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Introduction

The method of maximum likelihood . . .

Gradient-search optimization algorithms;

Gradient of the negative Log Likelihood Function;

Kalman Filter =⇒ is known to be unstable;

[P. Park&T. Kailath, 1995] The extended Square Root
Information Filter (eSRIF):

avoids numerical instabilities arising from
computational errors;

appears to be better suited to parallel
implementation and to very large scale integration
(VLSI) implementation.
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Problem Statement

Consider the discrete-time linear dynamic stochastic
system

xt+1 = Ftxt +Gtwt , t = 0,1, . . . ,N, (1)

zt = Htxt + vt , t = 1,2, . . . ,N, (2)

with the system state xt ∈ R
n, the state disturbance

wt ∈ R
q, the observed vector zt ∈ R

m, and the
measurement error vt ∈ R

m,

such that the initial state x0

and each wt , vt of {wt : t = 0,1, . . .}, {vt : t = 1,2, . . .} are
taken from mutually independent Gaussian distributions
with the following expectations:

E
{[

x0 wt vt

]}

=
[

x̄0 0 0
]

and
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Problem Statement

E












(x0 − x̄0)

wt

vt











(x0 − x̄0)

wt

vt






T






=






P0 0 0

0 Qt 0

0 0 Rt






and E
{

wtwT
t ′
}

= 0, E
{

vtvT
t ′
}

= 0 if t 6= t ′.

Assume the
system is parameterized by a vector θ ∈ R

p of unknown
system parameters. This means that all the above
characteristics, namely Ft , Gt , Ht , P0 ≥ 0, Qt ≥ 0 and Rt > 0
can depend upon θ (the corresponding notations Ft(θ),
Gt(θ) and so on, are suppressed for the sake of
simplicity).
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Problem Statement

For example, (1), (2) may describe a discrete
autoregressive (AR) process observed in the presence of
additive noise

xt+1 =











0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

θ1 θ2 θ3 . . . θp











xt +











0

0
...

0

γ











wt ,

zt =
[

0 0 . . . 1
]

xt + vt .

In this case θ are the unknown AR parameters which
need to be estimated.
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Problem Statement

The negative Log Likelihood Function (LLF) for
system (1), (2) is given by

Lθ
(
ZN

1

)
=

1
2

N

∑
t=1

{m
2

ln(2π)+ ln(det(Re,t))+ eT
t R−1

e,t et

}

with et
def
= zt −Ht x̂t being the zero-mean innovations whose

covariance is determined as Re,t
def
= E{eteT

t } = HtPtHT
t +Rt

through matrix Pt , the error covariance of the time
updated estimate x̂t generated by the Kalman Filter.
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Problem Statement

Let lθ(zt) denote the negative LLF for the t-th
measurement zt in system (1), (2), given measurements

Zt−1
1

def
= {z1, . . . ,zt−1}, then

lθ(zt) =
1
2

{m
2

ln(2π)+ ln(det(Re,t))+ eT
t R−1

e,t et

}

. (3)

By differentiating (3) we obtain

∂lθ(zt)

∂θi
=

1
2

∂
∂θi

[ln(det(Re,t))]+
1
2

∂
∂θi

[
eT

t R−1
e,t et

]
, i = 1, p. (4)

As can be seen the computation of (3) and (4) leads to
implementation of a Kalman Filter (and its derivative with
respect to each parameter) which is known to be unstable.
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The eSRIF

[P. Park&T. Kailath, 1995]: assume that Π0 > 0, Rt > 0 and
Ft are invertible. Given P−T/2

0 = Π−T/2
0 and

P−T/2
0 x̂0 = Π−T/2

0 x̄0, then

Ot








R−T/2
t −R−T/2

t HtF
−1

t R−T/2
t HtF

−1
t GtQ

T/2
t −R−T/2

t zt

0 P−T/2
t F−1

t −P−T/2
t F−1

t GtQ
T/2
t P−T/2

t x̂t

0 0 Iq 0








=








R−T/2
e,t 0 0 −ēt

−P−T/2
t+1 Kp,t P−T/2

t+1 0 P−T/2
t+1 x̂t+1

∗ ∗ ∗ ∗








where Ot is any orthogonal transformation such that the
matrix on the right-hand side of the formula is block lower
triangular.
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The eSRIF

The eSRIF is a modification of the conventional one:

Ot








R−T/2
t −R−T/2

t HtF
−1

t R−T/2
t HtF

−1
t GtQ

T/2
t

0 P−T/2
t F−1

t −P−T/2
t F−1

t GtQ
T/2
t

0 0 Iq








∣
∣
∣
∣
∣
∣
∣
∣
∣

−R−T/2
t zt

P−T/2
t x̂t

0








=








R−T/2
e,t 0 0

−P−T/2
t+1 Kp,t P−T/2

t+1 0

∗ ∗ ∗








∣
∣
∣
∣
∣
∣
∣
∣
∣

−ēt

P−T/2
t+1 x̂t+1

∗
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∣
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The eSRIF

Remark. The predicted estimate now can be found from
the entries of the post-array by solving the triangular
system

(

P̃−1/2
t+1

)(
x̂−t+1

)
=

(

P̃−1/2
t+1 x̂−t+1

)

. (5)
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The LLG in terms of the eSRIF

The Log Likelihood Gradient (LLG) in terms of the eSRIF
is given by

∂lθ(zt)

∂θi
=

∂
∂θi

[

ln(det(R1/2
e,t ))

]

+ ēt
T ∂ēt

∂θi
, i = 1, . . . p,

where R1/2
e,t is a square-root factor of the matrix Re,t , i. e.

Re,t = RT/2
e,t R1/2

e,t , and ēt are the normalized innovations, i. e.

ēt = R−T/2
e,t et .
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The LLG in terms of the eSRIF

Taking into account that matrix R1/2
e,t is upper triangular, we

can show

∂
∂θi

[

ln
(

det(R1/2
e,t )

)]

= tr



R−1/2
e,t

∂
(

R1/2
e,t

)

∂θi



, i = 1, . . . , p,

where tr [ · ] is a trace of matrix.
Finally, we obtain the expression for the LLG in terms of
the eSRIF:

∂lθ(zt)

∂θi
= − tr



R1/2
e,t

∂
(

R−1/2
e,t

)

∂θi



+ēT
t

∂ēt

∂θi
, i = 1, . . . , p. (6)
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LLG Evaluation

∂l(zt)

∂θi
= −tr



 R1/2
e,t

∂
(

R−1/2
e,t

)

∂θi



+ ēT
t

∂ēt

∂θi
, i = 1, . . . , p. (6)

The eSRIF:

Ot






R−T/2
t −R−T/2

t HtF
−1

t R−T/2
t HtF

−1
t GtQ

T/2
t −R−T/2

t zt

0 P−T/2
t F−1

t −P−T/2
t F−1

t GtQ
T/2
t P−T/2

t x̂t

0 0 Iq 0






=






0 0

−P−T/2
t+1 Kp,t P−T/2

t+1 0 P−T/2
t+1 x̂t+1

∗ ∗ ∗ ∗
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+ ēT
t

∂ēt
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LLG Evaluation

Lemma 1. Let
QA = L (7)
where Q is any orthogonal transformation such that the
matrix on the right-hand side of formula (7) is lower
triangular and A is a nonsingular matrix. If the elements of
A are differentiable functions of a parameter θ then the
upper triangular matrix U in

Q′
θQT = ŪT −Ū (8)

is, in fact, the strictly upper triangular part of the matrix
QA′

θL−1:
QA′

θL−1 = L̄+D+Ū (9)

where L̄, D and Ū are, respectively, strictly lower
triangular, diagonal and strictly upper triangular.
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Algorithm LLG-eSRIF

I. For each θi, i = 1, . . . , p, apply the eSRIF

Ot








R−T/2
t −R−T/2

t HtF
−1

t R−T/2
t HtF

−1
t GtQ

T/2
t −R−T/2

t zt

0 P−T/2
t F−1

t −P−T/2
t F−1

t GtQ
T/2
t P−T/2

t x̂t

0 0 Iq 0








=








R−T/2
e,t 0 0 −ēt

−P−T/2
t+1 Kp,t P−T/2

t+1 0 P−T/2
t+1 x̂t+1

∗ ∗ ∗ ∗








where Ot is any orthogonal transformation such that
the matrix on the right-hand side of the formula is
block lower triangular.
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Algorithm LLG-eSRIF

II. For each θi, i = 1, . . . , p, calculate

Ot









∂
∂θi

(

R−T/2
t

) ∂
∂θi

(

S(1)
t

) ∂
∂θi

(

S(2)
t

) ∂
∂θi

(

S(3)
t

)

0
∂

∂θi

(

S(4)
t

) ∂
∂θi

(

S(5)
t

) ∂
∂θi

(

S(6)
t

)

0 0 0 0









=






Xi Yi Mi Li

Ni Vi Wi Ki

∗ ∗ ∗ ∗




 ,

Ot is the same orthogonal transformation as in the
eSRIF and

S(1)
t = −R−T/2

t HtF
−1

t , S(2)
t = R−T/2

t HtF
−1

t GtQ
T/2
t , S(3)

t = −R−T/2
t zt ,

S(4)
t = P−T/2

t F−1
t , S(5)

t = −P−T/2
t F−1

t GtQ
T/2
t , S(6)

t = P−T/2
t x̂t .
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Algorithm LLG-eSRIF

III. For each θi, i = 1, . . . , p, compute

Ji =

[

Xi Yi Mi

Ni Vi Wi

]





R−T/2
e,t 0 0

−P−T/2
t+1 Kp,t P−T/2

t+1 0

∗ ∗ ∗






−1

.
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Algorithm LLG-eSRIF

IV. For each θi, i = 1, . . . , p, split the matrices

Ji =
}

m+n

m+n+q
︷ ︸︸ ︷[

Li +Di +Ui
︸ ︷︷ ︸

m+n

∗∗∗
]

where Li, Di and Ui are the strictly lower triangular,
diagonal and strictly upper triangular parts of Ji,
respectively.
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Algorithm LLG-eSRIF

V. For each θi, i = 1, . . . , p, compute the following
quantities:









∂R−T/2
e,t

∂θi
0

−
∂
(

P̃−T/2
t+1 Kp,t

)

∂θi

∂P̃−T/2
t+1

∂θi









=
[
Li +Di +UT

i

]

×
[

R−T/2
e,t 0

−P̃−T/2
t+1 Kp,t P̃−T/2

t+1

]

,

(12)
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Algorithm LLG-eSRIF

∂ēt

∂θi
=

[

∂R−T/2
e,t

∂θi
−Xi

]

RT/2
e,t ēt +YiFt x̂t −Li, (13)

∂S(6)
t+1

∂θi
=




∂
(

P̃−T/2
t+1 Kp,t

)

∂θi
+Ni



RT/2
e,t ēt

+

[

∂P̃−T/2
t+1

∂θi
−Vi

]

Ft x̂t +Ki.

(14)
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Algorithm LLG-eSRIF

∂ēt

∂θi
=

[

∂R−T/2
e,t

∂θi
−Xi

]

RT/2
e,t ēt +YiFt x̂t −Li, (13)

∂S(6)
t+1

∂θi
=




∂
(

P̃−T/2
t+1 Kp,t

)

∂θi
+Ni



RT/2
e,t ēt

+

[

∂P̃−T/2
t+1

∂θi
−Vi

]

Ft x̂t +Ki.

(14)
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Algorithm LLG-eSRIF

VI. Finally, we have all values to compute the LLG
according to (6):

∂lθ(zt)

∂θi
=− tr










R1/2
e,t

∂
(

R−1/2
e,t

)

∂θi










+ ēT
t

∂ēt

∂θi
, i = 1, p.

The LLG-eSRIF: The LLG-eSRIF:

Stage Stages
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Algorithm LLG-eSRIF

The LLG-eSRIF consists of two parts:

The source filtering algorithm, i.e. eSRIF.

The ”differentiated” part: Stages II — V.

Thus, the Algorithm LLG-eSRIF is ideal for simultaneous

state estimation

parameter identification.
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Algorithm LLG-eSRIF

Remark. Since the matrices in LLG (6) are triangular, only

the diagonal elements of R1/2
e,t and

∂
(

R−1/2
e,t

)

∂θi
need to be

computed. Hence, the Algorithm LLG-eSRIF allows the
m×m-matrix inversion of Re,t to be avoided in the
evaluation of LLG.
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Ill-Conditioned Example Problems

Problem 1 Given:

P0 =

[

θ 0

0 θ

]

,H =
[

1, 0
]

,R = e2θ, F = I2, Q = 0,

G =
[

0, 0
]T

, 0¡ e ¡¡ 1

where θ is an unknown parameter, I2 is an identity 2×2
matrix; to simulate roundoff we assume

e+1 6= 1 but
e2 +1

r
= 1.

Calculate: (P1)
′
θ at the point θ = 1.

For the θ = 1, this example illustrates the initialization
problems [Kaminski P.G., Bryson A.E., Schmidt S.F.,
1971] that result when H1Π0HT

1 +R1 is rounded to
H1Π0HT

1 .
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Comparison (Problem 1)

Filter Exact Answer Rounded Answer
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0 1






r
= −





1
e2 0

0 1





LLG-
eSRIF
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P−1/2
1
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θ
− 1

2






√
1+ e2

e
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0 1






r
= −1
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1
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0

0 1
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Ill-Conditioned Example Problems

Problem 2 Given:

P0 =

[

θ 0

0 θ

]

,H =
[

1, 1
]

,R = e2θ, F = I2, Q = 0,

G =
[

0, 0
]T

, 0¡ e ¡¡ 1

where θ is an unknown parameter, I2 is an identity 2×2
matrix; to simulate roundoff we assume

e+1 6= 1 but
e2 +1

r
= 1.

Calculate: (P1)
′
θ at the point θ = 1.
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Comparison (Problem 2)
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Numerical Results

Example. Let the test system (1), (2) be defined as
follows:

xt+1 =

[

1 ∆t

0 e−∆t/τ

]

xt +

[

0

1

]

wt ,

zt =
[

1 0
]

xt + vt

where τ is an unknown parameter which needs to be
estimated.

For the test problem, τ∗=15 was chosen as the
true value of parameter τ.
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Numerical Results

The negative Log Likelihood Func-

tion

The Log Likelihood Gradient
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Conclusion

In this paper, the new algorithm for evaluating the Log
Likelihood Gradient (score) of linear discrete-time
dynamic systems has been developed. The necessary
theory has been given and substantiated by the
computational experiments. Two ill-conditioned example
problems have been constructed to show the superior
perfomance of the Algorithm LLG-eSRIF over the
conventional approach. All of these are good reasons to
use the presented algorithm in practice.
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