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Abstract
Exciton states and related optical properties of a single-walled carbon nanotube are reviewed,
primarily from a theoretical viewpoint. The energies and wavefunctions of excitons are
discussed using a screened Hartree–Fock approximation with an effective-mass or k · p
approximation. The close relationship between a long-range electron–hole exchange
interaction and a depolarization effect is clarified. I discuss optical properties including the
radiative lifetime of excitons, absorption spectra and radiation force. To describe these
properties in a unified scheme, a self-consistent method is introduced for calculating the
scattering light and induced current density due to excitons. I also briefly review experimental
results on the Aharonov–Bohm effect in excitons and quasi-dark excitons excited by light
polarized perpendicular to the tube axis.

(Some figures may appear in colour only in the online journal)
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1. Introduction

Carbon nanotubes have the structure of a seamlessly rolled-up
graphite sheet or graphene. They were discovered by Iijima
in 1991, and their crystal structure was determined from the
electron diffraction patterns [1] (similar carbon fibers were
reported by Endo [2]). These nanotubes, which are called
multi-walled nanotubes, consist of a few concentric tubes,
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each of which has carbon-atom hexagons arranged chirally
about the axis. After the discovery of multi-walled nanotubes,
single-walled carbon nanotubes (SWNTs) were produced
intentionally [3, 4]. The purpose of this paper is to provide
a brief review of the exciton states and optical properties of a
SWNT.

A SWNT has very attractive properties because of its
cylindrical quasi-one-dimensional (quasi-1D) structure. For
example, depending on its diameter and chirality, a SWNT
can be a metal or a semiconductor whose bandgap is inversely
proportional to the diameter [5–9]. In addition, the bandgap
can be changed using the Aharonov–Bohm (AB) effect
by applying a magnetic flux that passes through the tube
axis [10]. These fascinating properties of the bandgap can be
observed directly by optical spectroscopy.

Optical spectra are understood simply in terms of
band-to-band transitions. This simple picture successfully
describes the overall trends in the relationship between the
transition energies and structures of SWNTs. In fact, the
chiral index of an individual SWNT has been determined
experimentally from the simple band-to-band model [11–13].
In addition, this picture can explain a strong anisotropy
of the absorption intensity with respect to the polarization.
Although well-defined spectral peaks appear when the
polarization is parallel to the tube axis, they are significantly
suppressed for perpendicular polarization because of a large
depolarization effect [14]. A strong polarization dependence
of Raman scattering [15–17], absorption [18, 19] and
photoluminescence (PL) [17] has been observed in SWNTs.
This anisotropic optical response is called the antenna effect
and can be used to determine the degree of alignment of
SWNTs. This effect was also used to measure the magnetic
susceptibility anisotropy of SWNTs [20–23]. The magnetic
susceptibility χ‖ parallel to the tube axis is larger than
the perpendicular susceptibility χ⊥ [24–26]. Consequently, a
magnetic field tends to align the axes of SWNTs in the field
direction. By combining the tendency to align with a magnetic
field and the antenna effect, the values of 1χ = χ‖ − χ⊥
for SWNTs were determined using high-field magnetic linear
dichroism spectroscopy [20–23]. The above combination was
also used to demonstrate the AB effect in SWNTs [27–30].

Before the observation of PL, optical absorption by
SWNTs was reported [31–33]. The absorption of early
samples exhibited broad peaks attributed to large ensembles
of SWNTs, which would typically be bundled into ropes and
contain some level of impurities. The spectral broadening
was resolved by isolating SWNTs separated from those in
the bundle [34]. Isolation was achieved by encapsulating
individual SWNTs in a cylindrical micelle. The absorption
spectra of the isolated SWNTs showed a series of sharp peaks
associated with each transition level of individual SWNTs.
Furthermore, sharp PL peaks can be observed from the
isolated SWNTs [34]. By combining the sharp absorption
and PL signals, we can draw a photoluminescence excitation
(PLE) map; the PL intensity is recorded as the excitation
wavelength is changed. An intensity peak appears when the
excitation energy matches that of an absorption resonance
from which relaxation to a PL-emitting transition occurs. The

spectral intensities are summarized as a three-dimensional
map, in which luminescent intensities are plotted on a gray
or color scale as functions of the emission and excitation
wavelengths. A PLE map obtained from an ensemble of
SWNTs exhibits some spots, each of which represents a
specific chiral structure of the SWNTs [11]. Thus, PLE
mapping is an important method for identifying the chiral
structure. These sharp spectral peaks also enable us to study
the excited states of an individual SWNT precisely. In fact, the
exciton effect, the AB effect on the bandgap and the existence
of a quasi-dark exciton were clearly demonstrated by using
these isolated SWNTs.

In another isolation technique, SWNTs suspended
between mesa structures [35] or on trench structures [36] are
fabricated. The absorption and PL peak energies depend on
the dielectric constant surrounding the material. This feature
is called an environment effect [37, 38] and it was studied by
comparing the PLE signals for micelle-encapsulated SWNTs
and air-suspended SWNTs [39]. A theoretical study of
environment effects has also been reported [40]. Because the
suspended SWNTs are free from a surrounding micelle, it
is possible to extract their intrinsic optical properties. For
example, the diffusion length of excitons in air-suspended
SWNTs has been measured and was found to be significantly
longer than that in micelle-encapsulated SWNTs [41].

In this paper, we focus on the exciton states and their
optical properties, such as absorption and radiation force,
of a SWNT. Another important aspect of optical properties
is resonant Raman scattering. I shall not discuss this, but I
refer readers to the reviews [42, 43] and books [44, 45] on
this topic. The optical properties are one of various aspects
of carbon nanotubes, which also include the electronic,
magnetic, transport, phonon and mechanical properties. Many
reviews and books on these topics have been published [44,
46–58].

In section 2 electronic states of a graphene and a
SWNT are discussed using the effective-mass or k · p
approximation. Higher-order corrections due to trigonal
warping, the finite overlap integral and the curvature are
introduced in the k · p scheme. In section 3 selection rules of
one-photon excitation are discussed for polarization parallel
and perpendicular to the tube axis. In section 4 the exciton
states of SWNTs are reviewed. The equations of motion
of excitons are derived using the screened Hartree–Fock
approximation starting from the many-body Hamiltonian. In
addition, the exciton states for parallel and perpendicular
polarization are calculated. The electron–hole (e–h) exchange
interaction (EXI) arises for perpendicular polarization. Using
an e–h EXI with a dynamical factor (dynamical e–h EXI),
the correct exciton states can be calculated. In section 5
exciton–photon interaction is reviewed. A current due to
excitons is generated by an applied field and the induced
current produces an electromagnetic (EM) field. Therefore,
the current due to excitons and the EM field should be
determined self-consistently. The self-consistent treatment
generally provides a small correction to the optical response.
However, the radiative lifetime of excitons and scattering
force of light can be evaluated using the self-consistent
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Figure 1. Lattice structure of a graphene and coordinate systems. A
and B represent two types of carbon sites in a unit cell. Two
primitive translation vectors are denoted by a and b. Another choice
for the primitive translation vectors is denoted by a1 and a2. The
chiral vector and chiral angle of a SWNT are denoted by L and η,
respectively. The structure of a SWNT is specified by the chiral
vector. x and y are set to the circumferential and axial directions of a
SWNT.

treatment. Furthermore, the dynamical e–h EXI can be derived
from this treatment. In section 6 optical absorption for
parallel and perpendicular polarization is reviewed. The AB
effect for SWNTs has been demonstrated in optical spectra.
For perpendicular polarization, a quasi-dark exciton appears
because of the asymmetry of the electron and hole bands.
These experimental topics are also presented. In section 7
radiation force exerted on a SWNT is discussed. Finally, I
summarize this review in section 8.

2. Electronic states

2.1. Effective-mass approximation

2.1.1. Graphene. Because the structure of a SWNT is
obtained by rolling up a graphene, the SWNT’s electronic
states can be derived from those of graphene. The crystal
structure of a graphene is shown in figure 1. A unit cell of
graphene contains two carbon atoms. Therefore, graphene
consists of two sublattices whose respective lattice points
are called A and B sites. Primitive translation vectors are
denoted by a = a(1, 0) and b = a(−1/2,

√
3/2) in the x′–y′

coordinates, where a = 0.246 nm is the lattice constant (see
figure 1). The first Brillouin zone is shown in the inset
of figure 2. The K and K′ points at the corners of the
Brillouin zone are given by K = (2π/a)(1/3, 1/

√
3) and K′ =

(2π/a)(2/3, 0), respectively.
The wavefunction of the pz orbital (sp2 hybridized

orbitals) of a carbon atom constitutes a π (σ) orbital in
graphene. The amplitude of the π orbital is concentrated
out-of-plane, whereas that of the σ orbital lies along the
bonds between nearest-neighbor carbon atoms. The π orbital
specifies the electronic states near the Fermi energy. Figure 2
shows the π band structure calculated in a nearest-neighbor
tight-binding model along the K→ 0→M→ K points. The
Fermi energy is set to 0. The conduction and valence bands
touch at the K and K′ points.

Figure 2. The π band structure of a graphene. Fermi energy lies at
ε = 0. The Brillouin zone and high symmetry points K, K′, M and
0 are shown at the upper right.

The electronic states near the K and K′ points can be
described by an effective-mass or k · p equation. In the
following, we choose an x–y coordinate system obtained by
rotating the x′–y′ system by η, as shown in figure 1. Here,
x and y represent the circumferential and axial directions of
a SWNT, respectively, which are discussed later. The k · p
equations around the K and K′ points of graphene are given
by

γ (k̂ ·σ)FK(r) = εFK(r), (1a)

γ (k̂′ ·σ)FK′(r) = εFK′(r), (1b)

where γ is a band parameter, σ = (σx, σy) are the Pauli
spin matrices, k̂ ≡ −i∇ is the wavevector operator (k̂′x = k̂x

and k̂′y = −k̂y) and ε is the energy. FK(r) = [FK
A(r),FK

B (r)]
is an envelope function with two components representing
the amplitudes at the A and B sites. The k · p equations
can be derived from the tight-binding model [54] and the
band parameter γ relates to the transfer integral γ0 between
nearest-neighbor carbon atoms as γ =

√
3aγ0/2; they have

the same form as the massless Dirac equation or Weyl
equation for neutrinos. The energy bands around the K and
K′ points of graphene are obtained from the k · p equations as

εs(k) = sγ |k|, (2)

where s = +1 for the conduction band and−1 for the valence
band. The energy bands of the graphene near the K and K′

points are degenerate and exhibit conic dispersion resembling
the dispersion of light. Therefore, the band structure of
graphene is called a Dirac cone.

2.1.2. Nanotubes. Any SWNT structure is determined by
the chiral vector L = naa + nbb. The SWNT specified by L
has a structure of rolled-up graphene such that two hexagons
at the origin and at L overlap. Thus, the circumferential and
axial directions agree with the x and y directions, respectively
(see figure 1). Another choice of primitive translation vectors
a1 = a and a2 = a+b is also used to express the chiral vector,
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for example, L = n1a1 + n2a2. An SWNT having vector L
is usually called an (n1, n2) or (na, nb) nanotube depending
on the set of primitive translation vectors. The circumference
length is given by

L = |L| = a
√

n2
a + n2

b − nanb = a
√

n2
1 + n2

2 + n1n2, (3)

and the chiral angle between the x and x′ directions is given
by

η = cos−1
[(na − nb/2)/L] = cos−1

[(n1 + n2/2)/L]. (4)

In the lowest-order approximation, the electronic states of
a SWNT are obtained from the k ·p equation (1) by imposing
a periodic boundary condition along the circumferential
direction. Because the wavefunction around the K point is
given byψK(r) ∝ eiK·rFK(r), the periodic boundary condition
ψK(r+ L) = ψK(r) yields

FK(r+ L) = FK(r) exp
(
−i

2π
3
ν

)
, (5)

where ν is an integer (0,±1) determined by

na + nb = 3N + ν, (6)

with N being an integer. For the a1, a2 translational vectors, ν
is determined by

n1 − n2 = 3N + ν. (7)

Similarly, the boundary condition for FK′(r) is given by

FK′(r+ L) = FK′(r) exp
(
+i

2π
3
ν

)
. (8)

The envelope function is characterized by a plane wave
FK(r) ∝ exp(ik · r). From the boundary condition (5),
the discrete wavevector kx = κν(n) in the circumferential
direction is obtained as

κν(n) =
2π
L

(
n−

ν

3

)
, (9)

where n is an integer. We denote the continuous axial
wavevector as k = ky. The energy dispersion of a SWNT is
obtained from that of a graphene by substituting k= [κν(n), k]
into equation (2) [10]:

εK
s,n,k = sε(n, k), (10)

where

ε(n, k) = γ
√
κν(n)2 + k2. (11)

The corresponding envelope functions are written as

FK
s,n,k(r) =

1
√

AL
FK

s,n,k exp[iκν(n)x+ iky], (12)

where

FK
s,n,k =

1
√

2

[
bν(n, k)

s

]
, (13)

Figure 3. Energy bands of a SWNT near the Fermi energy.
Numbers indicate band indices n. ν is specified by the chiral vector.
For ν = 0, band indices in the K and K′ valleys are the same and are
labeled in the left panel. For ν = 1 (−1), the band indices labeled in
the middle and right panels indicate those in the K (K′) and K′ (K)
valleys, respectively. A SWNT is metallic for ν = 0 and
semiconducting for ν = ±1.

and

bν(n, k) =
κν(n)− ik√
κν(n)2 + k2

, (14)

where A is the length of the SWNT.
Near the K′ point, the electronic states are obtained

by replacing k with −k (see equations (1a) and (1b) and
the description below the equations) and ν by −ν (see
equations (5) and (8)). Then, κ ′ν(n) and b′ν(n, k) around the K′

point are given by κ ′ν(n) = κ−ν(n) and b′ν(n, k) = b−ν(n, k)∗,
respectively.

The electronic states of a SWNT depend on the structure
or chiral vector through the factor ν; a SWNT is metallic for
ν = 0 and semiconducting with a bandgap of 4πγ/3L for
ν = ±1. Figure 3 shows the band structures near the Fermi
energy for ν = 0, 1 and −1. The energy bands are specified
by s = {±} and n. In figure 3 each band is labeled with the
band index n.

2.2. Aharonov–Bohm effect

In the presence of a magnetic flux φ passing through the cross
section of a SWNT, a vector potential A = (φ/L, 0) appears.
This vector potential changes the boundary condition in the
circumferential direction; consequently, κν(n) is modified as
follows:

κνϕ(n) =
2π
L

(
n+ ϕ −

ν

3

)
, (15)

where ϕ = φ/φ0 and φ0 = ch/e is the magnetic flux
quantum. Therefore, the energy levels of a SWNT are changed
by κνϕ(n) [10]. In fact, the bandgaps at the K and K′

points are given by εK
G = 2γ |κνϕ(n)| and εK′

G = 2γ |κ−νϕ(n)|,
respectively. The change in the bandgap is given by

1εG (meV) = 0.49 (T−1 nm−1)B (T)d (nm), (16)

4
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Figure 4. AB effect on bandgap of a SWNT. Bandgaps at the K and
K′ points periodically change as a function of magnetic flux passing
through the tube axis. The period of magnetic flux is the magnetic
flux quantum φ0 = ch/e.

where B is a magnetic field, d is the SWNT diameter and
γ = 0.646 eV nm is chosen. For B = 10 T, the bandgap
change in a SWNT with d = 1 nm is 4.9 meV

Figure 4 shows the bandgap at the K and K′ points as a
function of magnetic flux. The gap oscillates between 0 and
2πγ/L with a period of φ0 because of the AB effect. For ν =
0, the lowest-band edges at the K and K′ points are degenerate
for any magnetic flux. For ν =±1, the band edges at the K and
K′ points are degenerate at φ = 0. However, the degeneracy is
linearly and symmetrically lifted with increasing φ.

2.3. Higher-order correction

2.3.1. Trigonal warping. The k ·p equation (1) describes the
electronic states around the Fermi energy near the K and K′

points. In this region, the dispersion relation exhibits a conical
structure; thus, each energy level is inversely proportional
to the diameter. However, in the electronic states outside of
this region, a constant-energy line changes from a circle to
a warped closed curve with threefold symmetry. In the k · p
scheme, the warping effect can be included by introducing a
higher-order k · p term. The higher-order term H′ of the k · p
Hamiltonian in the K valley [59] is given by

H′ = γ
a

4
√

3

(
0 e3iη(k̂x + ik̂y)

2

e−3iη(k̂x − ik̂y)
2 0

)
, (17)

where η is the chiral angle depicted in figure 1. The
Hamiltonian in the K′ valley is obtained by taking the complex
conjugate and changing η to η + π/3 in equation (17). The
resulting energy is degenerate in the K and K′ valleys, and the
bandgap is calculated as [60]

εK
G ≈ 2γ |κνϕ(n)|

[
1+

aκνϕ(n)

4
√

3
cos 3η

]
. (18)

The warping effect does not modify the bandgap for armchair
SWNTs (η = π/6), whereas the effect shifts the bandgap for
zigzag SWNTs (η = 0) by the maximum amount.

2.3.2. Curvature effect. Curvature in the circumferential
direction causes the origin of k̂ to shift in the k · p
Hamiltonian [61, 62]. This shift in the circumferential or x
direction can be represented by an effective magnetic flux φeff
passing through the cross section, i.e.1kx = (2π/L)(φeff/φ0).
The effective flux has different signatures in the K and K′

valleys. For the K valley, the effective flux is estimated as [62]

ϕ ≡
φeff

φ0
= −

2π

4
√

3

a

L
p cos 3η, (19)

where p = 1 − (3/8)(γ ′/γ ), γ ′ = −(
√

3/2)Vπppa and γ =

−(
√

3/2)(Vσpp − Vπpp)a; Vπpp and Vσpp are the conventional
tight-binding parameters for neighboring p orbitals. The
curvature effect becomes largest in zigzag SWNTs (η = 0).
For typical parameters, we have γ ′/γ ∼ 8/3; therefore, it is
very difficult to estimate p reliably except that |p| < 1. The
curvature effect opens a small gap for metallic SWNT except
for armchair SWNTs (η = π/6). The gap becomes largest for
zigzag SWNTs (η = 0).

The curvature and trigonal warping effects both depend
on the chiral angle η; this is why the electronic states of a
SWNT depend on the chirality. Like the curvature effect, the
warping effect also becomes larger for thin SWNTs because
of the large level separation due to size quantization. Although
some SWNTs with different chiralities have fairly similar
diameters, the warping and curvature effects magnify the
level difference for these SWNTs. Therefore, a so-called
family pattern appears when the optical transition energies are
summarized as a function of the diameter for various chiral
vectors [63–66]. This fact makes it easy to assign a chiral
vector to an individual SWNT from resonant optical spectra
such as PL and resonant Raman spectra.

2.3.3. Effective overlap integral. The overlap integral
between nearest-neighbor atomic wavefunctions yields an
asymmetric band structure between the conduction and
valence bands of a graphene [67]. The effective-mass equation
including the overlap integral is given by(

−ε (γ + εS)f̂ (k̂)

(γ + εS)f̂ (k̂)∗ −ε

)(
FK

A

FK
B

)
= 0, (20)

where S = (
√

3a/2)S0 and S0 is the overlap integral. The
operator f̂ (k̂) is defined as

f̂ (k̂) = (k̂x − ik̂y)+
a

4
√

3
e3iη(k̂x + ik̂y)

2, (21)

where the first and second terms represent the operators for
the lowest- and higher-order k · p approximations, respec-
tively [66]. The overlap integral of a graphene is S0 ≈ 0.13.

The energy of a graphene in the K valley is obtained as

εK
s = s

γ |f (k)|

1− sS|f (k)|
. (22)

The energy bandwidth of the conduction band is larger than
that of the valence band of graphene. Thus, the overlap

5
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Figure 5. (a) Schematic illustration of light polarized parallel to the tube axis. (b) Energy bands and allowed optical transitions (red arrows)
for metallic and semiconducting SWNTs. Band indices of semiconducting SWNT in middle and right panels are labeled for ν = +1. Band
indices for ν = −1 are obtained by reversing the signs.

integral produces an asymmetry between the conduction and
valence bands. The wavefunctions are given by

FK
s =

1
√

2

(
f (k)/|f (k)|

s

)
. (23)

The wavefunction is independent of the overlap integral.
The energy and wavefunctions of a SWNT are obtained

by substituting k = [κν(n), k] into equations (22) and
(23), respectively. Because of the asymmetry between the
conduction and valence bands, the level separation of the
conduction bands of a SWNT is larger than that of the
valence bands. The difference in the level separation causes a
quasi-dark exciton for light polarization perpendicular to the
tube axis (see section 6.4). A next-nearest-neighbor hopping
integral in a tight-binding model also contributes to the band
asymmetry. This parameter can be included in the k · p
equation in the same form as the overlap integral [66].
Therefore, the next-nearest hopping integral and the overlap
integral are summarized by a single parameter S as the
effective overlap integral.

3. Optical selection rules

The optical selection rules of a SWNT depend on the direction
of light polarization because of its cylindrical structure. In
this section, the optical selection rules for light polarization
parallel and perpendicular to the tube axis are discussed.

3.1. Dynamical conductivity

The optical absorption is related to the dynamical conductiv-
ity, which is calculated from linear response theory. It is useful
to expand the electric field Eξ (θ, ω) and induced current
density jξ (θ, ω) into a Fourier series:

Eξ (θ, ω) =
∑

l

El
ξ (ω) exp(ilθ − iωt), (24)

jξ (θ, ω) =
∑

l

jlξ (ω) exp(ilθ − iωt), (25)

where ξ denotes x or y, and the azimuth θ = 2πx/L represents
the position in the circumferential direction. In the linear
response regime, the induced current density is written as

jlξ (ω) = σ
l
ξξ (ω)E

l
ξ (ω), (26)

where σ l
ξξ (ω) is the dynamical conductivity.

The dynamical conductivity at zero temperature in a
rotating-wave approximation is calculated using the Kubo
formula as

σ l
ξξ (ω) =

2h̄

iAL

∑
KK′

∑
n,k

∑
s,s′

1
εs,n,k − εs′,n+l,k

×
|〈s, n, k|ĵlξ |s

′, n+ l, k〉|2

εs,n,k − εs′,n+l,k − h̄ω − i0
, (27)

where |s, n, k〉 represents the envelope function FK
s,n,k or

FK′
s,n,k, 0 is a phenomenological damping energy and the

factor 2 comes from the spin degeneracy.
The current operator ĵlξ in the K valley is given by

ĵlξ = −
e

ih̄
[ξ̂ , γσ · k̂]e−ilθ

= −
eγ

h̄
σξ e−ilθ , (28)

where ξ̂ = x̂ or ŷ. In the K′ valley, the operator ĵlx is the same
as that in the K valley, but jly has the opposite sign of that in

the K valley. The factor |〈s, n, k|ĵlξ |s
′, n + l, k〉|2 provides the

same value for both the K and K′ valleys.

3.2. Parallel polarization

When the polarization of an external electric field D is parallel
to the tube axis as shown in figure 5(a), the electric field on the
cylindrical surface is constant; i.e. the Fourier component of
the electric field is written as

Dl
y = Dδl,0. (29)

The relevant induced current is jl=0
y (ω); thus, the optical

transition becomes allowed between bands with the same
band index.

One exception to the above statement exists; the optical
transition is forbidden for metallic SWNTs between the linear
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Figure 6. (a) Schematic illustration of light polarized perpendicular to the tube axis. Depolarization charge and field are depicted. (b)
Energy bands and allowed optical transitions are indicated by arrows for metallic and semiconducting SWNTs. Red and blue arrows
indicate allowed and forbidden transitions at the band edge, respectively. Band indices of semiconducting SWNT in the middle and right
panels are labeled for ν = +1. Band indices for ν = −1 are obtained by reversing the signs.

conduction and valence bands. To demonstrate this fact, we
calculate the matrix elements of the current operator:

〈+, n, k|ĵl=0
y |−, n, k〉 =

1
2

eγ

h̄
[bν(n, k)∗ + bν(n, k)]. (30)

Because bν(n, k) = −i for the band index n = 0 of metallic
SWNT, |〈+, 0, k|ĵl=0

y |−, 0, k〉|2 = 0; i.e. the optical transition
is forbidden. A more sophisticated understanding is as
follows: the wavefunction is an eigenfunction of σy (see
equations (1a) and (1b)) for the band index n = 0 of a metallic
SWNT. The electronic states of the conduction and valence
bands of a metallic SWNT having n = 0 are orthogonalized
with each other; therefore, the matrix element jy ∝ σy between
them becomes zero.

Figure 5(b) shows the allowed optical transitions (red
arrows) of metallic and semiconducting SWNTs for parallel
polarization.

3.3. Perpendicular polarization

The optical selection rules for perpendicular polarization
differ from those for parallel polarization. When the
polarization of the external field is perpendicular to the tube
axis as shown in figure 6(a), the electric field on the cylindrical
surface changes sinusoidally as D = (D sin θ, 0), i.e. the
Fourier component of the electric field is written as

Dl
x =

D

2i
δl,1 −

D

2i
δl,−1. (31)

The relevant induced current density is jl=±1
x (ω), so optical

transitions are allowed between bands having band indices
that differ by ±1. At the band edges, however, transitions
having a finite current matrix element are limited. For k = 0,
the matrix elements of the current operator are calculated as

〈+, n, 0|ĵl=±1
x |−, n± 1, 0〉

=
1
2

eγ

h̄
{−sgn[κν(n)] + sgn[κν(n± 1)]}, (32)

where sgn(κ) denotes the sign of κ . Then, the matrix elements
become finite for opposite signs between κν(n) and κν(n± 1)

and zero for identical signs. Other transitions at the band
edges are all forbidden. Because the density of states at
the band edges of a quasi-1D system exhibit divergence
as
√
ε − ε(n, k = 0) in the limit of 0 = 0, absorptions

corresponding to the band-edge forbidden transitions are quite
small as shown in figure 14 (the large and small peaks
correspond to band-edge allowed and forbidden transitions,
respectively). A more sophisticated understanding is as
follows: the wavefunctions at the band edge (k = 0) are
eigenfunctions of σx (see equations (1a) and (1b)) and jx ∝ σx.
Thus, optical transitions between band-edge states having the
same eigenvalue of σx are allowed, and those with different
eigenvalues are forbidden. Equation (13) reveals that two
envelope functions belong to the same eigenvalue of σx when
the κν(n) values in the conduction and valence bands have
opposite signs.

Figure 6(b) shows the allowed optical transitions of
metallic and semiconducting SWNTs for perpendicular
polarization. Red and blue arrows indicate allowed and
forbidden transitions at the band edge, respectively.

4. Excitons

Exciton effects are generally important in low-dimensional
systems such as a SWNT. The exciton states of a SWNT
were first discussed theoretically by Ando [68], who used the
screened Hartree–Fock approximation in the k · p scheme.
First-principles studies of exciton states have also been
performed [69–71]. The resulting binding energy reaches a
few hundred millielectronvolts. Because of this large binding
energy, the excitons in a SWNT can be observed at room
temperature. The exciton effect in SWNTs was first indicated
experimentally by absorption spectra of a thin film containing
SWNTs [33, 72], in which the existence of excitons was
deduced from the difference between the observed absorption
peaks and the energies calculated in a simple tight-binding
model. Similarly, the ratio problem was pointed out as
evidence of the effect of excitons on optical spectra [73]. The
ratio of ES

22/E
S
11 becomes 2 in the large-diameter limit within

the tight-binding model, where ES
nn denotes the excitation

energy from the nth highest valence to the nth lowest

7
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conduction bands of a semiconducting SWNT. However, the
ratio approaches ∼1.7 in the extrapolation from the PLE
mapping data [11, 63]. The ratio problem can be resolved by
considering the exciton effect.

More reliable evidence of excitons has been demonstrated
by two-photon PLE [74, 75]. The typical absorption and
PL spectra are observed as a one-photon process. However,
at high excitation power densities, two-photon absorption
occurs. The selection rules for two-photon absorption differ
from those of one-photon absorption; thus, complementary
information of excitons is obtained from the two-photon
absorption. In a quasi-1D material such as SWNTs, a
Rydberg series of exciton states below the bandgap is
classified by symmetry with respect to reflection through a
plane perpendicular to the tube axis [76]. The even-parity
(odd-parity) states are denoted by 1s, 2s, etc (2p, 3p, etc),
and they are allowed for one-photon (two-photon) absorption.
In the PLE map for two-photon excitation, the bound-state
nature of excitons was demonstrated by the observation of
distinct fluorescence emission from the 2p exciton. When
the experimental results and theoretical calculations are
combined, the exciton binding energies are found to be
0.3–0.4 eV for SWNTs having diameters between 6.8 and
9.0 Å [74, 75]. A detailed theoretical study of two-photon
absorption has been performed [77].

This section gives a brief review of the exciton states of
a SWNT. The calculation method developed by Ando [68]
is described in sections 4.1 and 4.2. In section 4.3, a
dynamical e–h EXI is introduced [78]. This dynamical
character of the e–h EXI is important for calculating the
exciton wavefunction and absorption spectra, as shown in
section 6.2. The fine structure originating from short-range
interaction is summarized in section 4.4. The exciton states
for parallel and perpendicular polarization are described in
sections 4.5 and 4.6, respectively.

4.1. Hartree–Fock approximation

The Hamiltonian of interacting electrons in the second
quantized form is written as

H =
∫

dr 9̂†(r)h(r)9̂(r)

+
1
2

∫
dr
∫

dr′ 9̂†(r)9̂†(r′)v(r− r′)9̂(r′)9̂(r), (33)

where h(r) is the kinetic term, v(r − r′) is the Coulomb
interaction between electrons and 9†(r) [9(r)] is a creation
(annihilation) field operator. The field operator for a SWNT is
expanded as

9̂(r) =
∑

ζ=K,K′

∑
α=(±,n)

∑
k

Fζαk(r)c
ζ
αk, (34)

where Fζαk(r) is defined in equation (12) with α = (s, n) and

cζαk is an annihilation operator.
In the Hartree–Fock approximation, the ground state |g〉

of a SWNT is given by

|g〉 =
∏
ζnk

cζ†
−,n,k|0〉, (35)

where |0〉 is a vacuum state and cζ†
−,n,k is the creation operator

for a valence electron.
A one-electron excitation state is generated by absorbing

one photon, which excites a valence electron |−, n, k〉 to a
conduction state |+, n + l, k′〉. Because the wavevector of
the photon is much smaller than K − K′, excitation between
different valleys (K and K′) can be neglected. In addition, we
approximate k′ ≈ k. Then the one-electron excitation states
|3, l〉 are written as

|3, l〉 = B†
3,l|g〉, (36)

where

B†
3,l =

∑
ζnk

ψ
ζ
3,l(n, k)cζ†

+,n+l,kcζ
−,n,k|g〉. (37)

The equation of motion for |3, l〉 is calculated from

(H − Ēl
3)|3, l〉 = (HB†

3,l − Ēl
3B†

3,l)|g〉

= ([H,B†
3,l] + ĒgB†

3,l − Ēl
3B†

3,l)|g〉

= 0, (38)

where Ēl
3 and Ēg are the energies of |3, l〉 and |g〉,

respectively. Therefore, we have

[H,B†
3,l]|g〉 = El

3B†
3,l|g〉, (39)

where El
3 = Ēl

3 − Ēg is the excitation energy. By applying

〈g|cζ†
−,n,kcζ

+,n+l,k to equation (39) from the left-hand side, the

equation for ψζ3,l(n, k) is obtained as∑
n′k′

Hζ ζ ′

(nk)(n′k′)ψ
ζ ′

3,l(n
′, k′) = El

3ψ
ζ
3,l(n, k), (40)

where

Hζ ζ ′

(nk)(n′k′) = [E
ζ
+,n+l,k − Eζ

−,n,k]δζ ζ ′δnn′δkk′

− vζ ζ ζ ζ
(+,n+l,k;+,n′+l,k′)(−,n′,k′;−,n,k)δζ ζ ′

+ vζ ζ ζ
′ζ ′

(+,n+l,k;−,n,k)(−,n′,k′;+,n′+l,k′), (41)

with

vζ1ζ2ζ3ζ4
(α1k1;α2k2)(α3k3;α4k4)

=

∫
dr
∫

dr′ Fζ1∗
α1,k1

(r)Fζ2
α2,k2

(r)

× v(r− r′)Fζ3∗
α3,k3

(r′)Fζ4
α4,k4

(r′). (42)

In the first term of equation (41), Eζs,n,k represents a
single-particle energy in the ζ = {K,K′} valley, including the
self-energy:

Eζ
±,n,k = ±γ

√
κν(n)2 + k2

−

∑
n′,k′

vζ ζ ζ ζ
(±,n,k;−,n′,k′)(−,n′,k′;±,n,k), (43)

where the last term represents the self-energy coming from an
exchange Coulomb interaction. A direct Coulomb interaction,
which has only a Fourier component with q = 0, is cancelled
by Coulomb interaction with the positive background. The
second and last terms in equation (41) represent electron–hole

8
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(e–h) direct Coulomb interaction and e–h EXI, respectively. In
the k · p scheme, only the long-range part of the interactions
is considered, so there is no e–h direct Coulomb interaction
between states in the K and K′ valleys. However, a finite
e–h EXI occurs between states in the K and K′ valleys.
Note that both the direct e–h Coulomb interaction and the
e–h EXI between states in the K and K′ valleys also appear
as a short-range part. These short-range parts provide fine
structure of exciton levels discussed in section 4.4.

The Coulomb potential between two electrons on the
cylindrical surface at r and r′ is written as

v(r− r′) =
∑

q
exp

[
iq(y− y′)

]
×

2e2

κA
K0

(
L|q|

2π

∣∣∣∣2 sin
π(x− x′)

L

∣∣∣∣
)
, (44)

where Kn(t) is a modified Bessel function of the second kind.
Then the Coulomb matrix elements are given by

vζ ζ ζ
′ζ ′

(α,k+q;β,k)(β ′,k′;α′,k′+q) = vn−m(q)δn−m,n′−m′(F
ζ∗
α,k+q ·F

ζ
β,k)

×(Fζ
′
∗

β ′,k′ ·F
ζ ′

α′,k′+q), (45)

with

vn−m(q) =
2e2

κ
I|n−m|

(
L|q|

2π

)
K|n−m|

(
L|q|

2π

)
, (46)

where In(t) is the modified Bessel function of the first kind
and α = (s, n), β = (s′,m).

4.2. Screened-Hartree–Fock approximation

In the conventional random-phase approximation or self-
consistent field approximation, the screening effect of
electrons appears in the direct Coulomb interaction. The
screened direct Coulomb potential is given by

Vζ ζ ζ ζ
(α,k+q;β,k)(β ′,k′;α′,k′+q) =

vζ ζ ζ ζ
(α,k+q;β,k)(β ′,k′;α′,k′+q)

εn−m(q)
, (47)

where εn−m(q) is the dielectric function:

εn−m(q) = 1+ vn−m(q)5n−m(q), (48)

with 5n−m(q) being the polarization function:

5n−m(q) = −
2
A

∑
ζ=K,K′

∑
n′m′

∑
k′
δn−m,n′−m′

×|Fζ∗α,k ·F
ζ
β,k+q|

2
g0(ε

ζ

+,m′,k′)g0(ε
ζ

−,n′,−k′+q)

ε
ζ

−,n′,−k′+q − ε
ζ

+,m′,k′
. (49)

We have introduced a cutoff function g0(ε):

g0(ε) =
ε

|ε|αc + ε
αc
c
, (50)

which contains two parameters αc and εc and should be
chosen in such a way that only the contributions from states
near the Fermi energy, where the k · p scheme is valid, are
considered.

In the screened Hartree–Fock approximation, the direct
Coulomb potential vζ ζ ζ ζ

(α,k+q;β,k)(β ′,k′;α′,k′+q) is replaced by the

screened one Vζ ζ ζ ζ
(α,k+q;β,k)(β ′,k′;α′,k′+q) in the matrix elements

(41) in the Hartree–Fock approximation. Note that the e–h
EXI is not screened by εn−m(q) [79]. Then, the matrix
elements in the screened Hartree–Fock approximation are
written as

Hζ ζ ′

(nk)(n′k′) = [E
ζ
+,n+l,k − Eζ

−,n,k]δζ ζ ′δnn′δkk′

− Vζ ζ ζ ζ
(+,n+l,k;+,n′+l,k′)(−,n′,k′;−,n,k)δζ ζ ′

+ vζ ζ ζ
′ζ ′

(+,n+l,k;−,n,k)(−,n′,k′;+,n′+l,k′). (51)

4.3. Dynamical electron–hole exchange interaction

The e–h EXI can be interpreted as an interaction between
the exciton and the depolarization field caused by the
exciton [80–83]. In a linear response regime, the depolariza-
tion field should oscillate with the applied field frequency.
Consequently, the frequency should appear in the e–h EXI
for the optically excited exciton. However, such a factor is
not included in the conventional e–h EXI in the last term of
equation (51). In fact, the optical absorption of an exciton
calculated from the conventional e–h EXI is quite different
from that calculated including the depolarization effect (see
the red solid and dashed lines in figure 14(b)).

A general form of a correct e–h EXI for a SWNT is given
by

AEXI
uu′,l(ω) =

ih̄

εl
u′

∫
dr
∫

dr′〈u, l|ĵ(r)|g〉

· ḠL(r, r′) · 〈g|ĵ(r′)|u′, l〉, (52)

where |u, l〉 and εl
u denote an exciton state and its energy,

respectively, and they are obtained excluding the e–h EXI in
the K or K′ valley, in which u includes valley information
(K or K′ valley). ḠL(r, r′) is the longitudinal part of a
dyadic Green function for the Maxwell equations. The
derivation of this form will be provided briefly in section 5.1.
The longitudinal component ḠL is generally given by
ḠL(r, r′) = [i/(ωκ)]∇1/|r− r′|∇′, where κ is the background
dielectric constant. Substituting the explicit form of ḠL into
equation (52) and using the continuity equation [ρ̂,H]/ih̄ +
∇ · ĵ = 0, where ρ̂ is a charge-density operator, we have

AEXI
uu′,l(ω) =

1
κ

εl
u

h̄ω

∫
dr
∫

dr′
〈u, l|ρ̂(r)|g〉〈g|ρ̂(r′)|u′, l〉

|r− r′|
. (53)

On the other hand, the conventional e–h EXI AEXI(c)
uu′ given in

the last term of equation (51) has the following form:

AEXI(c)
uu′,l =

1
κ

∫
dr
∫

dr′
〈u, l|ρ̂(r)|g〉〈g|ρ̂(r′)|u′, l〉

|r− r′|
. (54)

Note that the e–h EXI equation (53) has an extra factor εl
u/h̄ω

compared to the conventional e–h EXI. Thus, we call it a
dynamical e–h EXI.

9
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4.4. Fine structure

A conduction electron and valence hole form an exciton owing
to the long-range direct Coulomb term. Because electron
and hole states have two valleys at the K and K′ points
with twofold spin degeneracy, the exciton states have 16-fold
degeneracy [84]. We denote |(K,↑)(K′,↓)〉 as an exciton
consisting of a K-valley electron with spin up and a K′-valley
hole with spin down. Here, the spin of a hole is denoted by that
of the corresponding electron in the valence band. Therefore,
the hole spin notation is opposite to that frequently used.

The 16 states are classified into singlets and triplets with
respect to the total spin. The four singlet states are as follows:

1
|ζ ζ ′〉 =

1
√

2
[|(ζ,↑)(ζ ′,↑)〉 + |(ζ,↓)(ζ ′,↓)〉], (55)

where ζ, ζ ′ = K or K′, respectively. The 12 triplet states are
as follows:

3
|ζ ζ ′,+1〉 = |(ζ,↑)(ζ ′,↓)〉,

3
|ζ ζ ′, 0〉 =

1
√

2
[|(ζ,↑)(ζ ′,↑)〉 − |(ζ,↓)(ζ ′,↓)〉],

3
|ζ ζ ′,−1〉 = |(ζ,↓)(ζ ′,↑)〉.

(56)

The degeneracy of the singlet and triplet excitons is generally
lifted by the e–h EXI; thus, the energy of the singlet
exciton is higher than that of the triplet states. Further, some
degeneracies are lifted by a weak short-range direct Coulomb
interaction and the e–h EXI, which causes interaction between
an electron and a hole in different valleys. As a result, the
singlet excitons split into bonding and anti-bonding states:

1
|KK− K′K′(±)〉 =

1
√

2
(1|KK〉 ± 1

|K′K′〉), (57)

and two degenerate states given by 1
|KK′〉 and 1

|K′K〉 [84].
The degeneracy of the triplet excitons splits in the same way
although each state has a threefold degeneracy corresponding
to the degree of the magnetic quantum number for total spin
1. Among the 16 states, the only optically allowed level is
1
|KK− K′K′(+)〉 and the other states are all forbidden.

Precisely speaking, the anti-bonding states 1
|KK −

K′K′(−)〉 between excitons in the K and K′ valleys are not true
forbidden states for polarization perpendicular to the tube axis
but have a small oscillator strength. In fact, weak PLE signals
have been observed for perpendicular polarization [85]. This
1
|KK − K′K′(−)〉 exciton with perpendicular polarization

is called a quasi-dark state. This feature arises from the
asymmetry between the conduction and valence bands due to
the effective overlap integral (see section 2.3.3). As a result,
an energy difference between excitons in the K and K′ valleys
exist for perpendicular polarization. For parallel polarization,
however, there is no energy difference between excitons in the
K and K′ valleys, so the exciton 1

|KK−K′K′(−)〉with parallel
polarization becomes a dark state. This is discussed in detail
in section 6.4.

4.5. Parallel polarization

Exciton states generated by polarized light parallel to the
tube axis are calculated from the screened Hartree–Fock

Figure 7. Energy levels of exciton with parallel polarization as a
function of effective strength of the Coulomb energy v. Red lines
below the bandgap denote bound excitons. Dotted region above the
bandgap denotes continuous levels of scattering e–h pairs. Blue
closed circles denote appreciable oscillator strength; the magnitude
is proportional to the radius. The solid line in the dotted region
denotes the exciton level, which consists mainly of an electron in
the second-lowest conduction band and a hole in the second-highest
valence band.

approximation (51) [68]. Because of the Fourier component
(29) of parallel polarization, exciton states with l = 0 in
equation (37) are excited. Note that the e–h EXI AEXI

uu′,l(ω)

becomes zero for parallel polarization.
In the k · p scheme, all physical quantities become

universal if the length and energy are scaled by L and 2πγ/L,
respectively. The strength of the Coulomb interaction in a
SWNT is characterized by the dimensionless quantity given
by the ratio of the typical Coulomb energy e2/κL and the
typical kinetic energy 2πγ/L, i.e.

v ≡
e2

κL

L

2πγ
≈

0.35
κ
. (58)

The typical strength of the Coulomb energy is of the order of
0.1–0.2 when κ is chosen around κ = 2.4 for graphite. In the
following calculations, the cutoff energy εc/(2πγ/L) = 10 in
equation (50) is chosen. This cutoff energy corresponds to
half of the π bandwidth for a SWNT having a diameter of
∼1.4 nm. The parameter αc, which represents the smoothness
of the cutoff, is set to αc = 4.

Figure 7 shows the energy levels of exciton states with
parallel polarization as a function of the effective strength
of the Coulomb energy v. Scattering e–h pairs exist in the
dotted region above the bandgap. Because of the self-energy
due to the Coulomb interaction, the band edges of the lowest
conduction and highest valence bands shift to higher- and
lower-energy sides, respectively. Consequently, the bandgap
increases with the Coulomb energy. Well-defined exciton
states, which are denoted by red lines, lie below the bandgap.
The binding energies of the excitons, which are represented by
the energy differences between the bandgap and the exciton
levels, increase with the Coulomb energy. However, the
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energy level of the exciton increases with the Coulomb energy
because the increase in the bandgap exceeds the decrease in
the binding energy. The number of exciton states increases
with the Coulomb energy. The discrete levels correspond to
those of a hydrogen-like atom consisting of an electron and a
hole, i.e. bound excitons.

The oscillator strength is proportional to |
∫

dr
〈u, l|ĵ(r)|g〉|2/εl

u. The appreciable oscillator strength is
denoted by blue dots whose radii are proportional to the
oscillator strength. The oscillator strength is concentrated
on the lowest exciton, which is in the even-parity state
(see the introduction of section 4). The even-parity states
exhibit the allowed optical transitions. The third-lowest and
fifth-lowest excitons are also even-parity states. However,
these higher even-parity states have extremely small oscillator
strengths. In the region of the scattering e–h pair states, a level
with appreciable oscillator strength exists. This state is an
even-parity bound exciton consisting mainly of an electron
in the second-lowest conduction band and a hole in the
second-highest valence band.

4.6. Perpendicular polarization

Perpendicularly polarized excitons are also calculated using
the screened Hartree–Fock approximation (51) [86]. Because
of the Fourier component (31) of perpendicular polarization,
exciton states with l = ±1 in equation (37) are excited. The
excitation energy for l = +1 is the same as that for l = −1
(see figure 6) when e–h band asymmetry is neglected (see
section 2.3.3). Here, we ignore the e–h band asymmetry, and
exciton states with l = +1 or−1 are degenerate. The effect of
the e–h band asymmetry shall be considered in section 6.4.

For perpendicular polarization, the long-range e–h EXI
AEXI

uu′,l(ω) or depolarization field arises. In the absence of the

e–h EXI, those excitons are degenerate. However, AEXI
uu′,l(ω)

gives rise to a large level splitting between 1
|KK− K′K′(+)〉

and 1
|KK − K′K′(−)〉 excitons. Because the matrix elements

of the induced current 〈u, l|ĵ(r)|g〉 are identical for the K
and K′ valleys, the matrix element of the induced current
for the 1

|KK − K′K′(−)〉 exciton becomes zero owing to the
perfect cancellation between the induced currents of 1

|KK〉
and 1

|K′K′〉. Therefore, the 1
|KK − K′K′(−)〉 exciton is

optically forbidden, i.e. a dark exciton. In addition, the e–h
EXI becomes zero, as determined by equation (52). On the
other hand, the 1

|KK−K′K′(+)〉 exciton has a finite induced
current, i.e. it is a bright exciton whose energy shifts upward
due to the e–h EXI.

The wavefunction ψ l
3 for the bright 1

|KK − K′K′(+)〉
exciton for perpendicular polarization can be expanded by the
exciton wavefunction φl

u excluding the e–h EXI as

ψ l
3 =

∑
u
αl
3,uφ

l
u, (59)

where αl
3,u represents the expansion coefficients. The

equations for αl
3,u are given by∑

u′
[εuδuu′ + AEXI

uu′,l(ω)]α
l
3,u′ = h̄ωαl

3,u. (60)

Because of the frequency dependence of the dynamical e–h
EXI, equation (60) has a nonlinear form. For an exciton
confined in a highly symmetric structure such as a sphere,
cylinder or slab, the nonlinear equation can be solved by using
a bisection method [78].

The envelope functions of the electron and the hole in
a SWNT are proportional to a plane wave, as shown in
equation (12). When the direction of light is perpendicular
to the tube axis, the wavenumber of the exciton in the
axial direction becomes zero. Thus, the matrix element of
the induced current in the K and K′ valleys is written as
〈g|ĵx(r)|u, l〉 = 1

√
AL

jlu exp(ilθ), where A and L are the lengths
in the axial and circumferential directions, respectively. The
Green function GL

xx for a SWNT can be extracted by taking the
limit ω/c→ 0 in the Green function for a hollow cylindrical
shape [87]. Because the radius of a SWNT is much smaller
than the wavelength of light, GL

xx is well approximated as

GL
xx(r, r′) = −i

4π2

ωκ

1

AL2

∑
n

∑
k

(−1)n+1
|n|

× eik(y−y′)ein(θ−θ ′), (61)

where k is the wavenumber along the axis and n is an
integer. Then, the e–h EXI is obtained as AEXI

uu′;l(ω) =

(−1)l+1
|l|(4π2h̄/κLω)(jl∗u jlu′/ε

l
u′). The dynamical e–h EXI

has a finite value for perpendicular polarization (l = ±1). In
the following, the explicitly l-dependent factor (−1)l+1

|l| is
replaced by 1 because l = ±1. Thus, the equations for the
expansion coefficients αl

3,u are written as

∑
u′

[
εl

uδuu′ + h̄
4π2

κLω

jl∗u jlu′

εl
u′

]
αl
3,u′ = h̄ωαl

3,u. (62)

These nonlinear equations are rewritten as[
1+ h̄2 4π2

κL

∑
u

|jlu|
2

h̄ωεl
u(ε

l
u − h̄ω)

]
W l
3 = 0, (63)

where W l
3 =

∑
ujluα

l
3,u/ε

l
u. Note that this transformation is

possible because of the separable form of the dynamical
e–h EXI with respect to index u. This separability appears
for highly symmetric exciton confinement geometries. The
energies of the exciton El

3 in the dynamical e–h EXI are
obtained as h̄ω satisfying

G(h̄ω) = 1+ h̄2 4π2

κL

∑
u

|jlu|
2

h̄ωεl
u(ε

l
u − h̄ω)

= 0. (64)

Figure 8 shows G(h̄ω) for perpendicularly polarized
excitons in a SWNT with the effective strength of the
Coulomb energy v = 0.2. The vertical dotted lines indicate
the exciton energy εl

u without the dynamical e–h EXI, which
corresponds to the energy of a dark exciton because the e–h
EXI does not appear for the dark exciton due to the fact that
jlu = 0 (see equation (62)). In figure 8, εl

u is calculated in the
k · p scheme with the screened Hartree–Fock approximation
(see section 4.2) [68]. Note that two types of dark excitons
exist. One is odd-parity excitons (2p, 3p, etc), whose oscillator
strength or jlu becomes zero for each K and K′ valley. For this
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Figure 8. G(h̄ω) (solid lines) and εl
u (vertical dotted lines). Exciton energies El

3 with the dynamical e–h EXI are indicated by solid
triangles.

type of dark state (u = 2, 4, 6, etc), G(h̄ω) has no singularity
at h̄ω = εl

u. The other type of dark state is the anti-bonding
states 1

|KK−K′K′(−)〉 consisting of even-parity excitons (1s,
2s, etc). In this case, jlu has finite values. When the asymmetry
between the conduction and valence bands is neglected, 1

|KK〉
and 1

|K′K′〉 are degenerate. Therefore, the current density
of 1
|KK − K′K′(−)〉 is obtained by subtracting the current

densities in the K and K′ valleys (see equation (57)), so these
contributions are cancelled out, i.e. the current density of
1
|KK − K′K′(−)〉 becomes zero. In this section, the band

asymmetry is neglected. Since each jlu for even-parity excitons
(u = 1, 3, 5, etc) has finite value, G(h̄ω) diverges at h̄ω = εl

u.
The exciton energies El

3 for bright 1
|KK + K′K′(+)〉

excitons are obtained as the crossing points of G(h̄ω) and the
horizontal dotted line. G(h̄ω) increases monotonically from
−∞ to∞ between the divergent points at εl

u (u = 1, 3, etc).
Therefore, all values of El

3 can be obtained by using the
bisection method. The calculated El

3 values are indicated by
solid triangles.

Figure 9 shows the energy levels of exciton states with
perpendicular polarization as a function of the effective
strength of the Coulomb energy v. Scattering e–h pairs exist
in the dotted region above the bandgap. Bound exciton levels
of 1
|KK−K′K′(+)〉 are calculated from the bisection method

in figure 8 and denoted by red solid lines. The bound exciton
levels of 1

|KK−K′K′(−)〉, consisting of even-parity excitons
with energy εl

u (u = 1, 3, etc) and odd-parity excitons with
energy εl

u (u = 2, 4, etc) are denoted by green solid and
green dotted lines, respectively. The oscillator strengths of
the lowest state 1

|KK − K′K′(+)〉 are denoted by blue dots
whose radii are proportional to the oscillator strength. The
oscillator strengths are plotted in the same units as that in
figure 7 but the magnitude is multiplied by 4. The oscillator
strength for perpendicular polarization is about eight times
smaller than that for parallel polarization because of the e–h
EXI or depolarization effect.

The expansion coefficients αl
3,u of the wavefunction

ψ l
3 including the dynamical e–h EXI are obtained from

Figure 9. Energy levels of exciton with perpendicular polarization
as a function of the effective strength of the Coulomb energy v. Red
solid lines below the bandgap denote bound exciton levels of
1
|KK− K′K′(+)〉. Green solid and green dotted lines denote bound

exciton levels of 1
|KK− K′K′(−)〉 consisting of even-parity

excitons with energy εl
u (u = 1, 3, etc) and odd-parity excitons with

energy εl
u (u = 2, 4, etc), respectively. The dotted region above the

bandgap denotes continuous levels of scattering e–h pairs. Blue
closed circles denote the appreciable oscillator strength; the
magnitude is proportional to the radius.

equation (62) as

αl
3,u = −

jl∗u
εl

u − El
3

/√∑
u

|jlu|2

(εl
u − El

3)
2
. (65)

Figure 10 shows |αl
3,u|

2 for the lowest (3 = 1), the
second-lowest (3 = 2) and the third-lowest (3 = 3) levels.
Some coefficients αl

3,u are zero for levels with odd-parity
exciton with u = 2, 4, etc. These states have jlu = 0 in each
K and K′ valleys; as a result, they cannot be involved via the
dynamical e–h EXI.
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Figure 10. |αl
3,u| of the wavefunction for the lowest (red bars),

second-lowest (green bars) and third-lowest (blue bars) excitons.

5. Exciton–photon interaction

The interaction Hex−ph between exciton |3, l〉 and the
electromagnetic (EM) field is given by

Hex−ph ∝

∫
dr 〈3, l|ĵ(r)|g〉 ·E(r). (66)

E(r) is usually considered as the applied EM field. However,
the current density 〈3, l|ĵ(r)|g〉 induced by the applied EM
field generates a scattered field. Both the applied and scattered
EM fields contribute to the current density, i.e. the EM
field E(r) contains the scattered field. Therefore, the EM
field and induced current density should be determined
self-consistently. Here, we treat these fields self-consistently
by using a microscopic optical response theory [83, 88, 89].
This self-consistent calculation has three advantages: (i) the
resulting fields include a radiative correction, i.e. a radiative
decay width and radiative shift in the exciton energy, (ii) with
respect to a radiation force, a scattering force related to the
radiative decay rate can be calculated and (iii) a depolarization
field, which appears for EM fields polarized perpendicular
to the tube axis, is included in the self-consistent EM field.
Because of advantage (iii), the optical response including
the depolarization effect can be calculated in terms of |u, l〉
excluding the e–h EXI. I describe the self-consistent field
calculation method in section 5.1. In section 5.2, I discuss
the self-energy of excitons that appears in the self-consistent
treatment.

5.1. Self-consistent formula

The generated EM field is expressed using the Green
function for the Maxwell equations. In the original version
of the microscopic optical response theory, the transverse
component of the Green function should be extracted. Here,
we use a revised version in which the full Green function can
be used without splitting it into the transverse and longitudinal
components [89]. Although the self-consistent method is
applicable beyond the rotating-wave approximation (RWA),
we apply the RWA in the following calculations. The current

density due to the exciton is given by

j(r, ω) =
∫

dr′ σ̄ (r, r′) ·E(r′, ω), (67)

where σ̄ is a conductivity tensor in the RWA:

σ̄ (r, r′) =
h̄

i

∑
u,l

1

εl
u

〈g|ĵ(r)|u, l〉〈u, l|ĵ(r′)|g〉
εl

u − h̄ω − i0
. (68)

The induced current density produces the scattered field. The
total EM field is written as

E(r) = D(r)+
∫

dr′ Ḡ(r, r′) · j(r′), (69)

where D is an applied field and Ḡ is a dyadic Green function
for the Maxwell equations satisfying

∇ ×∇ × Ḡ(r, r′)− κ(r)q2
0Ḡ(r, r′) = Iδ(r− r′), (70)

where κ is the background dielectric constant, q0 = ω/c, and
I is the identity tensor. The Green functions can be expressed
analytically for simple inhomogeneous media such as single
or multilayer structures of slabs, cylinders and spheres [90].
The dyadic Green function for a hollow cylindrical shape with
a surrounding background dielectric constant κ is given by

Gyy(r, r′) = −
q2

0

2ωκ

∞∑
n=−∞

∫
∞

−∞

dky(−1)nJn(qa)H(1)
n (qa)

× eiky(y−y′)ein(θ−θ ′),

Gxx(r, r′) = −
q2

0

8ωκ

∞∑
n=−∞

∫
∞

−∞

dky(−1)n+1

× [Jn−1(qa)− Jn+1(qa)]

× [H(1)
n−1(qa)− H(1)

n+1(qa)]eiky(y−y′)ein(θ−θ ′),

(71)

where q =
√
κq0, a is the radius of the cylinder, θ is

the azimuth, and Jn(qa) and H(1)
n (qa) are the Bessel and

Hankel functions of the first kind, respectively. Substituting
equation (67) into (69), we obtain

E(r) = D(r)+
h̄

i

∑
u,l

∫
dr′ Ḡ(r, r′) ·

〈g|ĵ(r′)|u, l〉

εl
u

Xu,l, (72)

with

Xu,l =
1

εl
u − h̄ω − i0

∫
dr 〈u, l|ĵ(r)|g〉 ·E(r). (73)

By multiplying 〈u, l|ĵ(r)|g〉 from the left-hand side of
equation (72) and integrating with respect to r, the self-
consistent equations for Xu,l are derived as follows:∑

u′
[(εl

u − h̄ω − i0)δuu′ + Auu′,l]Xu′,l = B(0)u,l , (74)

with

Auu′,l =
ih̄

εl
u′

∫
dr
∫

dr′ 〈u, l|ĵ(r)|g〉 · Ḡ(r, r′) · 〈g|ĵ(r′)|u′, l〉,

(75)

B(0)u,l =

∫
dr 〈u, l|ĵ(r)|g〉 ·D(r). (76)
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The factor Auu′,l represents self-interaction of the induced
current density via the EM field. Note that the dyadic
Green function includes both transverse and longitudinal
components. The interaction via the transverse EM field
provides the radiative correction, whereas the longitudinal
component provides the dynamical e–h EXI (52) [78]. We use
κ = 2.4 for graphite in the evaluation of Auu′,l. For the other
evaluation, the background dielectric constant is set to κ = 1
because the SWNTs are assumed to be surrounded by vacuum.

The self-consistently determined current density js(r) is
written in terms of Xu,l as follows:

js(r) =
h̄

i

∑
u,l

〈g|ĵ(r)|u, l〉

εl
u

Xu,l. (77)

Substituting this into equation (69), we obtain the self-
consistently determined EM field as follows:

E(r) = D(r)+
h̄

i

∑
u,l

∫
dr′ Ḡ(r, r′) ·

〈g|ĵ(r′)|u, l〉

εl
u

Xu,l. (78)

5.2. Self-energy of excitons

The self-energy becomes zero for dark excitons because of
the absence of the induced current density. In this subsection,
therefore, we focus on bright excitons. The energy Ẽl

3

including the self-energy via the EM field is obtained as the
energy of a self-sustaining mode without the applied field D,
i.e. B(0)u,l = 0. From equation (74) without the damping energy

0, Ẽl
3 can be obtained as the solutions h̄ω of the following

equations: ∑
u′
(εl

uδuu′ + Auu′,l)Xu′,l = h̄ωXu,l. (79)

These simultaneous equations have a nonlinear form because
ω or q is included as an argument of the Bessel functions in the
dyadic Green function through Auu′,l. The self-energy of the
exciton via the EM field is calculated from1Ẽl

3 ≡ Ẽl
3−ε

l
u ≡

Re(1Ẽl
3)−i0rad

3,l, where 0rad
3,l ≡−Im(Ẽl

3). Here, I summarize

the definitions of El
3, Ẽl

3 and εl
u. El

3 is defined as the exciton
energy including the e–h EXI, whereas Ẽl

3 is defined as the
exciton energy including both the e–h EXI (interaction via
longitudinal field) and interaction via the transverse field.
Thus, El

3 is a real but Ẽl
3 is a complex in general. εl

u is
defined as the exciton energy obtained excluding the e–h
EXI and interaction via a transverse field. The subtraction
1Ẽl

3 = Ẽl
3 − ε

l
u is performed for excitons having the same

order of energy.
Figure 11(a) shows the self-energy Re(1Ẽ0

1) and 0rad
1,0

of the lowest exciton for parallel polarization as a function
of the effective strength of the Coulomb energy v =
(e2/κL)(2πγ/L)−1. These real and imaginary parts of the
self-energy are obtained by solving simultaneous nonlinear
equations (79) by using an iteration method. The energy on
the right-hand vertical axis is evaluated for a SWNT with a
diameter d = 0.78 nm. The intrinsic radiative decay width is
≈20 µeV for v = 0.15. This radiative width corresponds to an
intrinsic radiative lifetime of ≈33 ps.

Figure 11. Self-energy of an exciton via the EM field as a function
of the effective strength of the Coulomb energy v. The energy on the
right-hand vertical axis is calculated for a SWNT with d = 0.78 nm.
(a) Real [Re(1Ẽ0

1)] and imaginary [0rad
1,0 = −Im(1Ẽ0

1)] parts of the
self-energy of the lowest exciton for parallel polarization, and the
imaginary part [0rad

1,±1 = −Im(1Ẽ±1
1 )] of the self-energy of the

lowest exciton for perpendicular polarization. (b) Real part
[Re(1Ẽ±1

1 )] of the self-energy of the lowest exciton for
perpendicular polarization. Reproduced with permission from [87].
Copyright 2009 American Physical Society.

The intrinsic radiative lifetime of a zigzag SWNT with
d = 0.78 nm obtained by ab initio calculation was reported
to be 19.1 ps [91]. The radiative lifetime in the present
calculation is similar to that in the ab initio calculation. The
effective radiative lifetime is longer than the intrinsic one
because the exciton states are thermally distributed and a
dark exciton exists. The enhancement factor of the effective
radiative lifetime owing to thermalization is proportional to
the square root of the temperature for a quantum wire [92]
and this factor for a SWNT at room temperature is≈100 [91].
The effect of a dark exciton on the effective lifetime depends
on the level splitting of bright and dark states [91]. In a recent
absorption experiment for SWNTs, the extrapolated level
splitting was a few millielectronvolts (see section 6.3) [29,
30]. This level splitting enhances the effective radiative
lifetime by a factor of 2.5. Consequently, in our calculation,
the effective radiative lifetime is 8.3 ns. This value is in rough
agreement with the experimental result of ∼10 ns for SWNTs
with small diameters (between 0.76 and 0.91 nm) [93].

0rad
1,±1 and Re(1Ẽ±1

1 ) for the lowest exciton for
perpendicular polarization are shown in figures 11(a) and
(b), respectively. The radiative decay width for v = 0.15 is
about one-tenth of that for parallel polarization. This fact
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is understood in terms of the ratio of the oscillator strength
between excitons for parallel and perpendicular polarization,
as shown in figures 7 and 9, respectively. Re(1Ẽ±1

1 )

exhibits quite a different order of magnitude compared
to Re(1Ẽ0

1), 0
rad
1,0 and 0rad

1,±1. For parallel polarization, the

long-range e–h EXI does not appear; thus, Re(1Ẽ0
1) is

the energy shift due to the exciton self-energy via the
transverse EM field. For perpendicularly polarized excitons,
the long-range e–h EXI appears, causing a large energy shift
Re(1Ẽ±1

1 ). This shift is called the depolarization shift because
the long-range e–h EXI can be considered as the interaction
between the exciton and its depolarization field [80–83]. This
statement is easily confirmed by rewriting equation (52) as
follows:

AEXI
uu′,l(ω) =

∫
dr 〈u, l|ĵ(r)|g〉 ·Edep

u′,l(r), (80)

where

Edep
u′,l(r) =

ih̄

εl
u′

∫
dr′ ḠL(r, r′) · 〈g|ĵ(r′)|u′, l〉 (81)

is the depolarization field generated by the induced current
〈g|ĵ(r′)|u′, l〉 of the exciton.

6. Optical absorption

The optical absorption P per unit area is calculated as

P(ω) =
1

2AL

∫
dr Re[j∗s (r, ω) ·E(r, ω)], (82)

where js and E are the self-consistently determined current
density and EM field, respectively. Substituting equations (77)
and (78) into equation (82), we express the absorption in the
self-consistent treatment as follows:

P(ω) =
h̄0

2AL

∑
u,l

|Xu,l(ω)|
2

εl
u

. (83)

If we neglect self-consistency, the absorption spectra are
calculated as

P(ω) =
1

2AL

∫
dr Re[j∗(r, ω) ·D(r, ω)], (84)

where j is the current density given by equation (67) and D is
the applied external field. The effect of the self-consistent field
appears as the exciton self-energy, which produces a peak shift
and an additional radiative width in the absorption spectra. For
parallel polarized excitons, both the real and imaginary parts
of the self-energy are a few tens of microelectronvolts (see
figure 11(a)), which is much smaller than the exciton energy
(≈1 eV). Thus, the self-consistent treatment is not important.
For perpendicular polarization, however, the long-range e–h
EXI arises and provides a large real part of the self-energy
(a few hundreds of millielectronvolts) (see figure 11(b)).
Therefore, the self-consistent treatment is necessary in order
to calculate the absorption spectra for a perpendicularly
polarized field.

Figure 12. Calculated absorption spectra of a semiconducting
SWNT for parallel polarization. The red solid line denotes the
spectrum in the presence of the effective strength of the Coulomb
energy v = 0.2; the dotted black line represents that in the absence
of the interaction.

6.1. Parallel polarization

Figure 12 shows absorption spectra for the effective strength
of the Coulomb energy v = 0.2 (red solid line) and 0
(dotted line), which are calculated without the self-consistent
treatment. The phenomenological damping energy is 0 =
0.01(2πγ/L). Compared with the spectrum in the absence
of the Coulomb interaction (dotted line), the peak energies
are shifted to higher energies and the peak intensities are
enhanced by the exciton effect in the spectrum at v = 0.2
(red line) [68]. Figure 7 shows that the second-lowest peak
of the red solid line corresponds to a bound exciton in the e–h
continuum above the bandgap.

6.2. Perpendicular polarization

When the applied EM field is polarized perpendicular to the
tube axis, the long-range e–h EXI or depolarization field
arises because of the induced charge (depolarization charge),
as depicted in figure 6. In addition to the applied field, the
depolarization field contributes to the excitation of electronic
states. Therefore, the self-consistent treatment is necessary,
as described in the introduction of section 5, and the optical
absorption can be calculated from equation (83) (method I).
However, the self-consistent calculation has been performed
in a different way so far (method II) [14, 86, 94–96]. The two
different calculations provide almost the same results (see the
blue dotted line and green open circles in figure 14(b)), but
the effect of radiative damping of excitons is not included in
self-consistent method II.

I briefly review the self-consistent method II. For
the perpendicularly polarized external field given by
equation (31), the self-consistently determined current
density jls,x is induced in the circumferential direction. The
corresponding induced charge density ρl

s is calculated as

ρl
s =

2π
L

l

ω
jls,x (85)
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Figure 13. Calculated absorption spectra of a semiconducting
SWNT for perpendicular polarization. Exciton effect is neglected.
Red solid (dotted) line denotes spectrum with (without) the
depolarization effect.

from the equation of continuity:

∂

∂t
ρl

se
ilθ−iωt

+
2π
L

∂

∂θ
jls,xeilθ−iωt

= 0. (86)

The potential φ(θ, θ ′) formed by a line charge along the axis
direction at θ ′ with the density ρl

s is given at θ by

φ(θ, θ ′) = −
2ρl

s

κ
ln

∣∣∣∣ L

π
sin

θ − θ ′

2

∣∣∣∣ . (87)

Then, the induced charge is found to produce the potential

φ(θ) =
L

2π

∫ 2π

0
dθ ′φ(θ, θ ′) =

L

κ|l|
ρl

se
ilθ
≡ φl

se
ilθ . (88)

The potential gives rise to an electric field −(2π/L)(∂φ/∂θ);
therefore, the total electric field is obtained as

El
x = Dl

x − il
2π
L
φl

s = Dl
x − i|l|

4π2

κLω
jls,x. (89)

By using jls,x = σ
l
xxEl

x we obtain El
x = Dl

x/ε
l
xx, where

εl
xx = 1+ i|l|

4π2

κLω
σ l

xx (90)

is a dielectric function including the depolarization effect.
Then, we have

jls,x =
σ l

xx

εl
xx

Dl
x. (91)

Substituting equations (89) and (91) into equation (82), we
have

P(ω) =
D2

8

∑
l=±1

Re

[
σ l

xx

εl
xx

]
. (92)

Figure 13 shows the absorption spectra without the
exciton effect. The red solid (dotted) line denotes the
absorption calculated from equation (92) and (equation (84)),
which includes (excludes) the depolarization effect. The

peak in the dotted line around 1.0(2πγ/L) corresponds
to the allowed transitions at the band edges. The peak
disappears almost completely when the depolarization effect
is included [14].

Next, we study absorption spectra including the Coulomb
interaction. Figure 14(a) shows the absorption spectra of
a semiconducting SWNT calculated including the exciton
effect with the effective strength of the Coulomb energy v =
0.2. The red solid (dotted) line denotes absorption including
(excluding) the depolarization effect, which is calculated from
equation (92) and (equation (84)). When the depolarization
effect is neglected, the peak due to the lowest exciton appears.
When the depolarization effect is included, however, the peak
is shifted towards the higher-energy side and its intensity is
significantly reduced [86].

The e–h EXI can be interpreted as an interaction between
the exciton and the depolarization field caused by the
exciton as shown in equation (80). Because of the alternative
description, two types of schemes can be used to calculate
the optical spectra. In one, scheme (A), the exciton states
are calculated including the dynamical e–h EXI. The induced
current j is given by j = σ̄EXI · D, where σ̄EXI is the
conductivity tensor (68) with |u, l〉 replaced by the exciton
|3, l〉 including the dynamical e–h EXI. Then, the absorption
is calculated from equation (84). In the other, scheme (B), the
exciton states are obtained by excluding the e–h EXI. Instead,
an actual applied field consisting of D and the depolarization
field due to the exciton is determined self-consistently. In this
case, the absorption is calculated from equation (83) (method
I) or equation (92) (method II) [14, 86, 94–96]. Scheme
(A) has more advantages than scheme (B) because exciton
wavefunctions with e–h EXI cannot be obtained in scheme
(B).

Figure 14(b) shows absorption spectra calculated by
different methods. The red solid line denotes the absorption
calculated by scheme (A) using equation (84) with j = σ̄EXI ·

D. The blue dotted line and green open circles denote the
absorption calculated by scheme (B) using equations (83)
and (92), respectively. In equation (92), the self-interaction
of excitons comes from the interaction between an exciton
and its longitudinal depolarization field. In addition to the
longitudinal component, the self-interaction of the exciton
via the transverse EM field, or the radiative correction, is
contained in equation (83). Therefore, these two spectra differ
by the radiative damping. However, the radiative damping is
quite small, as shown by the line labeled 0rad

1,±1 in figure 11.
As a result, these two spectra denoted by the blue dotted line
and green open circles are almost the same. When we use
the dynamical e–h EXI, the calculated absorption in scheme
(A), denoted by the red solid line, agrees with that in scheme
(B), denoted by the blue dotted line and green open circles.
However, the conventional e–h EXI without the dynamical
characteristics produces considerably different absorption,
denoted by the red dashed line. Therefore, the dynamical
nature of the e–h EXI is quite important for calculating the
exciton states of a SWNT [78].
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Figure 14. (a) Calculated absorption spectra of a semiconducting SWNT for perpendicular polarization. The exciton effect is included. The
red solid (dotted) line denotes spectrum with (without) the dynamical e–h EXI or depolarization effect. (b) Absorption spectra calculated
from exciton states with dynamical e–h EXI (red solid line), with conventional e–h EXI (red dashed line), self-consistent method with
equation (83) (blue dotted line) and self-consistent method with equation (92) (green open circles).

6.3. Aharonov–Bohm effect in excitons

Optical spectroscopy is a powerful tool for studying excited
states. In the optical spectra of SWNTs, the AB effect in
SWNTs has been observed as the splitting of the spectral
peaks of excitons [27, 29, 30]. The bandgaps in the K and K′

valleys are degenerate at 1.0(4πγ/3L), as shown in figure 4.
In the presence of an AB flux passing through the tube axis,
the degeneracy is symmetrically lifted upward and downward.
The exciton states exhibit similar behavior. Namely, the
bright 1

|KK−K′K′(+)〉 and dark 1
|KK−K′K′(−)〉 excitons

for parallel polarization are almost degenerate (the level
separation between them is a few millielectronvolts). When an
AB flux is applied, the two almost degenerate excitons split
symmetrically upwards and downwards with approaching
to bright 1

|KK〉 and 1
|K′K′〉 excitons in a high magnetic

field limit [84]. Thus, the dark 1
|KK − K′K′(−)〉 exciton

acquires a finite oscillator strength in the presence of the
AB flux [84]. Therefore, this level splitting due to the AB
effect can be observed by optical spectroscopy. In fact, this
behavior has been observed in absorption [27, 28, 30] and PL
spectra [27–29].

Zaric et al reported the first observation of the AB effect
in optical spectra [27, 28]. Figure 15(a) shows the magnetic
field dependence of the absorption spectra for a sample
consisting of SWNTs 0.6–1.3 nm in diameter suspended
in sodium cholate and heavy water. The light was linearly
polarized along the magnetic field direction. Because SWNTs
have a strong tendency to align in the direction of a magnetic
field [20–23], the absorption increases with the magnetic
field. The tendency to align arises from the large diamagnetic
susceptibility in a magnetic field perpendicular to the tube
axis [24–26]. At fields above ∼55 T, each of these peaks
splits into two clearly resolved peaks due to the AB effect.
Figure 15(b) shows the absorption spectra (solid lines) at 0 and
67 T for parallel and perpendicular polarizations. The dashed
lines denote theoretical results. The absorption increases
(decreases) with the magnetic field for parallel (perpendicular)
polarization, and the splits appear only in the parallel case.

Figure 15. Absorption spectra of semiconducting SWNTs in a high
magnetic field for (a) polarization parallel to the magnetic field
(traces are offset) and (b) both polarizations (no intentional offset).
Dotted lines in (b) are the calculated absorption [28]. Reproduced
with permission from [28]. Copyright 2006 American Physical
Society.

Note that level splitting does not seem to become
observable until the magnetic field reaches a certain critical
value and then starts to increase with the field. This
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Figure 16. (a) Normalized PL spectra of a single (n1, n2) = (9, 4)
SWNT at 20 K in a magnetic field parallel to the tube axis. (b)
Normalized PL spectra of a single (n1, n2) = (9, 5) SWNT at 20 K
in a magnetic field perpendicular to the tube axis [29]. Reproduced
with permission from [29]. Copyright 2008 American Physical
Society.

characteristic feature arises from the existence of the dark
exciton 1

|KK − K′K′(−)〉 close to the bright exciton 1
|KK −

K′K′(+)〉 [84]. The two peaks appear at a high magnetic
field only when the AB splitting exceeds the splitting energy
between the bright and dark states. This feature has been
observed clearly by micro-PL spectroscopy of a single SWNT
at low temperatures [29]. Figure 16(a) shows the normalized
PL spectra of a single (n1, n2) = (9, 4) SWNT under a
magnetic field parallel to the tube axis. A single sharp PL
peak originating from bright exciton recombination appears
at zero magnetic field. With increasing magnetic field, an
additional peak is clearly observed below the bright exciton
peak. The additional peak can be considered as a brightening
of the dark exciton 1

|KK − K′K′(−)〉 due to the magnetic
field. The energy level of the dark exciton is lower than that
of the bright exciton. Figure 16(b) shows the results of similar
experiments on a single (n1, n2) = (9, 5) SWNT, in which the
magnetic field is perpendicular to the tube axis. No spectral
splitting induced by the magnetic field is observed even under
a magnetic field of 7 T. Because the PL peak is split only under
a parallel magnetic field, this splitting is attributed to the AB
effect.

In figure 16(a), the lower PL peak shifts downwards, but
the higher one does not change its position with increasing
magnetic field. This behavior differs from the theoretical
prediction, which is that almost-degenerate exciton levels
of 1
|KK − K′K′(±)〉 shift symmetrically downwards and

upwards, respectively [84]. This is presumably because of
the existence of impurities or trapping states having energies
similar to the exciton energy in the absence of a magnetic
field. In this case, the upper level exciton would decay

nonradiatively to the trapping states, which would then emit
a photon. The unwanted signal coming from the extra process
can be avoided by using absorption spectroscopy. In fact,
symmetric shifts in the absorption peaks are observed in
figure 15.

The fine level splitting 1x between bright 1
|KK −

K′K′(+)〉 and dark 1
|KK − K′K′(−)〉 excitons under parallel

polarization was recently estimated from the absorption
spectra under a strong magnetic field. A simple two-band
model was introduced to analyze experimental data [98]. In
this model, two excitons, 1

|KK〉 and 1
|K′K′〉, interact with

each other with an energy1x due to the short-range Coulomb
interaction. The Hamiltonian in the two-band model is given
by

1
|KK〉 1

|K′K′〉

H =

(
ε0 −1AB/2 1x/2

1x/2 ε0 +1AB/2

)
, (93)

where ε0 is the degenerate exciton energy in the K and
K′ valleys in the absence of 1x and 1AB(B) = µφ, where
µ is a constant representing the level splitting between the
excitons in the K and K′ valleys due to the AB flux φ.
The energies are calculated from this Hamiltonian as ε± =

ε0 ±

√
12

x +1
2
AB/2. Therefore, the energy difference 1(B)

between two excitons under a magnetic field can be obtained
as

1(B) =
√
12

x +1
2
AB. (94)

The relative oscillator strengths are calculated as

I± =
1
2
±

1
2

1x√
12

x +1
2
AB(B)

, (95)

where the upper and lower signs represent the oscillator
strengths for excitons having ε+ and ε−, respectively. For
1x > 0, the exciton having ε+ (ε−) is in the bright (dark) state
in the absence of the AB flux, and the situation is the opposite
for 1x < 0. We can determine µ and 1AB from the optical
spectra by fitting the peak positions and relative intensities
using equations (94) and (95).

Figure 17 shows the peak splitting and normalized
absorption intensities as a function of the effective magnetic
field Beff for (n1, n2) = (7, 5) SWNTs dispersed in a
liquid [30]. Because the samples are ensembles of SWNTs,
Beff is corrected to include the contributions of all the
randomly oriented SWNTs with respect to the mean
orientation induced by the external magnetic field. The
correction is estimated from a simulation of the spectrum
convolution, assuming that the peak intensity is proportional
to sin δ when the tube axis is tilted by an angle δ from the
magnetic field direction. The dashed lines were fitted using
equations (94) and (95). The values of the splitting energy 1x
between bright and dark excitons in the absence of a magnetic
field obtained from the fitting is 6.8 meV and the coefficient
µ, which determines the AB splitting in a magnetic field,
is given by 0.73 meV T−1. The coefficient µ = 21εG for
(n1, n2) = (7, 5) SWNTs 0.83 nm in diameter is calculated
as 0.81 meV T from equation (16).
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Figure 17. Change in the absorption and normalized intensity of
spectral peaks for (n1, n2) = (7, 5) SWNTs plotted against the
effective magnetic field. Circles (triangles) denote results obtained
from the nondestructive pulse magnet (destructive giant single-turn
coil method [97]). Dashed lines are fitted using equations (94) and
(95) [30]. Reproduced with permission from [30]. Copyright 2011
American Physical Society.

6.4. Quasi-dark states

In the above calculations, we ignored higher-order corrections
in the k · p equation. In this case, the valence and conduction
bands are symmetric with respect to the Fermi energy. Let us
consider excitation with l = +1 of a SWNT with ν = +1
for perpendicularly polarized light. Excitation from the n =
0 (n = −1) valence band to the n = +1 (n = 0) conduction

band becomes allowed and in the K(K′) valley (see the
middle and right panels in figure 6(b)). The two corresponding
exciton states in the K and K′ valleys are degenerate owing
to the symmetry of the electron and hole bands. When we
consider the effective overlap integral, the e–h symmetry is
broken, as described in section 2.3.3. Thus, the degeneracy
of the two excitons in the K and K′ valleys is lifted. These
excitons interact with each other because of the long-range
e–h EXI; consequently, the bright 1

|KK − K′K′(+)〉 and
dark 1

|KK − K′K′(−)〉 states are formed. When the two
excitons are degenerate, the dark state has no oscillator
strength because the 1

|KK〉 and 1
|K′K′〉 components cancel

perfectly (see equation (57)). However, the cancellation
becomes incomplete in the presence of e–h band asymmetry,
so the dark state 1

|KK− K′K′(+)〉 acquires a finite oscillator
strength as a quasi-dark exciton (see figure 19(a)).

Figure 18 shows PLE spectra of various (n1, n2) species
for excitation perpendicular to the tube axis [85]. The
higher- and lower-energy peaks originate from the bright
1
|KK−K′K′(+)〉 and quasi-dark 1

|KK−K′K′(−)〉 excitons,
respectively. The peak intensities I(−)T for the quasi-dark
exciton depend strongly on (n1, n2). Compared with the
peak intensities I(+)T for the bright exciton, near-zigzag

SWNTs (close to (n1, 0)) tend to have larger I(−)T , whereas
near-armchair SWNTs (close to (n1, n1)) tend to have smaller
I(−)T . This chirality dependence of I(±)T is the result of the
higher-order corrections.

To clarify the relationship between the quasi-dark
excitons and the e–h band asymmetry, we studied the
absorption spectra of excitons excited by perpendicular
polarization theoretically. The higher-order correction of the
k · p approximation is included in the exciton calculations.
Figure 19(a) shows the calculated absorption spectra of (8, 6)
SWNTs with (effective overlap integral S = 0.1) and without
(S = 0) e–h band asymmetry for the effective strength of
the Coulomb energy v = 0.19 [85]. A small peak due to the
quasi-dark exciton appears for S = 0.1 but not for S = 0
because of the symmetric electron and hole bands.

To determine the Coulomb energy v, the calculated
energy difference 1T between bright and quasi-dark excitons

Figure 18. PLE spectra of various (n1, n2) species for excitation perpendicular to the tube axis. Higher- and lower-energy peaks come from
the bright 1

|KK− K′K′(+)〉 and quasi-dark 1
|KK− K′K′(−)〉 excitons, respectively. Because the PL emission wavelength of (8, 6) and

(12, 1) SWNTs are almost identical, the corresponding PLE spectra are combined. Reproduced with permission from [85]. Copyright 2010
American Physical Society.
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Figure 19. (a) Calculated absorption spectra of an (8, 6) SWNT
with (S = 0.1) and without (S = 0) e–h band asymmetry. Small peak
at 1.45 eV originates from the quasi-dark exciton 1

|KK−K′K′(−)〉.
(b) Energy splitting between bright and quasi-dark excitons for
(8, 6), (9, 5) and (10, 5) SWNTs as a function of Coulomb energy v.
Experimental data are denoted by open symbols. (c) Calculated
quasi-dark exciton intensities normalized by the sum of bright and
dark exciton intensities as a function of S. (d) Calculated normalized
intensities of the quasi-dark excitons as a function of E12 − E21.
Experimental values are denoted by horizontal dashed lines.
Reproduced with permission from [85]. Copyright 2010 American
Physical Society.

is plotted in figure 19(b) for near-armchair SWNTs. The 1T
value for near-armchair SWNTs is almost independent of S
up to S ∼ 0.3. Here, we choose S = 0.1. The experimentally
observed 1T , which are indicated by open symbols, can be
obtained for v = 0.19.

Figure 19(c) shows the calculated spectral intensity
I(−)T /(I(+)T +I(−)T ) of the quasi-dark excitons for near-armchair
SWNTs as a function of S for v = 0.19. The curvature effect is
small for these near-armchair SWNTs, so S is expected to be
close to the value in graphene. We can evaluate S ∼ 0.1 for the
near-armchair SWNTs from the experimental data indicated
by open symbols. This value of S is close to S = 0.129 which
is conventionally used in the tight-binding model for graphene
and SWNTs.

The I(−)T /(I(+)T + I(−)T ) and (E12 − E21) values of
various (n1, n2) SWNTs were calculated for effective overlap
integrals ranging from 0.08 ≤ S ≤ 0.22 with a 0.01 step,
where E12 and E21 are the lowest band-to-band excitation
energy at the K and K′ points, respectively. (E12 − E21)

represents the degree of e–h band asymmetry and increases
from 0 with increasing S. The symbols in figure 19(d)
summarize the calculated I(−)T /(I(+)T + I(−)T ) and (E12 − E21)

values. The plots for various (n1, n2) species lie on almost
the same curve. This suggests that the spectral weight transfer
I(−)T /(I(+)T + I(−)T ) is characterized only by the degree of
e–h band asymmetry. Horizontal dashed lines indicate the
experimental values of I(−)T /(I(+)T + I(−)T ) for each (n1, n2).
Small-diameter near-zigzag SWNTs tend to have a large e–h
band asymmetry. The corresponding effective overlap integral
S ∼ 0.2 is considerably larger than that of near-armchair
SWNTs. This large chirality dependence of the effective
overlap integral could be attributed to the change in the
bond length due to the finite curvature. A more systematic
theoretical study has also been reported [99].

7. Radiation force

In order to study the fundamental properties of SWNTs
and develop applications, many researchers and industrial
engineers strongly desire selective control of the spatial
position of an individual SWNT and the selective sorting of
SWNTs. The use of the resonant radiation force mediated
by excitons is a promising technique for this purpose.
The radiation force reflects the size quantization of exciton
levels and changes significantly depending on geometric
properties such as the size and shape of the target nano-object.
Theoretically, this would enable us to selectively manipulate
specific nano-objects [100, 101].

Well-defined SWNT excitons are observed in absorption
and luminescence spectra even at room temperature. Owing
to the steepness of the absorption peaks and the strong size
dependence of the peak position, size-selective manipulation
of SWNTs is possible. Furthermore, the optical spectra
of SWNTs exhibit a strong polarization dependence (see
sections 6.1 and 6.2). This strong anisotropy would be useful
for manipulating and sorting SWNTs whose major axis is
oriented parallel to the direction of light polarization.

The radiation force F exerted on a SWNT is calculated
from a general expression [101, 102]:

F(ω) =
1
2

Re

{
i
ω

∫
dr [∇E∗(r, ω)] · js(r, ω)

}
, (96)

where js is the self-consistently determined induced current,
which is given in equation (77). In the following calculations,
the self-consistent field E including both the applied and
scattered fields can be replaced by the applied field
D because the contribution from the scattered field is
cancelled out by the symmetry. This expression includes both
dissipative (absorption and scattering) and gradient forces.
When a propagating EM field is applied to an object, the
dissipative force is exerted in the applied field direction by
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momentum transfer from a photon to the object. When the
EM field intensity is spatially inhomogeneous, a gradient
force is exerted on the SWNT. By using the gradient
force, microscopic dielectric objects can be physically held
and moved; this scientific instrument is called optical
tweezers [103].

7.1. Dissipative force

First, we consider a situation in which a propagating plane EM
field is applied to a SWNT. The EM field has a wavevector
q perpendicular to the tube axis, whose direction is denoted
by Z. The applied EM field is written as D = DeeiqZ ,
where e represents unit polarization vectors. Consequently,
the dissipative force F is exerted in the Z direction; it is
expressed as [87]

FZ(ω) =

√
κ

c
p(ω)+

h̄

2

√
κ

c

∑
uu′l

Im(Xu,lA∗uu′,lX
∗

u′,l)

εl
u

, (97)

where p(ω) = ALP(ω) is the total absorption and P is given
in equation (83). The first and second terms on the right-hand
side of equation (97) represent the absorption and scattering
forces, respectively. The scattering force becomes zero if
we neglect self-interaction. Therefore, the self-consistent
treatment described in section 5.1 is necessary for evaluating
the scattering force.

To study the characteristics of the dissipative force, we
represent the expression of equation (97) by an individual
exciton approximation, in which the self-interaction between
different exciton states is neglected [87]. The self-interaction
represented by a matrix can then be approximated by the
scalar of the diagonal matrix elements, i.e. Auu′,l = δuu′Auu,l,
and the exciton energy including the self-energy Ẽl

3 ≈

Re(Ẽl
u)− i0rad

u,l is given by

Re(Ẽl
u) = ε

l
u + Re(Auu,l), 0rad

u,l = −Im(Auu,l). (98)

Furthermore, the frequency dependence of Auu,l is neglected
by setting h̄ω = εl

u. This approximation is valid when the
self-interaction is much smaller than the separation of the
exciton energies. The resulting expression for FZ(ω) gives
the spectral shape and indicates a clear dependence of the
nonradiative decay width on the dissipative force. In this
approximation, the dissipative force FZ for parallel (l = 0)
polarization is calculated as

FZ(ω) = 4κAI0

∑
u

0rad
u,0

ε0
u

0 + 0rad
u,0

[Re(Ẽ0
u)− h̄ω]2 + (0 + 0rad

u,0)
2
,

(99)

where I0 ≡
√
κcD2/(8π) is the applied field intensity. The

dissipative force spectra have a Lorentzian lineshape. Re(Ẽ0
u)

and 0rad
u,0 represent the resonant excitation energy and decay

linewidth, respectively. The first and second terms in the
numerator correspond to the absorption and scattering forces,
respectively. Note that the nonradiative decay width is a
few millielectronvolts even at low temperatures (a few
kelvin), whereas the radiative decay width is a few tens of

Figure 20. Calculated dissipative force for an EM field with (a)
parallel and (b) perpendicular polarization. Effective strength of the
Coulomb energy is set to v = 0.15. Reproduced with permission
from [87]. Copyright 2009 American Physical Society.

microelectronvolts at most (see figure 11(a)). Therefore, the
absorption force proportional to 0 in equation (99) dominates
the dissipative force.

Under resonant excitation (h̄ω = Re(Ẽ0
u) in equa-

tion (99)), the dissipative force is given by

Fres
Z ≈ 4κAI0

1

ε0
u

0rad
u,0

0 + 0rad
u,0

. (100)

Since 0 is much larger than 0rad
u,0 even at low temperatures

of a few kelvin, the resonant dissipative force is proportional
to 1/0. It increases monotonically with decreasing 0 and
eventually reaches a maximum of Fres

Z = 4κAI0/ε
0
u at 0 = 0.

The maximum dissipative force under resonant conditions is
independent of the current density, i.e. oscillator strength.
However, the linewidth 0rad

u,0 of the radiation force is
proportional to the oscillator strength; thus, the integrated
force is proportional to the oscillator strength.

Figure 20 shows the dissipative force exerted on SWNTs
with diameters of 1.2, 1.4 and 1.6 nm for (a) parallel
and (b) perpendicular polarizations [87]. In this figure, we
consider SWNTs with a length of 1 µm and an applied field
intensity of I0 = 1 MW cm−2, which is comparable to that
generally used in the optical tweezers [104]. The nonradiative
decay width of h̄0 = 10 meV corresponds to the observed
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luminescence spectral width at room temperature [105–107].
Under resonant conditions, the force is 80 fN and the
corresponding acceleration is 2.8×107 m s−2, where the mass
density of a SWNT is 7.6×10−8 g cm−2. This acceleration is
much larger than that due to gravity.

For perpendicular polarization, the peak positions of the
dissipative force differ from those for parallel polarization
even when the SWNT has the same diameter because of the
difference in the optical selection rules and the depolarization
shift of a peak for perpendicular polarization. In addition, the
depolarization effect suppresses the force peaks.

7.2. Gradient force

When the intensity of an EM field has a gradient at an
object, a force is exerted on the object. To study the gradient
force, we consider a standing plane wave consisting of
counter-propagating plane waves: D(r) = 2D cos(qZ)e. We
denote B(0)u,l and Xu,l for the standing wave by B(0)st

u,l and Xst
u,l,

respectively. When a SWNT is located at position Z0,B(0)st
u,l

is given by 2 cos(qZ0)B
(0)
u,l ; thus, Xst

u,l = 2 cos(qZ0)Xu,l, where

B(0)u,l and Xu,l are determined from the traveling wave E0(r) =
E0eiqZe. Substituting the above equations into equation (96),
we obtain the following expression for the gradient force for
the standing wave: [87]:

FZ(ω) = f (ω) sin(2qZ0), (101)

where

f (ω) = −
h̄q

ω
Re

[∑
u

1
εl

u
B(0)u,l Xu,l

]
. (102)

In the individual exciton approximation, f (ω) for parallel
polarization (l = 0) is written as

f (ω) = −8κAI0

∑
u,l

h̄0rad
u,0

ε0
u

Re(Ẽ0
u)−h̄ω

[Re(Ẽ0
u)− h̄ω]2+(h̄0+h̄0rad

u,0)
2
.

(103)

The gradient force as a function of the applied field frequency
exhibits a dispersive lineshape, and the force is positive or
negative depending on the applied field frequency.

The potential for the gradient force is represented
by U(ω,Z0) = f (ω)[cos(2qZ0) − 1]/2q. The minimum or
maximum potentials lie at Z0 = π/(2q) + nπ/q or nπ/q,
depending on the sign of f (ω), where n is an integer. The
potential difference between the minimum and maximum
is given by 1U(ω) = U[ω, π/(2q)] − U(ω, 0) = −f (ω)/q.
For f (ω) > 0 or 1U(ω) < 0 (blue detuning), the potential
minima lie at Z0 = π/(2q) + nπ/q, where the light intensity
is zero. For f (ω) < 0 or 1U(ω) > 0 (red detuning), the
potential minima lie at Z0 = nπ/q, where the light intensity
is a maximum.

Figure 21 shows the potential U(ω0,Z0) for SWNTs
with diameters of 1.2, 1.4 and 1.6 nm [87]. Each counter-
propagating field intensity is I0 = 0.5 MW cm−2 and the
applied field frequency is fixed at h̄ω0 = 0.88 eV. This

Figure 21. Calculated potential U(Z0) due to a gradient force for
parallel polarization, shown as a function of SWNT position Z0.
Effective strength of the Coulomb energy is set to v = 0.15. Applied
field frequency is h̄ω0 = 0.88 eV, where a SWNT with d = 1.2 nm
experiences red detuning. Inset shows the potential for
perpendicular polarization. Reproduced with permission from [87].
Copyright 2009 American Physical Society.

frequency corresponds to resonant red detuning for a SWNT
with d = 1.2 nm. The SWNT with d = 1.2 nm is strongly
trapped at Z0 = 0, which is the destabilization point for
a SWNT with d = 1.4 nm. A SWNT with d = 1.6 nm
experiences a small potential of approximately 10 meV, so it
would move away from Z0 = 0 at room temperature because
of thermal fluctuations. Therefore, only the SWNT with d =
1.2 nm would be trapped. If we apply a stronger laser field
such that the potential for the SWNT with d = 1.6 nm exceeds
the thermal fluctuation energy, the SWNT with d = 1.6 nm
is also trapped as well as that with d = 1.2 nm. Because
the potential is proportional to the applied field intensity, we
can estimate the appropriate laser field intensity for selective
trapping of SWNTs having a specific structure. Furthermore,
the potential for perpendicular polarization at this position is
extremely small (see figure 21, inset). This indicates that we
can trap SWNTs having a major axis oriented parallel to the
light polarization.

A SWNT does not have a rigid structure in the axial
direction under standard experimental conditions and is
generally twisted in various directions. The above calculations
are limited to a SWNT with a straight axis. To estimate
the radiation force for the twisted SWNTs, we should
calculate the statistical average of the force with respect
to the axial direction. When the segments of a twisted
SWNT have a completely random orientation, the averaged
force is given by Fav

Z (ω) = F‖Z(ω)/2 + F⊥Z (ω)/2, where

F‖Z(ω) and F⊥Z (ω) are the radiation force for parallel and
perpendicular polarizations, respectively. The exciton levels
for perpendicular polarization differ from those for parallel
polarization and the force for perpendicular polarization is
much smaller than that for parallel polarization. Therefore,
it is feasible to consider the exciton resonance for parallel
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polarization in the selective manipulation and sorting of
SWNTs. In the selected SWNTs, the major axis will be
oriented parallel to the applied field polarization.

In experimental investigations of the radiation force
exerted on SWNTs, a slight enrichment of semiconducting
SWNTs was observed using an optical trap [108]. SWNTs
with similar diameters were recently aggregated using a
strongly focused laser beam [109]; several types of structures
have been determined using resonant Raman spectra of
the radial breathing modes. However, the analysis in this
experiment was limited to the joint density of states calculated
by using a simple tight-binding model. For more reliable
identification of the structure of a SWNT, the exciton effect
must be included in theoretical calculations. The exciton
effect enhances the level separation due to warping and
curvature [71]. A similar tendency has been calculated for the
radiation force [87]. Therefore, by considering the excitonic
effect, the resonant radiation force can be effectively used
for manipulation and sorting of SWNTs having a specific
structure, even when SWNTs have almost equal diameters.

8. Summary

The exciton states and optical properties of a SWNT have
been discussed. The exciton states have been calculated
from the screened Hartree–Fock approximation in the
effective-mass or k · p scheme, which is quite useful for
studying their essential global features. The exciton states of
a SWNT have a large oscillator strength because SWNTs are
a quasi-1D system; thus, absorption and PL can be observed
even at room temperature. The optical properties, including
the radiative lifetime of excitons, absorption spectra and
radiation force, have been presented. These properties have
been studied using a self-consistent treatment of EM fields and
the induced current density appearing in the exciton–photon
interaction. The resulting optical properties include the effect
of the complex self-energy of the exciton. The imaginary
part of the self-energy corresponds to the exciton’s radiative
decay width, which is fundamentally related to the scattering
force. The self-consistent method provides a unified treatment
of these optical properties. In addition, a dynamical e–h
EXI can be derived from the self-consistent treatment. In
contrast to the conventional e–h EXI, the dynamical EXI
includes a dynamical factor, which plays an important role
for excitons having a large oscillator strength, such as SWNT
excitons. In fact, the absorption of a SWNT calculated using
the dynamical e–h EXI, which agrees with that calculated
including the depolarization effect, differ significantly from
those calculated using the conventional e–h EXI.

A SWNT exhibits various optical properties because of
its peculiar cylindrical shape, massless Dirac fermions, and
the existence of K and K′ valleys. The optical selection rules
depend on the direction of the applied field polarization.
The optical absorption, radiation force and radiative lifetime
of excitons for perpendicular polarization are significantly
suppressed by the depolarization effect or e–h EXI. Singlet
excitons are classified as having bright even-parity and dark
odd-parity states; this is a typical feature of excitons in a

quasi-1D system. There exists a new type of dark 1
|KK −

K′K′(−)〉 and bright 1
|KK − K′K′(−)〉 states consisting of

even-parity excitons in the K and K′ valleys, respectively. By
applying a magnetic flux passing through the cross section
of a SWNT, these two excitons can be split symmetrically
by increasing the magnetic flux. In this situation, these two
excitons approach to 1

|KK〉 and 1
|K′K′〉 bright excitons

because the degeneracy of 1
|KK〉 and 1

|K′K′〉 is lifted due to
the AB effect. Level separation between 1

|KK − K′K′(+)〉
and 1
|KK − K′K′(−)〉 excitons in the absence of a magnetic

field has been measured in absorption spectra taken under
high magnetic fields. For perpendicular polarization, 1

|KK −
K′K′(−)〉 has a smaller oscillator strength, in contrast to the
dark exciton 1

|KK − K′K′(−)〉 for parallel polarization. This
1
|KK−K′K′(−)〉 state is considered a quasi-dark exciton. Its

existence is attributed to the small level separation between
1
|KK〉 and 1

|K′K′〉 due to the e–h band anisotropy.
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