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Abstract. In this paper, we propose a new closed-loop multi-mode sys-
tem identification setup that allows the jointly performed change point
detection, fault diagnosis, supervised training of a bank of signature gen-
erators, unsupervised identification of the optimal filter, and monitored
system accommodation on the basis of incomplete noisy data. We vali-
date the setup by simulating numerical examples.

1 Introduction

In the literature on modern control systems, more emphasis is placed on de-
tection [1] and identification [2] as separate problems. At the same time, reality
provides evidence that in many cases fault detection-diagnosis must be performed
together with system identification and accommodation. In adaptive multi-mode
or hybrid stochastic systems with an uncertain mode switching mechanism, iden-
tification is to be launched repeatedly every time when a mode switch is detected.
In the equivalent manner, identification must be stopped when the adaptive
model being driven by the identification algorithm attains the highest (or toler-
able) pitch of agreement with the observed data. Thus, FDD-SIA is a composite
challenging task needing not only a theoretical but also computational research.

In this work, we explore the possibility of developing a unified approach
of the reduced complexity in order to perform FDD-SIA computational tasks
simultaneously in a single system. The outline of the paper is as follows: Section 2
describes the monitored system (MS). In Sect. 3 we formulate the Statistical
Orthogonality Principle (SOP) and refer to the Accessible Indirect Performance
Index (AIPI). The SOP-based FDD is described in Sect. 5. Section 6 shows one
of identification algorithms (IA) intended to identify the optimal Steady-State
Kalman Filter (SSKF) as a substitute for the Feedback Filter (FF). The MS
accommodation is briefly described in Sect. 7. Some experimental results are
shown in Sect. 8. Finally, Sect. 9 concludes the paper.

2 Monitored System

For the monitored system we consider an errors-in-variables (EIV) control system
with the observed data z(ti) =

[
y(ti)
u(ti−1)

]
, i = 1, 2, . . ., composed of the control



input u ∈ IRq and the measurement output y ∈ IRm. The system is parameterized
by an uncertainty vector θ ∈ IRl and consists of a plant (P), a sensor (S) and a
stabilizing feedback controller(FC) (Fig.1(a)). The P state equation is
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Fig. 1. (a) Monitored System (MS), and (b) Statistical orthogonality. Legend: P –
plant, S – sensor, FC – feedback controller, RG – residual generator, SM – sensitivity
model, SG – signature generator

x(ti+1) = Φθx(ti) + Ψθu(ti) + w(ti), i = 0, 1, . . . (1)

with x ∈ IRn and a noise w(ti) where the random initial x(t0) at some t0 has a
finite mean x̄0 and a finite covariance P0 ≥ 0 and {u(ti)} is wide-sense stationary
and so E{||u(ti)||2} <∞ for all ti. The S equation is

y(ti) = Hx(ti) + v(ti), i = 1, 2, . . . (2)

with rank(H) < n and a noise v(ti). Both {w(ti)} and {v(ti)} are i.i.d. zero
mean mutually independent wide-sense stationary sequences whose covariances
are E{w(ti)w(ti)T } = Qθ ≥ 0 and E{v(ti)v(ti)T } = Rθ > 0 for all ti. The FC,
in compliance with the well-known separation property, is formed by a feedback
filter (FF) cascaded with a feedback regulator (FR). The FF equations are

x̃(t−i+1) = Φ̄x̃(t+i ) + Ψu(ti), x̃(t+i ) = x̃(t−i ) + K̄[y(ti)−Hx̃(t−i )] (3)

with some initials x̃(t+0 ), u(t0). Constant transition matrix Φ̄ and constant gain
K̄ are chosen in a sense arbitrarily or designed to be optimal in a steady state
(as t0 → −∞) w.r.t. a fixed (fault-free) system mode specified by a nominal
value θ0 of θ. The FR equation is

u(ti) = fFR[x̃(t+i )] = −ḠFRx̃(t+i ) (4)

with a function fFR[·] which can be chosen to satisfy the second equality in (4)
with a constant gain matrix ḠFR. By (3), (4), it is predetermined that u(ti)
depends on all available data z(ti1) = [z(t1), · · · , z(ti)], the latter is a notation
for a composite (stackable) column vector. Note that

[
w(ti)
v(tj)

]
is independent of

u(tk) and x(tk) for all ti ≥ tk, tj > tk.
The overall closed-loop control system (1), (2), (3), (4) is assumed to be

asymptotically stable in all modes of operating referred to by the subscript θ,



and so all the processes within the system are wide-sense stationary at every ti
as t0 → −∞ (the main assumption). The system is designed to operate with a
minimum expected control cost

Jc = lim
j→−∞

E{xT (tN+1)Xfx(tN+1) +
N∑

i=j

[xT (ti)Xx(ti) + uT (ti)Uu(ti)]} (5)

for N > 0, Xf ≥ 0, U > 0, X ≥ 0, and in all modes holds the main properties:

? (Φθ, Q
1/2
θ ) is stabilizable, (Φθ, X1/2) is detectable, (Φθ,H) is completely ob-

servable, and (Φθ, Ψθ) is completely controllable.

to guarantee the existence of the optimal steady-state parameters for (3), (4).
The system itself can operate in several (finitely or infinitely many) modes.

This brings the problem to the realm of hybrid or multi-mode systems. The
mode characterized by θ0 can be treated as the main one. The other modes
characterized by some θ1, θ2, . . ., θM – for the case of finitely many modes, –
can be viewed as some alternative modes not obligatory (albeit possibly) faulty.
In this case we have to test the M pairs of hypotheses, in each pair between

H0 = {θ† = θ0} and Hµ = {θ† = θµ = θ0 + Υµ} (6)

where θ† is the true value of θ, µ = 1, 2, . . . ,M, and Υµ is the µ-th change on θ
(the µ-th alternative mode of operation). Allowing for arbitrary faults, which are
modelled by any sizable change Υ on θ not violating the above main assumption,
we come to the case of infinitely many modes. By this, we generalize the problem
as we have to test the continuum set of pairs of hypotheses

H0 = {θ† = θ0} and HΥ = {θ† = θΥ = θ0 + Υ} . (7)

In both cases (6) and (7) we do not assume a specific mode switching behavior
(for example, a Markovian one) and view it as deterministic (albeit unknown to
the observer) like controlled by an independent actor.

3 Statistical Orthogonality Principle

Definition 1. Given l pairs {r, sj}, j = 1, 2, . . . , L, each formed by column
vectors r = r(ti) and sj = sj(tk). Then r(ti) and sj(tk) are said to be statistically
orthogonal at distance ∆t = tk − ti, that is denoted as r(ti) ⊥ sj(tk), if

∀ti, tk,∆t = tk − ti = const : E{sTj (tk)r(ti)} = 0 (8)

and r(ti) is said to be statistically orthogonal to S(tk) = [s1(tk) | · · · | sL(tk)] at
∆t = tk − ti if (8) holds for all given pairs, that is denoted as r(ti) ⊥ S(tk).

Let r and S in Definition 1 be computed by L pairs of parallel blocks RG
and SM as shown in Fig.1(b). By RG and SM are meant Residual Generator
and Sensitivity Model both parameterized by a design parameter θ̂ ∈ IRL not
fully but partly being an exact replica of θ, the MS parameter, in its elements’
numbering and sense. Thus, r(ti) = r(ti, θ̂) and S(tk) = S(tk, θ̂).



Definition 2. Let RG and SM be designed in such a way that in case (6) for
each µ = 0, 1, 2, . . . ,M, parameter θ̂ takes a specified value θ̂µ such that

∀µ : {θ̂ = θ̂µ} ≡ { r(ti, θ̂) ⊥ S(ti, θ̂) ←→ θ† = θµ } (9)

or in case (7) for each Υ , parameter θ̂ takes a specified value θ̂Υ such that

∀Υ : {θ̂ = θ̂Υ } ≡ { r(ti, θ̂) ⊥ S(ti, θ̂) ←→ θ† = θΥ } (10)

where←→ stands for “iff” (if and only if). Then (9) and (10) is termed Statistical
Orthogonality Principle.

The parallel blocks in Fig.1(b), RG and SM, may be variously designed to
satisfy Definitions 1 and 2. However as system (1), (2), (3), (4) is stochastic, the
presence of an (adaptive) estimator (AE), denote it by g(ti|i−1, θ̂), is requisite for
obtaining a residual r(ti, θ̂). With it, writing r(ti, θ̂) ⊥ S(ti, θ̂) is straightforward
as a necessary (and on occasion, sufficient) condition for minimum of

J(θ̂) = 1/2 lim
tj→−∞

E{‖r(ti, θ̂)‖2 | y(ti−1
j )} . (11)

Thus, SOP implementation boils down to the construction of (11) so as to obtain

S(ti, θ̂) =

[
∂r(ti, θ̂)

∂θ̂1

∣∣∣∣∣ · · ·
∣∣∣∣∣
∂r(ti, θ̂)

∂θ̂L

]
. (12)

4 Identification Performance Indices

Minimum Prediction Error methods [3] offer to predict by g(ti|i−1, θ̂) the system
output y(ti) and use r(ti, θ̂) = y(ti)− g(ti|i−1, θ̂) as a residual. Minimizing (11)
with such residual leads to the biased parameter estimates for the given EIV
system [4], [5]. Had r(ti, θ̂) in (11) instead been in one of the following forms

r(ti, θ̂) = { x(ti)− g(ti|i−1, θ̂) or x̂OPT(ti|i−1)− g(ti|i−1, θ̂) } (13)

where x̂OPT(ti|i−1) is the one-step SSKF predictor for x(ti), minimizing (11)
would have helped to avoid the bias. Obviously, (13) provides two clear examples
of Direct (but) Inaccessible Residual (DIR) and in this case (11) is an example
of Direct (but) Inaccessible Performance Index (DIPI).

Remark 1. In the limit as t0 → −∞, FF equations (3) assure coincidence

x̃(t+i ) = x̂OPT(ti|i) and x̃(t−i ) = x̂OPT(ti|i−1) (14)

if optimally designed for the fault-free system mode specified by θ† = θ0.

Remark 2. If a set of AEs g(ti|i−1, θ̂) in (13) contains SSKF, then g(ti|i−1, θ̂)
minimizing (11) coincides with x̂OPT(ti|i−1). If a fault occurs, we consider SSKF
a hidden object to be identified to substitute FF and be used to modify FR.



Problem 1. To implement both SOP-based FDD and SSKF identification, we
need to construct the Accessible albeit Indirect Residual (AIR) as a substitute
for the DIR in order to change from the DIPI to the Accessible albeit Indi-
rect Performance Index (AIPI) in (11), the latter having the same minimizing
estimator as the DIPI.

Solution 1. Being the system completely observable enables the solution to be
found in the form:

AIR(ti, θ̂) = DIR(ti, θ̂) + SP(ti), SP(ti) ⊥ DIR(ti, θ̂), SP(ti) 6= f(θ̂) (15)

AIPI(θ̂) = DIPI(θ̂) + Const, Const = 1/2 E{‖SP(ti)‖2 | y(ti−1
j )} (16)

where SP(ti) is a slack process fully independent of θ̂ [SP(ti) 6= f(θ̂) ] and (16)
is the half mean squared Euclidean norm of (15) in the limit as tj → −∞.

Remark 3. The solution is given in [6], [7], [8] and thoroughly tested in [9] for
identification purposes only. In what follows, we denote the AIR(ti, θ̂) by ε(ti, θ̂)
and use it here for the jointly performed FDD-SIA computational tasks. So from
now on, ε(ti, θ̂) serves instead of r(ti, θ̂) in Formulas (8) to (12).

5 Fault Detection and Diagnosis

In accordance with Definition 2 and Remark 3, being the k-th expectation

ζj(ti, θ̂) = E{
(
∂ε(ti, θ̂)

∂θ̂j
, ε(ti, θ̂)

)
| θ̂ = θ̂µ or θ̂Υ }, j = 1, 2, . . . , L (17)

of the dot product (· , ·) in the immediate vicinity of zero is equipollent to the
fact that θ† = θµ or θΥ . On this basis we use it as a signature of the fact as it is
shown schematically in Fig. 1(b) where ζ is composed of (17), ζ ∈ IRL.

In FDD, when we test between (6), the theoretical signature

∀µ and j = 1, 2, . . . , L : ζj(ti, θ̂µ) = 0 (18)

is checked by the following approximate decision rule:

∀µ = 1, 2, . . . ,M and j = 1, 2, . . . , L :

∣∣∣∣∣ 0.5−
nµj
N

∣∣∣∣∣
Hµ
>
<
H0

γj (19)

where nµj is the number of negative outliers of the process ζ̂j(ti, θ̂µ) in the current
sample of size N . Here ζ̂j(ti, θ̂µ) is an estimator (for which we recommend the
exponential smoothing) of ζj(ti, θ̂µ) defined for (18) according to (17) for each
µ-th Signature Generator (SG) within the Bank of Signature Generators (BSG),
µ = 1, 2, . . . ,M (Fig. 2(a)). Signature Evaluator and Selector (SES) in this setup
operates according to (19), where the sample size N and thresholds γj should



be determined experimentally to guarantee the maximum decision power with
the limited error probability. If several hypotheses among Hµ, µ = 1, 2, . . . ,M,
have been selected, we discriminate between them by the additional rule: select
the Hµ∗ with

µ∗ = arg min
µ

L∑

j=1

∣∣∣∣∣ 0.5−
nµj
N

∣∣∣∣∣ . (20)

If none Hµ, µ = 1, 2, . . . ,M, has been selected, we adopt a decision that H0 is
true.
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Fig. 2. (a) Fault detection and diagnosis (discrimination between M+ 1 hypotheses).
(b) Fault diagnosis and system accommodation using TBSG. (c) Fault point detection
to switch IA and AM. Legend: MS – monitored system, BSG – Bank of Signature
Generators, TBSG – Trained BSG, SES – Signature Evaluator and Selector, AM –
Accommodation Mechanism, IA – Identification Algorithm

6 Optimal Filter Identification and BSG Training

To reason what change (or what fault) has occurred, one of two strategies may be
used: parallel or sequential. The first one is adequate for Case (6), while the latter
for Case (7). The parallel strategy implies the existence of the BSG as discussed
in Sect. 5. Each SG can be trained beforehand to match the corresponding system
mode, i.e. to satisfy (18). Training algorithms for a single (µ-th) SG are standard
identification algorithms for θ̂ = θ̂µ. For example, one can use the following SLS:

Simplified Least Squares. For k = 1, 2, . . . and Λ = diag[λ(j)], j = 1, 2, . . . , L,
with Λ1 = I do (21) and then (22) where k is the step number:

λ
(j)
k+1 = λ

(j)
k +

∥∥∥∥∥
∂ε(ti, θ̂k)

∂θ̂j

∥∥∥∥∥

2

(21)

θ̂k+1 = θ̂k − Λ−1
k+1E{ST (ti, θ̂k)ε(ti, θ̂k)} (22)



where E{·} is a smoothing algorithm. In the case of exponential smoothing we
obtain ζ̂(ti, θ̂) = E{ζ(ti, θ̂)} from the signature vector ζ(ti, θ̂) = ST (ti, θ̂)ε(ti, θ̂)
by

ζ̂(ti, θ̂) = βζ̂(ti−1, θ̂) + (1− β)ζ(ti, θ̂), 0 ≤ β < 1 . (23)

In Case (7) we have to use the sequential strategy of Fig. 2(c) with one SG,
one SES and one identification algorithm (IA). In this setup, SG is intended
to detect and track all possible abrupt changes as they occur in time in the
monitored system. The SG performs this by means of IA, which may be of
(21)–(22) type or another. The SES tests between hypotheses (7) so that the
rule (19) is implemented with µ = 1. Decision to adopt H1 starts up the IA;
decision to adopt H0 stops it and starts the accommodation mechanism (AM)
in order to bring the feedback of MS and the real situation after change into
better agreement and, in doing so, to adapt the system feedback to suit the new
(after-change) conditions. Figure 3 shows how it is implemented except AM.
Accommodation mechanism is discussed briefly in Sect. 7.

begin i := 0;
for j := 1 to L do

begin nj := 0; sj :=off; λj := 1 end;
while i ≤ imax do

for j := 1 to l do

begin i := i+ 1;

if ζ̂j(ti, θ̂) < 0 then nj := nj + 1;
fj := 0.5− nj/N ;
if i mod N = 0 then

begin nj := 0;
if abs(fj) < γj then

sj :=off else sj := on
end;

if sj = on then

begin

λ(j) := λ(j) +

∥∥∥ ∂ε(ti,θ̂)
∂θ̂j

∥∥∥
2

;

θ̂(j) := θ̂(j) − ζ̂j(ti, θ̂)/λ(j)

end else

if i mod N = 0 then λ(j) := 1
end

end.

Fig. 3. Pseudocode sketching the inter-independent parameter identification algorithm



7 Monitored System Accommodation

To accommodate the MS to the newly developed (maybe, faulty) mode, the ac-
commodation mechanism (AM) is expected to be capable to replace parameters
Φ̄ and K̄ of (3) with the newly identified matrix Φ and optimal SSKF gain K,
and ḠFR of (4) with the GFR computed by solving the Discrete Algebraic Ric-
cati Equation, DARE, in compliance with the well known LQG control law using
matrices of (5).

8 Approach Validation

I. System. Dimensions are n = 2, m = 1, q = 1, l = 2. Matrices are as follows:

Φθ =
[

0 1
θ1 θ2

]
, Ψθ = Ψ =

[
0
1

]
, Qθ = Q =

[
0 0
0 1

]

H =
[

1 0
]
, Rθ = R =

[
0.1
]
, θT =

[
θ1 θ2

]

θT0 =
[

0.30 0.68
]
, θTΥ =

[
0.40 0.10

]
, ΥT =

[
0.10 −0.58

]

Φ̄ =
[

0 1
0.2 0.2

]
, K̄ =

[
0.2
0.2

]
, ḠFR =

[
0.5 0.5

]
.

II. Residual Generator. According to Remark 3, RG is composed of AE and AIR:

g(ti+1|i, θ̂) = A[g(ti|i−1, θ̂) +Dη(ti, θ̂)] + Ψu(ti) (24)

η(ti, θ̂) = y(ti)−Hg(ti|i−1, θ̂) . (25)

For AE (24), (25), we have here L = 4 and

A =
[

0 1
a1 a2

]
, D =

[
d1

d2

]
, θ̂T =

[
a1 a2 d1 d2

]
. (26)

With reference to Remark 3, we construct AIR as

ε(ti, θ̂) = N (D)η(tii−s+1, θ̂), N (D) =




1 0 0 0
. . . 1 0 0

dn−1
. . . 1 0

dn dn−1
. . . 1




. (27)

In the first formula of (27), s is the greatest partial observability index of the
system and the second formula holds if MS with m = 1 is taken in the standard
observable form [7]. Such is here the case and s = 2,

η(tii−s+1, θ̂) = [η(ti−1, θ̂) η(ti, θ̂)]T . (28)



III. Sensitivity Model. To obtain (12) from ε(ti, θ̂), (27), in view of Remark 3,
we have to generate the sensitivity functions having defined them by

µ(j)(ti+1|i, θ̂) =
∂

∂θ̂j
g(ti+1|i, θ̂), j = 1, . . . , L . (29)

IV. Pattern for Computational Experiments. The composite algorithm we test
is outlined by Figs. 2(c) and 3. Besides the MS with the above matrices, it in-
volves: RG – (24), (25), (26), (27) and (28); SM – (12) and (29); SG – (17);
SES – (19) and (20); and IA – (21), (22) and (23). The algorithm is started
up with the non-optimal parameters Φ̄, K̄ and ḠFR. The SES is expected to
detect this initial non-optimality and to start up the IA precisely in respect to
the parameters which require optimisation. The IA is expected to eliminate the
initial non-optimality (this is the SG training). After that, at the middle time
instant t8000, the MS switches from mode H0 to HΥ , cf. (7). The algorithm is
expected to detect this mode switch, to identify the new optimal parameters
and accommodate the MS feedback to the after-switch conditions.

V. Experimental Results. An example of the results is shown in Figs. 4 and 5.
This is one of many results obtained for many different conditions [10]. In these
experiments, the following values were chosen: γj = 0.05, N = 2000 and β = 0.1.
The estimates formed by the composite algorithm are thus seen to be satisfactory
enough. This lends support to the validity of the proposed approach.
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Fig. 4. Tracking the true parameters θ1 and θ2 by a1 (left) and a2 (right) of (26)

9 Conclusions and Future Work

We have shown that statistical orthogonality principle and indirect identification
performance index provide the basis for the jointly performed computational
tasks in the multi-mode stochastic system identification. Further investigations
of this approach should be made to study all the aspects, both theoretical and
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Fig. 5. Tracking the SSKF parameters k1 and k2 by d1 (left) and d2 (right) of (26)

applied, for instance – to evaluate it in terms of false alarm and missed detection
rates.
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