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Abstract: We consider the linear time-invariant state-space stochastic control system

x(ti+1) = Φθx(ti) + Ψθu(ti) + w(ti), x ∈ R
n (i)

y(ti) = Hθx(ti) + v(ti), y ∈ R
m (ii)

x̂0(t
−
i+1) = Φ0x̂0(t

+
i ) + Ψ0u(ti), x̂0 ∈ R

n (iii)

x̂0(t
+
i ) = x̂0(t

−
i ) + K0ν(ti), ν(ti) = y(ti) − H0x̂0(t

−
i ) (iv)

u(ti) = fR[x̂0(t
+
i )] = −G?

0x̂0(t
+
i ), u ∈ R

q (v)

where i ∈ Z, with a plant (i) and a sensor (ii), both parameterized by an uncertainty vector parameter θ, and
a feedback controller FC, (iii)–(v), designed to cascade the steady-state Kalman filter (iii)–(iv) with a regulator
(v) for a nominal value θ0 of θ. In (i)–(v), the initial state x(t−s) is given at some t−s ∈ R with expectation
E

{
‖x(t−s)‖

2
}

< ∞; w(ti) and v(ti) are zero-mean mutually orthogonal wide-sense stationary orthogonal se-

quences with E
{
w(ti)w(ti)

T
}

= Qθ ≥ 0 and E
{
v(ti)v(ti)

T
}

= Rθ > 0 for all ti ∈ R, with
[

w(ti)
v(ti)

]
orthogonal

to x(tj) and u(tj) for all j ≥ i ; u(ti) is wide-sense stationary and E
{
‖u(ti)‖

2
}

< ∞ for all ti ∈ R.
Assuming that the true value θ† of θ can change abruptly from θ0 to some θ1 at an instant tc ∈ (t0, ti), we detect

tc using the nominal covariance C0 of ν(ti) in (iv) and constructing a decision function of the cumulative sum form:

Sk =
√

m/(2k)

k∑

i=1

[
νT (ti)C

−1
0 ν(ti)/m − 1

]
.

Keywords: Empirical decision procedures; Hypothesis testing; Diagnostics; Stochastic systems and con-
trol; Stopping times.
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1. INTRODUCTION

The theory of abrupt changes is an intensively investigated topic in time series analysis and identifica-
tion (Basseville and Nikiforov, 1993). Usually by abrupt changes, it is meant changes in characteristics
that occur very fast with respect to the sampling period of measurements, if not instantaneously, at un-
known time instants. Besides strong theoretical motivations, the detection of such changes is a problem of
great practical interest.

The subject of abrupt changes basically grew up at the confluence of several disciplines, first of all,
mathematical statistics and automatic control theory. In mathematical statistics, decision tools for detect-
ing changes appeared first in the area of quality control, where the Shewhart 3-sigma control charts were
introduced (Shewhart, 1931). As an alternative to them, Page set up a principle of cumulative sum control
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charts (Page, 1954). In succeeding years the CUSUM has been proven to be a very effective tool to detect
changes in a mean level of a process. The expanded CUSUM mathematical theory and its industrial appli-
cations were given in (Johnson and Leone, 1962), (Johnson and Leone, 1963), (Johnson and Leone, 1964)
and then in (Siegmund, 1985), (Kenett and Zacks, 1998) and (Ghosh and Sen, 1991). Wide historical notes
and references for seminars, survey papers, and books related to change detection both in mathematical
statistics and automatic control theory, can be found in (Basseville and Nikiforov, 1993).

In (Basseville and Nikiforov, 1993), many applications of decision tools for detecting changes have
been summarized, among them quality control, automatic segmentation of signals, fault detection and
monitoring in industrial plants and navigation systems, seismic data processing, and some others. One
of possible applications of change detection tools that has recently emerged may be in the Replication-
Selection Systems (RSS) (Murgu, 2002). Genetic algorithms (GAs) used in the RSS require a fitness
function that informs the GA of what is the best performer within a population of performers. Selection of
the best performer is very close to discriminating between several contesting hypotheses, which is the core
of any detection problem. By virtue of this fact, it is quite natural to search for a suitable fitness function
for RSS amongst the well developed detection methods.

One of possible approaches to detect changes that is frequently used in the engineering literature, is
based upon the intuitive idea of detecting a nonadditive change by monitoring the innovation sequence (IS)
ν(ti) of an autoregression (AR) model with the aid of a test for its variance σ2. The CUSUM

Sk =
1√
k

k∑

i=1

si with si =
1√
2

(
ν(ti)

2

σ2
0

− 1

)
(1.1)

is asymptotically, when k goes to infinity, distributed as the standard Gaussian law: Sk ∼ N (0; 1) under
the hypothesis H0 : σ2 = σ2

0 .
This algorithm, which is monitoring si termed the weighted squared innovations (WSI), was intro-

duced in the AR case independently in (Jones et al., 1970), (Borodkin and Mottl, 1976), and (Segen and
Sanderson, 1980) for the purpose of automatic segmentation of electroencephalogram signals. This test
assumes that the IS is white, and thus a test for whiteness should be done first (Mehra and Peschon, 1971).
It is well known that the IS is white within a filter if the filter is Kalman, i. e., optimal one (Maybeck, 1979),
and whiteness of the IS is only necessary, not sufficient condition for filter optimality (Boozer, 1971). Au-
tocorrelation properties of the IS after change may be very complex, depending on the change occurred.
Because of this, monitoring squared innovations has received a criticism as having its poor behavior in
many circumstances. The criticism, as well as the ease of implementation of this method, stems from the
fact that there no information is used about the after change characteristics.

In the present paper we advocate the WSI method by showing that monitoring WSI will, in certain
RSS systems, serve as a useful tool due to its tolerable performance and moderately simple computational
cost, which promises the overall cost reduction when the size of population is large.

The paper formulates and develops the WSI method as applied to stochastic state estimation and con-
trol systems (Sections 2 and 3). In Section 4, the WSI test is shown to be a useful tool of GAs for the best
feedback selection in view of improved performances and condition-based maintenance. Section 5 of the
paper presents some experimental results of fault detection for an example relating to inertial navigation
system modeling. Section 5 concludes the main content and Appendix completes the paper.

2. PROBLEM FORMULATION

Let the closed-loop control system be parameterized by a vector θ ∈ R
p and the available data z =

[
y
u

]

be a vector composed of two parts: the control input u ∈ R
q and the measurement output y ∈ R

m. The

2



system is modeled for i ∈ Z by the equations

x(ti+1) = Φθx(ti) + Ψθu(ti) + w(ti), x ∈ R
n (2.1)

y(ti) = Hθx(ti) + v(ti), y ∈ R
m (2.2)

x̂0(t
−
i+1) = Φ0x̂0(t

+
i ) + Ψ0u(ti), x̂0 ∈ R

n (2.3)

x̂0(t
+
i ) = x̂0(t

−
i ) + K0ν(ti), ν(ti) = y(ti) − H0x̂0(t

−
i ) (2.4)

u(ti) = fR[x̂0(t
+
i )] = −G?

0x̂0(t
+
i ), u ∈ R

q (2.5)

with {w(·)}, {v(·)} being zero mean i.i.d. sequences of covariances Qθ and Rθ respectively. The state
difference equation (2.1) is propagated forward from the initial condition x(t−s) of the finite expectation
E

{
‖x(t−s)‖2

}
< ∞. The initial state is placed at some t−s ∈ R where s > 0 determines what is termed

settling time Ts = t0 − t−s needed to think of all processes in (2.1)–(2.5) as wide-sense stationary for
i ≥ 0. As usual, equation (2.1) represents a plant, equation (2.2) a sensor, and (2.3)–(2.5) a feedback. The
feedback is composed of a Kalman-like filter (2.3)–(2.4) cascaded with a regulator (2.5). The regulator is
described by a function fR[·] of the measurement updated estimate x̂0(t

+
i ) or can be chosen according to

the second equality in (2.5) with a matrix G?
0.

Matrices of the given system (2.1)–(2.2) are assumed to be known as Φ0, Ψ0, Q0, H0 and R0 for a
nominal mode, i. e., for a nominal value θ0 of the uncertainty parameter θ. For this mode, to guarantee
existence of the steady-state filter with Kalman gain K0, we assume that the pair (Φ0, Q

1/2
0 ) is stabilizable,

the pair (Φ0, H0) is observable, and the pair (Φ0, Ψ0) is controllable. Matrix G?
0 can be taken then as a

given one or designed to be LQG optimal for the nominal mode of operation (Maybeck, 1982), (Caines,
1988), (Mosca, 1995).

Parameter θ is subject to an abrupt change at an unknown time point tc ∈ (t0, ti). This can be viewed
as a switch of θ from θ0 to some other unknown value θ1; to detect the change point, a decision generator,
DG, is needed (Figure 1). Formalizing the problem of DG synthesis, we consider

xj(ti+1) = Φjxj(ti) + Ψju(ti) + wj(ti)

yj(ti) = Hjxj(ti) + vj(ti)

}
S0 (for j = 0) or S1 (for j = 1) (2.6)

as the generalized description of the two systems: S0 the system with θ = θ0; S1 the system with θ = θ1.
Filter (2.3)–(2.4), which is denoted by F0 in Figure 1, is designed as the Kalman filter for S0, i. e., satisfying
equations

K0 = P̃0H
T
0 C−1

0 , C0 = H0P̃0H
T
0 + R0

P̂0 = P̃0 − P̃0H
T
0 C−1

0 H0P̃0 , P̃0 = Φ0P̂0Φ
T
0 + Q0

}
filter F0 for system S0 (2.7)

and processing data

y(ti) =

{
y0(ti) if ti < tc (data from S0)

y1(ti) if ti ≥ tc (data from S1)
(2.8)

The problem is to detect the change point tc with a reasonable delay using a suitable decision rule d0(tk) ∈
{0, 1} according to Figure 1.

3. WSI BASED DECISION GENERATING METHOD

Many systems, not only (2.1)–(2.5), have the IS, hence the WSI of si type in (1.1) can be considered.
Because covariance properties of the WSI after change may become very complex, depending on the
change occurred, we simplify matters by approximating the covariance kernel function Kss(j) of si after
change equal to the exponential function:

Kss(j) = Dsr
|j| , j ∈ Z , r = exp{−τs/τc} , Ds , E

{
(si −E {si})2

}
(3.1)
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•

S0

w0(ti) v0(ti)

S1

w1(ti) v1(ti) x•
tc

y(ti)
•
• •

F0fR(·)

u(ti)

DG

d0(tk)

ν(tk1)

x̂0(t
+
i )

• q−1
u(ti−1)

Figure 1. The general framework for the problem and solution. Legend: S0 is the system with θ = θ0

while S1 is the system with θ = θ1; F0 is the Kalman filter for S0; and DG is a decision generator; q−1

denotes a one sample memory (unit delay); ν(tk
1) , col[][ν(t1), ν(t2), · · · , ν(tk)] .

where τs is a sampling time interval and τc a correlation interval of si. Under this assumption, we state the
WSI based method for detecting changes as follows.

Theorem 3.1 Let a dynamical system with the IS {ν(ti)}, ν(ti) ∈ R
m, have two possible modes of opera-

tion termed “normal functioning” (hypothesis H0) and “a fault” (hypothesis H1). Under both hypotheses,
{ν(ti)} is a Gaussian sequence with E {ν(ti)} = 0. Under hypothesis H0, {ν(ti)} is an independent se-
quence with the known covariance C0 = L0L

T
0 of each element ν(ti) where L0 is the square root of

C0 determined, for instance, by Cholesky decomposition. Under hypothesis H1, {ν(ti)} is a correlated
sequence with an unknown covariance C1 6= C0 of each element ν(ti). Define

µi , L−1
0 ν(ti) , si ,

√
m

2

(
1

m
µT

i µi − 1

)
, Sk ,

1√
k

k∑

i=1

si (3.2)

and suppose that under hypothesis H1, the covariance kernel function of this si has been modeled (maybe
rather approximately) by expression (3.1).

Then asymptotically, when k goes to infinity, the following properties hold:

1. The probability laws L(·) of Sk under these hypotheses satisfy †

H0 : L(Sk) ; N (0, 1) (3.3)

H1 : L(Sk) ; N (mSk
, DSk

) (3.4)

where N (0; 1) stands for the Gaussian (normal) distribution with zero mean and unit variance,
N (mSk

, DSk
) is the normal distribution whose mean mSk

and variance DSk
= σ2

Sk
are given by

†The notation ; corresponds to the weak convergence (Roussas, 1972).
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the below formulae

mSk
,E {Sk} = ms

√
k , ms , E {si} = (1/

√
2m) tr{∆}

DSk
,E

{
(Sk − mSk

)2
}

= Ds
1 + r

1 − r
, Ds = 1 +

2

m
tr{∆}+

1

m
‖∆‖2

∆ =L−1
0 (C1 − C0)L

−T
0 , ‖∆‖2 ,

m∑

i,j=1

|∆ij |2





(3.5)

2. If Sk of (3.2) is used as a decision function at a time instant k in the decision rule

|Sk|
H1

≷
H0

h (3.6)

with h being a conveniently chosen threshold (for example, h = 3), then probability of false alarm,
PF , and probability of detection, PD, satisfy the following approximate expressions (they are exact
if laws L(Sk) in (3.3), (3.4) are taken to be normal):

PF ' 1− φ(h)

PD ' 1− 1

2

[
φ

(
mSk

+ h

σSk

)
− φ

(
mSk

− h

σSk

)]
>

1

2

[
1 + φ

(
mSk

− h

σSk

)]




(3.7)

through the standard probability integral

φ(x) ,
2√
2π

∫ x

0

exp
(
−t2/2

)
dt

3. If the threshold h in (3.6) is chosen as h = φ−1(1 − α) to guarantee a given level α of PF in (3.7),
PF = α, then hypothesis H1 is detected with probability PD = 1 − β (where 0 < β < 1/2) not
later than after

k?
a '

[
φ−1(1 − α) + σSk

φ−1(1 − 2β)
]2

/m2
s (3.8)

disctere time instants where x = φ−1(y) is the solution for φ(x) = y.

The proof of Theorem 3.1 is placed in Appendix A.
Clearly sequence Sk can be used for any system having such an innovation ν(ti) to detect the changes

marked by matrix ∆ with tr{∆} 6= 0, with the aid of rule (3.6). In so doing, it is important to keep in mind
the following merits of the rule:

1. Rule (3.6) contains the same quadratic forms as does the log-likelihood function

ln p
(
ν(tk1)

∣∣ H0

)
= −km

2
ln(2π) − k

2
ln|C0| −

1

2

k∑

i=1

νT (ti)C
−1
0 ν(ti)

with ν(tk1) , col[][ν(t1), ν(t2), · · · , ν(tk)] because

Sk =

√
m

2k

k∑

i=1

(
1

m
νT (ti)C

−1
0 ν(ti) − 1

)
(3.9)
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2. The sufficient statistic `(·) , `
(
ν(tk1)

)
for detecting changes in the system parameters subject to the

assumptions of Theorem 3.1, is (Van-Trees, 1968, Sec. 2.6.2)

`(·) =
k∑

i=1

νT (ti)C
−1
0 ν(ti) − νT (tk1)C−1

1 (k)ν(tk1) , C1(k) , E
{
ν(tk1)νT (tk1)

∣∣ H1

}

The evident theoretical drawback of the method is that the decision function Sk, (3.2) or equivalently
(3.9), is not a sufficient statistic; nevertheless it has found practical use in many applications since
its invention, as working without any information about the model after the change, for example in
checking filter optimality (Semoushin, 1979).

3. The type of parametric changes detectable by rule (3.6) is restricted to those for which tr{∆} 6= 0.

4. To strictly satisfy the condition tr{∆} = 0 in most real situations is hardly probable and because of
this the restriction tr{∆} 6= 0 should not be considered as critical from the practical point of view.

Example 3.1. Let m be equal 3 and

C0 =




1 2 3
2 8 2
3 2 14


 , C1 =




2.0 1.8 2.4
1.8 9.0 1.0
2.4 1.0 13.0




Then

L0 =




1 0 0
2 2 0
3 −2 1


 , ∆ =




1.0 −1.1 −5.8
−1.1 1.45 6.3
−5.8 6.3 31.0


 , ms ≈ 13.7 , Ds ≈ 395.

Let α = 0.005 and β = 0.005. We obtain, h = φ−1(1 − α) = 2.8 and φ−1(1 − 2β) = 2.6 .
If r = 0.5, then k?

a ' 46 and if r = 0.95, then k?
a ' 562. Hence, starting from the anticipated (for

instance, from the most probable or most dangerous) faults as the base, and reasoning from the specified
quality α and β of the decision rule (3.6), it is possible to numerically predict the lapse of time‡) k?

a after
which the fault will be detected with confidence not worse than PD = 1 − β.

For the above example, the condition of non-observable faults is readily obtained as the equation

tr{∆} = 27a11 − 11a12 − 10a13 + 5
4a22 + 2a23 + a33 = 0 (3.10)

in the entries aij = aji of A = C1 − C0 . Keeping C1 within bounds of positive definiteness, one can
choose C1 to match the condition (3.10), for example

C1 =




1 2 3
2 8 1
3 1 16


 , A , C1 − C0 = [aij ] =




0 0 0
0 0 −1
0 −1 2




This simple example makes it apparent that only certain of the faults specially chosen to fit the equation
tr{∆} = 0 to a T cannot be detected by the method.

Theorem 3.1 assumes that changes in θ do not create a bias (i.e., non-zero expectation) in the innova-
tion sequence {ν(ti)} :

H0 : ν(ti) ∼ N (0, C0) and H1 : ν(ti) ∼ N (0, C1) (3.11)

‡) In this example, the delay k
?
a should be increased by knorm ' 30 needed to take distributions in (3.3)–(3.4) to be approximately

normal, from the engineering point of view.
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If this is not the case, one should turn from (3.11) to

H0 : ν(ti) ∼ N (0, C0) and H1 : ν(ti) ∼ N (m1, C1) (3.12)

with some m1 6= 0. This entails the only modification in Theorem 3.1, namely, in ∆ of formulae (3.5):

∆ = L−1
0 (C1 + m1m

T
1 − C0)L

−T
0 instead of ∆ = L−1

0 (C1 − C0)L
−T
0 (3.13)

Thus, for appreciable quantity of faults, the WSI based method boils down to a straightforward cumu-
lation of Sk, (3.2), through the sequential algorithm

Sk = Sk−1

√
1 − 1/k + sk/

√
k , k ∈ N , S0 = 0 (3.14)

followed by the rule (3.6). When testing H1 against H0, let us denote Sk in (3.14) by S
(0)
k thus emphasizing

by superscript (0) that the main hypothesis is H0. Then we have two schemes with the stopping rule ta (the
alarm time) for the alternative H1 detection:

(A) decision is made at any current time tk:

d0(tk) =





0 if
∣∣∣S(0)

k

∣∣∣ < h ; H0 is chosen

1 if
∣∣∣S(0)

k

∣∣∣ ≥ h ; H1 is chosen





, ta = min {tk : d0(tk) = 1}

(B) decision is made at the end of a sample number l = 1, 2, . . . , L each of size N :

d0(l) =





0 if ∀ k = 1, 2, . . . , N :
∣∣∣S(0)

N(l−1)+k

∣∣∣ < h ; H0 is chosen

1 if ∃ k = 1, 2, . . . , N :
∣∣∣S(0)

N(l−1)+k

∣∣∣ ≥ h ; H1 is chosen

ta = τs

[
N(l − 1) + min

{
k :

∣∣∣S(0)
N(l−1)+k

∣∣∣ ≥ h
}]

r
= τsN min {l : d0(l) = 1}

where
r
= denotes the rounded up equality.

This result is of general significance because many stochastic dynamical systems have (or can be
supplied with) a whitening filter that generates a process of innovations. It fits naturally into the systems
of (2.1)–(2.5) type, in which the whitening filter exists in the Kalman filter form (2.3)–(2.4) with the IS
{ν(ti)}.

4. WSI BASED FEEDBACK FILTER TESTING AND SELECTION

From the innovation process theory, two facts are known (Martin and Stubberud, 1976):

(i) Case (3.11) holds if changes happen only in covariances Qθ and Rθ .
(ii) The only cause for Case (3.12) are changes in matrices Φθ, Ψθ and/or Hθ .

If Case (3.12) takes place, (3.13) with m1 calculated by the general procedure described, for example
in (Martin and Stubberud, 1976), should be used.

Example 4.1. Consider the simple case when n = m = 1, u(ti) ≡ 0, Q1 = Q0, R1 = R0, H1 = H0 = 1
and Φ1 6= Φ0 (both |Φj | < 1, j = 0, 1). At ti � tc (i.e., under H1 when the change transient response
effects are vanished) from (2.6) (for j = 0), (2.7), (2.8) and (2.3)–(2.4), we have

ν(ti) = x1(ti) + v0(ti) − x̂0(ti) = e(ti) + v0(ti) , e(ti) , x1(ti) − x̂0(ti) (4.1)
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Denoting
m1(ti) , E

{
ν(ti)

∣∣ H1

}
, me(t

−
i ) , E {e(ti)}

mx1
(ti) , E {x1(ti)} , mx̂0

(t±i ) , E
{
x̂0(t

±
i )

}
}

(4.2)

we obtain from (4.1), (2.6) (for j = 1) and (2.3)

m1(ti) = me(t
−
i ) , me(t

−
i ) = mx1

(ti) − mx̂0
(t−i )

mx1
(ti) = Φ1mx1

(ti−1) , mx̂0
(t−i ) = Φ0mx̂0

(t+i−1)

}
(4.3)

Taking expectation of (2.4) yields

mx̂0
(t+i ) = (1 − K0)mx̂0

(t−i ) + K0mx1
(ti)

Taking here a step backwards and then substituting this into the last formula of (4.3) give

mx̂0
(t−i ) = Φ0

[
(1 − K0)mx̂0

(t−i−1) + K0mx1
(ti−1)

]

Then we find consequently using (4.2) and (4.3)

me(t
−
i ) = mx1

(ti) − Φ0

[
(1 − K0)mx1

(ti−1) − (1 − K0)me(t
−
i−1) + K0mx1

(ti−1)
]

= mx1
(ti) − Φ0

[
mx1

(ti−1) − (1 − K0)me(t
−
i−1)

]

= (Φ1 − Φ0)mx1
(ti−1) + Φ0(1 − K0)me(t

−
i−1)

m1(ti) = Φ0(1 − K0)m1(ti−1) + (Φ1 − Φ0)mx1
(ti−1)

As 0 < Φ0 < 1 and 0 < Φ0(1 − K0) < 1, there exist the steady-state values

m1 , lim
ti→∞

{m1(ti)} = lim
ti→∞

{m1(ti−1)} , mx1
, lim

ti→∞
{mx1

(ti−1)}

and finally

m1 =
Φ1 − Φ0

1 − Φ0(1 − K0)
mx1

Remark 4.1. By virtue of 0 < Φ0 < 1, mx1
= 0. It is also worthy of note that although tr{∆} = 0 is

not a necessary or sufficient condition for filter optimality, the quantity of faults satisfying tr{∆} = 0 is
relatively thin.

As for the case of two contesting hypotheses H0 and H1 in Section 3, we can apply one of two
schemes, (A) or (B), of decision making. However as differentiated from that case, here every singly taken
Hj (j = 0, 1, . . . , K) contests individually against any other Hi (i = 0, 1, . . . , K; i 6= j) using its own

decision function S
(j)
k that equals to Sk and is formed according to (3.14) supplied with the superscript (j).

Again, we have two schemes:

(A) decision is made at any current time tk. For any particular Hj , j ∈ {0, 1, . . . , K}, the particular
decision rule is

dj(tk) =





0 if
∣∣∣S(j)

k

∣∣∣ < h ; Hj is supported

1 if
∣∣∣S(j)

k

∣∣∣ ≥ h ; Hj is rejected

The over-all alarm time is

ta = min

{
tk :

(
∃κ : dκ(tk) = 0 & ∀

j 6=κ
dj(tk) = 1

)}
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SP FP FS

FE

•

SF

u(ti) y(ti) (d0, · · · , dK) κ

(F0, · · · , FK)

Fκ κ = {j ∈ {0, . . . , K} : dj(ta) = 0}

Figure 2. The best filter selection. Legend: SP stands for system population; FP stands for filter popula-
tion, FS for filter selection, FE for feedback effector, and SF stands for the system feedback. The stopping

rule is given by the alarm time ta = min
{

tk :
(
∃κ : dκ(tk) = 0 & ∀

j 6=κ
dj(tk) = 1

)}
. At this time, FE

uploads the selected Fκ into SF if by then it is not in there.

with the over-all winner selection rule:

κ = {j ∈ {0, 1, . . . , K} : dj(ta) = 0} ; Hκ is chosen

(B) decision is made at the end of a sample number l = 1, 2, . . . , L each of size N . For any particular
Hj , j ∈ {0, 1, . . . , K}, the particular decision rule is

dj(l) =





0 if ∀ k = 1, 2, . . . , N :
∣∣∣S(j)

N(l−1)+k

∣∣∣ < h ; Hj is supported

1 if ∃ k = 1, 2, . . . , N :
∣∣∣S(j)

N(l−1)+k

∣∣∣ ≥ h ; Hj is rejected
(4.4)

ta
r
= τsN min

{
l :

(
∃κ : dκ(l) = 0 & ∀

j 6=κ
dj(l) = 1

)}
(4.5)

with the over-all winner selection rule:

κ = {j ∈ {0, 1, . . . , K} : dj(l) = 0} ; Hκ is chosen (4.6)

This method is realized in a framework corresponding to Figure 2.

5. SOME COMPUTATIONAL EXPERIMENT RESULTS

To have confidence in the freedom from failures of airborne equipment or changes in vehicle parameters is
of critical importance for optimal navigation data processing.

As an example for the problem under study, we take the damped Shuler loop driven by the exponen-
tially correlated noise, whose description was first given in (Gaines, 1971). In compliance with (Gaines,
1971), consider equations

xj(ti+1) = Φjxj(ti) + Γjwj(ti)

yj(ti) = Hjxj(ti) + vj(ti)

}
S0 (for j = 0) or Sj (for j = 1, · · · , K) (5.1)

that have the form of (2.6) in the specific case of control input u(ti) being zero, with K + 1 modes of
operation, each mode being associated with a system Sj : S0 is the fault free system and every Sj (for j =
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1, · · · , K) is a faulty system. System S0 corresponds to

Φ0 =




0.75 −1.74 −0.3 0 −0.15
0.09 0.91 −0.0005 0 −0.008
0 0 0.95 0 0
0 0 0 0.55 0
0 0 0 0 0.905




, Γ0 =




0 0 0
0 0 0
24.64 0 0
0 0.835 0
0 0 1.83




(5.2)

Q0 =




1 0 0
0 1 0
0 0 1


 , H0 =

[
1 0 0 0 1
0 1 0 1 0

]
, R0 =

[
1 0
0 1

]
(5.3)

Disengaging ourselves at this stage from a physical interpretation of the given characteristics (5.2)–(5.3),
we shall restrict our consideration in this section by introducing the set of faulty systems through the
following formal relations:

Φj = Φ0 , Γj = Γ0 , Qj = Q0 , Rj = R0

Hj =

[
1 − e 0 0 0 1 − f

0 1 − g 0 1 − h 0

]
, {efgh} , j[2]





Sj (j = 1, · · · , 15)

where {efgh} stands for the binary code j[2] of the fault number j. For example, given j = 2 or j = 9,
then {efgh} = {0010} or, correspondingly {1001}, and in these cases

H2 =

[
1 0 0 0 1
0 0 0 1 0

]
, H9 =

[
0 0 0 0 1
0 1 0 0 0

]

The change S0
tc
� Sj (j = 1, · · · , 15) occurs at tc = 2300, however filter F0 “does not know” about

that and continues to satisfy equations (2.7). Experimental data for all K = 15 faulty system cases are
shown in Figures 3–4 together with the fault free system case, when {efgh} = {0000}. If the value of
threshold h in (3.6) is set to 3, then probability of false alarm, PF , in the case of S0 will be not greater than
0.3% (due to property (3.3)), and in other cases probability of right detection, PD , comes to 100% due to
monotonicity of increasing |E {Sk} |. The value of delay in right detection depends on the type of change
and, as it can be seen from Figures 3–4, is in the region from 100 to 1500 sampling time intervals.

The reported simulation results as well as those obtained for many different samples from the se-
quences w(ti) and v(ti) in the model (2.1)–(2.2), show practicability of the approach for inertial navigation
systems monitoring and thus cause us to anticipate that it will find a diversity of other applications. This
assumption has received further support in our work through the similar results yielded by other experi-
ments.

6. SIMULATION TOOL DEVELOPMENT

The first (above shown) experimental plots were made in MATLAB 6 after the results were obtained using
ASPID – Adaptive System Parameter Identification – the soft package developed in Visual C 6.0 (service
pack 6) to carry on research on Inertial Navigation System error budget (Semoushin and Polosenko, 2002).
However, to perform a wide scale investigation of all the proposed detection/selection algorithms that
would correspond Figure 2, a special software needs to be developed.

Such a tool, a very convenient one named LSCS (Linear Stochastic Control System), has been created
by Mike Sunoplya, a fourth year Ulyanovsk State University student. It allows us to observe the behavior
of Sk before and after the system failure in full accordance with Figure 2.
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Figure 3. Behavior of Sk before and after change at tc = 2300; left: j = 0, 4, 1, 5, right: j = 2, 6, 3, 7.
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Figure 4. Behavior of Sk before and after change at tc = 2300; left: j = 8, 12, 9, 13, right: j =
10, 14, 11, 15.

This LSCS application can work in 1 of 3 available modes:

normal mode application calculates and draws (in real time mode on the work area) the S
(0)
k

changes, S(0)
k given by the formula (3.14) introduced in Section 3; only one filter

F0 is available.

mixed mode this mode supports four different faulty filters Fj , j ∈ {1, 2, . . . , K} versus

one (nominal) filter F0; four curves of S
(j)
k changes can be taken from Fj and

observed together like in Figures 3–4; if we write S0
2300
� Sj

∣∣ j ∈ {2, 6, 3, 7},

this means that one of four changes S0

tc
� Sj occurs at tc = 2300 for j =

2, 6, 3 or 7, – this is the case of Figure 3, right.
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Figure 5. S0
397
� S2

∣∣ FP = {F0, F2, F8, F9}. Sample size N = 15 in Scheme B, (4.4)–(4.6). Comment:

In this case the change S0

tc
� Sj occurs at tc = 397 for j = 2. Scheme B, (4.4)–(4.6), is used with each

S
(j)
k , j ∈ {0, 2, 8, 9}, reset to zero every N steps of algorithm (3.14). The zoomed version of this plot can

be obtained, – cf. Figure 6.

Figure 6. Zoom of the previous plot of Figure 5 with S0
397
� S2

∣∣ FP = {F0, F2, F8, F9}. Sample size
N = 15 in Scheme B, (4.4)–(4.6). Comment: It can be seen from here that before the change – for
ti < 397 – only S

(0)
k formed by (3.14) in F0, remains in the vicinity of zero. After the change from S0 to

S2 at ti = 397, behavior of the curves changes drastically: S
(2)
k formed by (3.14) in F2, enters the vicinity

of zero while S
(0)
k leaves it as continue to do so all the other curves, – in this case S

(8)
k and S

(9)
k taken from

F8 and F9, correspondingly. Remark: On insufficiently reduced scale, one curve can melt into another. In
this plot, one can easily discriminate S

(8)
k curve from S

(9)
k curve between ti = 413 and ti = 420.
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Figure 7. S0
397
� S9

∣∣ FP = {F0, F2, F8, F9}. Sample size N = 15 in Scheme B, (4.4)–(4.6). Comment:

In this case the change S0

tc
� Sj occurs at tc = 397 for j = 9. Scheme B, (4.4)–(4.6), is used with each

S
(j)
k , j ∈ {0, 2, 8, 9}, reset to zero every N steps of algorithm (3.14). The zoomed version of any plot can

be obtained. For this case, it is shown in Figure 8 in the form of screenshot.

Figure 8. Application window. Zoom of the previous plot of Figure 7 with S0
397
� S9

∣∣ FP =
{F0, F2, F8, F9}.
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renewal mode application calculates and draws (in real time mode on the work area) the S
(j)
k

changes for all j ∈ {0, . . . , K}; we identify this by the following notation: if we

write S0
397
� S9

∣∣ FP = {F0, F2, F8, F9} this means that the change S0

tc
� Sj

occurs at tc = 397 for j = 9; in this mode Scheme B, (4.4)–(4.6), is used with
each S

(j)
k reset to zero every N steps of (3.14).

LSCS was developed using the Visual C++.NET development system and can work under operation sys-
tem Windows 98/2000/XP. It provides:
:

• on-line plotting
• multi-mode support
• manual zoom
• friendly work area that can be saved to bmp-file
• user controlled system matrices Φ0, Γ0 and H0 input and change at any assigned tc
• useful options to create the unique style of curves and legend at the work area
• handy interface
• and more...

With this tool switched onto the renewal mode, many computational experiments were made in this
work (most intersing of them are presented in Figures 5–8) and many more are reserved for further research.

7. CONCLUSIONS

The weighted squared innovation method is formulated and tested as applied to stochastic state estimation
and control systems. The findings of this paper may be of considerable practical value thanks to high de-
tecting capacity of the method at not-too-high computational cost. The understanding of the exact capacity
for work of the method awaits further investigation. Further studies will probe practical aspects of change
point detecting with respect to changes not only in observation matrix H but in other system matrices, too.
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APPENDIX A: A PROOF OF THEOREM 3.1 FROM SECTION 3

Lemma A.1. ξ ∼ N (0; 1) implies E
{
ξ2k

}
= (2k − 1)!! .

Proof.

E
{
ξ2k

}
= 1√

2π

+∞∫

−∞

x2k exp
{
−x2

2

}
dx = 2k

√
π

∞∫

0

tk−
1

2 exp{−t} dt

= 2k

√
π
Γ

(
k + 1

2

)
= 2k

√
π
·
(
k − 1

2

)
· Γ

(
k − 1

2

)

= (2k − 1) · (2k − 3) · . . . · 3 · 1

2
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Proof of Theorem 3.1. Under hypothesis H0, µi ∼ N (0; I) is a white Gaussian sequence where I is
m × m identity matrix. If µji denotes the j-th element of µi, it follows that

ξ ,
k∑

i=1

m∑

j=1

µ2
ji ∼ Fχ2(mk)(x)

where Fχ2(mk)(x) stands for χ2 distribution with mk degrees of freedom. When k → ∞, ξ is distributed
normally with center mk and variance 2mk, Fχ2(mk)(x) ; N (mk; 2mk). From (3.2) we have

Sk =
√

mk/2

{
1

mk
ξ − 1

}

therefore L(Sk) ; N (0; 1).
Under hypothesis H1 we have

Cµ , E
{
µiµ

T
i

}
= L−1

0 C1L
−T
0 = I + L−1

0 (C1 − C0)L
−T
0 = I + ∆

ms , E {sk} =
√

m/2 [(1/m) tr{Cµ}−1] = (2m)−1/2 tr{∆}

Let [Cµ]jk be the jk-th element of Cµ, then [Cµ]jk = σjσkρjk where σ2
j , σ2

k are variances of the j-th and
k-th elements of vector µi, correspondingly, and ρjk is the correlation between them. From (3.2) it follows
that

Ds = 1
2m

[
E

{(
µT

i µi

)2
}
−

(
E

{
µT

i µi

})2
]

Lemma A.1 and straitforward calculations allow us to write

E
{
µ4

i,k

}
= 3σ4

k , E
{
µ2

jiµ
2
ki

}
= σ2

j σ2
k

(
1 + 2ρ2

jk

)

where j and k are indices of the corresponding elements of µi. It follows from here that

E

{(
µT

i µi

)2
}

= 3

m∑

k=1

σ4
k + 2

m∑

j,k=1
j<k

σ2
j σ2

k

(
1 + 2ρ2

jk

)

(
E

{
µT

i µi

})2
=

m∑

k=1

σ4
k + 2

m∑

j,k=1
j<k

σ2
j σ2

k

Ds = 1
m

m∑

j,k=1

[Cµ]2jk = 1
m‖Cµ‖2

Because [Cµ]jj = 1 + ∆jj and [Cµ] jk
j 6=k

= ∆jk where ∆jj and ∆jk denote the corresponding entries of

∆, then from the above expression we obtain

Ds = 1 + (2/m) tr{∆}+(1/m)‖∆‖2

Based on definition si (3.2), obtain mSk
(3.5) and variance

DSk
= Ds + 2

k−1∑

j=1

(1 − j/k)Kss(j)

Under approximation (3.1), we have

lim
k→∞

DSk
= Ds(1 + r)/(1 − r)
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Due to the exponential correlated dependence (3.1), the mixing condition in Birkhoff-Khinchin theorem
holds (Yoshihawa, 1992), (Ibragimov and Linnik, 1965), hence convergence (3.4) and PD in (3.7) are also
true.

2
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