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The method of maximum likelihood .
Gradient-search optimization algorithms;
Gradient of the negative Log Likelihood Function;
Kalman Filter = is known to be :

[P. Park&T. Kallath, 1995] The extended Square Root Infdroma
Filter (eSRIF):

avoids numerical instabilities arising from computationa
errors;

appears to be better suited to parallel implementation @and t
very large scale integration (VLSI) implementation.
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Problem Statement

Consider the discrete-time linear dynamic stochastiesyst
xt—l—l :tht+Gtwt, t:O,lj...,N, (1)

Zt:Htxt—l—Ut, t:]_,Q,...,N, (2)
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Consider the discrete-time linear dynamic stochasticesyst

L1 :Fta:t—i—Gtwt, t:O,lj...,N, (1)
Zt:HtiUt—l—Ut, t:1,2,...,N, (2)
with the system state , the state disturbance , the
observed vector , and the measurement error
such that the initial state, and eachv,;, v, of {w; : t =0,1,...},

{v, : t=1,2,...} are taken from mutually independent Gaussian
distributions with the following expectations:
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Problem Statement
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andE {w,wy, } =0, E{vw]} =0if t #¢. Assume the system is

parameterized by a vector
This means that all the above characteristics, naniely

simplicity)

of unknown system parameters.

can depend upof (the corresponding
notationsrt;(6), G;(#) and so on, are suppressed for the sake of
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Problem Statement

For example(1), (2) may describe a discrete autoregressive (AR)

process observed in the presence of additive noise

A

Zt =

In this case’ are the un
estimated.

10 0 |
0 1 0
Ty +
0 O 1
O 0 ... 1 |x¢+ vy

0
0

Known AR parameters which need to be
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The negative Log Likelihood Function (LLF) for system (13) (s
given by

N
1
=5 Z { In(27) + In(det(Re)) + etTR;tlet}

t=1

. def ~ : . .
with ¢, = 2, — H,%, being the zero mean innovations whose

covariance is determined as ;, = E{etet } = HLPH' + R,
through matrix/’;, the error covariance of the time updated estimat
generated by thg
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Problem Statement

Let/,( -, ) denote the negative LLF for theth measurement; in
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Problem Statement

Let/,( -, ) denote the negative LLF for theth measurement; in
system (1), (2), given measuremegis* &« {z1,..., 21}, then

lo(2,) = % {% In(27) + In(det(R.,)) + eF R;tlet} o 3)
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Problem Statement

Let denote the negative LLF for theth measurement; in
system (1), (2), given measuremegis* &« {z1,..., 21}, then

1
= > {5 m@2m) + In(det(Re)) + ¢ Rjerf . (3)
By differentiating (3) we obtain
1 0 1 0 _ :
=370 In(det(R.,;))] + 590, e/ R je]i=1,...p. (4)
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Let denote the negative LLF for theth measurement; in
system (1), (2), given measuremesis* &« {z1,..., 21}, then
1 (m T 1
= 5 {5 1Il(27T) —+ ln(det(R€7t)) -+ o Rat et} . (3)
By differentiating (3) we obtain
1 0 1 0 _ :

=500, In(det(Re))| + 590, e Roje]i=1,...p. (4)
As can be seen the computation of (3) and {4)
Implementation of & (and its derivative with respect to

each parameter) which is known to be
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[P. Park&T. Kallath, 1995]. assume that > 0, /7, > 0 and/; are

invertible. Given = 11, "/* and = 11, "*z,, then
_ Rt_T/z _Rt_T/QHtFt_l R;T/QHtFt_th ?2 _Rt_T/QZt -
o) 0 pTPpt _pTTRPE1Gql? | P R,
0 0 I, 0 |
- R 0 0 —e
— _Pt:{/zKp,t Pt:rTl/2 0 Pt:rTl/QZ%thl
i S X X S |

where(); is any orthogonal transformation such that the matrix on
the right-hand side of the formula is block lower triangular
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The IS a modification of the conventional one:
- Rt_T/2 _ Rt—T/Q H, Ft_l Rt—T/Q , Ft_thQtT/? -
O, 0 Pt_T/ 2 Pl B Pt—T/Q FlG, ;r /2
0 0 I,
- - R” 0 0|

—T'/2 —T/2
= | —P"?K,; PM? 0

S S S

whereO, is any orthogonal transformation such that the matrix on
the right-hand side of the formula is lower triangular.
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The IS a modification of the conventional one:
_ Rt_T/2 _Rt—T/QHtFt_1 Rt—T/QHtFt_lG,tQtTm
O, 0 Pt_T/ 2 Pl B Pt—T/Q FlG, ;r /2
0 0 I,
- R 0 0

—T/2 —T/2
= | —P"PK,; P.'? 0

S S S

whereO, is any orthogonal transformation such that the matrix on
the right-hand side of the formula is
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TheeSRIF

Remark.The predicted estimate now can be found from the entrie:
of the post-array by solving the triangular system

~_1/2\ /A ~_1/2 . _
(Pt—l—l/ ) (xt—H) — (Pt—l—l/ xt—H) : (5)
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Thel LG intermsof the eSRIF

The Log Likelihood Gradient (LLG):

8(92 — §8H,L [ln(det(Re,t))] + 56_62

[e?R;tlet} ., 1=1,2,...p,
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Thel LG intermsof the eSRIF

The Log Likelihood Gradient (LLG):

319(,2,5) i 1 8 1 8 S N
2 290, In(det(R.;))] + 550, e/ Rje], i=12,...p,
In terms of the eSRIF is given by
al@(zt) e 6 Tﬁét

[m(det(R;{f))} > i=12...p,

00, 00, 00;
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Thel LG intermsof the eSRIF

The Log Likelihood Gradient (LLG):

319(2,5) i 1 8 1 8 S N
2 290, In(det(Re¢))] + 550, e/ Rje], i=12,...p,
In terms of the eSRIF is given by
o) 0 1/2 0o
— 1 — o o o
90, 90, [n(det(Re,t ))} + &4 90, 1 =1,2,...p,

where 2" is a square-root factor of the matri, ,, i. e.

T/2 1 _ . . . .
R = Re,{ RY/2 andc, are the normalized innovations, I. €.

e,t !
_ —T/2
er = R ;' ey
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Thel LG intermsof the eSRIF

Taking into account that matrik,/” is upper triangular, we can

show
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Thel LG intermsof the eSRIF

Taking into account that matrik,/” is upper triangular, we can

show

8<R1/tz)'
[ln(det(Ri’/f))}:tr R}/ | i=12..p

00;

wheretr | - | is a trace of matrix.
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Thel LG intermsof the eSRIF

Taking into account that matrik./” |

show
2 o) e [ 2250

wheretr | - | is a trace of matrix.
Finally, we obtain the expression for the LLGterms of the eSRIF

—1/2\
6 (Re,t ) _I_éT aet . p (6)
00; L o0, S

IS upper triangular, we can

i=1.2,....p

alg (Zt)
00;

1/2
= — T Re,/t
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Evaluation

—1/2\ 7
I (2) 1/2 8(Re’t ) _r O&
e p— 1 o o o 6
802 tr Re,t 892 + t Y ( )7




Evaluation

i -
LG — 8(Re’t ) +8ét i=1,...,p. (6)
00, 90, 00, P ’




LLG Evaluation

00; 00; 00, R ’

The eSRIF:
_ Rt_T/2 _Rt_T/thFt_l R_T/2Ht 1Gt T/2 _Rt_T/QZt 5
O, 0 p Pt _prTPE 60! ) r %,
0 0 I, 0o
R,/ 0 0 &

—T/2 = —T/2 A
_Pt—|—1/ Kyt Pt—|—1/ 0 Pt—|—1/ Li+1
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LLG Evaluation

al(Zt)
00;

— —tr

The eSRIF;

Oy 0 pTRPEt N\ P

—1/2

—T/2 —T/2 —T/2 »
_Pt—|—1/ Kyt Pt—l—l/ 0 Pt—|—1/ Li+1

* * * *
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LLG Evaluation

al(Zt)
00;

The eSRIF;

O 0

— —tr

—T/2 —T/2 —T/2 »
_Pt—|—1/ Kyt Pt—l—l/ 0 Pt—|—1/ Li+1

* * * *
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Lemma 1.Let QA =L (7)
where( is any orthogonal transformation such that the matrix on
the right-hand side of formula (7) is lower triangular atds a
nonsingular matrix. If the elements dfare differentiable functions
of a parametef then the upper triangular matrix in

QiQ" =0T~ U (8)
is, in fact, the strictly upper triangular part of the matfpd) L~
QAL '=L+D+U ©

whereL, D andU are, respectively, strictly lower triangular,
diagonal and strictly upper triangular.
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LLG Evaluation

Lemma 1 easily leads to a method for computing
By differenting() A = . we obtain

Ly = QAp + QpA (10)
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LLG Evaluation

Lemma 1 easily leads to a method for computing
By differenting() A = . we obtain

Ly = QAp + QA (10)
Multiply by L—1:

Lol ' = QAL "+ QAL

A Log Likelihood Gradient Evaluation by Using the Extendegu&re-Root Information Filter — p. 1



LLG Evaluation

Lemma 1 easily leads to a method for computing
By differenting() A = . we obtain

Ly = QAp + QA (10)
Multiply by L—1:

Lol ' = QAYL ' + QAL = Lyl ™" = QApL™ + Q4Q" (11)
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Lemma 1 easily leads to a method for computing

By differenting we obtain
Ly = QAy + QpA (10)
Multiply by L—:
Lyl ' =QAL "+ QAL ' = L)Lt = QAL + (11)

By substituting (8) and (9) into (11), we find that

Ll = (L+D+U)+(U" -U)
\ ~ 4 A 7
QAL QpQT
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Lemma 1 easily leads to a method for computing

By differenting we obtain
Ly = QAy + QpA (10)
Multiply by L—:
Lyl ' =QAL "+ QAL ' = L)Lt = QAL + (11)

By substituting (8) and (9) into (11), we find that

L,L'=(L+D+U)+U"-U) =
\ ~ 4 A 7
QAL QpQT
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Algorithm LL G-eSRIF

|. Foreach,,:=1,2,...,p, apply the eSRIF

_ Rt—T/Q _Rt_T/QHtFt_l R;T/QHtFt_th 3/2 _Rt_T/QZt -
0, 0 pTPpt _ptTRPE1gl? | P R,
0 0 I, 0 )
R,/ 0 0 &
—T/2 ] —T/2 A
— _Pt—|—1/ Kyt Pt—|—1/ 0 Pt—|—1/ Tt+1
k * * %k

where(); is any orthogonal transformation such that the matr
on the right-hand side of the formula is block lower triaragul
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Algorithm LL G-eSRIF

Il. Foreachy;,z=1,2,...,p, calculate

i (7)) 5 (s) 5 (”)) o (5)

Ol o g (5) g (57) | g (59)
] 0 0 0 0 ]
X, Y, M| L; |
= | N, Vi Wi | K |,
L * %k * * ]

IS the same orthogonal transformation as in the eSRIF an

S(l) _R—T/2H F_ : 5(2) . R—T/ZHt 1G QT/Q, S§3) _ R—T/2

12

S(4) —T/zF 3 5(5) P—T/2 1GtQT/27 St(6) _ p-T/2;

P, L+
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Algorithm LL G-eSRIF

Ill. Foreach,,:=1,2,...,p, compute

_ - —1
- - R 0 0
7. — X; Yy M, —T/2 —T/2
T _Pt+1 Kp,t Pt+1 y
N; Vi W,
- - * * *
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Algorithm LL G-eSRIF

I\. Foreach;,:=1,2,...,p,splitthe matrices

m—+n-+q

' N\

Ji = {Li+DZ~—|—Ui * % % } }m—i—n

TV
m-+n

where/ ;, [); andl/; are the strictly lower triangular, diagonal
and strictly upper triangular parts of, respectively.
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Algorithm LL G-eSRIF

V. Foreacl?;,»=1,2,...

OR. "
00;
~—T
o(PLi K,

)

, p, compute the following quantities:

00

0
P L, + D; + U]
0P, ;
9;
R 0
v ,

5—T/2 5—T/2
_Pt+1 Kp,t Pt+1

(12)
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ithm LL G-eSRIF

oe, |OR}
82% - aét. =26 szét + Yz — Ly, (13)




Algorithm LL G-eSRIF

Oe;

00

95,7,
00);

_aR—T/Q
aeét — X, | R.\°% + YiFydy — L, (13)
o _

6<Pt+1/ Kp’t) T/2

89 -+ Nz Re,t (o
[ ] 14
BT (14)

| =g — — Vi| B+ K.
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|
Algorithm LL G-eSRIF

VI. Finally, we have all values to compute the LLG according o (¢

_1/2
o), | pp L)
8(9@ &t 891

+ el
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Algorithm LL G-eSRIF

VI. Finally, we have all values to compute the LLG according o (¢

—1/2
Olg(zt) 1/2 a(Re’t ) o 9& :
— _t =1,....p
8(9@ r Re,t 897, _|_ et 692 ’ v y 7p
The LLG-eSRIF: The LLG-eSRIF:
Stage | Stages Il — IV
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|
Algorithm LL G-eSRIF

VI. Finally, we have all values to compute the LLG according o (¢

—1/2
() o(R..") oe,
— —tr —|— 1=1,....p
90, 90, 20, M

The LLG- : The LLG-eSRIF:

Stage Stages Il — IV
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|
Algorithm LL G-eSRIF

VI. Finally, we have all values to compute the LLG according o (¢

=1,....,p
_|_ 892 7?’ ) 7p

The LLG- ; The LLG=eSRIF:
Stage
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Stage
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Algorithm LL G-eSRIF

The LLG-eSRIF consists of two parts:

® The source filtering algorithm, 1.eSRIE
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Algorithm LL G-eSRIF

The LLG-eSRIF consists of two parts:
® The source filtering algorithm, 1.eSRIE

® The "differentiated” partsStages || — I\,
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Algorithm LL G-eSRIF

The LLG-eSRIF consists of two parts:

mT
mT
Thus t

ne source filtering algorithm, i.eSRIE

ne "differentiated" partsStages || — I\

neAlgorithm LLG-eSRIFis ideal for simultaneous
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Algorithm LL G-eSRIF

The LLG-eSRIF consists of two parts:
® The source filtering algorithm, 1.eSRIE

® The "differentiated” partsStages || — I\,

Thus theAlgorithm LLG-eSRIFis ideal for simultaneous

» state estimation
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Algorithm LL G-eSRIF

The LLG-eSRIF consists of two parts:
® The source filtering algorithm, 1.eSRIE

® The "differentiated” partsStages || — I\,

Thus theAlgorithm LLG-eSRIFis ideal for simultaneous
W state estimation

m parameter identification.
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Algorithm LL G-eSRIF

Remark.Since, the matrices in LLG (6) are triangular, only the

o(Rr..")

00);
Hence, the Algorithm LLG-eSRIF allows the x m-matrix

Inversion of R, ; to be avoidedn the evaluation of LLG.

1/2

diagonal elements of ;" and need to be computed.
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l[HI-=Conditioned Example Problems

Problem 1Given:

P(): 7H:|:]-7 Oi|7R:6297F:]27Q:O7

T
G:{O7 0] ,O<e«l

wheref is an unknown parametel; is an identity2 x 2 matrix; to
simulate roundoff we assume
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l[HI-=Conditioned Example Problems

Problem 1Given:

P(): 7H:|:]-7 Oi|7R:6297F:]27Q:O7

T
G:{O7 0] ,O<e«l

whered is an unknown parametef, is an identity2 x 2 matrix; to
simulate roundoff we assumet- 1 # 1 bute? +1 = 1.
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l[HI-=Conditioned Example Problems

Problem 1Given:

P(): 7H:|:]-7 Oi|7R:6297F:]27Q:O7

T
G:{O7 0] ,O<e«l

wheref is an unknown parametel; is an identity2 x 2 matrix; to
simulate roundoff we assumet- 1 # 1 bute? +1 = 1.
Calculate:(Py), at the point) = 1.
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l[HI-=Conditioned Example Problems

Problem 1Given:

POZ 7H:|:17 Oi|7R:6297F:]27Q:O7

T
G:{O7 0} ,O<e«l

whered is an unknown parametef, is an identity2 x 2 matrix; to
simulate roundoff we assumet 1 # 1 bute? + 1 = 1.
Calculate:(Py), at the point) = 1.

For thed = 1, this example illustrates the initialization problems

[Kaminski P.G., Bryson A.E., Schmidt S.F., 1971] that réstien
H \IloH! + R, is rounded tad 11 H{.
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Comparison (Problem 1)

Filter Exact Answer Rounded Answ
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Comparison (Problem 1)

Filter Exact Answer Rounded Answ
— 2 —
e
Py _ | 142 0 T
,diﬂ:’ ( 1)9|0:1 i i
0 1
KF . -
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Comparison (Problem 1)

Filter Exact Answer Rounded Answ
_ 5 _
€
/ 1—|—€2 O r
,diﬂ:’ (P1)9|9:1 — —
KF - L ! .
B _ — () _
R B I
'diff’ IF L 70l
0 1 0 1
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Comparison (Problem 1)

Filter Exact Answer Rounded Answ
_ ; _
€
Py _ | 142 0 T
'diff’ ( 1)9‘9:1 i _
KF e
[ 1+ e R
(B, =—| ¢ : I =
'diff’ IF ar.
= 0 1 0 1
[ V1 + e2 R
172\’ 1 | g 0
RN I r_1
LLG 0|p—q 2 2
eSRIF ) . [
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l[HI-=Conditioned Example Problems

Problem 2Given:

P(): 7H:|:]-7 1i|7R:6297F:]27Q:O7

T
G:{O7 0] ,O<e«l

wheref is an unknown parametel; is an identity2 x 2 matrix; to
simulate roundoff we assume
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l[HI-=Conditioned Example Problems

Problem 2Given:

P(): 7H:|:]-7 1i|7R:6297F:]27Q:O7

T
G:{O7 0] ,O<e«l

whered is an unknown parametef, is an identity2 x 2 matrix; to
simulate roundoff we assumet- 1 # 1 bute? +1 = 1.
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l[HI-=Conditioned Example Problems

Problem 2Given:

P(): 7H:|:]-7 1i|7R:6297F:]27Q:O7

T
G:{O7 0] ,O<e«l

wheref is an unknown parametel; is an identity2 x 2 matrix; to
simulate roundoff we assumet- 1 # 1 bute? +1 = 1.
Calculate:(Py), at the point) = 1.
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Comparison (Problem 2)

Filter Exact Answer Rounded Answer
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Comparison (Problem 2)

Filter Exact Answer Rounded Answer
1 F 1+ 62 —1 ] .1

P [ ol o} 2 — A

diff 2-+e 1 1+ o2 2

KF - -

A Log Likelihood Gradient Evaluation by Using the Extendegu&re-Root Information Filter — p. 2;



Comparison (Problem 2)

Filter Exact Answer Rounded Answer
1 | 1+e -1 . 1

diff’ 2+€ | | (i ~ 2

KF }
1| T4e 1 .1

diff’ IF 2| ] gL T2
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Comparison (Problem 2)

Filter Exact Answer Rounded Answer
1 F 1+ 62 —1 ] .1
) - ) 2 — 3
diff 2-+e 1 1+ o2 2
KF B -
L] T4 1 .1
1 ] 669 __2 — ——2
diff’ IF € _ 1 1+ 62 _ €
2+ e? 1 r 1 -
1 2 1 \/5 -
4 L4+es eyl + e2 o e
LLG- 2 NS 2 0 1
eSRIF - c : e -
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Numerical Results

Example.Let the test system (1), (2) be defined as follows:

A

Zt:[l 0

wheres Is a unknown parameter w

|
0

AN

6—At/7'

0
Lt + Wy,
1

.flft—|—’Ut

nich needs to be estimated.
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Numerical Results

Example.Let the test system (1), (2) be defined as follows:

1 At N 0
Tir1 = x Wy,
t+1 0 B t T t

Zt:[l 0 | ¢ + Uy

where: Is a unknown parameter which needs to be estimated. F
the test problem; = was chosen as the true value of parameter

A Log Likelihood Gradient Evaluation by Using the Extendegu&re-Root Information Filter — p. 2!



In this paper, the new algorithm for evaluating the Log Likebd
Gradient (score) of linear discrete-time dynamic systeassideen
developed. The necessary theory has been given and sudnst@nt
by the computational experiments. Two ill-conditionedraxde
problems have been constructed to show the superior penfosre
the Algorithm LLG-eSRIF over the conventional approach.
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