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The electron-hole explicitly correlated Hartree-Fock method (eh-XCHF) is presented as a general
strategy for investigation of electron-hole correlation and computation of electron-hole recombi-
nation probability. The eh-XCHF method is a variational method which uses explicitly correlated
wavefunction that depends on the electron-hole inter-particle distances. It is shown that the explicitly
correlated ansatz provides a systematic route to variationally minimize the total energy. The parabolic
quantum dot is used as the benchmark system and the eh-XCHF method is used for computation of
the ground state energy and electron-hole recombination probability. The results are compared to
Hartree-Fock and explicitly correlated full configuration interaction (R12-FCI) calculations. The re-
sults indicate that an accurate description of the electron-hole wavefunction at short electron-hole
inter-particle distances is crucial for qualitative description of the electron-hole recombination prob-
ability. The eh-XCHF method successfully addresses this issue and comparison of eh-XCHF calcula-
tions with R12-FCI shows good agreement. The quality of the mean field approximation for electron-
hole system is also investigated by comparing HF and R12-FCI energies for electron-electron and
electron-hole systems. It was found that performance of the mean field approximation is worse for the
electron-hole system as compared to the corresponding electron-electron system. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.3693765]

I. INTRODUCTION

Electron-hole correlation plays a central role in under-
standing and interpretation of optical properties of a wide
variety of materials.1–5 The role of electron-hole correlation
has been investigated both experimentally and theoreti-
cally for a large number of systems including predicting
excitonic ground state in quantum dots,6 light emission
from quantum wires,7, 8 optical response of metal clusters,9

excitonic effects in graphene,10 radiative lifetimes in carbon
nanotubes,11 excitonic states in polymers,12 and lumines-
cence of quantum dots.13 Accurate treatment of electron-hole
correlation in computational studies can predict shapes of
absorption spectra8 and biexciton formation in quantum
dots.6 Electron-hole correlation also has a strong influence
on electron-hole recombination probability in photoactive
materials. Eh-recombination plays an important role in the
field of photovoltaics,14–19 photocatalysis,20–23 light emitting
devices,24 and electroluminescence.25 For light-harvesting
applications, it is desirable to design materials with low
probability of eh-recombination. In certain TiO2-based
photoactive materials, the eh-recombination causes reduc-
tion in the quantum yield;21 however, the photocatalytic
activity can be enhanced by chemical modification of the
material inhibiting of eh-recombination.22 In photocatalytic
nanocrystals, shape of the nanocrystal was found to influence
eh-recombination and synthetic modifications of the shape

a)Author to whom correspondence should be addressed. Electronic mail:
archakra@syr.edu.

of the nanocrystal can be made to suppress eh-recombination
and design highly efficient photocatalysts.23 Suppressing
eh-recombination has also received attention in the field of
dye-sensitized solar cells research. Chemical modifications
such as addition of alkyl chains26 and designing new metal
centered complexes18 have been carried out to enhance
light-harvesting capabilities by reducing eh-recombination.
In a related application, Bose-Einstein condensation of
excitons was also found to be strongly influenced by the
eh-recombination probability and exciton lifetime.27

In semiconductor quantum dots, eh-recombination can
be reduced by introducing a core/shell heterostructure. This
is generally achieved by using a core material whose va-
lence and conduction bands are either higher or lower than
those of the shell material.28–30 As a consequence, one of the
charge carriers (electron or hole) is mostly confined to the
core, while the other charge carrier is confined to the shell.
The core/shell structure induces spatial separation between
electrons and holes which reduces eh-recombination.31, 32

Dissociation of electron-hole pair generates charge carri-
ers and increases the quantum yield of the photocurrent
generation processes. Consequently, it is important to have
accurate theoretical and computational techniques for ac-
curate calculation of electron-hole binding energies and
recombination probabilities. Computational treatment of
electron-hole interaction can be carried out using various
techniques including, one and two particle Green’s function
method,33–35 effective mass approximation,36 configuration-
interaction (CI),37, 38 coupled cluster,39 and quantum Monte
Carlo (QMC) method.40, 41 A detailed review of various
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computational techniques has been presented by Sundholm
and co-workers.42 The many-body pseudopotential theory
for excitons in quantum dots43–46 has been developed by
Franceschetti et al. that uses CI scheme to solve the electron-
hole Schrodinger equation. This method has been success-
fully used for studying a wide range of problems including
charge carrier multiplicity,47 lifetime and recombination en-
ergies of excitons,48, 49 and Auger scattering and recombina-
tion in quantum dots.50, 51 Sundholm and co-workers have also
used CI for calculation of lifetime and binding energies.52, 53

Accurate description of the two-particle cusp plays an
important role both in electron-electron and electron-hole
systems. In electronic systems, the importance of electron-
electron cusp has been demonstrated in a large number
of studies54–56 and is typically included in the calculation
by either by using a Jastrow correlation function54, 55, 57

or by explicitly correlated R12 scheme.56 The nature of
electron-hole correlation is very different from electron-
electron correlation typically encountered for the ground
state calculations in many-electron systems because the
particles involved are oppositely charged. As a consequence
of the attractive Coulomb interaction, the quality of the
electron-hole wavefunction at small inter-particle distances is
very important. This has important consequence on the cal-
culation of electron-hole (eh) recombination probability Peh.
The lifetime of the generated electron-hole pair is inversely
proportional to the Peh and serves as an important metric to
assess the photovoltaic properties of quantum dots.58 Since
Peh is the “on-top” probability of electrons and holes, an
accurate description of the electron-hole wavefunction at
small electron-hole distances is extremely important. One
of the ways to achieve this is by introducing an explicit
eh-inter-particle distance term in the approximation to the
many-body wavefunction. This is generally done by intro-
ducing a Jastrow factor in the electron-hole wavefunction
and solving the electron-hole Schrodinger equation using
QMC techniques. Shumway and Ceperley have performed
QMC calculations for exciton-exciton scattering.59 Zhu and
Hybertsen have also applied QMC for treating electron-hole
correlation using variational Monte Carlo.41

In the present work, we present an explicitly correlated
Hartree-Fock (eh-XCHF) method for treating electron-hole
correlation. The eh-XCHF method is a variational method
where a geminal function60, 61 is used to incorporate ex-
plicit eh-distance in the wavefunction. The explicitly cor-
related method using geminal functions has been success-
fully used to study electron-electron,62 electron-proton,63–65

and electron-positron66 interactions in chemical systems. The
eh-XCHF formulation presented here is different from ear-
lier methods in its requirement to correctly account for
electron-hole exchange interaction. This is especially impor-
tant for studying optical properties of nanomaterials where
eh-exchange interaction is enhanced67–69 due to quantum con-
finement effect.70–74 Electron-hole exchange interaction plays
an important role69, 75, 76 in understanding optical properties
of nanomaterials including, dark exciton states,69, 76–79 fine
structure of excitons,80, 81 effect on spin relaxation,82, 83 and
generation of trions in carbon nanotubes.84, 85 In this work,
the key equations of the eh-XCHF method are derived for

a general many-electron many-hole system and benchmark
calculations are performed on parabolic quantum dot. The
parabolic quantum dot system86–88 has been a test bed for in-
vestigation of electron-hole interaction in confined systems
including investigation of electron-phonon coupling,89 third
harmonic generation,90 effect of impurities on exciton bind-
ing energies,91 dipole-allowed optical transitions,92 biexciton
formation,93 exciton trapping,86 and spin-orbit interactions in
quantum dots.94 The system consists of two charged parti-
cles in an external potential. The motion of the two charged
particles is correlated and the interaction between them is de-
scribed by the Coulomb potential. The 1-body external po-
tential is described by three-dimensional harmonic oscillator
term. This model system has been studied for investigation of
both electron-electron and electron-hole correlation. For ap-
plications in electronic structure theory, the two charged par-
ticles have identical charges of −1 and the system is known as
the harmonium or the Hook’s atom. It has been used for inves-
tigating the electron-electron correlation using wavefunction,
density-matrix, and density functional based methods.95–97

We use the parabolic quantum dot system to perform
rigorous assessment of the eh-XCHF method for treating
electron-hole correlation. In addition to eh-XCHF calcu-
lations, we have also performed Hartree-Fock (HF) and
explicitly correlated full configuration interaction (R12-FCI)
calculations on the model system. Comparison of ground
state energy and recombination probability between all the
three methods has been carried out to evaluate accuracy of the
eh-XCHF method. The remainder of the article is divided as
follows: the fundamental equations of the eh-XCHF method
are derived in Sec. II, computational details are described in
Sec. III, the results and discussion are presented in Sec. IV,
and conclusions are summarized in Sec. V.

II. THEORY

The explicitly correlated ansatz for the wavefunction is
defined as

�xc = (1 + Ĝ)�eh
0 , (1)

where �eh
0 is the reference electron-hole wavefunction. Typi-

cally, the reference wavefunction can be chosen as the product
of electron and hole Slater determinants �eh

0 = �e
SD�h

SD.
Electron-hole exchange interaction can be included by
replacing the product in the above expression by the
Grassmann or wedge product98–101 between the electrons and
holes functions �eh

0 = �e
SD ∧ �h

SD. Both forms have been
successfully used in computational investigation of electron-
hole pairs.38, 41, 42 The selection of one form over the other is
system specific and should be made on a case-by-case basis.
This topic has also been discussed in a review of computa-
tional techniques by Sundholm and co-workers.42 The deriva-
tion of the eh-XCHF method presented below does not make
any a priori assumption about the form of the reference wave-
function and is capable of handling both forms on the same
footing.

The geminal operator Ĝ is a two-body operator that de-
pends on the coordinates of both the electrons and the holes
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and is defined as

G(re, rh) =
Ne∑
i

Nh∑
j

g
(
re
i , rh

j

)
, (2)

where g(re
i , rh

j ) depends on the electron-hole inter-particle
distance and is expressed as a linear combination of Gaussian
functions

g
(
re
i , rh

j

) =
Ng∑
k

bke
−γk |re

i −rh
j |2 . (3)

The expansion coefficients bk and the width parameter γ k are
parameters used for defining the geminal function. The gemi-
nal parameters and the constituting electron and hole orbitals
are determined variationally by minimizing the expectation
value of the Hamiltonian,

E = 〈�xc|H |�xc〉
〈�xc|�xc〉 . (4)

The interaction between the electrons and the holes are de-
scribed by an effective many-body Hamiltonian which can be
described by the following general expression:38, 41, 102–104

H = Te + V ext
e + Vee + Th + V ext

h + Vhh + Veh, (5)

where,41

Te = −¯2

2me

∫
dreψ̂†(re)∇2ψ̂(re)

Th = −¯2

2mh

∫
drhψ̂†(rh)∇2ψ̂(rh)

V ext
e =

∫
dreψ̂†(re)vext

e ψ̂(re)

V ext
h =

∫
drhψ̂†(rh)vext

h ψ̂(rh)

Vee =
∫

dre
1dre

2ψ̂
†(re

1

)
ψ̂†(re

2

)
r−1

ee ψ̂
(
re

2

)
ψ̂

(
re

1

)
Vhh =

∫
drh

1drh
2ψ̂

†(rh
1

)
ψ̂†(rh

2)r−1
hh ψ̂(rh

2)ψ̂
(
rh

1

)
Veh = −

∫
dredrhψ̂†(re)ψ̂†(rh)r−1

eh ψ̂(rh)ψ̂(re).

(6)

To facilitate the actual evaluation of the expectation value, it
is advantageous to introduce the following conjunctive trans-
formed operators:105, 106

H̃ = (1 + G)†H (1 + G),
(7)

S̃ = (1 + G)†(1 + G).

Using the above equations, the energy expression can be writ-
ten as

E = 〈�eh
0 |H̃ |�eh

0 〉
〈�eh

0 |S̃|�eh
0 〉 . (8)

This expression allows us to evaluate the energy in terms
of matrix element of the transformed operators in Slater
determinant basis. Since evaluation of matrix elements in-
volving Slater determinants are known using Slater-Condon
rules, this transformation provides a convenient route to the

computation of the matrix elements. In the present work, the
transformed operators will be expressed in second quantiza-
tion representation. The action of creation and annihilation
operators is well known and is used to simplify the energy ex-
pression. Since the geminal operator is Hermitian, the trans-
formed Hamiltonian is written as

S̃ = (1 + G)(1 + G)

= 1 + 2G + GG,
(9)

H̃ = (1 + G)H (1 + G)

= H + GH + HG + GHG.
(10)

The expression of the transformed operator in field operator
representation is achieved in two steps. In the first step, the
product of the operators are expanded as a sum of 1-particle,
2-particle, . . . , N-particle operators. The expanded versions of
the transformed operators are described in Eq. (11)–(16). In
the second step, the N-particle operators are written in second-
quantized notation. It is important to preserve the sequence
of the steps, since converting the operators first to second-
quantized form and then taking the product will be identical
to steps mentioned above only in the limit of infinite basis.107

This topic has been discussed in a great detail with examples
by Helgaker, Jorgensen, and Olsen.107

The expressions for the transformed operators are given
as

S̃ = 1 + 2G + GG

= 1 + 2
Ne∑
i=1

Nh∑
i ′=1

g(i, i ′) +
[

Ne∑
i=1

Nh∑
i ′=1

g(i, i ′)

]

×
⎡
⎣ Ne∑

j=1

Nh∑
j ′=1

g(j, j ′)

⎤
⎦

= 1 +
Ne∑
i=1

Nh∑
i ′=1

O1(i, i ′) + 1

2!

Ne∑
i �=j

Nh∑
i ′=1

O2(i, j, i ′)

+ 1

2!

Ne∑
i

Nh∑
i ′ �=j

O3(i, i ′, j ′) + 1

2!2!

Ne∑
i �=j

Nh∑
i ′ �=j

O4(i, j, i ′, j ′),

(11)

G
(
Te + V ext

e

)
G

=
[

Ne∑
i=1

Nh∑
i ′=1

g(i, i ′)

][
Ne∑
k=1

− ¯
2

2me
∇2

k + vext
e (k)

]⎡
⎣ Ne∑

j=1

Nh∑
j ′=1

g(j, j ′)

⎤
⎦

=
Ne∑
i=1

Nh∑
i ′=1

O5(i, i ′) + 1

2!

Ne∑
i=1

Nh∑
i ′ �=j

O6(i, i ′, j ′)

+ 1

2!

Ne∑
i �=j

Nh∑
i ′=1

O7(i, j, i ′) + 1

2!2!

Ne∑
i �=j

Nh∑
i ′ �=j

O8(i, j, i ′, j ′)

+ 1

3!

Ne∑
i �=j �=k

Nh∑
i ′=1

O9(i, i ′) + 1

3!2!

Ne∑
i �=j �=k

Nh∑
i ′ �=j

O10(i, j, k, i ′, j ′),

(12)
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G
(
Te + V ext

e

) + (
Te + V ext

e

)
G =

[
Ne∑
i=1

Nh∑
i ′=1

g(i, i ′)

] [
Ne∑
k=1

− ¯
2

2me
∇2

k + vext
e (k)

]
+

[
Ne∑
i=1

− ¯
2

2me
∇2

i + vext
e (i)

] [
Ne∑
i=1

Nh∑
i ′=1

g(i, i ′)

]

=
Ne∑
i=1

Nh∑
i ′=1

Ne∑
k=1

g(i, i ′)
[
− ¯

2

2me
∇2

k + vext
e (k)

]
+

[
− ¯

2

2me
∇2

k + vext
e (k)

]
g(i, i ′)

=
Ne∑
i=1

Nh∑
i ′=1

O11(i, i ′) + 1

2!

Ne∑
i �=j

Nh∑
i ′=1

O12(i, j, i ′), (13)

GVeeG =
[

Ne∑
i=1

Nh∑
i ′=1

g(i, i ′)

] ⎡
⎣1

2

Ne∑
k �=l

r−1
kl

⎤
⎦

⎡
⎣ Ne∑

j=1

Nh∑
j ′=1

g(j, j ′)

⎤
⎦

= 1

2!

Ne∑
i �=j

Nh∑
i ′=1

O13(i, j, i ′) + 1

2!2!

Ne∑
i �=j

Nh∑
i ′ �=j ′

O14(i, j, i ′, j ′)

+ 1

3!

Ne∑
i �=j �=k

Nh∑
i ′=1

O15(i, j, k, i ′) + 1

3!2!

Ne∑
i �=j �=k

Nh∑
i ′ �=j

O16(i, j, k, i ′, j ′)

+ 1

4!

Ne∑
i �=j �=k �=l

Nh∑
i ′=1

O17(i, j, k, l, i ′) + 1

4!2!

Ne∑
i �=j �=k

Nh∑
i ′ �=j ′

O18(i, j, k, l, i ′, j ′),

(14)

GVee + VeeG =
[

Ne∑
i=1

Nh∑
i ′=1

g(i, i ′)

] ⎡
⎣1

2

Ne∑
k �=l

r−1
kl

⎤
⎦ +

⎡
⎣1

2

Ne∑
i �=j

r−1
ij

⎤
⎦

[
Ne∑
i=1

Nh∑
i ′=1

g(i, i ′)

]

= 1

2!

Ne∑
i �=j

Nh∑
i ′=1

O19(i, j, i ′) + 1

3!

Ne∑
i �=j �=k

Nh∑
i ′=1

O20(i, j, k, i ′),

(15)

GVehG =
[

Ne∑
i=1

Nh∑
i ′=1

g(i, i ′)

] [
Ne∑
kk′

r−1
kk′

] ⎡
⎣ Ne∑

j=1

Nh∑
j ′=1

g(j, j ′)

⎤
⎦ =

Ne∑
ijk

Nh∑
i ′j ′k′

g(i, i ′)r−1
kk′ g(j, j ′)

=
Ne∑
i

Nh∑
i ′

O21(i, i ′) + 1

2!

Ne∑
i

Nh∑
i ′ �=j

O22(i, i ′, j ′) + 1

3!

Ne∑
i

Nh∑
i ′ �=j �=k

O23(i, i ′, j ′, k′)

+ 1

2!

Ne∑
i �=j

Nh∑
i ′

O24(i, j, i ′) + 1

2!2!

Ne∑
i �=j

Nh∑
i ′ �=j

O25(i, j, i ′, j ′) + 1

2!3!

Ne∑
i �=j

Nh∑
i ′ �=j �=k

O26(i, j, i ′, j ′, k′)

+ 1

3!

Ne∑
i �=j �=k

Nh∑
i ′

O27(i, j, k, i ′) + 1

3!2!

Ne∑
i �=j �=k

Nh∑
i ′ �=j

O28(i, j, k, i ′, j ′) + 1

3!3!

Ne∑
i �=j �=k

Nh∑
i ′ �=j �=k

O29(i, j, k, i ′, j ′, k′).

(16)

The expression for the hole operators are obtained in a similar
fashion.

It is important to note that the transformed operators {Oα ,
α = 1, . . . , 29} must be completely symmetric when operated
on by the permutation operators of the symmetric group {SN}.
For a general operator of the form Oα(1, . . . M, 1, . . . M′) that
couples M number of electrons with M′ number of holes, the
complete symmetric condition is satisfied by the following

relationship:

PkPk′Oα(1, . . . M, 1′, . . . ,M ′) = Oα(1, . . .M, 1′, . . . , M ′)

k = 1, . . . M! ; k′ = 1, . . . ,M ′!, (17)

where Pk and Pk′ are permutation operators in the symmetric
group SM and SM′ , respectively.
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The general expression for an N-particle operator in
second-quantization and field operator notation is well
known. The general expression of a many-body operator that
couples M and M′ electrons and holes, respectively, is repre-
sented in terms of electron and hole field operators as

�α = 1

M!

1

M ′!

Ne∑
i1 �=i2 �=... �=iM

Nh∑
i ′1 �=i ′2 �=... �=i ′

M′

×Oα(i1, i2, . . . iM, i ′1, i
′
2, . . . , i

′
M ′ ), (18)

�α =
∫

d(1) . . . d(M)d(1′) . . . d(M ′)

× ψ̂†(1) . . . ψ̂†(M)ψ̂†(1′) . . . ψ̂†(M ′)

× Oα(1, . . . ,M, 1′, . . . ,M ′)ψ̂(M ′) . . . ψ̂(1′)

× ψ̂(M) . . . ψ̂(1).

(19)

The explicitly correlated wavefunction is obtained variation-
ally by minimizing the total energy with respect to the elec-
tron and hole molecular orbitals and the parameters in the
geminal operator. Minimizing the total energy with respect
to the electron and hole molecular orbitals {χ e

i , χ
h
i } results in

the following set of Fock equations:

f eχ e
i = εe

i χ
e
i

f hχh
i = εh

i χ
h
i ,

(20)

where the electron and hole Fock operators can be defined as

f e = − ¯
2

2me
∇2

e + vext
e + veff

e

[{
χh

i

}]
,

f h = − ¯
2

2mh
∇2

h + vext
h + veff

h

[{
χ e

i

}]
.

(21)

The single-particle operator veff
e includes all the terms arising

from the geminal expression and is equal to the HF potential
vHF

e in the limiting case of G = 0. The electronic Fock opera-
tor depends on the hole molecular orbitals, and both electron
and hole Fock equations are solved self-consistently till con-
vergence is achieved. The molecular orbitals are represented
as a linear combination of atomic orbitals and the expansion
coefficients are determined variationally. The integrals over
atomic orbital involving the geminal function are well known
and were calculated using the procedure described by Boys61

and Persson.108

III. COMPUTATIONAL DETAILS

A. Details of eh-XCHF calculations

The form of the wavefunction used in the present calcu-
lation is defined to be a singlet wavefunction of the form

�(x1, x2) = �α(r1, r2)�spin(ω1, ω2)

α = HF, R12 − FCI, eh − XCHF,
(22)

where particles 1 and 2 have opposite spins and �spin(ω1, ω2)
is antisymmetric.

TABLE I. GTO basis used in HF and eh-XCHF calculations.

Exponent

2.5000 × 10−1

2.3721 × 10−1

3.5522 × 10−1

5.3193 × 10−1

7.9655 × 10−1

1.1928
1.7862
2.6748
4.0054
1.6442 × 10−1

The Hamiltonian for the benchmark system is defined as

Hλ = − 1

2m
∇2

1 − 1

2m
∇2

2 + 1

2
kr2

1 + 1

2
kr2

2 + λ
1

|re − rh| ,

(23)

where me = mh = m = 1 a.u., k is the force constant and all
quantities are in atomic units. For the present calculations, the
force constant was set to k = 1/4. A scaling parameter λ was
introduced to scale the magnitude of the Coulomb interaction
between the two particles. The Coulomb interaction between
the two particles is represented by λr−1

12 , where λ = +1 if
charges are identical and λ = −1 if the particles are oppositely
charged. For the electron-hole system, the scaling parameter
was set to λ = −1.

The explicitly correlated eh-XCHF method was used to
calculate the ground state energy and electron-hole recombi-
nation probability. Gaussian-type orbitals (GTO) were used
for the calculations and the coefficient used in the GTO ba-
sis are presented in Table I. All the GTOs were centered at
the minimum of the parabolic potential. The FCI calculations
for the two-electron Hooke’s atom have been carried out ear-
lier by Matito and co-workers95 and the method for generat-
ing even-tempered GTO basis defined earlier95 was used in
the present work. Issues related to linear dependencies were
resolved by performing canonical orthogonalization. The im-
plementation of the computer program was checked by repro-
ducing the FCI results obtained by Matito et al.95

Since, eh-XCHF is an explicitly correlated method, a
fair and accurate comparison was obtained by performing an
explicitly correlated full-configuration interaction calculation
using Slater-type orbitals (STOs). To emphasize this fact, the
FCI method used in this work is labeled as (R12-FCI) and
is described in Subsection III B. The analytical results for the
two-electron Hooke’s atoms with k = 1/4 is well known109, 110

and was used to benchmark the R12-FCI implementation.
The R12-FCI energy of 2.00074 Hartree was obtained for the
Hooke’s atom which was in good agreement with the exact
analytical result of 2.0 Hartree.

B. Details of the R12-FCI calculation

The R12-FCI calculation was performed by transform-
ing the 6D Hamiltonian described in Eq. (23) to a 1D ra-
dial Hamiltonian. This was done by first separating out the
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center-of-mass coordinate followed by transforming into
spherical polar coordinates.

Defining the relative and center-of-mass coordinates as

R =r1 + r2

2

r =r1 − r2.

(24)

The total Hamiltonian can be written as

H = HR + Hr

HR = − 1

2M
∇2

R + 1

2
Mω2R2

Hr = − 1

2μ
∇2

r + 1

2
μω2r2 + λ

1

r
,

(25)

where M = m1 + m2 and μ = m1m2M−1. The total wavefunc-
tion is defined as

H� = E�

HR�R = ER�R

Hr�r = Er�r

� = �R�r

E = ER + Er.

(26)

The center-of-mass Hamiltonian is a 3D harmonic oscillator
whose eigenvalues and eigenfunctions are known analytically
and is equal to 3¯ω for the ground state.

The Hamiltonian associated with the relative coordinate
was transformed into spherical polar coordinates, and the ra-
dial equation for l = 0 is given as[

− ¯
2

2μ

(
∂2

∂r2
+ 2

r

∂

∂r

)
+ 1

2
μω2r2 + λ

1

r

]
χ (r) = Erχ (r)

for l = 0. (27)

The 1D radial Schrodinger equation in Eq. (27) was solved by
expanding the radial wavefunction as a linear combination of
Slater-type orbitals and performing configuration interaction
calculation,

χ (r) =
∑

i

ciφ
STO
i

(28)
φSTO(r) = rne−αr .

The ground state energy was obtained by minimizing both the
expansion coefficients {ci} and the STO exponent {αi}. The
STO basis functions used for the R12-FCI calculations are
listed in Table II.

The radial equation in Eq. (27) can be solved analyti-
cally for the limiting cases of λ = 0 and ω = 0. The R12-FCI
method can be systematically improved by addition of more
basis functions and will reproduce the exact ground state en-
ergy in the limit of infinite basis functions. The R12-FCI cal-
culation with the STO basis presented in Table II was found
to reproduce the analytical energies.

TABLE II. STO basis used in the R12-FCI calculations.

n Exponent

0 5.8600 × 10−1

1 5.8600 × 10−1

2 5.8600 × 10−1

0 1.5172
1 1.5172
2 1.5172
0 3.9279
1 3.9279
2 3.9279
0 1.0169 × 101

1 1.0169 × 101

2 1.0169 × 101

0 2.6328 × 101

1 2.6328 × 101

2 2.6328 × 101

IV. RESULTS AND DISCUSSION

A. Correlation energy from HF
and R12-FCI calculations

The HF theory plays an important role in electronic struc-
ture theory. The HF wavefunction is used as a zeroth order
wavefunction for post-HF calculations such as perturbation
theory and configuration interaction calculations. For appli-
cation of the HF wavefunction as a reference wavefunction in
electron-hole systems, it is very important to investigate the
quality of the mean-field approximation versus highly accu-
rate calculations. In the present work, a comparison study of
the quality of the mean-field approximation for electron-hole
and electron-electron system was carried out by performing a
series of HF and R12-FCI calculations. The calculations were
performed for Hλ and the coupling parameter λ was varied
from λ = −1, . . . , +1. For each value of λ the difference be-
tween the HF and R12-FCI energies was computed using the
following expression:

�E(λ) = EHF(λ) − ER12−FCI(λ)

ER12−FCI(λ)
× 100. (29)

The difference between the HF and R12-FCI energies is used
as a metric to analyze the quality of mean field approxima-
tion for electron-electron versus electron-hole system. The re-
sult of the computed �E as a function of λ is presented in
Figure 1. It is seen that plot is not symmetric with respect
to the coupling parameter. This implies that the HF approx-
imation is worse for the electron-hole system as compared
to an electron-electron system. It was found that the �E for
electron-hole is larger than the electron-electron system by a
factor of 4. This large difference in the quality of the mean
field approximation for identical and oppositely charged par-
ticles can be attributed to the Coulomb interaction term in the
Hamiltonian. Because of the Coulomb hole in the electron-
electron system, there is a reduced probability of finding an-
other electron in the vicinity of the first electron. For the
electron-hole system, the situation is reversed and there is an
enhanced probability of finding an oppositely charged parti-
cle in the vicinity of the first one. This can be seen clearly by
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FIG. 1. Relative difference between that HF and R12-FCI energies as a func-
tion of the Coulomb scaling parameter.

deriving of the Kato cusp condition for the two-particle den-
sity. The Kato cusp condition for the ground state wave-
function for the electron-electron and electron-hole system is
defined as111, 112

�ee(r12) = �ee(r12 = 0)

[
1 + 1

2
r12 + O

(
r2

12

)]
, (30)

�eh(r12) = �eh(r12 = 0)

[
1 − 1

2
r12 + O

(
r2

12

)]
, (31)

where we have assumed that the ground state is a S state.
Using the above expression, the two-particle density can be
defined as

ρee(r12) = ρee(r12 = 0)
[
1 + r12 + O

(
r2

12

)]
, (32)

ρeh(r12) = ρeh(r12 = 0)
[
1 − r12 + O

(
r2

12

)]
. (33)

The above equations indicate that the probability density of
finding two electrons increases with increasing r12 at small
inter-particle separation. This is indicative of a Coulomb hole.
For the electron-hole system, the probability density of find-
ing an electron-hole pair decreases increasing r12 at small
inter-particle separation which indicates a local enhancement
of the two-particle density in the vicinity of the cusp. Since
ρee(r12)/ρee(0) > 1 and ρeh(r12)/ρeh(0) < 1 at small inter-
particle separation, the quality of the eh-wavefunction at short
range, and the electronic wavefunction at intermediate range,
is important for obtaining accurate results. Similar conclusion
for the electronic wavefunction has been reported earlier by
Prendergast et al.113

The Kato cusp condition is generally satisfied by incorpo-
rating Slater-type orbital (STO) functions that depend on reh

e−ςreh = 1 − ςreh + O(r2). (34)

In this present work, Gaussian type geminal (GTG) functions
were used to describe the form of the wavefunction at small
inter-particle distances

e−ςreh �
Ng∑
k

bke
−γkr

2
eh , (35)

where {bk, γ k} are variational parameters. The GTG function
was introduced by Boys61 for explicitly including R12 term
in the electronic wavefunction. The necessary integrals
involved in the implementation of the GTG function are have
well-known analytical expressions and have been derived
earlier by Boys61 and Persson et al.108 The STO is expanded
as a linear combination of Gaussian function to avoid compu-
tation of integrals involving STOs. This is a general strategy
to avoid computation of atomic orbital (AO) integrals using
STO and has been used successfully in the field of basis set
development114, 115 and GTG calculations.62, 116 However,
we stress that the expansion in Eq. (35) is approximate and
is not capable of describing the eh-cusp exactly since the
Gaussian functions have zero first derivative at the cusp. The
description of the electron-hole cusp can be systematically
improved by performing post-SCF explicit R12 calculations.
In the present work, the expansion coefficients are obtained
variationally by minimizing the total energy. However,
pre-computed values of the expansion coefficients and GTG
functions can also be used in the above expression.62

B. Energy and recombination probability
from eh-XCHF calculations

The eh-XCHF calculations were performed only for the
electron-hole system and Hamiltonian for the system was ob-
tained by setting λ = −1 in Eq. (23). The total eh-XCHF
wavefunction for the system is defined as

�xc(xe, xh) = [1 + G(re, rh)]�e(re)�h(rh)�spin(ωe, ωh),
(36)

where �spin is anti-symmetric and the electron and the hole
have opposite spins. Gaussian-type orbitals (GTO) were used
to describe the spatial component of the wavefunction and are
defined in Table I. The number of parameters Ng in the gemi-
nal expansion were incrementally increased until convergence
was achieved with respect to energy. At each value of Ng, the
set of geminal parameters {bk, γ k} were determined variation-
ally. The energies and recombination probability from the eh-
XCHF calculation are compared with HF and R12-FCI calcu-
lations and results are plotted in Figures 2 and 3, respectively,

FIG. 2. Convergence of the ground state energy as a function of number of
geminal parameters.
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FIG. 3. Comparison of the electron-hole recombination enhancement factor
from the eh-XCHF calculation with HF and R12-FCI results.

as a function of Ng. The Ng = 0 in the plot represents the
HF solution since the eh-XCHF calculation reduces to HF in
the limit of G = 0. The value of Ng was systematically in-
creased and convergence with respect to the total energy was
achieved at Ng = 7. The geminal parameters were optimized
in a sequential process and parameters optimized for Ng − 1
step were kept fixed. As a result, for the Ng step, all parame-
ters from the previous step {bi, γ i; i = 1, . . . , Ng − 1} were
kept fixed and only {bi, γ i; i = Ng} was variationally opti-
mized. The list of optimized geminal parameters are listed in
Table III. The HF energy was found to be higher that the R12-
FCI energy by 0.0648 Hartree (1.76 eV). The best eh-XCHF
energy with Ng = 7 is 0.8407 Hartree and is higher than the
R12-FCI energy by 0.02 eV. From Figure 2, it is seen that the
eh-XCHF wavefunction can be systematically improved by
addition of geminal parameters. The eh-XCHF energy for Ng

= 1 is lower than the HF energy by 0.0545 Hartree (1.48 eV).
This shows the importance of improving the short-range de-
scription of the electron-hole wavefunction that is missing in
the mean-field approximation. The form of the geminal func-
tion with Ng = 7 is plotted as the function of inter-particle
distance and is presented in Figure 4. An exponential func-
tion of the form e−ςreh is fitted to the geminal function and
also shown in Figure 4. The width parameter from the expo-
nential fit was found to be ς = 0.5605 which is close to the
theoretical exact value of 0.5 from the Kato cusp condition.112

The quality of the electron-hole wavefunction can also be
analyzed by computing either the electron-hole recombina-

TABLE III. Optimized geminal parameters.

k bk γ k

1 1.2100 0.3500
2 0.4640 3.9600
3 0.5800 0.0900
4 0.2270 1.9000
5 0.2800 0.1000
6 0.1028 1.6700
7 –0.1020 0.3500

FIG. 4. Comparison of the geminal function with the fitted exponential func-
tion and R12-FCI wavefunction. The geminal function has been scaled so that
the geminal and the R12-FCI curves can be plotted in the same figure.

tion rate or the associated recombination probability. Both of
these quantities are computed from the electron-hole density
matrix and is sensitive to accurate treatment of electron-hole
correlation. The general expression for electron-hole density
matrix for arbitrary number of excitons has been derived ear-
lier by Corni and co-workers52 for studying transitions from
(N + 1) to N excitonic states.52, 58 In a separate study, van
der Horst et al. used electron-hole distance probability distri-
bution function117 to analyze excitonic wavefunction in con-
jugated polymers obtained using the Bethe-Salpeter method.
The electron-hole distance probability distribution function
(in atomic uints) is defined as117

P α
eh = 〈�α|δ(re − rh)|�α〉

〈�α|�α〉 α = HF, R12 − FCI, XCHF,

(37)
and was used for analyzing HF, R12-FCI, and eh-XCHF
wavefunctions. Since we are interested in comparison of the
correlated wavefunctions with respect to the mean-field ap-
proximation, we also defined the eh-recombination enhance-
ment factor η which is obtained from the Peh using the fol-
lowing expression:

ηα = P α
eh

P HF
eh

α = HF, R12 − FCI, XCHF. (38)

The results from eh-XCHF calculations with Ng = 0, . . . , 7
together with the HF and R12-FCI results are presented in
Figure 3. It is seen, that the recombination probability con-
verges as a function of geminal parameters. On comparison
of results from the three methods, it is seen that HF calcula-
tion severely underestimates the recombination probability by
a factor of three for both the eh-XCHF and R12-FCI methods.
The recombination probability is very sensitive to form of the
wavefunction at small electron-hole inter-particle distances.
The ground state energies and the eh-recombination enhance-
ment factor for HF, R12-FCI, and eh-XCHF are summarized
in Table IV. The results in this table highlight the challenging
aspect of computation of accurate recombination probability.
The energy from the eh-XCHF wavefunction is higher than
the benchmark by 0.1%. In contrast, the eh-recombination
probability is lower by 16%.

Downloaded 02 Apr 2012 to 80.250.180.203. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



124105-9 Elward, Thallinger, and Chakraborty J. Chem. Phys. 136, 124105 (2012)

TABLE IV. Comparison of calculated ground state energy and electron-hole
recombination enhancement factor from HF, R12-FCI, and eh-XCHF calcu-
lations for the parabolic quantum dot. The Hamiltonian for the dot was de-
fined by setting k = 1/4 in Eq. (23).

Method Energy (Hartree) η

HF 0.9047 1
R12-FCI 0.8399 3.29
Eh-XCHF 0.8407 2.76

It is seen in Figure 2 that the eh-XCHF energy is con-
verged with respect to number of GTG functions. Analogous
to the conventional electronic structure theory, the converged
eh-XCHF method can be systematically improved using per-
turbation theory and configuration interaction118 calculation
using the eh-XCHF as the reference wavefunction. This ap-
proach of successive improvement of a correlated reference
wavefunction is also analogous to a typical diffusion Monte
Carlo calculation where correlated wavefunction from varia-
tional Monte Carlo is used as a starting point for a more accu-
rate calculation.

In general, it will not be possible to perform R12-FCI
calculation for any system due to lack of spherically symmet-
ric potential and numerical cost associated with using Slater-
type orbitals. The eh-XCHF formulation on the other hand is
a general purpose method that does not require any a priori
assumption about the potential and utilizes GTO as opposed
to STO as basis functions. The use of Gaussian type gemi-
nal function in the eh-XCHF method allow analytical evalua-
tion of the AO integrals.61, 108 In electronic structure theory,
the resolution of identity (RI) method119, 120 has been used
successfully for integral evaluation with GTG.121–124 The RI
method will be used in the eh-XCHF calculation for fast eval-
uation of many-particle integrals involving geminal functions.
The eh-XCHF benchmark calculations presented here is the
first in a series of calculation on various electron-hole sys-
tems. Future work using the eh-XCHF method involved in-
vestigation of effect of shell thickness on electron-hole re-
combination in CdSe/ZnS multilayered quantum dots118 and
replacing HF by eh-XCHF wavefunction as the zeroth order
reference wavefunction in post-SCF schemes such as MP2
and CI methods.125

V. CONCLUSIONS

The explicitly correlated HF method for a general many-
electron many-hole system is presented and was used for
calculation of ground state energy and electron-hole recom-
bination probability. The eh-XCHF method is a general tech-
nique for solving the electron-hole Schrodinger equation and
can be applied to a large variety of electron-hole system
by appropriate selection of the quasi-particle masses and
the external potential terms in the effective electron-hole
Hamiltonian. In the present work, the eh-XCHF method was
applied to the parabolic quantum dot system which consists
of an interacting electron-hole pair confined by the three-
dimensional parabolic potential. Ground state energy and
electron-hole recombination probabilities were computed and

the results were found to be in good agreement with the
highly accurate explicitly correlated full configuration inter-
action calculations. HF calculation was also performed and
the HF wavefunction was found to severely underestimate the
electron-hole recombination probability. The accuracy of the
HF wavefunction was compared for both electron-electron
and electron-hole system and it was found that the HF ap-
proximation is worse for the electron-hole system. The results
from these calculations highlight the importance of accuracy
of the form of the electron-hole wavefunction at small inter-
particle distances for electron-hole systems and the capability
of eh-XCHF method to successfully address this issue.
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