

# A Log Likelihood Gradient Evaluation by Using the Extended Square-Root Information Filter

M.V. Kulikova, I.V. Semushin

School of Computational and Applied Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa E-mail: mkulikova@cam.wits.ac.za





The method of maximum likelihood . . .

Gradient-search optimization algorithms;



- Gradient-search optimization algorithms;
- **Gr**adient of the negative Log Likelihood Function;



- Gradient-search optimization algorithms;
- **Gr**adient of the negative Log Likelihood Function;
- Kalman Filter



- Gradient-search optimization algorithms;
- **Gr**adient of the negative Log Likelihood Function;
- **Ka**lman Filter  $\implies$  is known to be unstable;



- **Gr**adient-search optimization algorithms;
- Gradient of the negative Log Likelihood Function;
- **Ka**lman Filter  $\implies$  is known to be unstable;
- [P. Park&T. Kailath, 1995] The extended Square Root Information Filter (eSRIF):



- **Gr**adient-search optimization algorithms;
- Gradient of the negative Log Likelihood Function;
- **Ka**lman Filter  $\implies$  is known to be unstable;
- [P. Park&T. Kailath, 1995] The extended Square Root Information Filter (eSRIF):
  - avoids numerical instabilities arising from computational errors;



- Gradient-search optimization algorithms;
- Gradient of the negative Log Likelihood Function;
- **Ka**lman Filter  $\implies$  is known to be unstable;
- [P. Park&T. Kailath, 1995] The extended Square Root Information Filter (eSRIF):
  - avoids numerical instabilities arising from computational errors;
  - appears to be better suited to parallel implementation and to very large scale integration (VLSI) implementation.



#### Consider the discrete-time linear dynamic stochastic system

$$x_{t+1} = F_t x_t + G_t w_t, \qquad t = 0, 1, \dots, N,$$
(1)

$$z_t = H_t x_t + v_t, \qquad t = 1, 2, \dots, N,$$
 (2)



#### Consider the discrete-time linear dynamic stochastic system

$$x_{t+1} = F_t x_t + G_t w_t, \qquad t = 0, 1, \dots, N, \tag{1}$$

$$z_t = H_t x_t + v_t, \qquad t = 1, 2, \dots, N,$$
 (2)

with the system state  $x_t \in \mathbb{R}^n$ ,



Consider the discrete-time linear dynamic stochastic system

$$x_{t+1} = F_t x_t + G_t w_t, \qquad t = 0, 1, \dots, N, \tag{1}$$

$$z_t = H_t x_t + v_t, \qquad t = 1, 2, \dots, N,$$
 (2)

with the system state  $x_t \in \mathbb{R}^n$ , the state disturbance  $w_t \in \mathbb{R}^q$ ,



Consider the discrete-time linear dynamic stochastic system

$$x_{t+1} = F_t x_t + G_t w_t, \qquad t = 0, 1, \dots, N,$$
(1)

$$z_t = H_t x_t + v_t, \qquad t = 1, 2, \dots, N,$$
 (2)

with the system state  $x_t \in \mathbb{R}^n$ , the state disturbance  $w_t \in \mathbb{R}^q$ , the observed vector  $z_t \in \mathbb{R}^m$ ,



Consider the discrete-time linear dynamic stochastic system

$$x_{t+1} = F_t x_t + G_t w_t, \qquad t = 0, 1, \dots, N, \tag{1}$$

$$z_t = H_t x_t + v_t, \qquad t = 1, 2, \dots, N,$$
 (2)

with the system state  $x_t \in \mathbb{R}^n$ , the state disturbance  $w_t \in \mathbb{R}^q$ , the observed vector  $z_t \in \mathbb{R}^m$ , and the measurement error  $v_t \in \mathbb{R}^m$ ,



Consider the discrete-time linear dynamic stochastic system

$$x_{t+1} = F_t x_t + G_t w_t, \qquad t = 0, 1, \dots, N,$$
(1)

$$z_t = H_t x_t + v_t, \qquad t = 1, 2, \dots, N,$$
 (2)

with the system state  $x_t \in \mathbb{R}^n$ , the state disturbance  $w_t \in \mathbb{R}^q$ , the observed vector  $z_t \in \mathbb{R}^m$ , and the measurement error  $v_t \in \mathbb{R}^m$ , such that the initial state  $x_0$  and each  $w_t$ ,  $v_t$  of  $\{w_t : t = 0, 1, ...\}$ ,  $\{v_t : t = 1, 2, ...\}$  are taken from mutually independent Gaussian distributions with the following expectations:



$$\mathbf{E} \left\{ \begin{bmatrix} x_0 \\ w_t \\ v_t \end{bmatrix} \right\} = \begin{bmatrix} \bar{x}_0 \\ 0 \\ 0 \end{bmatrix}$$
$$\mathbf{E} \left\{ \begin{bmatrix} (x_0 - \bar{x}_0) \\ w_t \\ v_t \end{bmatrix} \begin{bmatrix} (x_0 - \bar{x}_0) \\ w_t \\ v_t \end{bmatrix} \right] \left[ \begin{pmatrix} x_0 - \bar{x}_0 \\ w_t \\ v_t \end{bmatrix}^T \right\} = \begin{bmatrix} P_0 & 0 & 0 \\ 0 & Q_t & 0 \\ 0 & 0 & R_t \end{bmatrix}$$
and  $\mathbf{E} \left\{ w_t w_{t'}^T \right\} = 0$ ,  $\mathbf{E} \left\{ v_t v_{t'}^T \right\} = 0$  if  $t \neq t'$ .

A Log Likelihood Gradient Evaluation by Using the Extended Square-Root Information Filter - p. 4/?



$$\mathbf{E} \left\{ \begin{bmatrix} x_0 \\ w_t \\ v_t \end{bmatrix} \right\} = \begin{bmatrix} \bar{x}_0 \\ 0 \\ 0 \end{bmatrix}$$
$$\mathbf{E} \left\{ \begin{bmatrix} (x_0 - \bar{x}_0) \\ w_t \\ v_t \end{bmatrix} \begin{bmatrix} (x_0 - \bar{x}_0) \\ w_t \\ v_t \end{bmatrix}^T \right\} = \begin{bmatrix} P_0 & 0 & 0 \\ 0 & Q_t & 0 \\ 0 & 0 & R_t \end{bmatrix}$$

and  $\mathbf{E} \{ w_t w_{t'}^T \} = 0$ ,  $\mathbf{E} \{ v_t v_{t'}^T \} = 0$  if  $t \neq t'$ . Assume the system is parameterized by a vector  $\theta \in \mathbb{R}^p$  of unknown system parameters. This means that all the above characteristics, namely  $F_t$ ,  $G_t$ ,  $H_t$ ,  $P_0 \ge 0$ ,  $Q_t \ge 0$  and  $R_t > 0$  can depend upon  $\theta$  (the corresponding notations  $F_t(\theta)$ ,  $G_t(\theta)$  and so on, are suppressed for the sake of Simplicity).



For example, (1), (2) may describe a discrete autoregressive (AR) process observed in the presence of additive noise

$$x_{t+1} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ \theta_1 & \theta_2 & \theta_3 & \dots & \theta_p \end{bmatrix} x_t + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \gamma \end{bmatrix} w_t,$$
$$z_t = \begin{bmatrix} 0 & 0 & \dots & 1 \end{bmatrix} x_t + v_t.$$

In this case  $\theta$  are the unknown AR parameters which need to be estimated.



The negative Log Likelihood Function (LLF) for system (1), (2) is given by

$$L_{\theta}\left(Z_{1}^{N}\right) = \frac{1}{2} \sum_{t=1}^{N} \left\{\frac{m}{2}\ln(2\pi) + \ln(\det(R_{e,t})) + e_{t}^{T}R_{e,t}^{-1}e_{t}\right\}$$

with  $e_t \stackrel{\text{def}}{=} z_t - H_t \hat{x}_t$  being the zero-mean innovations whose covariance is determined as  $R_{e,t} \stackrel{\text{def}}{=} E\{e_t e_t^T\} = H_t P_t H_t^T + R_t$ through matrix  $P_t$ , the error covariance of the time updated estimate  $\hat{x}_t$  generated by the Kalman Filter.



Let  $l_{\theta}(z_t)$  denote the negative LLF for the *t*-th measurement  $z_t$  in system (1), (2), given measurements  $Z_1^{t-1} \stackrel{\text{def}}{=} \{z_1, \dots, z_{t-1}\},$ 



Let  $l_{\theta}(z_t)$  denote the negative LLF for the *t*-th measurement  $z_t$  in system (1), (2), given measurements  $Z_1^{t-1} \stackrel{\text{def}}{=} \{z_1, \dots, z_{t-1}\}$ , then

$$\mathcal{L}_{\theta}(z_t) = \frac{1}{2} \left\{ \frac{m}{2} \ln(2\pi) + \ln(\det(R_{e,t})) + e_t^T R_{e,t}^{-1} e_t \right\}.$$
 (3)



Let  $l_{\theta}(z_t)$  denote the negative LLF for the *t*-th measurement  $z_t$  in system (1), (2), given measurements  $Z_1^{t-1} \stackrel{\text{def}}{=} \{z_1, \dots, z_{t-1}\}$ , then

$$_{\theta}(z_t) = \frac{1}{2} \left\{ \frac{m}{2} \ln(2\pi) + \ln(\det(R_{e,t})) + e_t^T R_{e,t}^{-1} e_t \right\}.$$
(3)

By differentiating (3) we obtain

 $\frac{\partial l_{\theta}(z_t)}{\partial \theta_i} = \frac{1}{2} \frac{\partial}{\partial \theta_i} \left[ \ln(\det(R_{e,t})) \right] + \frac{1}{2} \frac{\partial}{\partial \theta_i} \left[ e_t^T R_{e,t}^{-1} e_t \right] i = 1, \dots p. \quad (4)$ 



Let  $l_{\theta}(z_t)$  denote the negative LLF for the *t*-th measurement  $z_t$  in system (1), (2), given measurements  $Z_1^{t-1} \stackrel{\text{def}}{=} \{z_1, \dots, z_{t-1}\}$ , then

$$_{\theta}(z_t) = \frac{1}{2} \left\{ \frac{m}{2} \ln(2\pi) + \ln(\det(R_{e,t})) + e_t^T R_{e,t}^{-1} e_t \right\}.$$
(3)

By differentiating (3) we obtain

$$\frac{\partial l_{\theta}(z_t)}{\partial \theta_i} = \frac{1}{2} \frac{\partial}{\partial \theta_i} \left[ \ln(\det(R_{e,t})) \right] + \frac{1}{2} \frac{\partial}{\partial \theta_i} \left[ e_t^T R_{e,t}^{-1} e_t \right] i = 1, \dots p. \quad (4)$$

As can be seen the computation of (3) and (4) leads to implementation of a Kalman Filter (and its derivative with respect to each parameter) which is known to be unstable.



[P. Park&T. Kailath, 1995]: assume that  $\Pi_0 > 0$ ,  $R_t > 0$  and  $F_t$  are invertible. Given  $P_0^{-T/2} = \Pi_0^{-T/2}$  and  $P_0^{-T/2} \hat{x}_0 = \Pi_0^{-T/2} \bar{x}_0$ , then

$$O_{t} \begin{bmatrix} R_{t}^{-T/2} & -R_{t}^{-T/2}H_{t}F_{t}^{-1} & R_{t}^{-T/2}H_{t}F_{t}^{-1}G_{t}Q_{t}^{T/2} & -R_{t}^{-T/2}z_{t} \\ 0 & P_{t}^{-T/2}F_{t}^{-1} & -P_{t}^{-T/2}F_{t}^{-1}G_{t}Q_{t}^{T/2} & P_{t}^{-T/2}\hat{x}_{t} \\ 0 & 0 & I_{q} & 0 \end{bmatrix}$$
$$= \begin{bmatrix} R_{e,t}^{-T/2} & 0 & 0 & -\bar{e}_{t} \\ -P_{t+1}^{-T/2}K_{p,t} & P_{t+1}^{-T/2} & 0 & P_{t+1}^{-T/2}\hat{x}_{t+1} \\ * & * & * & * \end{bmatrix}$$

where  $O_t$  is any orthogonal transformation such that the matrix on the right-hand side of the formula is block lower triangular.



The eSRIF is a modification of the conventional one:

|       | [ ] | $R_t^{-T/2}$ | $-R_t^{-T/2}H_tH$ | $F_t^{-1}  R_t^{-T/2} H_t H_t$    | $F_t^{-1}G_tQ_t^T$ | 7/2 |  |
|-------|-----|--------------|-------------------|-----------------------------------|--------------------|-----|--|
| $O_t$ |     | 0            | $P_t^{-T/2}F_t^-$ | $-P_t^{-T/2}F_t^{-1}G_tQ_t^{T/2}$ |                    |     |  |
|       |     | 0            | 0                 |                                   | $I_q$              |     |  |
|       |     |              |                   | $ R_{e,t}^{-T/2} $                | 0                  | 0   |  |
|       |     |              | =                 | $-P_{t+1}^{-T/2}K_{p,t}$          | $P_{t+1}^{-T/2}$   | 0   |  |
|       |     |              |                   | *                                 | *                  | *   |  |

where  $O_t$  is any orthogonal transformation such that the matrix on the right-hand side of the formula is lower triangular.



The eSRIF is a modification of the conventional one:

|       | $\int I$ | $R_t^{-T/2}$ | $-R_t^{-T/2}H_tF$     | $T_t^{-1}  R_t^{-T/2} H_t H_t$ | $F_t^{-1}G_tQ_t^2$ | $\Gamma/2$ | $-R_t^{-T/2}$                 |
|-------|----------|--------------|-----------------------|--------------------------------|--------------------|------------|-------------------------------|
| $O_t$ |          | 0            | $P_t^{-T/2} F_t^{-1}$ | $-P_t^{-T/2}F$                 | $G_t^{-1}G_tQ_t^T$ | $\Gamma/2$ | $P_t^{-T/2}\hat{x}_t$         |
|       |          | 0            | 0                     |                                | $I_q$              |            | 0                             |
|       |          |              |                       | $R_{e,t}^{-T/2}$               | 0                  | 0          | $-\overline{e}_t$             |
|       |          |              | =                     | $-P_{t+1}^{-T/2}K_{p,t}$       | $P_{t+1}^{-T/2}$   | 0          | $P_{t+1}^{-T/2}\hat{x}_{t+1}$ |
|       |          |              |                       | *                              | *                  | *          | *                             |

where  $O_t$  is any orthogonal transformation such that the matrix on the right-hand side of the formula is



Remark. The predicted estimate now can be found from the entries of the post-array by solving the triangular system

$$\left(\tilde{P}_{t+1}^{-1/2}\right)\left(\hat{x}_{t+1}^{-}\right) = \left(\tilde{P}_{t+1}^{-1/2}\hat{x}_{t+1}^{-}\right).$$
 (5)



#### The Log Likelihood Gradient (LLG):

$$\frac{\partial l_{\theta}(z_t)}{\partial \theta_i} = \frac{1}{2} \frac{\partial}{\partial \theta_i} \left[ \ln(\det(R_{e,t})) \right] + \frac{1}{2} \frac{\partial}{\partial \theta_i} \left[ e_t^T R_{e,t}^{-1} e_t \right], \quad i = 1, 2, \dots p,$$



The Log Likelihood Gradient (LLG):

$$\frac{\partial l_{\theta}(z_t)}{\partial \theta_i} = \frac{1}{2} \frac{\partial}{\partial \theta_i} \left[ \ln(\det(R_{e,t})) \right] + \frac{1}{2} \frac{\partial}{\partial \theta_i} \left[ e_t^T R_{e,t}^{-1} e_t \right], \quad i = 1, 2, \dots p,$$

in terms of the eSRIF is given by

$$\frac{\partial l_{\theta}(z_t)}{\partial \theta_i} = \frac{\partial}{\partial \theta_i} \left[ \ln(\det(R_{e,t}^{1/2})) \right] + \bar{e}_t^T \frac{\partial \bar{e}_t}{\partial \theta_i}, \quad i = 1, 2, \dots p,$$



The Log Likelihood Gradient (LLG):

$$\frac{\partial l_{\theta}(z_t)}{\partial \theta_i} = \frac{1}{2} \frac{\partial}{\partial \theta_i} \left[ \ln(\det(R_{e,t})) \right] + \frac{1}{2} \frac{\partial}{\partial \theta_i} \left[ e_t^T R_{e,t}^{-1} e_t \right], \quad i = 1, 2, \dots p,$$

in terms of the eSRIF is given by

W

 $R_{\epsilon}$ 

 $\overline{e}_{t}$ 

 $v_{e_{1}}$ 

$$\frac{\partial l_{\theta}(z_t)}{\partial \theta_i} = \frac{\partial}{\partial \theta_i} \left[ \ln(\det(R_{e,t}^{1/2})) \right] + \bar{e}_t^T \frac{\partial \bar{e}_t}{\partial \theta_i}, \quad i = 1, 2, \dots p,$$
  
here  $R_{e,t}^{1/2}$  is a square-root factor of the matrix  $R_{e,t}$ , i. e.  
 $t = R_{e,t}^{T/2} R_{e,t}^{1/2},$  and  $\bar{e}_t$  are the normalized innovations, i. e.  
 $= R_e^{-T/2} e_t.$ 



Taking into account that matrix  $R_{e,t}^{1/2}$  is upper triangular, we can show



Taking into account that matrix  $R_{e,t}^{1/2}$  is upper triangular, we can show

$$\frac{\partial}{\partial \theta_i} \left[ \ln \left( \det(R_{e,t}^{1/2}) \right) \right] = \mathbf{tr} \left[ R_{e,t}^{-1/2} \frac{\partial \left( R_{e,t}^{1/2} \right)}{\partial \theta_i} \right], \quad i = 1, 2, \dots, p$$

where  $tr[\cdot]$  is a trace of matrix.



Taking into account that matrix  $R_{e,t}^{1/2}$  is upper triangular, we can show

$$\frac{\partial}{\partial \theta_i} \left[ \ln \left( \det(R_{e,t}^{1/2}) \right) \right] = \mathbf{tr} \left[ R_{e,t}^{-1/2} \frac{\partial \left( R_{e,t}^{1/2} \right)}{\partial \theta_i} \right], \quad i = 1, 2, \dots, p$$

where  $tr[\cdot]$  is a trace of matrix. Finally, we obtain the expression for the LLG in terms of the eSRIF:

$$\frac{\partial l_{\theta}(z_t)}{\partial \theta_i} = -\operatorname{tr}\left[R_{e,t}^{1/2} \frac{\partial \left(R_{e,t}^{-1/2}\right)}{\partial \theta_i}\right] + \bar{e}_t^T \frac{\partial \bar{e}_t}{\partial \theta_i}, \ i = 1, 2, \dots, p. \quad (6)$$



## **LLG** Evaluation

$$\frac{\partial l(z_t)}{\partial \theta_i} = -\operatorname{tr} \left[ \begin{array}{c} R_{e,t}^{1/2} & \frac{\partial \left(R_{e,t}^{-1/2}\right)}{\partial \theta_i} \end{array} \right] + \bar{e}_t^T & \frac{\partial \bar{e}_t}{\partial \theta_i}, \ i = 1, \dots, p. \quad (6),$$



## **LLG** Evaluation

$$\frac{\partial l(z_t)}{\partial \theta_i} = -\operatorname{tr}\left[\underbrace{R_{e,t}^{1/2}}_{\partial \theta_i} \frac{\partial \left(R_{e,t}^{-1/2}\right)}{\partial \theta_i}\right] + \underbrace{\bar{e}_t^T}_{\partial \theta_i} \frac{\partial \bar{e}_t}{\partial \theta_i}, \ i = 1, \dots, p.$$
(6),



## **LLG** Evaluation

$$\frac{\partial l(z_t)}{\partial \theta_i} = -\operatorname{tr}\left[\underbrace{R_{e,t}^{1/2}}_{\partial \theta_i} \frac{\partial \left(R_{e,t}^{-1/2}\right)}{\partial \theta_i}\right] + \underbrace{\bar{e}_t^T}_{\partial \theta_i} \frac{\partial \bar{e}_t}{\partial \theta_i}, \ i = 1, \dots, p.$$
(6),

#### The eSRIF:

$$O_{t} \begin{bmatrix} R_{t}^{-T/2} & -R_{t}^{-T/2}H_{t}F_{t}^{-1} & R_{t}^{-T/2}H_{t}F_{t}^{-1}G_{t}Q_{t}^{T/2} \\ 0 & P_{t}^{-T/2}F_{t}^{-1} & -P_{t}^{-T/2}F_{t}^{-1}G_{t}Q_{t}^{T/2} \\ 0 & 0 & I_{q} \end{bmatrix} \begin{bmatrix} -R_{t}^{-T/2}z_{t} \\ P_{t}^{-T/2}\hat{x}_{t} \\ 0 \end{bmatrix} \\ = \begin{bmatrix} R_{e,t}^{-T/2} & 0 & 0 \\ -P_{t+1}^{-T/2}K_{p,t} & P_{t+1}^{-T/2} & 0 \\ * & * & * \end{bmatrix}$$


Th

$$\frac{\partial l(z_t)}{\partial \theta_i} = -\operatorname{tr} \begin{bmatrix} R_{e,t}^{1/2} & \frac{\partial \left(R_{e,t}^{-1/2}\right)}{\partial \theta_i} \end{bmatrix} + \begin{bmatrix} \bar{e}_t^T & \frac{\partial \bar{e}_t}{\partial \theta_i}, \ i = 1, \dots, p. \quad (6), \\ \text{ne eSRIF:} \\
O_t \begin{bmatrix} R_t^{-T/2} & -R_t^{-T/2} H_t F_t^{-1} & R_t^{-T/2} H_t F_t^{-1} G_t Q_t^{T/2} & -R_t^{-T/2} z_t \\ 0 & P_t^{-T/2} F_t^{-1} & -P_t^{-T/2} F_t^{-1} G_t Q_t^{T/2} & P_t^{-T/2} \hat{x}_t \\ 0 & 0 & I_q & 0 \end{bmatrix} \\
= \begin{bmatrix} R_{e,t}^{-T/2} & 0 & 0 \\ -P_{t+1}^{-T/2} K_{p,t} & P_{t+1}^{-T/2} & 0 \\ * & * & * & * \end{bmatrix} \begin{bmatrix} -T/2 \hat{x}_t \\ P_{t+1}^{-T/2} \hat{x}_{t+1} \\ * \end{bmatrix}$$



Т

$$\frac{\partial l(z_t)}{\partial \theta_i} = -\operatorname{tr} \left[ \begin{array}{c} R_{e,t}^{1/2} & \frac{\partial \left( R_{e,t}^{-1/2} \right)}{\partial \theta_i} \right] + \left( \overline{e}_t^T \right) \frac{\partial \overline{e}_t}{\partial \theta_i}, \ i = 1, \dots, p. \quad (6),$$
he eSRIF:
$$O_t \left[ \begin{array}{ccc} R_t^{-T/2} & -R_t^{-T/2} H_t F_t^{-1} & R_t^{-T/2} H_t F_t^{-1} G_t Q_t^{T/2} \\ 0 & P_t^{-T/2} F_t^{-1} & -P_t^{-T/2} F_t^{-1} G_t Q_t^{T/2} \\ 0 & 0 & I_q \end{array} \right] - \left[ \begin{array}{ccc} R_{e,t}^{-T/2} & 0 & 0 \\ -P_{t+1}^{-T/2} K_{p,t} & P_{t+1}^{-T/2} & 0 \\ & & * & * & * \end{array} \right] \left[ \begin{array}{ccc} P_t^{-T/2} \hat{x}_t \\ 0 & 0 \end{array} \right] + \left[ \begin{array}{ccc} R_{e,t}^{-T/2} & 0 & 0 \\ R_{e,t}^{-T/2} & 0 & 0 \\ & & R_t^{-T/2} \hat{x}_t \end{array} \right] \right] + \left[ \begin{array}{ccc} R_t^{-T/2} \hat{x}_t \\ 0 & 0 \end{array} \right] \left[ \begin{array}{ccc} R_{e,t}^{-T/2} & 0 & 0 \\ R_{e,t}^{-T/2} & R_t^{-T/2} \hat{x}_t \\ 0 & 0 \end{array} \right] + \left[ \begin{array}{ccc} R_{e,t}^{-T/2} \hat{x}_t \\ 0 & R_t^{-T/2} \hat{x}_t \\ 0 & R_t^{-T/2} \hat{x}_t \end{array} \right] \left[ \begin{array}{ccc} R_{e,t}^{-T/2} \hat{x}_t \\ 0 & R_t^{-T/2} \hat{x}_t \\ 0 & R_t^{-T/2} \hat{x}_t \\ 0 & R_t^{-T/2} \hat{x}_t \end{array} \right] \right] + \left[ \begin{array}{ccc} R_t^{-T/2} \hat{x}_t \\ 0 & R_t^{-T$$

A Log Likelihood Gradient Evaluation by Using the Extended Square-Root Information Filter - p. 13/3



Lemma 1. Let QA = L (7) where Q is any orthogonal transformation such that the matrix on the right-hand side of formula (7) is lower triangular and A is a nonsingular matrix. If the elements of A are differentiable functions of a parameter  $\theta$  then the upper triangular matrix U in

$$Q'_{\theta}Q^T = \bar{U}^T - \bar{U} \tag{8}$$

is, in fact, the strictly upper triangular part of the matrix  $QA'_{\theta}L^{-1}$ :

$$QA'_{\theta}L^{-1} = \bar{L} + D + \bar{U} \tag{9}$$

where  $\overline{L}$ , D and  $\overline{U}$  are, respectively, strictly lower triangular, diagonal and strictly upper triangular.



Lemma 1 easily leads to a method for computing  $L'_{\theta}$ .



Lemma 1 easily leads to a method for computing  $L'_{\theta}$ . By differenting QA = L we obtain

$$L'_{\theta} = QA'_{\theta} + Q'_{\theta}A \tag{10}$$



Lemma 1 easily leads to a method for computing  $L'_{\theta}$ . By differenting QA = L we obtain

$$L'_{\theta} = QA'_{\theta} + Q'_{\theta}A \tag{10}$$

Multiply by  $L^{-1}$ :  $L'_{\theta}L^{-1} = QA'_{\theta}L^{-1} + Q'_{\theta}AL^{-1}$ 



Lemma 1 easily leads to a method for computing  $L'_{\theta}$ . By differenting QA = L we obtain

$$L'_{\theta} = QA'_{\theta} + Q'_{\theta}A \tag{10}$$

Multiply by  $L^{-1}$ :  $L'_{\theta}L^{-1} = QA'_{\theta}L^{-1} + Q'_{\theta}AL^{-1} \Rightarrow L'_{\theta}L^{-1} = QA'_{\theta}L^{-1} + Q'_{\theta}Q^{T}$  (11)



Lemma 1 easily leads to a method for computing  $L'_{\theta}$ . By differenting QA = L we obtain

$$L'_{\theta} = QA'_{\theta} + Q'_{\theta}A \tag{10}$$

Multiply by  $L^{-1}$ :  $L'_{\theta}L^{-1} = QA'_{\theta}L^{-1} + Q'_{\theta}AL^{-1} \Rightarrow L'_{\theta}L^{-1} = QA'_{\theta}L^{-1} + Q'_{\theta}Q^{T}$  (11) By substituting (8) and (9) into (11), we find that  $L'_{\theta}L^{-1} = \underbrace{(L+D+U)}_{QA'_{\theta}L^{-1}} + \underbrace{(U^{T}-U)}_{Q'_{\theta}Q^{T}}$ 



Lemma 1 easily leads to a method for computing  $L'_{\theta}$ . By differenting QA = L we obtain

$$L'_{\theta} = QA'_{\theta} + Q'_{\theta}A \tag{10}$$

Multiply by  $L^{-1}$ :  $L'_{\theta}L^{-1} = QA'_{\theta}L^{-1} + Q'_{\theta}AL^{-1} \Rightarrow L'_{\theta}L^{-1} = QA'_{\theta}L^{-1} + Q'_{\theta}Q^{T}$  (11) By substituting (8) and (9) into (11), we find that  $L'_{\theta}L^{-1} = \underbrace{(L+D+U)}_{QA'_{\theta}L^{-1}} + \underbrace{(U^{T}-U)}_{Q'_{\theta}Q^{T}} \implies L'_{\theta} = (L+D+U^{T})L^{-1}$ 

I. For each  $\theta_i$ , i = 1, 2, ..., p, apply the eSRIF

|       | $\left[ R_t^{-T/2} \right]$ | $-R_t^{-T/2}I$ | $H_t F_t^{-1}  R_t^{-T}$ | $G^{/2}H_tF_t^{-1}G$ | $_t Q_t^{T/2}$    | $\left  -R_t^{-T/2} z_t \right $ |
|-------|-----------------------------|----------------|--------------------------|----------------------|-------------------|----------------------------------|
| $O_t$ | 0                           | $P_t^{-T/2}$   | $F_t^{-1} - P_t$         | $^{-T/2}F_t^{-1}G_t$ | $_{t}Q_{t}^{T/2}$ | $P_t^{-T/2}\hat{x}_t$            |
|       | 0                           | 0              |                          | $I_q$                |                   | 0                                |
|       |                             |                | $R_{e,t}^{-T/2}$         | 0                    | 0                 | $-\overline{e}_t$                |
|       |                             | =              | $-P_{t+1}^{-T/2}K_p$     | $,t  P_{t+1}^{-T/2}$ | 0                 | $P_{t+1}^{-T/2}\hat{x}_{t+1}$    |
|       |                             |                | *                        | *                    | *                 | *                                |

where  $O_t$  is any orthogonal transformation such that the matrix on the right-hand side of the formula is block lower triangular.



II. For each  $\theta_i$ , i = 1, 2, ..., p, calculate

$$O_{t} \begin{bmatrix} \frac{\partial}{\partial \theta_{i}} \left( R_{t}^{-T/2} \right) & \frac{\partial}{\partial \theta_{i}} \left( S_{t}^{(1)} \right) & \frac{\partial}{\partial \theta_{i}} \left( S_{t}^{(2)} \right) & \left| \frac{\partial}{\partial \theta_{i}} \left( S_{t}^{(3)} \right) \right| \\ 0 & \frac{\partial}{\partial \theta_{i}} \left( S_{t}^{(4)} \right) & \frac{\partial}{\partial \theta_{i}} \left( S_{t}^{(5)} \right) & \left| \frac{\partial}{\partial \theta_{i}} \left( S_{t}^{(6)} \right) \right| \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ = \begin{bmatrix} X_{i} & Y_{i} & M_{i} \\ N_{i} & V_{i} & W_{i} \\ * & * & * \end{bmatrix}$$

 $O_t$  is the same orthogonal transformation as in the eSRIF and

$$S_t^{(1)} = -R_t^{-T/2} H_t F_t^{-1}, \quad S_t^{(2)} = R_t^{-T/2} H_t F_t^{-1} G_t Q_t^{T/2}, \quad S_t^{(3)} = -R_t^{-T/2} S_t^{(4)} = P_t^{-T/2} F_t^{-1}, \qquad S_t^{(5)} = -P_t^{-T/2} F_t^{-1} G_t Q_t^{T/2}, \quad S_t^{(6)} = P_t^{-T/2} \hat{x}_t$$

A Log Likelihood Gradient Evaluation by Using the Extended Square-Root Information Filter - p. 17/3



III. For each  $\theta_i$ , i = 1, 2, ..., p, compute

$$J_{i} = \begin{bmatrix} X_{i} & Y_{i} & M_{i} \\ N_{i} & V_{i} & W_{i} \end{bmatrix} \begin{bmatrix} R_{e,t}^{-T/2} & 0 & 0 \\ -P_{t+1}^{-T/2} K_{p,t} & P_{t+1}^{-T/2} & 0 \\ * & * & * \end{bmatrix}^{-1}$$

IV. For each  $\theta_i$ , i = 1, 2, ..., p, split the matrices



where  $L_i$ ,  $D_i$  and  $U_i$  are the strictly lower triangular, diagonal and strictly upper triangular parts of  $J_i$ , respectively.



V. For each  $\theta_i$ , i = 1, 2, ..., p, compute the following quantities:

$$\begin{bmatrix} \frac{\partial R_{e,t}^{-T/2}}{\partial \theta_i} & 0\\ \frac{\partial \left(\tilde{P}_{t+1}^{-T/2} K_{p,t}\right)}{\partial \theta_i} & \frac{\partial \tilde{P}_{t+1}^{-T/2}}{\partial \theta_i} \end{bmatrix} = \begin{bmatrix} L_i + D_i + U_i^T \end{bmatrix}$$

$$\times \begin{bmatrix} R_{e,t}^{-T/2} & 0\\ -\tilde{P}_{t+1}^{-T/2} K_{p,t} & \tilde{P}_{t+1}^{-T/2} \end{bmatrix},$$
(12)



$$\frac{\partial \bar{e}_t}{\partial \theta_i} = \left[\frac{\partial R_{e,t}^{-T/2}}{\partial \theta_i} - X_i\right] R_{e,t}^{T/2} \bar{e}_t + Y_i F_t \hat{x}_t - L_i, \qquad (13)$$



$$\frac{\partial \bar{e}_{t}}{\partial \theta_{i}} = \left[ \frac{\partial R_{e,t}^{-T/2}}{\partial \theta_{i}} - X_{i} \right] R_{e,t}^{T/2} \bar{e}_{t} + Y_{i} F_{t} \hat{x}_{t} - L_{i}, \quad (13)$$

$$\frac{\partial S_{t+1}^{(6)}}{\partial \theta_{i}} = \left[ \frac{\partial \left( \tilde{P}_{t+1}^{-T/2} K_{p,t} \right)}{\partial \theta_{i}} + N_{i} \right] R_{e,t}^{T/2} \bar{e}_{t} \quad (14)$$

$$+ \left[ \frac{\partial \tilde{P}_{t+1}^{-T/2}}{\partial \theta_{i}} - V_{i} \right] F_{t} \hat{x}_{t} + K_{i}.$$

A Log Likelihood Gradient Evaluation by Using the Extended Square-Root Information Filter - p. 21/3



VI. Finally, we have all values to compute the LLG according to (6):

$$\frac{\partial l_{\theta}(z_t)}{\partial \theta_i} = -\operatorname{tr} \left[ \begin{array}{cc} R_{e,t}^{1/2} & \frac{\partial \left(R_{e,t}^{-1/2}\right)}{\partial \theta_i} \end{array} \right] + \overline{e}_t^T & \frac{\partial \overline{e}_t}{\partial \theta_i} \quad , i = 1, \dots, p$$



VI. Finally, we have all values to compute the LLG according to (6):



Stage I

Stages II — IV

A Log Likelihood Gradient Evaluation by Using the Extended Square-Root Information Filter - p. 22/?



VI. Finally, we have all values to compute the LLG according to (6):





VI. Finally, we have all values to compute the LLG according to (6):







The LLG-eSRIF consists of two parts:

The source filtering algorithm, i.e. eSRIF.



- **The source filtering algorithm, i.e. eSRIF.**
- **The** "differentiated" part: **Stages** II IV.



- **The source filtering algorithm, i.e. eSRIF.**
- **The** "differentiated" part: **Stages II** IV.
- Thus the Algorithm LLG-eSRIF is ideal for simultaneous



- The source filtering algorithm, i.e. eSRIF.
- **The** "differentiated" part: **Stages II** IV.
- Thus the Algorithm LLG-eSRIF is ideal for simultaneous
  - **sta**te estimation



- **The source filtering algorithm, i.e. eSRIF.**
- **The** "differentiated" part: **Stages II IV**.
- Thus the Algorithm LLG-eSRIF is ideal for simultaneous
  - state estimation
  - **parameter** identification.



Remark. Since, the matrices in LLG (6) are triangular, only the diagonal elements of  $R_{e,t}^{1/2}$  and  $\frac{\partial \left(R_{e,t}^{-1/2}\right)}{\partial \theta_i}$  need to be computed. Hence, the Algorithm LLG-eSRIF allows the  $m \times m$ -matrix inversion of  $R_{e,t}$  to be avoided in the evaluation of LLG.



#### Problem 1 Given:

$$P_{0} = \begin{bmatrix} \theta & 0 \\ 0 & \theta \end{bmatrix}, H = \begin{bmatrix} 1, & 0 \end{bmatrix}, R = e^{2}\theta, F = I_{2}, Q = 0,$$
$$G = \begin{bmatrix} 0, & 0 \end{bmatrix}^{T}, 0 < e \ll 1$$

where  $\theta$  is an unknown parameter,  $I_2$  is an identity  $2 \times 2$  matrix; to simulate roundoff we assume



#### Problem 1 Given:

$$P_{0} = \begin{bmatrix} \theta & 0 \\ 0 & \theta \end{bmatrix}, H = \begin{bmatrix} 1, & 0 \end{bmatrix}, R = e^{2}\theta, F = I_{2}, Q = 0,$$
$$G = \begin{bmatrix} 0, & 0 \end{bmatrix}^{T}, 0 < e \ll 1$$

where  $\theta$  is an unknown parameter,  $I_2$  is an identity  $2 \times 2$  matrix; to simulate roundoff we assume  $e + 1 \neq 1$  but  $e^2 + 1 \stackrel{r}{=} 1$ .



#### Problem 1 Given:

$$P_{0} = \begin{bmatrix} \theta & 0 \\ 0 & \theta \end{bmatrix}, H = \begin{bmatrix} 1, & 0 \end{bmatrix}, R = e^{2}\theta, F = I_{2}, Q = 0,$$
$$G = \begin{bmatrix} 0, & 0 \end{bmatrix}^{T}, 0 < e \ll 1$$

where  $\theta$  is an unknown parameter,  $I_2$  is an identity  $2 \times 2$  matrix; to simulate roundoff we assume  $e + 1 \neq 1$  but  $e^2 + 1 \stackrel{r}{=} 1$ . Calculate:  $(P_1)'_{\theta}$  at the point  $\theta = 1$ .



#### Problem 1 Given:

$$P_{0} = \begin{bmatrix} \theta & 0 \\ 0 & \theta \end{bmatrix}, H = \begin{bmatrix} 1, & 0 \end{bmatrix}, R = e^{2}\theta, F = I_{2}, Q = 0,$$
$$G = \begin{bmatrix} 0, & 0 \end{bmatrix}^{T}, 0 < e \ll 1$$

where  $\theta$  is an unknown parameter,  $I_2$  is an identity  $2 \times 2$  matrix; to simulate roundoff we assume  $e + 1 \neq 1$  but  $e^2 + 1 \stackrel{r}{=} 1$ . Calculate:  $(P_1)'_{\theta}$  at the point  $\theta = 1$ .

For the  $\theta = 1$ , this example illustrates the initialization problems [Kaminski P.G., Bryson A.E., Schmidt S.F., 1971] that result when  $H_1\Pi_0H_1^T + R_1$  is rounded to  $H_1\Pi_0H_1^T$ .



| Filter | Exact Answer | Rounded Answe |
|--------|--------------|---------------|
|        |              |               |
|        |              |               |
|        |              |               |
|        |              |               |
|        |              |               |
|        |              |               |
|        |              |               |
|        |              |               |
|        |              |               |



| Filter       | Exact Answer                                                                                      | Rounded Answe                                                                 |
|--------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 'diff'<br>KF | $(P_{1})_{\theta}' _{\theta=1} = \begin{bmatrix} \frac{e^{2}}{1+e^{2}} & 0\\ 0 & 1 \end{bmatrix}$ | $\stackrel{r}{=} \left[ \begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right]$ |
|              |                                                                                                   |                                                                               |
|              |                                                                                                   |                                                                               |



| Filter       | Exact Answer                                                                                                                                                          | Rounded Answe                                                                              |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 'diff'<br>KF | $ \left  \begin{array}{c} (P_1)'_{\theta} \Big _{\theta=1} = \begin{bmatrix} \frac{e^2}{1+e^2} & 0\\ 0 & 1 \end{bmatrix} \right  $                                    | $\stackrel{r}{=} \left[ \begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right]$              |
| 'diff' IF    | $\left  \begin{array}{c} \left( P_1^{-1} \right)'_{\theta} \right _{\theta=1} = - \left[ \begin{array}{cc} \frac{1+e^2}{e^2} & 0\\ 0 & 1 \end{array} \right] \right.$ | $\stackrel{r}{=} - \left[ \begin{array}{cc} \frac{1}{e^2} & 0\\ 0 & 1 \end{array} \right]$ |
|              |                                                                                                                                                                       |                                                                                            |



| Filter        |   | Exact Answer                                                                                                                                                               | Rounded Answe                                                                              |
|---------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 'diff'<br>KF  |   | $(P_1)'_{\theta}\Big _{\theta=1} = \begin{bmatrix} \frac{e^2}{1+e^2} & 0\\ 0 & 1 \end{bmatrix}$                                                                            | $\frac{r}{=} \left[ \begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right]$                  |
| 'diff' I      | F | $\left. \left. \begin{pmatrix} P_1^{-1} \end{pmatrix}_{\theta}' \right _{\theta=1} = - \left[ \begin{array}{cc} \frac{1+e^2}{e^2} & 0\\ 0 & 1 \end{array} \right] \right.$ | $\stackrel{r}{=} - \left[ \begin{array}{cc} \frac{1}{e^2} & 0\\ 0 & 1 \end{array} \right]$ |
| LLG-<br>eSRIF |   | $\left. \left( P_1^{-1/2} \right)_{\theta}' \right _{\theta=1} = -\frac{1}{2} \begin{bmatrix} \frac{\sqrt{1+e^2}}{e} & 0\\ 0 & 1 \end{bmatrix} \right]$                    | $\stackrel{r}{=} -\frac{1}{2} \begin{bmatrix} \frac{1}{e} & 0\\ 0 & 1 \end{bmatrix}$       |



#### Problem 2 Given:

$$P_{0} = \begin{bmatrix} \theta & 0 \\ 0 & \theta \end{bmatrix}, H = \begin{bmatrix} 1, & 1 \end{bmatrix}, R = e^{2}\theta, F = I_{2}, Q = 0,$$
$$G = \begin{bmatrix} 0, & 0 \end{bmatrix}^{T}, 0 < e < 1$$

where  $\theta$  is an unknown parameter,  $I_2$  is an identity  $2 \times 2$  matrix; to simulate roundoff we assume


# **Ill-Conditioned Example Problems**

#### Problem 2 Given:

$$P_{0} = \begin{bmatrix} \theta & 0 \\ 0 & \theta \end{bmatrix}, H = \begin{bmatrix} 1, & 1 \end{bmatrix}, R = e^{2}\theta, F = I_{2}, Q = 0,$$
$$G = \begin{bmatrix} 0, & 0 \end{bmatrix}^{T}, 0 < e \ll 1$$

where  $\theta$  is an unknown parameter,  $I_2$  is an identity  $2 \times 2$  matrix; to simulate roundoff we assume  $e + 1 \neq 1$  but  $e^2 + 1 \stackrel{r}{=} 1$ .



# **Ill-Conditioned Example Problems**

#### Problem 2 Given:

$$P_{0} = \begin{bmatrix} \theta & 0 \\ 0 & \theta \end{bmatrix}, H = \begin{bmatrix} 1, & 1 \end{bmatrix}, R = e^{2}\theta, F = I_{2}, Q = 0,$$
$$G = \begin{bmatrix} 0, & 0 \end{bmatrix}^{T}, 0 < e \ll 1$$

where  $\theta$  is an unknown parameter,  $I_2$  is an identity  $2 \times 2$  matrix; to simulate roundoff we assume  $e + 1 \neq 1$  but  $e^2 + 1 \stackrel{r}{=} 1$ . Calculate:  $(P_1)'_{\theta}$  at the point  $\theta = 1$ .



| Filter | Exact Answer | Rounded Answer |
|--------|--------------|----------------|
|        |              |                |
|        |              |                |
|        |              |                |
|        |              |                |
|        |              |                |
|        |              |                |
|        |              |                |
|        |              |                |
|        |              |                |
|        |              |                |
|        |              |                |
|        |              |                |



| Filter       | Exact Answer                                                            | Rounded Answer                                                                      |
|--------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 'diff'<br>KF | $\frac{1}{2+e^2} \begin{bmatrix} 1+e^2 & -1\\ -1 & 1+e^2 \end{bmatrix}$ | $\stackrel{r}{=} \frac{1}{2} \begin{bmatrix} 1 & -1 \\ & & \\ -1 & 1 \end{bmatrix}$ |
|              |                                                                         |                                                                                     |
|              |                                                                         |                                                                                     |



| Filter       | Exact Answer                                                                | Rounded Answer                                                                      |
|--------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 'diff'<br>KF | $\frac{1}{2+e^2} \begin{bmatrix} 1+e^2 & -1 \\ -1 & 1+e^2 \end{bmatrix}$    | $\stackrel{r}{=} \frac{1}{2} \begin{bmatrix} 1 & -1 \\ & & \\ -1 & 1 \end{bmatrix}$ |
| 'diff' IF    | $-\frac{1}{e^2} \begin{bmatrix} 1+e^2 & 1\\ & & \\ 1 & 1+e^2 \end{bmatrix}$ | $\frac{r}{=} -\frac{1}{e^2} \begin{bmatrix} 1 & 1 \\ & 1 \\ 1 & 1 \end{bmatrix}$    |
|              |                                                                             |                                                                                     |



| Filter        | Exact Answer                                                                                                                                    | Rounded Answer                                                                                                      |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 'diff'<br>KF  | $\frac{1}{2+e^2} \begin{bmatrix} 1+e^2 & -1\\ -1 & 1+e^2 \end{bmatrix}$                                                                         | $\stackrel{r}{=} \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$                                        |
| 'diff' IF     | $-\frac{1}{e^2} \begin{bmatrix} 1+e^2 & 1\\ 1 & 1+e^2 \end{bmatrix}$                                                                            | $\frac{r}{=} -\frac{1}{e^2} \begin{bmatrix} 1 & 1 \\ & 1 \\ 1 & 1 \end{bmatrix}$                                    |
| LLG-<br>eSRIF | $\begin{bmatrix} -\frac{1}{2} \begin{bmatrix} \sqrt{\frac{2+e^2}{1+e^2}} & \frac{1}{e\sqrt{1+e^2}} \\ 0 & \frac{\sqrt{1+e^2}}{e} \end{bmatrix}$ | $\begin{vmatrix} \frac{r}{e} - \frac{1}{2} \begin{bmatrix} \sqrt{2} & \frac{1}{e} \\ 0 & \frac{1}{e} \end{bmatrix}$ |



#### **Numerical Results**

Example. Let the test system (1), (2) be defined as follows:

$$x_{t+1} = \begin{bmatrix} 1 & \Delta t \\ 0 & e^{-\Delta t/\tau} \end{bmatrix} x_t + \begin{bmatrix} 0 \\ 1 \end{bmatrix} w_t,$$
$$z_t = \begin{bmatrix} 1 & 0 \end{bmatrix} x_t + v_t$$

where  $\tau$  is a unknown parameter which needs to be estimated.



#### **Numerical Results**

Example. Let the test system (1), (2) be defined as follows:

$$x_{t+1} = \begin{bmatrix} 1 & \Delta t \\ 0 & e^{-\Delta t/\tau} \end{bmatrix} x_t + \begin{bmatrix} 0 \\ 1 \end{bmatrix} w_t,$$
$$z_t = \begin{bmatrix} 1 & 0 \end{bmatrix} x_t + v_t$$

where  $\tau$  is a unknown parameter which needs to be estimated. For the test problem,  $\tau^*=10$  was chosen as the true value of parameter  $\tau$ .



#### Conclusion

In this paper, the new algorithm for evaluating the Log Likelihood Gradient (score) of linear discrete-time dynamic systems has been developed. The necessary theory has been given and substantiated by the computational experiments. Two ill-conditioned example problems have been constructed to show the superior perfomance of the Algorithm LLG-eSRIF over the conventional approach.