Practical Tests with Global Error Evaluation Techniques in Multistep Methods

A. Ramanantoanina, Dr G. Kulikov

ODE's \& Multistep Methods

- Consider the system of ODE

$$
\begin{equation*}
x^{\prime}(t)=f(x(t)), t \in[0, T], x\left(t_{0}\right)=x_{0} \tag{1}
\end{equation*}
$$

and the grid

$$
w=\left\{t_{0}=0, t_{1}, t_{2}, \ldots, t_{N}=T\right\}
$$

- Multistep methods

$$
\begin{equation*}
\sum_{j=0}^{l} \alpha_{j} x_{k+1-j}=h \sum_{j=0}^{l} \beta_{j} f\left(x_{k+1-j}\right) \tag{2}
\end{equation*}
$$

Local \& Global Errors

- Local error

$$
e\left(t_{k}\right)=x\left(t_{k}\right)-\tilde{x}_{k}
$$

where \tilde{x}_{k} is computed using a multistep method with exact input.

- Global error

$$
E\left(t_{k}\right)=x\left(t_{k}\right)-x_{k}
$$

Global error evaluation

Methods:

- Solving for the correction

$$
E_{h}^{\prime}(t)=f\left(P_{h}-E_{h}(t)\right)-P_{h}^{\prime}(t), E_{h}(0)=0
$$

Global error evaluation

Methods:

- Solving for the correction

$$
E_{h}^{\prime}(t)=f\left(P_{h}-E_{h}(t)\right)-P_{h}^{\prime}(t), E_{h}(0)=0
$$

- Zadunaisky's technique

$$
\tilde{x}^{\prime}=f(\tilde{x})+d(h), \tilde{x}(0)=x(0)
$$

where the perturbation $d(h)=P_{h}^{\prime}-f\left(P_{h}\right)$

Global error evaluation

Methods:

- Solving for the correction

$$
E_{h}^{\prime}(t)=f\left(P_{h}-E_{h}(t)\right)-P_{h}^{\prime}(t), E_{h}(0)=0
$$

- Zadunaisky's technique

$$
\tilde{x}^{\prime}=f(\tilde{x})+d(h), \tilde{x}(0)=x(0)
$$

where the perturbation $d(h)=P_{h}^{\prime}-f\left(P_{h}\right)$

- Solving the linearised discrete variational equation

Global error evaluation (Cont)

- Richardson extrapolation

$$
E_{k}=\frac{x_{k}^{h}-x_{k}^{\frac{h}{2}}}{1-2^{-s}}
$$

where s is the order of the multistep method.

Global error evaluation (Cont)

- Richardson extrapolation

$$
E_{k}=\frac{x_{k}^{h}-x_{k}^{\frac{h}{2}}}{1-2^{-s}}
$$

where s is the order of the multistep method.

- Using two different methods

$$
E_{k}=x_{k}^{1}-x_{k}^{2}
$$

Test Problems

- An oscillatory problem described by

$$
x^{\prime}(t)=x(t) \cos (t),
$$

with the initial condition $x(0)=1$ for $t \in[0,1]$.
The exact solution to this problem is

$$
x(t)=e^{\sin (x(t))}
$$

Test Problems (Cont)

- A stiff ODE: Butcher test problem

$$
x^{\prime}(t)=\lambda(x(t)-\sin (\mu t))+\mu \cos (\mu t)
$$

for $t \in[0,1]$ with the initial condition $x(0)=1$.
It is known that the solution to this problem is:

$$
x(t)=\sin (\mu t)+e^{\lambda t} .
$$

Graphs

We present in the following figures the graphs of the errors in the estimation provided by different methods.

Conclusion

