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Introduction
The method of maximum likelihood . . .

√

Gradient-search optimization algorithms;
√

Gradient of the negative Log Likelihood Function;
√

Kalman Filter =⇒ is known to be unstable;

[P. Park&T. Kailath, 1995] The extended Square Root

Information Filter (eSRIF):
√

avoids numerical instabilities arising from computational

errors;
√

appears to be better suited to parallel implementation and to

very large scale integration (VLSI) implementation.
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Problem Statement
Consider the discrete-time linear dynamic stochastic system

xt+1 = Ftxt + Gtwt, t = 0, 1, . . . , N, (1)

zt = Htxt + vt, t = 1, 2, . . . , N, (2)

with the system state xt ∈ R
n, the state disturbance wt ∈ R

q, the

observed vector zt ∈ R
m, and the measurement error vt ∈ R

m,

such that the initial state x0 and each wt, vt of {wt : t = 0, 1, . . .},

{vt : t = 1, 2, . . .} are taken from mutually independent

Gaussian distributions with the following expectations:

E

{[

x0 wt vt

]}

=
[

x̄0 0 0
]

and
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Problem Statement

E













(x0 − x̄0)

wt

vt













(x0 − x̄0)

wt

vt







T






=







P0 0 0

0 Qt 0

0 0 Rt







and E
{
wtw

T
t′

}
= 0, E

{
vtv

T
t′

}
= 0 if t 6= t′.

Assume the system

is parameterized by a vector θ ∈ R
p of unknown system

parameters. This means that all the above characteristics, namely

Ft, Gt, Ht, P0 ≥ 0, Qt ≥ 0 and Rt > 0 can depend upon θ (the

corresponding notations Ft(θ), Gt(θ) and so on, are suppressed

for the sake of simplicity).
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Problem Statement
For example, (1), (2) may describe a discrete autoregressive

(AR) process observed in the presence of additive noise

xt+1 =













0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

θ1 θ2 θ3 . . . θp













xt +













0

0
...

0

γ













wt,

zt =
[

0 0 . . . 1
]

xt + vt.

In this case θ are the unknown AR parameters which need to be

estimated.
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Problem Statement
The negative Log Likelihood Function (LLF) for system (1), (2)

is given by

Lθ

(
ZN

1

)
=

1

2

N∑

t=1

{m

2
ln(2π) + ln(det(Re,t)) + eT

t R−1
e,t et

}

with et
def
= zt − Htx̂t being the zero-mean innovations whose

covariance is determined as Re,t
def
= E{ete

T
t } = HtPtH

T
t + Rt

through matrix Pt, the error covariance of the time updated

estimate x̂t generated by the Kalman Filter.

Score Evaluation within the Extended Square-root Information Filter – p. 6/??



Problem Statement

Let lθ(zt) denote the negative LLF for the t-th measurement zt in

system (1), (2), given measurements Z t−1
1

def
= {z1, . . . , zt−1}, then

lθ(zt) =
1

2

{m

2
ln(2π) + ln(det(Re,t)) + eT

t R−1
e,t et

}

. (3)

By differentiating (3) we obtain

∂lθ(zt)

∂θi

=
1

2

∂

∂θi

[ln(det(Re,t))] +
1

2

∂

∂θi

[
eT

t R−1
e,t et

]
, i = 1, p.

(4)

As can be seen the computation of (3) and (4) leads to

implementation of a Kalman Filter (and its derivative with

respect to each parameter) which is known to be unstable.
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The eSRIF
[P. Park&T. Kailath, 1995]: assume that Π0 > 0, Rt > 0 and Ft

are invertible. Given P
−T/2
0 = Π

−T/2
0 and P

−T/2
0 x̂0 = Π

−T/2
0 x̄0,

then

Ot









R
−T/2
t −R

−T/2
t HtF

−1
t R

−T/2
t HtF

−1
t GtQ

T/2
t −R

−T/2
t zt

0 P
−T/2
t F−1

t −P
−T/2
t F−1

t GtQ
T/2
t P

−T/2
t x̂t

0 0 Iq 0









=









R
−T/2
e,t 0 0 −ēt

−P
−T/2
t+1 Kp,t P

−T/2
t+1 0 P

−T/2
t+1 x̂t+1

∗ ∗ ∗ ∗









where Ot is any orthogonal transformation such that the matrix

on the right-hand side of the formula is block lower triangular.
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The eSRIF
The eSRIF is a modification of the conventional one:

Ot









R
−T/2
t −R

−T/2
t HtF

−1
t R

−T/2
t HtF

−1
t GtQ

T/2
t

0 P
−T/2
t F−1

t −P
−T/2
t F−1

t GtQ
T/2
t

0 0 Iq









∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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−T/2
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P
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0








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







R
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t+1 Kp,t P
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∗ ∗ ∗




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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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∗








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The eSRIF
Remark. The predicted estimate now can be found from the

entries of the post-array by solving the triangular system
(

P̃
−1/2
t+1

) (
x̂−

t+1

)
=

(

P̃
−1/2
t+1 x̂−

t+1

)

. (5)
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The LLG in terms of the eSRIF
The Log Likelihood Gradient (LLG) in terms of the eSRIF is

given by

∂lθ(zt)

∂θi
=

∂

∂θi

[

ln(det(R
1/2
e,t ))

]

+ ēt
T ∂ēt

∂θi
, i = 1, . . . p,

where R
1/2
e,t is a square-root factor of the matrix Re,t, i. e.

Re,t = R
T/2
e,t R

1/2
e,t , and ēt are the normalized innovations, i. e.

ēt = R
−T/2
e,t et.
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The LLG in terms of the eSRIF

Taking into account that matrix R
1/2
e,t is upper triangular, we can

show

∂

∂θi

[

ln
(

det(R
1/2
e,t )

)]

= tr



R
−1/2
e,t

∂
(

R
1/2
e,t

)

∂θi



, i = 1, . . . , p,

where tr [ · ] is a trace of matrix.

Finally, we obtain the expression for the LLG in terms of the

eSRIF:

∂lθ(zt)

∂θi
= − tr



R
1/2
e,t

∂
(

R
−1/2
e,t

)

∂θi



 +ēT
t

∂ēt

∂θi
, i = 1, . . . , p. (6)

Score Evaluation within the Extended Square-root Information Filter – p. 12/??



The LLG in terms of the eSRIF

Taking into account that matrix R
1/2
e,t is upper triangular, we can

show

∂

∂θi

[

ln
(

det(R
1/2
e,t )

)]

= tr



R
−1/2
e,t

∂
(

R
1/2
e,t

)

∂θi



, i = 1, . . . , p,

where tr [ · ] is a trace of matrix.

Finally, we obtain the expression for the LLG in terms of the

eSRIF:

∂lθ(zt)

∂θi
= − tr



R
1/2
e,t

∂
(

R
−1/2
e,t

)

∂θi



 +ēT
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LLG Evaluation

∂l(zt)

∂θi
= −tr



 R
1/2
e,t

∂
(

R
−1/2
e,t

)

∂θi



 + ēT
t

∂ēt

∂θi
, i = 1, . . . , p. (6)

The eSRIF:

Ot







R
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t HtF

−1
t R
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t HtF
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t GtQ

T/2
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−T/2
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−T/2
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−T/2
t F−1

t GtQ
T/2
t P

−T/2
t x̂t

0 0 Iq 0







=







0 0

−P
−T/2
t+1 Kp,t P

−T/2
t+1 0 P

−T/2
t+1 x̂t+1

∗ ∗ ∗ ∗






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LLG Evaluation
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∂ēt

∂θi
, i = 1, . . . , p. (6)

The eSRIF:

Ot







R
−T/2
t −R

−T/2
t HtF

−1
t R

−T/2
t HtF

−1
t GtQ

T/2
t −R

−T/2
t zt

0 P
−T/2
t F−1

t −P
−T/2
t F−1

t GtQ
T/2
t P

−T/2
t x̂t

0 0 Iq 0







=







0 0

−P
−T/2
t+1 Kp,t P

−T/2
t+1 0 P

−T/2
t+1 x̂t+1

∗ ∗ ∗ ∗







Score Evaluation within the Extended Square-root Information Filter – p. 13/??



LLG Evaluation

∂l(zt)

∂θi
= −tr



 R
1/2
e,t

∂
(

R
−1/2
e,t

)

∂θi



 + ēT
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t

∂ēt

∂θi
, i = 1, . . . , p. (6)

The eSRIF:

Ot







R
−T/2
t −R

−T/2
t HtF

−1
t R

−T/2
t HtF

−1
t GtQ

T/2
t −R

−T/2
t zt

0 P
−T/2
t F−1

t −P
−T/2
t F−1

t GtQ
T/2
t P

−T/2
t x̂t

0 0 Iq 0







=











R
−T/2
e,t 0 0 −ēt
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LLG Evaluation

∂l(zt)

∂θi
= −tr



 R
1/2
e,t

∂
(

R
−1/2
e,t

)

∂θi



 + ēT
t

∂ēt

∂θi
, i = 1, . . . , p. (6)

The eSRIF:

Ot







R
−T/2
t −R

−T/2
t HtF

−1
t R

−T/2
t HtF

−1
t GtQ

T/2
t −R

−T/2
t zt

0 P
−T/2
t F−1

t −P
−T/2
t F−1

t GtQ
T/2
t P

−T/2
t x̂t

0 0 Iq 0







=











R
−T/2
e,t 0 0 −ēt

−P
−T/2
t+1 Kp,t P

−T/2
t+1 0 P

−T/2
t+1 x̂t+1

∗ ∗ ∗ ∗










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LLG Evaluation
Lemma 1. Let

QA = L (7)

where Q is any orthogonal transformation such that the matrix

on the right-hand side of formula (7) is lower triangular and A is

a nonsingular matrix. If the elements of A are differentiable

functions of a parameter θ then the upper triangular matrix U in

Q′

θQ
T = ŪT − Ū (8)

is, in fact, the strictly upper triangular part of the matrix

QA′

θL
−1:

QA′

θL
−1 = L̄ + D + Ū (9)

where L̄, D and Ū are, respectively, strictly lower triangular,

diagonal and strictly upper triangular.Score Evaluation within the Extended Square-root Information Filter – p. 14/??



Algorithm LLG-eSRIF

I. For each θi, i = 1, . . . , p, apply the eSRIF

Ot









R
−T/2
t −R

−T/2
t HtF

−1
t R

−T/2
t HtF

−1
t GtQ

T/2
t −R

−T/2
t zt

0 P
−T/2
t F−1

t −P
−T/2
t F−1

t GtQ
T/2
t P

−T/2
t x̂t

0 0 Iq 0









=









R
−T/2
e,t 0 0 −ēt

−P
−T/2
t+1 Kp,t P

−T/2
t+1 0 P

−T/2
t+1 x̂t+1

∗ ∗ ∗ ∗









where Ot is any orthogonal transformation such that the

matrix on the right-hand side of the formula is block lower

triangular.
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Algorithm LLG-eSRIF

II. For each θi, i = 1, . . . , p, calculate

Ot









∂

∂θi

(

R
−T/2
t

) ∂

∂θi

(

S
(1)
t

) ∂

∂θi

(

S
(2)
t

) ∂

∂θi

(

S
(3)
t

)

0
∂

∂θi

(

S
(4)
t

) ∂

∂θi

(

S
(5)
t

) ∂

∂θi

(

S
(6)
t

)

0 0 0 0









=







Xi Yi Mi Li

Ni Vi Wi Ki

∗ ∗ ∗ ∗







,

Ot is the same orthogonal transformation as in the eSRIF

and

S
(1)
t = −R

−T/2
t HtF

−1
t , S

(2)
t = R

−T/2
t HtF

−1
t GtQ

T/2
t , S

(3)
t = −R

−T/2
t zt,

S
(4)
t = P

−T/2
t F−1

t , S
(5)
t = −P

−T/2
t F−1

t GtQ
T/2
t , S

(6)
t = P

−T/2
t x̂t.
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Algorithm LLG-eSRIF

III. For each θi, i = 1, . . . , p, compute

Ji =




Xi Yi Mi

Ni Vi Wi











R
−T/2
e,t 0 0

−P
−T/2
t+1 Kp,t P

−T/2
t+1 0

∗ ∗ ∗







−1

.
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Algorithm LLG-eSRIF

IV. For each θi, i = 1, . . . , p, split the matrices

Ji =
}

m+n

m+n+q
︷ ︸︸ ︷[

Li + Di + Ui
︸ ︷︷ ︸

m+n

∗ ∗ ∗
]

where Li, Di and Ui are the strictly lower triangular,

diagonal and strictly upper triangular parts of Ji,

respectively.
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Algorithm LLG-eSRIF

V. For each θi, i = 1, . . . , p, compute the following quantities:








∂R
−T/2
e,t

∂θi
0

−
∂
(

P̃
−T/2
t+1 Kp,t

)

∂θi

∂P̃
−T/2
t+1

∂θi









=
[
Li + Di + UT

i

]

×




R

−T/2
e,t 0

−P̃
−T/2
t+1 Kp,t P̃

−T/2
t+1



 ,

(12)
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Algorithm LLG-eSRIF

∂ēt

∂θi

=

[

∂R
−T/2
e,t

∂θi

− Xi

]

R
T/2
e,t ēt + YiFtx̂t − Li, (13)

∂S
(6)
t+1

∂θi
=




∂
(

P̃
−T/2
t+1 Kp,t

)

∂θi
+ Ni



R
T/2
e,t ēt

+

[

∂P̃
−T/2
t+1

∂θi
− Vi

]

Ftx̂t + Ki.

(14)
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Algorithm LLG-eSRIF

∂ēt

∂θi

=

[

∂R
−T/2
e,t

∂θi

− Xi

]

R
T/2
e,t ēt + YiFtx̂t − Li, (13)

∂S
(6)
t+1

∂θi
=




∂
(

P̃
−T/2
t+1 Kp,t

)

∂θi
+ Ni



R
T/2
e,t ēt

+

[

∂P̃
−T/2
t+1

∂θi
− Vi

]

Ftx̂t + Ki.

(14)
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Algorithm LLG-eSRIF

VI. Finally, we have all values to compute the LLG according to

(6):

∂lθ(zt)

∂θi

= − tr










R
1/2
e,t

∂
(

R
−1/2
e,t

)

∂θi










+ ēT
t

∂ēt

∂θi

, i = 1, p.

The LLG-eSRIF: The LLG-eSRIF:

Stage Stages
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+ ēT
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Algorithm LLG-eSRIF
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Algorithm LLG-eSRIF

The LLG-eSRIF consists of two parts:

√

The source filtering algorithm, i.e. eSRIF.
√

The "differentiated" part: Stages II — V.

Thus, the Algorithm LLG-eSRIF is ideal for simultaneous
√

state estimation
√

parameter identification.
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Algorithm LLG-eSRIF

Remark. Since the matrices in LLG (6) are triangular, only the

diagonal elements of R
1/2
e,t and

∂
(

R
−1/2
e,t

)

∂θi

need to be computed.

Hence, the Algorithm LLG-eSRIF allows the m × m-matrix

inversion of Re,t to be avoided in the evaluation of LLG.
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Ill-Conditioned Example Problems

Problem 1 Given:

P0 =




θ 0

0 θ



 , H =
[

1, 0
]

, R = e2θ, F = I2, Q = 0,

G =
[

0, 0
]T

, 0< e « 1

where θ is an unknown parameter, I2 is an identity 2 × 2 matrix;

to simulate roundoff we assume

e + 1 6= 1 but e2 + 1
r
= 1.

Calculate: (P1)
′

θ at the point θ = 1.

For the θ = 1, this example illustrates the initialization problems

[Kaminski P.G., Bryson A.E., Schmidt S.F., 1971] that result

when H1Π0H
T
1 + R1 is rounded to H1Π0H

T
1 .
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Comparison (Problem 1)

Filter Exact Answer Rounded Answer

’diff’

KF

(P1)
′

θ =






e2

1 + e2
0

0 1






r
=




0 0

0 1





’diff’ IF

(
P−1

1

)
′

θ
= −






1 + e2

e2
0

0 1






r
= −






1

e2
0

0 1






LLG-

eSRIF

(

P
−1/2
1

)
′

θ
− 1

2






√
1 + e2

e
0

0 1






r
= −1

2






1

e
0

0 1





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Comparison (Problem 1)

Filter Exact Answer Rounded Answer

’diff’

KF

(P1)
′

θ =






e2

1 + e2
0

0 1






r
=




0 0

0 1





’diff’ IF

(
P−1

1

)
′

θ
= −






1 + e2

e2
0

0 1






r
= −






1

e2
0

0 1






LLG-

eSRIF

(

P
−1/2
1

)
′

θ
− 1

2






√
1 + e2

e
0

0 1






r
= −1

2






1

e
0

0 1





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Comparison (Problem 1)

Filter Exact Answer Rounded Answer

’diff’
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′

θ =






e2
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

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=




0 0
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

’diff’ IF
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1

)
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


1 + e2

e2
0

0 1
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

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




1

e2
0

0 1





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e
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e
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Comparison (Problem 1)

Filter Exact Answer Rounded Answer

’diff’
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(P1)
′

θ =






e2

1 + e2
0

0 1






r
=




0 0
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



’diff’ IF

(
P−1

1

)
′
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= −





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0
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




r
= −





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0

0 1





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P
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1

)
′

θ
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


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√
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e
0

0 1






r
= −1
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




1

e
0

0 1





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Ill-Conditioned Example Problems

Problem 2 Given:

P0 =




θ 0

0 θ



 , H =
[

1, 1
]

, R = e2θ, F = I2, Q = 0,

G =
[

0, 0
]T

, 0< e « 1

where θ is an unknown parameter, I2 is an identity 2 × 2 matrix;

to simulate roundoff we assume

e + 1 6= 1 but e2 + 1
r
= 1.

Calculate: (P1)
′

θ at the point θ = 1.
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Comparison (Problem 2)

Filter Exact Answer Rounded Answer

’diff’

KF

1

2 + e2




1 + e2 −1

−1 1 + e2




1

2




1 −1

−1 1





’diff’ IF
− 1

e2




1 + e2 1

1 1 + e2



 − 1

e2




1 1

1 1





LLG-

eSRIF

−1

2








√

2 + e2

1 + e2

1

e
√

1 + e2

0

√
1 + e2

e








−1

2






√
2

1

e

0
1

e





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Comparison (Problem 2)

Filter Exact Answer Rounded Answer

’diff’
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


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


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2




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


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
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1 1 + e2


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
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Numerical Results
Example. Let the test system (1), (2) be defined as follows:

xt+1 =




1 ∆t

0 e−∆t/τ



xt +




0

1



wt,

zt =
[

1 0
]

xt + vt

where τ is an unknown parameter which needs to be estimated.

For the test problem, τ ∗=15 was chosen as the true value of

parameter τ .
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Conclusion
In this paper, the new algorithm for evaluating the Log

Likelihood Gradient (score) of linear discrete-time dynamic

systems has been developed. The necessary theory has been

given and substantiated by the computational experiments. Two

ill-conditioned example problems have been constructed to show

the superior perfomance of the Algorithm LLG-eSRIF over the

conventional approach. All of these are good reasons to use the

presented algorithm in practice.
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