis/design, addresses the requirements for
performing MDOJ/robust design with high fidelity
analysis codes such as FEM and CFD.

Outlook

9

The material presented in this paper represents the
first six months of work into a fouryear research
contract. While a lot of effort has been put into
developing the architecture, defining the Intelligent
Master Model, and setting up a suite of use cases
representing typical problems encountered in turbine
engine development, a number of technical risks still
remains. Web technology is developing rapidly, but so
far the engineering community has leveraged very little
of these emerging tools. Sun's Jini"™ technology was
intended for distributed hardware devices, not software,
yet conceptually there is no reason why it should not be
applicablein thistype of environment.

The example presented, the turbine blade
mechanical analysis, is the first use case - and FIPER
demonstration that - is currently being implemented.
Over the next three years, these use cases will be
expanded to cover the range from component to
subsystem and system level design, analysis, and
optimization, up to the intelligent scaling of a complete
turbine engine core.

If the project is successful, it will constitute a
complete paradigm shift in the use of engineering
software. The authors anticipate to keep the scientific
community informed about the progress of the work
through subsequent publications and conference
presentations.

Acknowledgments

Thisresearchisjointly funded through the National
Institute for Standards and Technology-Advanced
Technology Program (NIST-ATP™) and the General
Electric Company. The authors would like to
acknowledge this support, as well as the valuable input
from the whole FIPER team.

References

[1] Réhl, PJ; He, B.; Finnigan, P.: A Collaborative
Optimization Environment for Turbine Engine
Development, AIAA 98-4734, Proceedings, 7"
AIAA/USAF/NASA/ISSMO  Symposium  on
Multidisciplinary Analysis and Optimization, St.
Louis, MO, September 1998

He, B.; Rohl, P.J. et a.: CAD and CAE Integration
with Application to the Forging Shape Optimi-
zation of Turbine Disks Proceedings, 39" AIAA/
ASME/ASCE/AHS/IASC Structural Dynamics, and
Materials Conference, Long Beach, CA, April 1998

Federated Intelligent Product Environment,
Technical Proposal, Ohio Aerospace Institute,
General Electric, BFGoodrich, Parker Hannifin,

(2

[3]

American Institute of Aeronautics and Astronautics



[4]

[6]

Engineous Software, Ohio University, Stanford
University, April, 1999

Baley, MW.; Irani, RK., et a.. Integrated
Multidisciplinary Design, Presented at the XIV
| SABE conference, Florence, Italy, September, 1999
Unigraphics V15 User Documentation, Unigraphics
Solutions, Cypress, CA, 1999

Intent User Manual, Heide Corporation, Medfield,
MA, 2000

10

(7]
8
(9

PATRAN V80 User Documentation, MacNeal-
Schwendler Corporation, CostaMesa, CA, 1999
ANSYS V5.5 User Documentation, ANSYS Inc.,
1999

The Unified Modeling Language User Guide, G.
Booch, J. Rumbaugh, |. Jacobson, Addison
Wesley Longman Inc., 1999

American Institute of Aeronautics and Astronautics



SORCER: Federated
Grid Computing

June 16, 2004

http://sorcer.cs.ttu.edu

Michael Sobolewski
S sobol@cs.ttu.com

RaV| Malladl
Abhijit Ral



http://www.sorcer.cs.ttu.edu/
mailto:sobol@cs.ttu.com

Presentation Agenda

 What is SORCER?

e Evolution of Computing

 The Service-Driven Network
 Three Centricities

e Code Mobility

e SORCER Architecture Qualities
« Discovery, Join, and Lookup
 From a Grid to Intergrid

e Two Use Cases
— Surrogate Services for Mobility
— Federated Grid Dispatching

ﬁ—



What 1Is SORCER?

e Service-ORiented EnviRonment (SORCER)
« CSTTU Lab

 Next Generation FIPER
— Service Centric
— Network Centric
— Mobile Code Centric

« Service-Oriented Programming Philosophy
* Federated Grid Computing

ﬁ—



. 15
. 11
. 7
. 16

P2P Projects

Mobile Computing Projects
Theses (1 defended, 6 proposed)
Publications

 Development
— FIPER Enhancements (GE GRC, GE AE)
— S-BLAST (USDA-ARS)
— SORCER Proth (HPCC, Mathematics)
— IT TTU Doc Manager (IT TTU)
— CE2004 Doc Manager and conference website

(ISPE), http://lwww:.ce2004.org

ﬁ—


mailto:sobol@cs.ttu.com\about/timeline.html
mailto:sobol@cs.ttu.com\about/p2p-projects.html
mailto:sobol@cs.ttu.com\about/mc-projects.html
mailto:sobol@cs.ttu.com\theses/index.html
mailto:sobol@cs.ttu.com\publications/publications.html

SORCER Lab Net _ _

perle2: macsobol: sobol: 129.118.29.74 129.118.29.73 129.118.29.7;
129.118.29.67 129.118.18.170 129.118.18.172 : : -

- I .2
cpxw049:

129.118.18.230
1.

cs.ttu.edu

adelie:
129.118.18.183

cs.ttu.edu

opal:

129.118.18.203 topaz:

129.118.18.204

FE

GS108, CP 310

yucca.cs.titree beryl:
129.118.18.88 129.118.29.71

neem: 129.118.18.18 ‘ F—szz.?_%
F e

Solaris 8 'f yew: 129.118.18.41

cpxw048:
129.118.18.229

poppy: 129.118.29.110 Pioneer PDP-503CMX 50 in

poppy2: 129.118.18.9



http://129.118.18.230/view/view.shtml

Evolution of Computing

TEXAS TECI-I

UNIVERSITY

From servers ...

Client-server silos

B

Clhenis

Web-based computing

Ono

Peer-to-Peer

Service-to-Service

. to network
objects

« virtual overlay network
* interactive SOP

» federated SOC

* Secure

* self-healing

e autonomic

» heterogeneous



mailto:sobol@cs.ttu.com\research/projects.html

Waves of Network Computing  #&+l

WH‘FES ﬂf Embadded Computers m

Network Computing m” Thermostats
i | Switches

L_,--f’ TVs ]
w { Phones l'|I siages
| e | Gl 1 Clothes

--‘*-ll-- Desktops i_|

Chents ‘

Finoliogs \Transﬁ:rs Transacti
Protocols Jrrp SMTP X .R},.-l]ﬂl;‘}[?

g : Telnet RPC/XDR i
{'}r_g:dm:-:atml HTTP f
—=e_J Client/Server II

o e

| ... N-tier |‘I Web Applications

J

. Web /Polyarchical

.. Services f
: Fractal




Network is Not Enough

We need to confront Deutsch’s
Eight Fallacies of the Network

. The network is reliable

. Latency is zero

. Bandwidth is infinite

. The network is secure

. Topology doesn't change

. There is one administrator

. Transport cost Is zero

o N oo O B~ W DN P

. The network is homogeneous

ﬁ—



End-to-End Computing [liitectiing

Devices &
Appliances Tier
Client —
Desktop
Tier

Edge Tier

Data
Center

Java Is the glue that enables end-to-end computing

ﬁ—



Java™ Technology TEand
Leads the Way...

New application development by language (soundview TG, 2001)

Percent (%) 100

75 Java technology continues to
eclipse other development
environments

PB Small Cobol PL/
Talk

50

..




Devices vs. Profiles liitetianl

workstation |75 I

comm un‘(dm

set-top bhox,
net TV

¢ "'ﬁi” : celdl Ihunl: card
Sta T‘I‘aﬂi ﬂh smartphone

Edition

Java 2 Micro Edition

32 hit 16 bit B bit




TEXAS TECILI

From Wired to Wireless EAR

1,200
g wireless 9
E 1,000
£ 800 [12/2003]
(=]
S )
600 Global Mobile -
5 1.3 billion
2 400 Users
£ 200 = Analogue Users 34m
E

US Mobile users 140m

Global GSM users  870m
Wireless devices overtake the Internet (2001 Motorola Inc.) Global CDMA

L} L ] 1 I ] 1
1999 2000 2001 2002 2003 2004 2005

164m
Users
81% of the world's wireless internet users
are in Japan... Global TDMA users 120m
Europe
USA Total European 320m

users
#1 Mobile Country ~ China (200m)
#1 GSM Country China (195m)
#1 SMS Country Philippines

©2000 Eurctechnology Japan K. K.




SORCER Vision TESASIECH

Federated S2S
environment to ...

@ Build new services

Convert legacy apps to
dynamic SORCER services
(J2ZEE™ technology)

Assemble SORCER services
together (RMI, Jini, Rio,
JXTA, WS technologies)

m=== (Create modern clients
accessing services

The computer is the service grid that exposes services to clients AWAT

ﬁ—



Pervasive SORCER.grid Lokl

Know|edge Distributed
Systems Computing
Security
Soft Parallel/Space
Computing Computing
Data Large
Persistence
v Scale
SR RAALIAYS Systems
Image
Processing/Analysis Mobile
Computer Vision Computing

Multimedia

E—



SORCER Paradigm 150

+Clients Request Services from the Network
- DOE Services

- Analysis Services
- Optimization Services

+ Clients may not care where or who S

GED metry

A :
4

o

o7

+ SORCER Service: An entity that publishes (by attributes) functional capabilities on the network. (Mesh, Thermal Analysis, Print, etc..)

The Network is a Virtual Computer that Exposes Services to Clients AWAT

B




Nozzle Combustor CAD/IO B2B [F®MEH

(UG)

1. Update combustor PCS

bst for nozzle validation

2. Requg

5. Perform CFD blow analysis

= (Blow Analysis)




SORCER'’s 3Cs

e Service Centricity - Federation of services

 Network Centricity - N-1, 1-1, 1-N, N-C
(Services discover each other)

 Web Centricity - HTTP Portal with thin web
clients

Applying OO techniques to the network

ﬁ—




Shrinking Programs

 OLE - One Large Executable
 Shared Libraries
 Share classes

One Large Executable Shared Classes

° Moblle Code Shared Libraries

I ? %

Program units becoming smaller and mobile




Change Over Time

* Needs of the system evolve faster than the
system

 Many decisions implemented in runtime

o |It's less about knowing and more about
not knowing

Access to a network
with reconnection to the network

ﬁ—




Interface vs. Implementation

e Interfaces are forever
e Implementation is for now, can change

* Mobile code allow multiple
Implementations

Requestors need to know a service interface;
what not how

ﬁ—




Architecture Qualities

o Accessibility - Web centricity
 Manageabillity - Federated services

« Scalability, Reliability - Network Centricity
« Adaptability - Mobile Code

Services appear as network objects
identified by type

ﬁ—




Real Distributed Objects

Requestor Provider




Provider Discovery and Join

Discovery & Join

Lookup
Service

%

A Service Provider Seeks a Lookup Service

Client Service

Provider

A Service Provider Registers with Lookup Service




Requestor Discovery and Lookup &4l

Discovery , Lookup & Communicate

Lookup
Service

Service Attributes

\\ A

Client Service
Service Attributes Provider

47
<

A Client Seeks a Lookup Service &
a Service with the Specified Attributes

Client Receives a Copy of the Service Proxy
Client Interacts Directly with Service Provider

B




Service-to-Service (S25) TERIRA
Network objects

Object Registry/

Lookup Service

HTML/XML Clientl| --- |Clientm PO
Pl [ ] Pn
HTTP/
HTTP
App Sefvefplr—> Providerl < ... (1) Providern
Pp Pp
Providerp

DBMS




What does it mean to be a service? [F&HH]

A service is an act of requesting a
service (Exertion) operation from a service provider.

If accepted
then
exertion.exert () ;

service (exertion) else

Service forward to a relevant
Provider service provider
(5 _________________________________\i_____::::::::::::::::_\
' Servicelnterfacel, ..., |Servicelnterfacei!

S e s g2 ‘________________.

—————————————————————————————

|
I_S_'Q_r.‘_a_‘t_l{r_e_li, ,'



EXAS'TEC

Clusters, Federations, Exertions 1##8]

Exertions
SO Programs

Self-organized
service providers
allocated to best

resource

Dynamic QoS
provisioning grid

Compute
resource
management grid

Compute
resource




Vertical 1Grid Grids

Exertions — iGrid.space

SS Beans - iGrid.field

Service Providers — 1Grid.grid

SORCER.grid
Cybernodes - IGrid.mesh § SORCER.core
\ Computing Devices - iGrid.net /

IGrid.grid — service providers including services from
technology (horizontal) grids

SORCER.core — SORCER infrastructure service providers
SORCER.grid — SORCER domain specific service providers




SORCER Functional Architecture TE#Ed

Utilities and Templates Web CME User Agents
Intraportal Extraportal

Infrastructure Service Providers (SORCER.core)

Jobber, Spacer, Cataloger, Provisioner, PerS|ster Tasker, Caller,
F|IeStorer Notifier, Reporter, Monitor, Profller Securer Auditor

Federated Service Provider Persistence Static
Service Provider, Exertion Dispatchers, Proxy,
Service Bean, Data Accessor, PproviderAccessyor Layer Bosgfﬁl:g?‘gr%rng

7 . 7 7

File Store

J2EE, Jini, Rio, GApp




EXASTEC

Mobile Devices Support TEASEA

Personal
Profile

Auto

v Profile

RMI Profile

Profile
Foundation Handheld MID
Profile . Pprofile " profile -

Smart
Card
Profile

HotSpot Card VM




Surrogate Services

Surrogate Host Resources

Private
Protoco

O

3
P> WL

/ HTTPHTTPS

E—



TEXAS TECI-i

Provide Service ERVTES Ty

SORCER Calendar Service Created

Depy l
(0]
Y Caleng, - [’

//) et Surrogate Client
Q
3
C}/tc.)
”
&
6\/.
@)
@5
/).
L.
%
%
©
SORCER.grid
O Jobber
Service Oriented
Program
SORCER
service Deployed SORCER SUROGATE

Serwce

ﬁ—



Grid Dispatcher Ul

& Job Dispatcher

et Application Parameters It F“E;| Brovyse | Ihzert |

Job Size;

Piotify:

Arguments | Attributes | Executables |

FLn | Clear |

e Choose the Application to run (For example Proth)
* Specify the Job Size for the jobs

o Set the Arguments, Attributes and Executables for the
application

ﬁ—



Arguments Ul [Stasel

-‘.—-,-\,\

% Sspecify Arguments and Input files

=10 =]

Argumetits I

v tbove A

Input= I

¥ sbove Ao

Dutputs I

v
Up | Doty | Delete | L | Drosavry | Delete | L | Dromavry | Delete | IV Abave -

Arguments [t

outputs

Save | Cancel |

Specify Arguments, Input Files, Output Files for the Application
« Can be added above or below the selected option

Can be reordered according to user’s requirement (Up, Down, Delete
buttons)

ﬁ—



TEXAS TECI-i

Executables - Windows

@ Specify Executables [0 el
Windowss Operating System

ihooze O pindows i
IN yindowes Executahble File Type: |

Windowws Binary Folder path:

Execute Command: Ipru:uth
Wiohdowes Binary File:

EEE | LielieEl | YWindowes Library Folder Path:

Wiinidoses Library File:

Sawve | Cancel |

« Specify Windows Executables and Library Files
* The files can be dynamically downloaded from File Store

ﬁ—



Communication across sGrids B

~— SORCER Service Requestor <—> Sorcer Service Provider

<—> SORCER CoProvider <= sGrid Infrastructure
<= |Grid (Globus) Infrastructure

ﬁ—






	sorcer-proxying-seminar-060928.pdf
	Service Proxying with�Dependency Injection�SORCER Seminar�Sept 28, 2006�
	From the Internet ….
	…. to Metacomputing
	SOA = SPOA + SOOA
	SOOA - Network Centricity
	Proxy Types
	Intergrid
	The Runtime Environment
	Proxying with�Dependency Injection
	Providers Implementing �Remote Interfaces
	ArithmeticImpl Implements ArithmeticRemote
	Providers with Service Beans 
	Service Beans
	Providers with Exported Servers 
	RemoteArithmometer Implements ArithmeticRemote
	Providers with �Exported Partnership Servers
	RemoteArithmometer Implements ArithmeticRemote and Partnership
	Providers �with not Exported Servers
	RemoteArithmometer Implements ArithmeticRemote,�not Exported
	Smart Proxies – Fat Proxy
	Arithmometer Implements Arithmetic (no Remote)
	Outer Smart Proxies
	SemismartArithmometer Implements Outer
	Smart Proxies �with Exported Servers
	SmartArithmometer Implements Averager
	Smart Proxies �with Partnership Servers 
	SmartArithmometer Implements Averager, Averager Implements Partnership
	Smart Proxies �with not Exported Servers
	RemoteArithmometer Implements ArithmeticRemote,�not Exported
	Proxying with Taskers
	Proxying with Callers
	SORCER Research Domain

	CE2004-557.pdf
	INTRODUCTION
	GISO CONCEPTUAL FRAMEWORK
	GISO PROGRAMMING AND DEVELOPMENT TOOLS
	Context Editor
	FiperTask Editor
	FiperJob Editor
	FiperJob Monitor

	CONCLUDING REMARKS
	REFERENCES

	SORCER-GUG040616+.pdf
	Presentation Agenda
	What is SORCER?
	SORCER 1.5 Years Old
	Evolution of Computing
	Waves of Network Computing
	Network is Not Enough
	End-to-End Computing
	Java™ Technology
	Devices vs. Profiles
	From Wired to Wireless
	SORCER Vision
	Pervasive SORCER.grid
	SORCER Paradigm
	Nozzle Combustor CAD/IO B2B
	SORCER’s 3Cs
	Shrinking Programs
	Change Over Time
	Interface vs. Implementation
	Architecture Qualities
	Real Distributed Objects
	Provider Discovery and Join
	Requestor Discovery and Lookup
	Service-to-Service (S2S)
	Clusters, Federations, Exertions
	Vertical iGrid Grids
	SORCER Functional Architecture
	
	Surrogate Services
	Grid Dispatcher UI
	Arguments UI
	Executables  - Windows
	Communication across sGrids


