Computation with Absolutely No Space Overhead

Lane Hemaspaandra¹ Proshanto Mukherji¹ Till Tantau²

¹Department of Computer Science University of Rochester

²Fakultät für Elektrotechnik und Informatik Technical University of Berlin

Developments in Language Theory Conference, 2003

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- 3 Limitations of Overhead-Free Computation
 - ◆□ → ◆□ → ◆ □ → ◆ □ = りへ(

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- 2 The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- 3 Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

Linear Space is a Powerful Model

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- 2 The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- 3 Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

Intuition

 Tape is used like a RAM module.

Definition of Overhead-Free Computations

Definition

A Turing machine is overhead-free if

- o it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet.

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 $\mathsf{DOF}_{\mathsf{poly}}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time

NOF is the nondeterministic version of DOF.

 NOF_{poly} is the nondeterministic version of DOF_{poly} .

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 $\mathsf{DOF}_{\mathsf{poly}}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time.

NOF is the nondeterministic version of DOF,

NOF_{poly} is the nondeterministic version of DOF_{poly}

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 $\mathsf{DOF}_{\mathsf{poly}}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time.

NOF is the nondeterministic version of DOF,

NOF_{poly} is the nondeterministic version of DOF_{poly}

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 $\mathsf{DOF}_{\mathsf{poly}}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time.

NOF is the nondeterministic version of DOF,

NOF_{poly} is the nondeterministic version of DOF_{poly}.

Simple Relationships among Overhead-Free Computation Classes

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- 3 Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit
Place left end marker
Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers

Find left end marker Advance left end marker Find right end marker Advance right end marker

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes

Linear Languages Forbidden Subword **Complete Languages**

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Relationships among Overhead-Free Computation Classes

Outline

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- 3 Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

A Review of Linear Grammars

Definition

A grammar is linear if it is context-free and there is only one nonterminal per right-hand side.

Example

 $\textit{G}_1 \colon\thinspace \textit{S} \to 00 \, \text{S0} \mid \textit{1} \text{ and } \textit{G}_2 \colon\thinspace \textit{S} \to 0 \, \text{S10} \mid \textit{0}.$

Definition

A grammar is deterministic if "there is always only one rule that can be applie

Example

 $G_1: S \to 00S0 \mid 1$ is deterministic.

Palindromes Linear Languages Forbidden Subword

A Review of Linear Grammars

Definition

A grammar is deterministic if

"there is always only one rule that can be applied."

Example

 $G_1: S \rightarrow 00S0 \mid 1$ is deterministic.

 $G_2: S \rightarrow 0S10 \mid 0$ is not deterministic.

Deterministic Linear Languages Can Be Accepted in an Overhead-Free Way

Theorem

Every deterministic linear language is in DOF_{poly}.

Metalinear Languages Can Be Accepted in an Overhead-Free Way

Definition

A language is metalinear if it is the concatenation of linear languages.

Example

TRIPLE-PALINDROME = $\{uvw \mid u, v, \text{ and } w \text{ are palindromes}\}$

Theorem

Every metalinear language is in NOFpoly

Metalinear Languages Can Be Accepted in an Overhead-Free Way

Definition

A language is metalinear if it is the concatenation of linear languages.

Example

TRIPLE-PALINDROME = $\{uvw \mid u, v, \text{ and } w \text{ are palindromes}\}$.

Theorem

Every metalinear language is in NOF poly

Metalinear Languages Can Be Accepted in an Overhead-Free Way

Definition

A language is metalinear if it is the concatenation of linear languages.

Example

TRIPLE-PALINDROME = $\{uvw \mid u, v, \text{ and } w \text{ are palindromes}\}$.

Theorem

Every metalinear language is in NOFpoly.

Relationships among Overhead-Free Computation Classes

Outline

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- 3 Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

Definition of Almost-Overhead-Free Computations

Definition

A Turing machine is almost-overhead-free if

- it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet plus one special symbol.

Definition of Almost-Overhead-Free Computations

Definition

A Turing machine is almost-overhead-free if

- it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet plus one special symbol.

Definition of Almost-Overhead-Free Computations

Definition

- A Turing machine is almost-overhead-free if
- it has only a single tape,
- 2 writes only on input cells,
- writes only symbols drawn from the input alphabet plus one special symbol.

Context-Free Languages with a Forbidden Subword Can Be Accepted in an Overhead-Free Way

Theorem

Let L be a context-free language with a forbidden word. Then $L \in \mathsf{NOF}_{\mathsf{poly}}.$

→ Skip proof

Context-Free Languages with a Forbidden Subword Can Be Accepted in an Overhead-Free Way

Theorem

Let L be a context-free language with a forbidden word. Then $L \in \mathsf{NOF}_{\mathsf{poly}}$.

Proof.

Every context-free language can be accepted by a nondeterministic almost-overhead-free machine in polynomial time.

Relationships among Overhead-Free Computation Classes

Outline

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- 3 Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

Overhead-Free Languages can be PSPACE-Complete

Theorem

DOF contains languages that are complete for PSPACE.

▶ Proof details

◆ロ > ◆園 > ◆豆 > ◆豆 > 豆 = 釣 < ○○○</p>

Relationships among Overhead-Free Computation Classes

Outline

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- 2 The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

Some Context-Sensitive Languages Cannot be Accepted in an Overhead-Free Way

Theorem

DOF ⊊ DLINSPACE.

Theorem

 $NOF \subseteq NLINSPACE$.

The proofs are based on old diagonalisations due to Feldman, Owings, and Seiferas.

Relationships among Overhead-Free Computation Classes

Candidates for Languages that Cannot be Accepted in an Overhead-Free Way

Conjecture

DOUBLE-PALINDROMES ∉ DOF.

Conjecture

 $\{ww \mid w \in \{0,1\}^*\} \notin NOF.$

Proving the first conjecture would show DOF \subseteq NOF.

Candidates for Languages that Cannot be Accepted in an Overhead-Free Way

Theorem

DOUBLE-PALINDROMES \in DOF.

Conjecture

 $\{ww \mid w \in \{0,1\}^*\} \notin NOF.$

Proving the first conjecture would show DOF ⊊ NOF

Summary

- Overhead-free computation is a more faithful model of fixed-size memory.
- Overhead-free computation is less powerful than linear space.
- Many context-free languages can be accepted by overhead-free machines.
- We conjecture that all context-free languages are in NOF_{poly}.
- Our results can be seen as new results on the power of linear bounded automata with fixed alphabet size.

- A. Salomaa.
 - Formal Languages.
 - Academic Press, 1973.
- E. Dijkstra.

 Smoothsort, an alternative f
 - Science of Computer Programming, 1(3):223–233, 1982.
- E. Feldman and J. Owings, Jr. A class of universal linear bounded automata. *Information Sciences*, 6:187–190, 1973.
- P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata.
 - < □ → ◀례 → ◀불 → ◀불 → 볼|= 쒸٩G

- A. Salomaa.
 Formal Languages.
 - Academic Press, 1973.
- E. Dijkstra.
 - Smoothsort, an alternative for sorting in situ. *Science of Computer Programming*, 1(3):223–233, 1982.
- E. Feldman and J. Owings, Jr.
 A class of universal linear bounded automata
 Information Sciences, 6:187–190, 1973.
- P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata.
 - FCT Conference 1995, LNCS 985, pages 282–292. 1995

- A. Salomaa.
 - Formal Languages.

Academic Press, 1973.

- E. Dijkstra.
 - Smoothsort, an alternative for sorting in situ.
 - Science of Computer Programming, 1(3):223–233, 1982.
- E. Feldman and J. Owings, Jr.
 A class of universal linear bounded automata.
 Information Sciences, 6:187–190, 1973.
- P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata.
 - FCT Conference 1995, LNCS 985, pages 282–292. 1995

Formal Languages.

Academic Press, 1973.

E. Dijkstra.

Smoothsort, an alternative for sorting in situ.

Science of Computer Programming, 1(3):223–233, 1982.

E. Feldman and J. Owings, Jr.

A class of universal linear bounded automata.

Information Sciences, 6:187–190, 1973.

P. Jančar, F. Mráz, M. Plátek, and J. Vogel.

Restarting automata.

FCT Conference 1995, LNCS 985, pages 282-292. 1995.

Appendix Outline

- Appendix
 - Complete Languages
 - Improvements for Context-Free Languages

Overhead-Free Languages can be PSPACE-Complete

Theorem

DOF contains languages that are complete for PSPACE.

Proof.

- Let $A \in DLINSPACE$ be PSPACE-complete. Such languages are known to exist.
- ② Let M be a linear space machine that accepts $A \subseteq \{0, 1\}^*$ with tape alphabet Γ.
- 3 Let $h: \Gamma \to \{0,1\}^*$ be an isometric, injective homomorphism.
- Then h(L) is in DOF and it is PSPACE-complete.

Improvements

Theorem

- $\textbf{0} \ \mathsf{DCFL} \subseteq \mathsf{DOF}_{\mathsf{poly}}.$
- \bigcirc CFL \subseteq NOF_{poly}.

