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Gradient-search optimization algorithms;

Gradient of the negative Log Likelihood Function;

Kalman Filter =⇒ is known to beunstable;

[P. Park&T. Kailath, 1995] The extended Square Root Information

Filter (eSRIF):

avoids numerical instabilities arising from computational

errors;

appears to be better suited to parallel implementation and to

very large scale integration (VLSI) implementation.
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Consider the discrete-time linear dynamic stochastic system

xt+1 = Ftxt + Gtwt, t = 0, 1, . . . , N, (1)

zt = Htxt + vt, t = 1, 2, . . . , N, (2)

with the system statext ∈ R
n, the state disturbancewt ∈ R

q, the

observed vectorzt ∈ R
m, and the measurement errorvt ∈ R

m,

such that the initial statex0 and eachwt, vt of {wt : t = 0, 1, . . .},

{vt : t = 1, 2, . . .} are taken from mutually independent Gaussian

distributions with the following expectations:
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parameterized by a vectorθ ∈ R
p of unknown system parameters.

This means that all the above characteristics, namelyFt, Gt, Ht,

P0 ≥ 0, Qt ≥ 0 andRt > 0 can depend uponθ (the corresponding

notationsFt(θ), Gt(θ) and so on, are suppressed for the sake of
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Problem Statement

For example, (1), (2) may describe a discrete autoregressive (AR)

process observed in the presence of additive noise
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In this caseθ are the unknown AR parameters which need to be

estimated.
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Problem Statement

The negative Log Likelihood Function (LLF) for system (1), (2) is

given by

Lθ

(
ZN

1

)
=
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with et
def
= zt − Htx̂t being the zero-mean innovations whose

covariance is determined asRe,t
def
= E{ete

T
t } = HtPtH

T
t + Rt

through matrixPt, the error covariance of the time updated estimate

x̂t generated by theKalman Filter.
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As can be seen the computation of (3) and (4)leads to

implementation of aKalman Filter(and its derivative with respect to

each parameter) which is known to beunstable.

A Log Likelihood Gradient Evaluation by Using the Extended Square-Root Information Filter – p. 7/??



The eSRIF

[P. Park&T. Kailath, 1995]: assume thatΠ0 > 0, Rt > 0 andFt are
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whereOt is any orthogonal transformation such that the matrix on

the right-hand side of the formula is block lower triangular.
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The eSRIF
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The eSRIF

Remark.The predicted estimate now can be found from the entries

of the post-array by solving the triangular system
(
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The LLG in terms of the eSRIF

The Log Likelihood Gradient (LLG):
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The LLG in terms of the eSRIF

Taking into account that matrixR1/2
e,t is upper triangular, we can

show
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∂ēt

∂θi
, i = 1, . . . , p. (6),

The eSRIF:

Ot







R
−T/2
t −R

−T/2
t HtF

−1
t R

−T/2
t HtF

−1
t GtQ

T/2
t −R

−T/2
t zt

0 P
−T/2
t F−1

t −P
−T/2
t F−1

t GtQ
T/2
t P

−T/2
t x̂t

0 0 Iq 0







=











R
−T/2
e,t 0 0 −ēt
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LLG Evaluation

Lemma 1.Let QA = L (7)

whereQ is any orthogonal transformation such that the matrix on

the right-hand side of formula (7) is lower triangular andA is a

nonsingular matrix. If the elements ofA are differentiable functions

of a parameterθ then the upper triangular matrixU in

Q′

θQ
T = ŪT − Ū (8)

is, in fact, the strictly upper triangular part of the matrixQA′

θL
−1:

QA′

θL
−1 = L̄ + D + Ū (9)

whereL̄, D andŪ are, respectively, strictly lower triangular,

diagonal and strictly upper triangular.
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LLG Evaluation

Lemma 1 easily leads to a method for computingL′

θ.
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LLG Evaluation

Lemma 1 easily leads to a method for computingL′

θ.

By differentingQA = L we obtain

L′

θ = QA′

θ + Q′

θA (10)
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LLG Evaluation

Lemma 1 easily leads to a method for computingL′

θ.

By differentingQA = L we obtain

L′

θ = QA′

θ + Q′

θA (10)

Multiply by L−1:

L′

θL
−1 = QA′

θL
−1 + Q′

θAL−1
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LLG Evaluation

Lemma 1 easily leads to a method for computingL′

θ.

By differentingQA = L we obtain

L′

θ = QA′

θ + Q′

θA (10)

Multiply by L−1:

L′

θL
−1 = QA′

θL
−1 + Q′

θAL−1 ⇒ L′

θL
−1 = QA′

θL
−1 + Q′

θQ
T (11)
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LLG Evaluation

Lemma 1 easily leads to a method for computingL′

θ.

By differentingQA = L we obtain

L′

θ = QA′

θ + Q′

θA (10)

Multiply by L−1:

L′

θL
−1 = QA′

θL
−1 + Q′

θAL−1 ⇒ L′

θL
−1 = QA′

θL
−1 + Q′

θQ
T (11)

By substituting (8) and (9) into (11), we find that

L′

θL
−1 = (L + D + U)

︸ ︷︷ ︸

QA′

θ
L−1

+(UT − U)
︸ ︷︷ ︸

Q′

θ
QT
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LLG Evaluation

Lemma 1 easily leads to a method for computingL′

θ.

By differentingQA = L we obtain

L′

θ = QA′

θ + Q′

θA (10)

Multiply by L−1:

L′

θL
−1 = QA′

θL
−1 + Q′

θAL−1 ⇒ L′

θL
−1 = QA′

θL
−1 + Q′

θQ
T (11)

By substituting (8) and (9) into (11), we find that

L′

θL
−1 = (L + D + U)

︸ ︷︷ ︸

QA′

θ
L−1

+(UT − U)
︸ ︷︷ ︸

Q′

θ
QT

=⇒ L′

θ = (L + D + UT )L−1
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Algorithm LLG-eSRIF

I. For eachθi, i = 1, 2, . . . , p, apply the eSRIF

Ot









R
−T/2
t −R

−T/2
t HtF

−1
t R

−T/2
t HtF

−1
t GtQ

T/2
t −R

−T/2
t zt

0 P
−T/2
t F−1

t −P
−T/2
t F−1

t GtQ
T/2
t P

−T/2
t x̂t

0 0 Iq 0









=









R
−T/2
e,t 0 0 −ēt

−P
−T/2
t+1 Kp,t P

−T/2
t+1 0 P

−T/2
t+1 x̂t+1

∗ ∗ ∗ ∗









whereOt is any orthogonal transformation such that the matrix

on the right-hand side of the formula is block lower triangular.
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Algorithm LLG-eSRIF

II. For eachθi, i = 1, 2, . . . , p, calculate

Ot









∂

∂θi

(

R
−T/2
t

) ∂

∂θi

(

S
(1)
t

) ∂

∂θi

(

S
(2)
t

) ∂

∂θi

(

S
(3)
t

)

0
∂

∂θi

(

S
(4)
t

) ∂

∂θi

(

S
(5)
t

) ∂

∂θi

(

S
(6)
t

)

0 0 0 0









=







Xi Yi Mi Li

Ni Vi Wi Ki

∗ ∗ ∗ ∗







,

Ot is the same orthogonal transformation as in the eSRIF and

S
(1)
t = −R

−T/2
t HtF

−1
t , S

(2)
t = R

−T/2
t HtF

−1
t GtQ

T/2
t , S

(3)
t = −R

−T/2
t z

S
(4)
t = P

−T/2
t F−1

t , S
(5)
t = −P

−T/2
t F−1

t GtQ
T/2
t , S

(6)
t = P

−T/2
t x̂t
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Algorithm LLG-eSRIF

III. For eachθi, i = 1, 2, . . . , p, compute

Ji =




Xi Yi Mi

Ni Vi Wi











R
−T/2
e,t 0 0

−P
−T/2
t+1 Kp,t P

−T/2
t+1 0

∗ ∗ ∗







−1

.
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Algorithm LLG-eSRIF

IV. For eachθi, i = 1, 2, . . . , p, split the matrices

Ji =
}

m+n

m+n+q
︷ ︸︸ ︷[

Li + Di + Ui
︸ ︷︷ ︸

m+n

∗ ∗ ∗
]

whereLi, Di andUi are the strictly lower triangular, diagonal

and strictly upper triangular parts ofJi, respectively.
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Algorithm LLG-eSRIF

V. For eachθi, i = 1, 2, . . . , p, compute the following quantities:








∂R
−T/2
e,t

∂θi
0

−
∂
(

P̃
−T/2
t+1 Kp,t

)

∂θi

∂P̃
−T/2
t+1

∂θi









=
[
Li + Di + UT

i

]

×




R

−T/2
e,t 0

−P̃
−T/2
t+1 Kp,t P̃

−T/2
t+1



 ,

(12)
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Algorithm LLG-eSRIF

∂ēt

∂θi

=

[

∂R
−T/2
e,t

∂θi

− Xi

]

R
T/2
e,t ēt + YiFtx̂t − Li, (13)
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Algorithm LLG-eSRIF

∂ēt

∂θi

=

[

∂R
−T/2
e,t

∂θi

− Xi

]

R
T/2
e,t ēt + YiFtx̂t − Li, (13)

∂S
(6)
t+1

∂θi
=




∂
(

P̃
−T/2
t+1 Kp,t

)

∂θi
+ Ni



R
T/2
e,t ēt

+

[

∂P̃
−T/2
t+1

∂θi
− Vi

]

Ftx̂t + Ki.

(14)
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Algorithm LLG-eSRIF

VI. Finally, we have all values to compute the LLG according to (6):

∂lθ(zt)

∂θi

= − tr










R
1/2
e,t

∂
(

R
−1/2
e,t

)

∂θi










+ ēT
t

∂ēt

∂θi

, i = 1, . . . , p.
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Algorithm LLG-eSRIF

VI. Finally, we have all values to compute the LLG according to (6):

∂lθ(zt)

∂θi

= − tr










R
1/2
e,t

∂
(

R
−1/2
e,t

)

∂θi










+ ēT
t

∂ēt

∂θi

, i = 1, . . . , p.

The LLG-eSRIF: The LLG-eSRIF:

Stage I Stages II — IV
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Algorithm LLG-eSRIF

VI. Finally, we have all values to compute the LLG according to (6):

∂lθ(zt)

∂θi

= − tr










R
1/2
e,t

∂
(

R
−1/2
e,t

)

∂θi


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





+ ēT
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∂ēt

∂θi
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Algorithm LLG-eSRIF

VI. Finally, we have all values to compute the LLG according to (6):

∂lθ(zt)

∂θi

= − tr










R
1/2
e,t

∂
(

R
−1/2
e,t

)

∂θi










+ ēT
t

∂ēt

∂θi

, i = 1, . . . , p.

The LLG-eSRIF: The LLG-eSRIF:

Stage I Stages II — IV
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Algorithm LLG-eSRIF

The LLG-eSRIF consists of two parts:
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Algorithm LLG-eSRIF

The LLG-eSRIF consists of two parts:

The source filtering algorithm, i.e.eSRIF.
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Algorithm LLG-eSRIF

The LLG-eSRIF consists of two parts:

The source filtering algorithm, i.e.eSRIF.

The "differentiated" part:Stages II — IV.
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Algorithm LLG-eSRIF

The LLG-eSRIF consists of two parts:

The source filtering algorithm, i.e.eSRIF.

The "differentiated" part:Stages II — IV.

Thus theAlgorithm LLG-eSRIFis ideal for simultaneous
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Algorithm LLG-eSRIF

The LLG-eSRIF consists of two parts:

The source filtering algorithm, i.e.eSRIF.

The "differentiated" part:Stages II — IV.

Thus theAlgorithm LLG-eSRIFis ideal for simultaneous

state estimation
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Algorithm LLG-eSRIF

The LLG-eSRIF consists of two parts:

The source filtering algorithm, i.e.eSRIF.

The "differentiated" part:Stages II — IV.

Thus theAlgorithm LLG-eSRIFis ideal for simultaneous

state estimation

parameter identification.
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Algorithm LLG-eSRIF

Remark.Since, the matrices in LLG (6) are triangular, only the

diagonal elements ofR1/2
e,t and

∂
(

R
−1/2
e,t

)

∂θi

need to be computed.

Hence, the Algorithm LLG-eSRIF allows them × m-matrix

inversion ofRe,t to be avoidedin the evaluation of LLG.
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Ill-Conditioned Example Problems

Problem 1Given:

P0 =




θ 0

0 θ



 , H =
[

1, 0
]

, R = e2θ, F = I2, Q = 0,

G =
[

0, 0
]T

, 0< e « 1

whereθ is an unknown parameter,I2 is an identity2 × 2 matrix; to

simulate roundoff we assume
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Ill-Conditioned Example Problems

Problem 1Given:

P0 =




θ 0

0 θ



 , H =
[

1, 0
]

, R = e2θ, F = I2, Q = 0,

G =
[

0, 0
]T

, 0< e « 1

whereθ is an unknown parameter,I2 is an identity2 × 2 matrix; to

simulate roundoff we assumee + 1 6= 1 but e2 + 1
r
= 1.
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Ill-Conditioned Example Problems

Problem 1Given:

P0 =




θ 0

0 θ



 , H =
[

1, 0
]

, R = e2θ, F = I2, Q = 0,

G =
[

0, 0
]T

, 0< e « 1

whereθ is an unknown parameter,I2 is an identity2 × 2 matrix; to

simulate roundoff we assumee + 1 6= 1 but e2 + 1
r
= 1.

Calculate:(P1)
′

θ at the pointθ = 1.
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Ill-Conditioned Example Problems

Problem 1Given:

P0 =




θ 0

0 θ



 , H =
[

1, 0
]

, R = e2θ, F = I2, Q = 0,

G =
[

0, 0
]T

, 0< e « 1

whereθ is an unknown parameter,I2 is an identity2 × 2 matrix; to

simulate roundoff we assumee + 1 6= 1 but e2 + 1
r
= 1.

Calculate:(P1)
′

θ at the pointθ = 1.

For theθ = 1, this example illustrates the initialization problems

[Kaminski P.G., Bryson A.E., Schmidt S.F., 1971] that result when

H1Π0H
T
1 + R1 is rounded toH1Π0H

T
1 .
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Comparison (Problem 1)

Filter Exact Answer Rounded Answer
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Comparison (Problem 1)

Filter Exact Answer Rounded Answer

’diff’

KF

(P1)
′

θ

∣
∣
θ=1

=






e2

1 + e2
0

0 1






r
=




0 0

0 1




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Comparison (Problem 1)

Filter Exact Answer Rounded Answer

’diff’

KF

(P1)
′

θ

∣
∣
θ=1

=






e2

1 + e2
0

0 1






r
=




0 0

0 1





’diff’ IF

(
P−1

1

)
′

θ

∣
∣
∣
θ=1

= −






1 + e2

e2
0

0 1






r
= −






1

e2
0

0 1





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Comparison (Problem 1)

Filter Exact Answer Rounded Answer

’diff’

KF

(P1)
′

θ

∣
∣
θ=1

=






e2

1 + e2
0

0 1






r
=




0 0

0 1





’diff’ IF

(
P−1

1

)
′

θ

∣
∣
∣
θ=1

= −






1 + e2

e2
0

0 1






r
= −






1

e2
0

0 1






LLG-

eSRIF

(

P
−1/2
1

)
′

θ

∣
∣
∣
∣
θ=1

= −1

2






√
1 + e2

e
0

0 1






r
= −1

2






1

e
0

0 1





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Ill-Conditioned Example Problems

Problem 2Given:

P0 =




θ 0

0 θ



 , H =
[

1, 1
]

, R = e2θ, F = I2, Q = 0,

G =
[

0, 0
]T

, 0< e « 1

whereθ is an unknown parameter,I2 is an identity2 × 2 matrix; to

simulate roundoff we assume
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Ill-Conditioned Example Problems

Problem 2Given:

P0 =




θ 0

0 θ



 , H =
[

1, 1
]

, R = e2θ, F = I2, Q = 0,

G =
[

0, 0
]T

, 0< e « 1

whereθ is an unknown parameter,I2 is an identity2 × 2 matrix; to

simulate roundoff we assumee + 1 6= 1 but e2 + 1
r
= 1.
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Ill-Conditioned Example Problems

Problem 2Given:

P0 =




θ 0

0 θ



 , H =
[

1, 1
]

, R = e2θ, F = I2, Q = 0,

G =
[

0, 0
]T

, 0< e « 1

whereθ is an unknown parameter,I2 is an identity2 × 2 matrix; to

simulate roundoff we assumee + 1 6= 1 but e2 + 1
r
= 1.

Calculate:(P1)
′

θ at the pointθ = 1.
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Comparison (Problem 2)

Filter Exact Answer Rounded Answer
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Comparison (Problem 2)

Filter Exact Answer Rounded Answer

’diff’

KF

1

2 + e2




1 + e2 −1

−1 1 + e2




r
=

1

2




1 −1

−1 1




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Comparison (Problem 2)

Filter Exact Answer Rounded Answer

’diff’

KF

1

2 + e2




1 + e2 −1

−1 1 + e2




r
=

1

2




1 −1

−1 1





’diff’ IF
− 1

e2




1 + e2 1

1 1 + e2




r
= − 1

e2




1 1

1 1




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Comparison (Problem 2)

Filter Exact Answer Rounded Answer

’diff’

KF

1

2 + e2




1 + e2 −1

−1 1 + e2




r
=

1

2




1 −1

−1 1





’diff’ IF
− 1

e2




1 + e2 1

1 1 + e2




r
= − 1

e2




1 1

1 1





LLG-

eSRIF

−1

2








√

2 + e2

1 + e2

1

e
√

1 + e2

0

√
1 + e2

e








r
= −1

2






√
2

1

e

0
1

e





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Numerical Results

Example.Let the test system (1), (2) be defined as follows:

xt+1 =




1 ∆t

0 e−∆t/τ



xt +




0

1



wt,

zt =
[

1 0
]

xt + vt

whereτ is a unknown parameter which needs to be estimated.
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Numerical Results

Example.Let the test system (1), (2) be defined as follows:

xt+1 =




1 ∆t

0 e−∆t/τ



xt +




0

1



wt,

zt =
[

1 0
]

xt + vt

whereτ is a unknown parameter which needs to be estimated. For

the test problem,τ ∗=10was chosen as the true value of parameterτ .
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Conclusion

In this paper, the new algorithm for evaluating the Log Likelihood

Gradient (score) of linear discrete-time dynamic systems has been

developed. The necessary theory has been given and substantiated

by the computational experiments. Two ill-conditioned example

problems have been constructed to show the superior perfomance of

the Algorithm LLG-eSRIF over the conventional approach.
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