
Comparative analysis of the
prototype and the simulator
of a new load balancing
algorithm for heterogeneous
computing environments

R.F. de Mello*
Institute of Mathematical Sciences and Computing,
University of São Paulo, São Carlos, Brazil
E-mail: mello@icmc.usp.br
*Corresponding author

L.C. Trevelin
Department of Computer Science,
Federal University of São Carlos, Brazil
E-mail: trevelin@dc.ufscar.br

M.S.V. de Paiva
Department of Electrical Engineering,
São Carlos Engineering School,
University of São Paulo, Brazil
E-mail: mstela@sel.eesc.usp.br,

Laurence Tianruo Yang
Department of Computer Science,
St Francis Xavier University, Canada
E-mail: lyang@stfx.ca

Abstract: The availability of low cost hardware has increased the development of
distributed systems. The allocation of resources in these systems may be optimised
through the use of a load balancing algorithm. The load balancing algorithms are
responsible for the homogeneous distribution of the occupation in the environment,
with the aim of obtaining gains on the final performance. This paper presents and
analyses a new load balancing algorithm that is based on a logical computer tree
hierarchy. The analysis is made using results obtained by a simulator and a prototype
of this algorithm. The algorithm simulations show a significant performance gain,
by lowering the response times and the number of messages that pass through the
communication system to perform the load balancing operations. After good results
were obtained by the simulations, a prototype was built and validated such results.

Keywords: load balancing algorithm; heterogeneous environments; high performance;
simulation; prototype.

Reference to this paper should be made as follows: de Mello, R.F., Trevelin, L.C.,
de Paiva, M.S.V. and Yang, L.T. (2004) ‘Comparative analysis of the prototype and
the simulator of a new load balancing algorithm for heterogeneous computing environ-
ments’, Int. J. High Performance Computing and Networking, Vol. 1, Nos. 1/2/3,
pp.64–74.

Biographical notes: Rodrigo Fernandes de Mello is a Professor at The Institute of
Mathematical Sciences and Computing at the University of São Paulo, São Carlos,
Brazil. He completed his PhD degree from University of São Paulo, São Carlos in
2003. Since 1998 he has been researching in distributed systems, real time kernels and
internet.



1 INTRODUCTION

The availability of low cost microprocessors and the evolu-
tion of computing networks have increased and enabled the
construction of distributed systems. On such systems, the
processes are executed on network computers and commu-
nicate to each other to perform a collaborative computing
task. In order to distribute the processes among the com-
puters of these systems, a load balancing algorithm may
be adopted.

The load balancing algorithms are responsible for the
equal distribution of the processes load among the comput-
ers of an environment. Krueger and Livny (1987) demon-
strate that load balancing methods can reduce the aver-
age and standard deviation of processes response times.
Shorter response times are desirable, as they are related to
high performance in the execution of the processes.

The load balancing algorithms involve four policies:
transference, selection, location and information (Shivara-
tri et al., 1992; Sinha, 1997). The transference policy de-
termines whether a computer is in a suitable state to par-
ticipate in a task transfer, either as server or receiver of
the processes. The selection policy defines the process
that should be transferred from the busiest computer to
the idlest one. The location policy is responsible to find
a suitable transfer partner (sender or receiver) for a com-
puter once the transfer policy has decided about its state.
A serving computer offers the processes when it is over-
loaded, a receiving computer requests processes when it is
idle. The information policy defines when and how the in-
formation on the computers’ availability is updated on the
system.

Several load balancing methods have been proposed
(Shivaratri et al., 1992; Zhou and Ferrari, 1987; Theimer
and Lantz, 1988). According to Shivaratri et al. (1992),
these algorithms can be subdivided into:

• server-initiated

• receiver-initiated

• symmetric initiated

• stable server-initiated

• stable symmetrically initiated.

Out of these algorithm classes, the one that shows the
highest performance is the stable symmetrically initiated.

Despite recent works on load balancing (Hui and Chan-
son, 1999; Mitzenmacher, 2000; Anderson and Abra-
ham, 2000; Amir, 2000; Kostin et al., 2000; Figueira
and Berman, 2001; Zomaya and Teh, 2001; Zhang, 2001;
Mitzenmacher, 2001; Woodside and Monforton, 1993; Page
et al., 1993; Hsu et al, 2000), the studies and algorithms
from Krueger and Livny (1987), Zhou and Ferrari (1987),
Theimer and Lantz (1988) and Shivaratri et al. (1992) have
been considered the main works for this area. The recent
work does bring significant contributions to the processes’

Copyright c© 200x Inderscience Enterprises Ltd.

Figure 1: A 2-D, 9-velocity lattice (Q9D2) model A 2-D,
9-velocity lattice (Q9D2) model A 2-D, 9-velocity lattice
(Q9D2) model A 2-D, 9-velocity lattice (Q9D2) model A 2-
D, 9-velocity lattice (Q9D2) model A 2-D, 9-velocity lattice
(Q9D2) model

performance and reduction of the number of messages on
the computer network. The recent work in this area, pre-
sented in this paper, is based on the main studies of the
load balancing area.

Later on, Mello et al. (2002a,b,c,d), during others stud-
ies on clusters and distributed systems, observed and pro-
posed a new method for load balancing. Through these
studies they concluded that by choosing a load index based
on the process behaviour and on the computer capacity
at the environment, it would be possible to obtain better
results (Mello et al, 2003). Based on these studies, the au-
thors show a comparative study between the Lowest load
balancing algorithm using the new load index and the orig-
inal Stable Symmetrically Initiated algorithm. According
to the obtained results in Mello et al (2003), the improved
Lowest algorithm shows the highest performance. These
analyses confirm that the adequate load index choice mod-
ifies the behaviour of the load balancing algorithm.

Vital aspects for the success of a load balancing algo-
rithm are: stability on the number of messages generated
in order to not overload the communication system; sup-
port for environments composed of heterogeneous comput-
ers and processes; low cost update on the environment load
information; low cost choice for the ideal computers to ex-
ecute a process received by the system; stability on high
load; system scalability, and short response times. The
study and analysis of each of the above mentioned aspects
influenced the definition of a new load balancing algorithm
named TLBA (Tree Load Balancing Algorithm).

This paper presents the TLBA, a new load balancing al-
gorithm focusing on environments where: high scalability;
support for heterogeneous processes and computers; small
number of messages that pass through the communication
system; stability on high loads, and short response times
are desired. A comparative study between the TLBA and
the improved Lowest algorithm has been realised by Mello
et al (2003) using simulators. The TLBA is compared

2



Figure 2: Effect of multiple welds on mechanical properties of single-pass (SP) and double-pass (DP) Cp-Ti weldments
compared with the as-received material (B): (a) yield strength, (b) ultimate strength, (c) elongation, and (d) hardness.

to improved Lowest algorithm, because the last yielded
better results than Stable symmetrically initiated. After
simulating and proving the performance gains of TLBA,
a prototype has been implemented. This prototype was
submitted to tests and the results confirmed the values
obtained through the simulations.

The paper has been divided into the following Sections:
Section 2 presents the State of Art; Section 3 presents the
Tree Load Balancing algorithm; Section 4 presents compar-
ative studies based on simulations; Section 5 presents the
TLBA prototype and compares it to the results obtained
on the simulations; Section 6 presents the conclusions.

2 STATE OF THE ART

Among the main studies on load balancing, we may
highlight the ones by Zhou and Ferrari (1987), Theimer
and Lantz (1988), Shivaratri et al. (1992), and Mello
et al (2003). Other recent works were proposed (Hui
and Chanson, 1999; Mitzenmacher, 2000; Anderson and
Abraham, 2000; Amir, 2000; Kostin et al., 2000; Figueira
and Berman, 2001; Zomaya and Teh, 2001; Zhang, 2001;
Mitzenmacher, 2001; Woodside and Monforton, 1993; Page

et al., 1993; Hsu et al, 2000); however they do not offer
significant performance contributions. These recent works
are also based on the studies of Zhou and Ferrari (1987),
Theimer and Lantz (1988) and ?.

Zhou and Ferrari (1987) evaluate four server-initiated
load balancing algorithms, i.e., initiated by the most over-
loaded computer. These algorithms are: Disted, Global,
Central, Random and Lowest. On Disted, when a com-
puter realises any alteration on its load, it emits messages
to the other computers to inform them about its current
load. On Global, there is a computer that centralises all
the computers’ load information on that environment and
this centralising computer sends broadcasts to the environ-
ment in order to keep the other ones updated about the
situation. On Central, as on Global, a central computer
receives all the load information of the system; however, it
does not update the other computers about it. This cen-
tralising computer decides about the resources allocation
at the environment. On Random, no information about
the environment load is handled. On this algorithm, a
computer is selected at random in order to receive a pro-
cess to be initiated. On Lowest, the load information is
sent when demanded. When a computer starts a process,
it requests information and analyses the loads of a small

3



Table 1: Response time variation of the lowest algorithm to the different occupations of the process
Average response time of the Average response time

Occupation improved lowest algorithm of the TLBA
1.00 E + 01 6.1275533000 E+ 05 6.0450143000 E + 05
1.00 E + 02 6.3940207300 E + 06 6.3176135300 E + 06
1.00 E + 03 6.4152160200 E + 07 6.3446532460 E + 07

1.00 E + 04 6.4098737963 E + 08 6.3473560175 E + 08
1.00 E + 05 6.4189585691 E + 09 6.3476263532 E + 09
1.00 E + 06 6.5020352364 E + 10 6.3476532508 E + 10

1.00 E + 07 6.4361410067 E + 11 6.3476559492 E + 11
1.00 E + 08 6.4261208947 E + 12 6.3476562200 E + 12
1.00 E + 09 6.4770720080 E + 13 6.3476562470 E + 13

1.00 E + 10 6.4230638584 E + 14 6.3476562497 E + 14
1.00 E + 11 6.5764266304 E + 15 6.3476562500 E + 15
1.00 E + 12 6.4104959239 E + 16 6.3476562500 E + 16

set of computers and submits the processes to the idlest
one. The idlest computer has the shortest processes queue.

When Zhou and Ferrari (1987) analysed the Disted,
Global, Central, Random and Lowest algorithms, they
reached the conclusion that all of them show a performance
higher than the one presented by a system with no load
balancing at all. However, the Lowest algorithm showed
the highest performance of all. This algorithm generates
demand messages to transfer the process, causes a lower
overload on the communication system and, thus, allows
the incremental growth of the environment. The number
of generated messages in an environment does not depend
on the number of computers.

Theimer and Lantz (1988) have implemented algorithms
similar to the Central, Disted and Lowest ones. Neverthe-
less, they have analysed such algorithms in systems com-
posed of a larger number of computers (about 70). For
the Disted and Lowest ones, some process receiver and
sender groups were created. The communication within
these groups was made by using a multicast protocol, in
order to minimise the messages exchange among the com-
puters. Computers with load lower than an inferior limit
participate in the process receiver group whilst the com-
puters with load higher than a superior limit participate
in the process sender group.

Theimer and Lantz recommend decentralised algorithms
such as Lowest and Disted, as they do not generate single
points of fault as Central does. Central presents the high-
est performance for small and medium size networks but
it degrades on large environments.

Through the analyses, Theimer and Lantz (1988) con-
cluded that algorithms such as Lowest work with the prob-
ability of a computer being idle. They assume system
homogeneity as they use the size of the CPU’s waiting
queue as load index. The process behaviour is not anal-
ysed; therefore, the actual load of each computer is not
measured.

Shivaratri et al. (1992) analyse the algorithms, server-
initiated, receiver-initiated, symmetrically initiated, adap-

Table 2: Lowest algorithm response times for the different
process occupation at a heterogeneous system

Average response time of the Average response time
improved lowest algorithm of the TLBA

6.1275533000 E+ 05 6.0450143000 E + 05
6.3940207300 E + 06 6.3176135300 E + 06
6.4152160200 E + 07 6.3446532460 E + 07
6.4098737963 E + 08 6.3473560175 E + 08
6.4189585691 E + 09 6.3476263532 E + 09
6.5020352364 E + 10 6.3476532508 E + 10
6.4361410067 E + 11 6.3476559492 E + 11
6.4261208947 E + 12 6.3476562200 E + 12
6.4770720080 E + 13 6.3476562470 E + 13
6.4230638584 E + 14 6.3476562497 E + 14
6.5764266304 E + 15 6.3476562500 E + 15
6.4104959239 E + 16 6.3476562500 E + 16

tative symmetrically initiated and stable symmetrically
initiated. In these studies, the length of the process wait-
ing queue at the CPU was considered as the load index.
This measure has been chosen because it is simple and
therefore, consumes fewer resources.

Shivaratri et al. have concluded that the receiver-
initiated algorithms present a higher performance than the
server-initiated ones, such as Lowest. In their conclusions,
the algorithm that showed the highest final performance
was the stable symmetrically initiated one. This algorithm
preserves the history of the load information exchanged in
the system and takes actions to transfer the processes by
using this information.

Mello et al (2003) analyse a load index based on the pro-
cess behaviour as well as on the system computers capac-
ity. The authors propose a comparison between the Sta-
ble Symmetrically Initiated algorithm by Shivaratri et al.
(1992) and the improved Lowest algorithm. The improved
Lowest uses an analysis of the process behaviour, as well

4



as the system computers’ capacity as load index. Through
these studies, it was concluded that, by using a new load in-
dex, the Lowest algorithm provides better response times.
These results were reached through the simulation of ho-
mogeneous and heterogeneous environments.

3 THE TREE LOAD BALANCING ALGORITHM

The TLBA algorithm, named Tree Load Balancing Algo-
rithm, creates a virtual interconnecting tree among the
computers of the system. On this tree, each computer of
an N level sends its updated load information to the N −1
level computers. The lower the level is, the closer it is to
the root. The root is located on level zero.

The selection of the best computer to execute a process
received by the system, works as a deep search on the
interconnecting tree. Thus, a level N computer may define
which of its branches located in level N + 1 presents the
lowest occupation, by re-passing a search message that is
propagated through all the branches of the tree until it
finds the idlest computer.

The tree may be defined as a non-cyclic connected graph.
G = (X, U) being a graph, where X is the set of vertices
and U is the set of edges which interconnects an ordered
pair. This graph presents n > 2, where n is the maximum
number of elements of the vertices set and satisfies the
following properties:

• G is connected and non-cyclic

• G is non-cyclic and has n − 1 edges

• G is connected and has n − 1 edges

• G is non-cyclic and, by adding one edge, only one cycle
is created

• G is connected, but stops being so if one edge is sup-
pressed

• Every G’s vertices pair is connected by only one simple
chain.

After defining the tree, it is necessary to define the levels
that make it up. Being the same oriented graph G =
(X, U) shown before, a partition of N of the set X may be
defined as:

N = {N0, N1, . . . , Nr}

where the elements N0, N1, . . . , Nr, called levels, are ar-
ranged by the inclusion of their R−1(xi) as follows:

• N0 = {xi/R−1(xi) = {}}

• N1 = {xi/R−1(xi)CN0}

• N2 = {xi/R−1(xi)C(N0UN1)}

• Nr = {xi/R−1(xi)CU(dek = 0ar − 1)Nk}

R−1(xi) is the set of predecessor vertices of an element xi
of the set of vertices X. Every vertice xi only has prede-
cessors in the previous levels. The last level of the tree is
depicted by R+(Nr) = {}, where Nr is the largest level
and R + (Nr) the set of vertices which succeed the level
Nr.

3.1 Information policy

On TLBA, each computer of the system has an updated
table with the occupation information. This table includes
information about the computer as well about the other
computers in its subtree. The subtree of a computer α,
located on level N , is given by all the computers from
the level N + 1, which succeed to a computer through an
oriented arch. The computer α participates in this subtree,
being defined as its father.

The computers at level N + 1 send information about
their load to the predecessor computer located on the level
N. The father computer generates a single number that
represents its occupation and the one of its subtree. To
make this calculation, the father computer sums up the
occupation related to the capacities of each computer of
its subtree, generating a single load value for the subtree
controlled by it. The load value is propagated until the
root node.

A computer located in level N + 1 only sends its load
information when the change exceeds a certain threshold
percentage value. Assuming a threshold of 5%, the current
load is compared to the one taken at the latest reading; if
the current load is 5% above or below the previous load,
then the load information is sent to the father computer,
which is located in the level N. The definition of this thresh-
old allows the decrease in the number of messages related
to the information update on the system. Decreasing the
communication system load increases the stability (Shiv-
aratri et al., 1992).

3.2 Load index calculation

The load index used by TLBA is based on the analysis
of the CPU and memory resources consumed by the pro-
cesses. This load index proposed by ? is detailed as fol-
lowing.

Consider as the occupation of the computing resources
Or(t, i), where: i identifies the analysed computer; r is
the computing resource analysed (CPU and main memory)
and t is the occupation reading instant.

ACKNOWLEDGMENT

We would like to thank Dr. Gonzalo Travieso for his
collaboration in this work.

REFERENCES

5



Amir, Y. et al. (2000) ‘An opportunity cost approach for
job assignment in a scalable computing cluster’, IEEE
Transactions on Parallel and Distributed Systems, July,
Vol. 11, No. 7, pp.760–768.

Anderson, J.R. and Abraham, S. (2000) ‘Performance-
based constraints for multidimensional networks’, IEEE
Transactions on Parallel and Distributed Systems Jan-
uary, Vol. 11, No. 1, pp.21–35.

Figueira, S.M. and Berman, F. (2001) ‘A slowdown model
for applications executing on time-shared clusters of
workstations’, IEEE Transactions on Parallel and Dis-
tributed Systems, June, Vol. 12, No. 6, pp.653–670.

GNU/GCC Supported Platforms (2003) URL:
http://gcc.gnu.org/install/specific.html, Consulted
in: 25th June, http://www.icmc.usp.br/∼mello.

Hsu, T. et al. (2000) ‘Task allocation on a network of
processors’, IEEE Transactions on Parallel and Dis-
tributed Systems, December, Vol. 49, No. 12, pp.1339–
1353.

Hui, C. and Chanson, S.T. (1999) ‘Hydrodynamic load bal-
ancing’, IEEE Transactions on Parallel and Distributed
Systems, November, Vol. 10, No. 11, pp.1118–1137.

Kostin, A.E., Aybay, I. and Oz, G. (2000) ‘A ran-
domised contention-based load-balancing protocol for a
distributed multiserver queuing system’, IEEE Trans-
actions on Parallel and Distributed Systems, December,
Vol. 11, No. 12, pp.1252–1273.

Krueger, P. and Livny, M. (1987) ‘The diverse objectives
of distributed scheduling policies’, Proc. Seventh Int’l
Conf. Distributed Computing Systems, IEEE CS Press,
Los Alamitos, Calif., No. 801, (microfiche only), pp.242–
249.

Mello, R.F. et al. (2003) ‘Comparative study of the server-
initiated lowest algorithm using a load balancing index
based on the process behaviour for heterogeneous envi-
ronment, accepted for publication in the special issue of
cluster computing of the Kluwer’, The Journal of Net-
works, Software Tools and Applications.

Mello, R.F., Paiva, M.S. and Trevelin, L.C. (2002b) ‘Open-
Tella: a peer-to-peer protocol for the load balancing in
a system formed by a cluster from clusters’, 4th Inter-
national Symposium on High Performance Computing
ISHPC-IV, Japan, May.

Mello, R.F., Paiva, M.S. and Trevelin, L.C. (2002c) ‘Anal-
ysis on the significant information to update the tables
on occupation of resources by using a peer-to-peer proto-
col’, 16th Annual International Symposium on High Per-
formance Computing Systems and Applications, Monc-
ton, New-Bruncwick, Canada, June.

Mello, R.F., Paiva, M.S. and Trevelin, L.C. (2002d) ‘A java
cluster management service’, IEEE International Sym-
posium on Network Computing and Applications, Cam-
bridge, Massachusetts, USA, February.

6



Mello, R.F., Paiva, M.S., Trevelin, L.C. and Gonzaga, A.
(2002a) ‘Model for resources load evaluation in clusters
by using a peer-to-peer protocol’, The 2002 Interna-
tional Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, USA, June.

Mitzenmacher, M. (2000) ‘How useful is old information?’,
IEEE Transactions on Parallel and Distributed Systems,
January, Vol. 11, No. 1, pp.6–20.

Mitzenmacher, M. (2001) ‘The power of two choices in ran-
domised load balancing’, IEEE Transactions on Paral-
lel and Distributed Systems, October, Vol. 12, No. 10,
pp.1094–1104.

Page, I, Jacob, T. and Chern, E. (1993) ‘Fast algorithms
for distributed resource allocation’, IEEE Transactions
on Parallel and Distributed Systems, February, Vol. 4,
No. 2, pp.188–197.

Shivaratri, N.G., Krueger, P. and Singhal, M. (1992) ‘Load
distributing for locally distributed systems’, IEEE Com-
puter, December, pp.33–44.

Sinha, P.K. (1997) Distributed Operating Systems: Con-
cepts and Design, IEEE Institute of Electrical and Elec-
tronics Engineers, Inc, 345 East 47th Street, NY 10017–
2394.

Theimer, M.M. and Lantz, K.A. (1988) ‘Finding idle ma-
chines in a workstation-based distributed systems’, Proc.
IEEE 8th Int. Conf. on Distributed Computing Systems,
pp.112–122.

Woodside, C.M. and Monforton, G.G. (1993) ‘Fast allo-
cation of processes in distributed and parallel systems’,
IEEE Transactions on Parallel and Distributed Systems,
February, Vol. 4, No. 2, pp.164–174.

Zhang, Y. (2001) ‘Impact of workload and system parame-
ters on next generation cluster scheduling mechanisms’,
IEEE Transactions on Parallel and Distributed Systems,
September, Vol. 12, No. 9, pp.967–985.

Zhou, S. and Ferrari, D. (1987) An Experimental Study
of Load Balancing Performance, Report No. UCB/CSD
87/336, Progress Report No. 86.8, Computer Science Di-
vision (EECS), University of California, Berkeley, Cali-
fornia 94720, January, pp.1–27.

Zomaya, A.Y. and Teh, Y. (2001) ‘Observations on us-
ing genetic algorithms for dynamic load-balancing’,
IEEE Transactions on Parallel and Distributed Systems,
September, Vol. 12, No. 9, pp.899–911.

7


