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Abstract
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1 INTRODUCTION

The increasing interest in synthetic systems capable to maintain high perfor-

mance under uncertainty and unpredictability has heightened the need for

borrowing the mechanisms of adaptation from Biology, Evolution and Ge-

netics suitable to improve the behavior of the system under synthesis. That

such is the case is suggested by the fact that the standard mathematical

programming models, that are synthetic as well, are not able sometimes to

guarantee good results: the swiftness of response, short settling time and high

steady-state accuracy for low computational cost.

To an increasing degree many non-standard approaches such as Fuzzy Tech-

nology, Neural Networks and Evolutionary Computing are merged in the

area of “Intelligent Techniques” or “Computational Intelligence” (CI). The

last three decades have witnessed a very strong growth of CI. Since the

early seventies of the last century these techniques have also been applied
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to a large variety of problems to deliver efficient solutions and benefits to

the users. Thus, the joint usage of expert system technology and fuzzy logic

enables data base size to be cut in tens [?]. Another approach to intelli-

gent system optimization and learning is closely associated with developing

the combined technologies of fuzzy neural structures [?, ?]. Modern special

purpose program-instrumental tools make possible not only simulate, in all

details, the system under construction, but evaluate efficiency of the adopted

design solutions based on one or other intelligent technology, as well. For ex-

ample, the application soft package WinFACT (Windows Fuzzy and Control

Tools) provides a means for going from a classic design to a neural network

version of the fuzzy control being constructed through it [?].

At the same time, some distrust as to the novel, non-standard approaches to

system optimization remains a fact within applied and computational math-

ematics community. This fact stimulates a comparative study of conventional
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and genetic approaches to the problem of eliminating uncertainty during the

system life cycle. The genetic methods are of special interest because of their

ability to treat the complex optimization problems using a simple and rela-

tively inexpensive model.

In this paper, a problem of discrete time filter optimization both in open and

close loop is considered as applied to trackers [?]. Two approaches to filter

optimization within a stochastic control system operating under uncertainty

are experimentally compared:

1) The auxiliary performance index approach based on classic numerical

optimization methods [?] and

2) Non-numerical filter optimization using genetic algorithms [?, ?].

The outline of the paper is as follows. Section ?? describes the problem in-

cluding the monitored system, Kalman filter and adaptive filter. A general

framework for Kalman filter identification is given in Section ??. Section ??
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contains a short description of genetic algorithms. Some computational ex-

periment results are shown in Section ??. Finally, Section ?? concludes the

paper.
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2 PROBLEM DESCRIPTION

To construct and study the adaptive tracker, first express the problem in

terms of the augmented state process a)

xa(·)
.
=




x(·)

xr(·)



 ∈ R
n

as generated in discrete time by



x(ti+1)

xr(ti+1)



 =




Φ 0

0 Φr








x(ti)

xr(ti)



 +




Ψ

0



u(ti) +




w(ti)

wr(ti)



 (1)

E










w(ti)

wr(tj)





[

wT (ti) wr
T (tj)

]






=




Q 0

0 Qr



 δi,j (2)

a) The notation “
.

=” instead of “=” is meant in this paper to indicate “equality by definition”.
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with a control input u(·) and zero mean white noises w(·), wr(·), and observed

by

za(·)
.
=




z(·)

zr(·)



 ∈ R
m, za(ti) =




z(ti)

zr(ti)



 =




H 0

0 Cr



xa(ti) +




v(ti)

vr(ti)





(3)

E










v(ti)

vr(tj)





[

vT (ti) vr
T (tj)

]






=




R 0

0 Rr



 δi,j (4)

with zero mean white noises v(·), vr(·), where δi,j stands for Kroneker’s delta

function.

The tracker is designed to regulate the tracking error

e(ti)
.
= Ca




x(ti)

xr(ti)



 with Ca
.
=

[

C
... − Cr

]

(5)
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to zero which is to be accomplished by minimization of the mean quadratic

cost

Jcontrol
.
= lim

t0→−∞
E







1
2

i∑

j=0




xa(tj)

u(tj)





T 


Xa Sa

ST
a U








xa(tj)

u(tj)











(6)

where Xa
.
= CT

a Y Ca and Sa
.
= CT

a S with S allowed to be nonzero, and some

constant Y > 0 and U > 0, so that the composite matrix in (??) is positive

semidefinite. Thus, the tracker must cause a controlled variable yc(·) = Cx(·)

to track some target (reference) variable yr(·) = Crxr(·).

Restricting our attention to time-invariant system, we can seek the steady

state (constant) gains Gc1 and Gc2 in the full-state feedback law of

u(ti) = −
[

Gc1
... Gc2

]




x(ti)

xr(ti)



 = −Gc1x(ti) − Gc2xr(ti) . (7)
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This law [?] could be used if we had perfect knowledge of both x(ti) and xr(ti).

As it is not the case, one employs the Kalman filter synthesis to generate

estimates x̂(t+i ) and x̂r(t
+
i ) and substitute them in (??) for x(ti) and xr(ti),

correspondingly. To obtain the filter decoupled into two totally independent

filters, we require x(t0) and xr(t0) to be uncorrelated; the same requirement

is adopted with respect to w(·) and wr(·) in (??) and v(·) and vr(·) in (??).

Further, to guarantee existence of the steady state filters, we assume that

Φr is asymptotically stable (has all of its eigenvalues strictly within the unit

circle on the complex plane), the pair (Φ, Q1/2) is stabilizable, the pair (Φ, H)

is observable, and the pair (Φ, Ψ) is controllable. Also, to exploit the Auxiliary

Performance Index (API) approach for the optimal filters identification [?, ?],

we assume that both subsystems in (??), (??) are given in the standard

observable form, SOM.

In these assumptions, the Steady-State Kalman Filter (SSKF) is presented
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by

x̂a(t
−
i+1) = Φax̂a(t

+
i ) + Ψau(ti), (8)

x̂a(t
+
i ) = x̂a(t

−
i ) + Ka[za(ti) − Hax̂a(t

−
i )] (9)

with Φa and Ψa readily seen from (??), Ha from (??) and Ka computed

through the forward Riccati recursion [?] for use x̂a(t
+
i ) = [x̂(t+i )T ... x̂r(t

+
i )T ]T

instead of xa(ti) in (??).

The problem we consider is caused by the fact of parameter uncertainty

inherent to (??), (??), (??) and (??). In this work we concentrate on one

level of uncertainty:

Case 1: Four matrices in the system description, namely Q, R, Qr and Rr in

(??) and (??), allow for the dependence on an uncertainty vector θ ∈ Θ
b). Each particular value of θ specifies a mode.

b) Θ is a compact set where the SSKF (??), (??) exists.
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Estimates of the Kalman gains K and Kr in Ka = diag[K, Kr] will be denoted

correspondingly as K̄ and K̄r in K̄a = diag[K̄, K̄r] within a suboptimal filter

(SOF)

x̄a(t
−
i+1) = Φax̄a(t

+
i ) + Ψau(ti), (10)

x̄a(t
+
i ) = x̄a(t

−
i ) + K̄a[za(ti) − Hax̄a(t

−
i )] (11)

and as K̃ and K̃r in K̃a = diag[K̃, K̃r] within an adaptive filter (AF)

x̃a(t
−
i+1) = Φax̃a(t

+
i ) + Ψau(ti), (12)

x̃a(t
+
i ) = x̃a(t

−
i ) + K̃a[za(ti) − Hax̃a(t

−
i )] (13)

All the AF defined by (??), (??) vary in the algorithm of adaptation (se-

lection) of K̃a. Two algorithms for this are compared: conventional numeric

(NA) and genetic (GA).
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3 GENERAL FRAMEWORK FOR IDENTIFICATION

Conventional identification methods such as stochastic approximation (or

Robbins-Monroe procedure), least-squares method and many others are widely

presented in the literature [?]. For comparison study, we select one of them

known as Auxiliary Performance Index (API) method developed for adaptive

filtering [?] and extended for control problems [?].

To tailor this paper with [?, ?], re-denote the variables of (??), (??) as follows

g(ti+1|i)
.
= x̃a(t

−
i+1) , g(ti|i)

.
= xa(t

+
i ) , η(ti|i)

.
= za(ti) − Hax̃a(t

−
i ) (14)

and denote the design (adjustable) AF parameter as the column vector

θ̂
.
= col[ θ̂11, . . . , θ̂1m; · · · ; θ̂n1, . . . , θ̂nm

︸ ︷︷ ︸

all p entries of K̃a ordered by rows

] ∈ R
p , θ̂ij

.
= [K̃a]ij , p = mn .(15)

As it is known, API method boils down to MPEa) method except one fea-
aMinimum Prediction Error
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ture: it exploits the idea of equivalent replacing the Original Performance

Index being Direct but Inaccessible (DbI) one, by an Auxiliary Performance

Index being Accessible albeit Indirect (AaI). The main requirement for this

replacement is that OPI and API be equimodal, that is, they have one and

the same minimizing argument. Thus, based on API approach, we do the

following:

1. Construct the Sensitivity Model (SM) by partial differentiating equations

(??)–(??) to obtain the recursive equations for the sensitivity functions

µjl(ti+1|i)
.
=

∂

∂θ̂jl

g(ti+1|i) , j = 1, . . . , n ; l = 1, . . . , m

2. For j = 1, . . . , n ; l = 1, . . . , m , compute

η
i|i−1
i−s+1|i−s = [ηT (ti−s+1|i−s) | · · · | ηT (ti|i−1)]

T

ε(ti, θ̂) = P(K̃a)η
i|i−1
i−s+1|i−s (16)
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∂η(ti|i−1)

∂θ̂jl

= −Haµjl(ti|i−1)

∂ε(ti, θ̂)

∂θ̂jl

=

[

∂

∂θ̂jl

P(K̃a)

]

η
i|i−1
i−s+1|i−s + P(K̃a)

∂

∂θ̂jl

η
i|i−1
i−s+1|i−s (17)

where P(·) is a procedure defined in [?] as follows.

Definition 1. Let s, p1, . . . , pm ∈ N satisfy

s
.
= max(p1, p2, . . . , pm) ≤ p1 + p2 + . . . + pm = n

and A be an ms × k matrix, k ∈ N, composed of s submatrices with m

rows and k columns each. Denote the j-th row of the i-th submatrix by aj
i
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and rearrange all these ms rows in order to form a new s × km matrix

AT
.
=








a1
1 . . . am

1

... . . . ...

a1
s . . . am

s








.

Then S (A), which is the n × k matrix, is called the S -transform of

the matrix A, provided its n rows are obtained by taking the elements

aj
i from AT and placing them into S (A) as rows in the following order:

a1
1, a

1
2, . . . , a

1
p1
, a2

1, a
2
2, . . . , a

2
p2
, . . ., am

1 , am
2 , . . . , am

pm
.

Definition 2. Let (Φ?, H?) be matrices in the SOM such that Φ? is of a

block companion form whose non-trivial (non-zero or non-unit) elements

lie in the rows with numbers p1, p1 + p2, . . . , p1 + p2 + . . . + pm = n,

where pj are the given partial observability indices of (Φ?, H?), and H? is

the m × n matrix whose ij-th element is 1 if j = p1 + p2 + . . . + pi−1 + 1
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and 0 otherwise.

Then P(D), which is the (n × sm)-matrix, is called the P-transform of

an (n × m)-matrix D, provided

P(D)
.
= S (Sθ(H?, Φ?, Φ?D))

with the (sm × sm)-matrix

Sθ(H?, Φ?, G)
.
=











I 0 · · · 0

H?G I · · · 0
...

... . . . ...

H?Φ
s−2
? G H?Φ

s−3
? G · · · I











, G = Φ?D (18)

3. Arrange the sensitivity functions defined by (??) into the n×p sensitivity
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matrix

S(ti)
.
=

[

∂ε(ti, θ̂)

∂θ̂11

, . . . ,
∂ε(ti, θ̂)

∂θ̂1m

, · · · ,
∂ε(ti, θ̂)

∂θ̂n1

, . . . ,
∂ε(ti, θ̂)

∂θ̂nm

]

(19)

4. Construct the Gradient Model with an exponential smoothing factor β

G(ti) = ST (ti)ε(ti, θ̂) (20)

Ĝ(ti) = βĜ(ti−1) + (1 − β)G(ti)

5. Check the Stability Condition (SC): ρ[(I − K̃aHa)Φa] < 1 for AF and

SM where ρ[·] stands for the spectral radius of matrix [·]. In doing so,

the designer should have the characteristic polynomial for matrix (I −

K̃aHa)Φa, that is written as

q(λ)
.
= b0λ

n + b1λ
n−1 + · · · + bn−1λ

1 + bn, b0 > 0

with b0, . . . , bn expressed as some functions bk = bk(θ̂) of the design pa-

rameter (??), and then use Jury’s criterion [?, Sect. 3.3]. If SC is met,
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we write SC(θ̂) = true, and SC(θ̂) = false otherwise, and we call this

procedure by checkSC(θ̂).

6. Use an Adaptation Procedure (AP) to update the parameter (??)

within an effective operating range of ti from tstart to tstop. For AP, one can

use different optimum seeking methods able to minimize a performance

index taken to characterize the quality of AF (??)–(??). For such index,

we use in this paper the API

J(θ̃)
.
=

1

2
E

{

ε(ti, θ̂)
Tε(ti, θ̂)

}

(21)

with the generalized residual (??). Using the Simplified Least Squares

(SLS) to minimize (??), the AP looks as follows:

18



if (tstart ≤ ti < tstop) then

begin if (tstart = ti) then

begin k := 0; Λ = I end else k := k + 1;

if (k > 0 & k = 0 mod s) then

begin τ := [k − 1/s]; for j = 1 to p do

λ
(j)
τ+1 := λ

(j)
τ +

∥
∥
∥

∂r(ti,θ̂(τ))

∂θ̂j

∥
∥
∥

2

; Λτ+1 = diag {λ
(j)
τ+1}; \? SLS ?\

π := θ̂(τ) − Λ−1
τ+1Ĝ(ti); \? Num?\

checkSC(π);

if (SC(π)) then θ̂(τ + 1) := π

end

end
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Remark 1. Changing the line marked by \? SLS?\, one can go to another

minimum seeking method. For instance, by using

λ
(j)
τ+1 := λ(j)

τ + 1

one switches to the Simple Stochastic Approximation \? SSA?\. Such

cases, together with the line marked by \? Num?\, form a numeric method

to optimize θ̂.

Remark 2. Changing only the two marked lines, one can go to a genetic

method.

Remark 3. Due to s− 1 one sample delays in the framework of Fig. ??,

the time pace for AP has to be set s times lower than for the system. To do

this, the AP timer τ is introduced in the above AP through the truncation

function [·].
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Ψa +

∆ •

+Φa

−Ha

+•×

•

∆•∆ •
P(K̃a)

min
θ̂

J(θ̂) θ̂ ≡ K̃a

η(ti+s|i+s−1)

︸ ︷︷ ︸

(s − 1)

u(ti+s) za(ti+s)

Figure 1: The general framework for using the API. ∆ denotes a one sample memory (unit

delay).
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4 THE SIMULATED GENETIC ALGORITHMS [?, ?, ?, ?]

A genetic algorithm (GA) differs from other search techniques by the use of

concepts taken from natural genetics and evolution theory.

The basic element processed by a GA is the string formed by concatenating

a substring, each of which is a binary code of a parameter of search space [?].

Thus each string represents a possible solution to the problem. The GA works

with a set of strings, called the population. This population then evolves

from generation to generation through the application of genetic operators.

A GA in its simplest form uses three operators: Replication, Crossover and

Mutation.

Replication. Replication is based on the principle of survival of the fittest.

A fitness, F (i), is assigned to each individual in the population where high
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numbers mean good fit. The fitness function can be any nonlinear, non-

differentiable, discontinuous, positive function, because the algorithm only

needs a fitness assigned to each string. We will first consider the construc-

tion of the intermediate population from the current population. In the first

generation the current population is also the initial population. After calcu-

lating F (i)/F̄ (where F̄ is the average value of the fitness) for all the strings

in the current population, selection is carried out. In the canonical genetic

algorithm, the probability that strings in the current population are copied

(i. e., replicated) and placed in the intermediate generation is proportional

to their fitness.

There are a number of ways to do selection. We might view the population

as mapping onto a roulette wheel, where each individual is represented by a

space that proportionally corresponds to its fitness. By repeatedly spinning

the roulette wheel, individuals are chosen using “stochastic sampling with
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replacement” to fill the intermediate population.

A selection process that will more closely match the expected fitness values is

a “remainder stochastic sampling”. For each string i where F (i)/F̄ is greater

than 1.0, the integer portion of this number indicates how many copies of

that string are directly placed in the intermediate population. All strings

(including those with F (i)/F̄ less than 1.0) then place additional copies in the

intermediate population with a probability corresponding to the fractional

portion of F (i)/F̄ . For example, a string with F (i)/F̄ = 1.36 places 1 copy

in the intermediate population, and then receives a 0.36 chance of placing a

second copy. A string with a fitness of F (i)/F̄ = 0.54 has a 0.54 chance of

placing one string in the intermediate population.

Crossover: Replication directs the search toward the best existing individuals

but does not create any new individuals. In nature, an offspring is rarely
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an exact clone of a parent, it usually has two parents and inherits genes

from both. The main operator to work on the parents is crossover, which is

applied with a certain probability, called crossover rate (pc). Crossover takes

two individuals from intermediate population, and cuts their chromosome

strings at some randomly chosen position, to produce two “head” segments,

and two “tail” segments. The tail segments are then swapped over to produce

two new full length chromosomes:






0 0 0
... 0 0 0 0

1 1 1
... 1 1 1 1

× ⇒
0 0 0 1 1 1 1

1 1 1 0 0 0 0

This is known as single-point crossover.

A two-point crossover operator uses two randomly chosen crossover points.

25



Strings exchange the segment that falls between these two points:






0 0
... 0 0 0

... 0 0

1 1
... 1 1 1

... 1 1
× ⇒

0 0 1 1 1 0 0

1 1 0 0 0 1 1

Mutation: Mutation is applied to each child individually after crossover. It

randomly alters each gene with a small probability (typically 0.001). Follow-

ing example shows the third gene of the chromosome being mutated.

0 0
... 0

... 0 0 ⇒ 0 0
... 1

... 0 0
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5 SOME COMPUTATIONAL EXPERIMENT RESULTS

A sample of GA behavior within the Adaptation Procedure of Section ?? is

shown on Figure ??. For simulation, the tracker described in [?] has been

chosen. In this example, we have the following constant quantities:

Φ = [0.82], Φr = [0.61], Ψ = [0.18], C = [1], Cr = [1], Y = [1], U = [1]

and ST
a = [0

... 0] for the LQG controller (??) synthesis. This gives

Gc1 = [0.36] , Gc2 = [−0.19] .

For the Kalman filter synthesis we have the following data:

H = [1], Q = [0.084σ2], Qr = [0.63σ2
r ], σ2 = var, σ2

r = var, R = var, Rr = var

where “var” stands for the variable quantities. While simulating, we specify

the two phases named “before” and “after” (before and after a parameter

switch). The phase “before” takes 300 time instants and phase “after” takes
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10000 time instants.

In these experiments, simulation parameters are as follows:

1. Number of Iterations, (NI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10000

2. Number of Experimental Samples (NES) to average results, . . . . . . . . .100

3. Simulated numeric algorithms and their parameters:

(a) Robbins-Monroe procedure, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSA

(b) Simplified Least Squares, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SLS

(c) Exponential smoothing parameter β, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5

4. Simulated genetic algorithm:

(a) Chromosome Length, (CL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

(b) Power (size) of population, (PP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
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(c) Eliticity Factor a), (EF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

(d) Mutation Probability Rate, (MPR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.100

(e) Selection Mode, (SM) . . . . . . . . . . . . . . . . . remainder stochastic sampling

(f) Crossover Mode, (CM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . two-point

In experiments, we consider the following two cases.

Case 1. See Figures ?? to ??.

“before” “after”

σ2 σ2
r R Rr K Kr σ2 σ2

r R Rr K Kr

10.0 4.0 4.0 1.0 0.287 0.736 10.0 4.0 0.1 10.0 0.900 0.258

a) Number of chromosomes passing from current population into future population without any operations (selection-

crossover-mutation) as being the best ones.
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Case 2. See Figures ?? to ??.

“before” “after”

σ2 σ2
r R Rr K Kr σ2 σ2

r R Rr K Kr

10.0 4.0 4.0 10.0 0.287 0.258 10.0 4.0 0.1 1.0 0.900 0.736

The Integral Percent Error has been determined (with averaging over the

NESs) by

(a)IPE(ti)
.
=

‖K̃a(ti) − Ka‖

‖Ka‖
100% or (b)IPE(ti)

.
=

‖K̃(ti) − K‖
‖K‖

100%(22)

In the other portion of experiments, we modify the parameters: NI to 5000,

NES to 50, CL to 5, PP to 30, and MPR to 0.200. Corresponding results for

Case 1 are shown in Figures ?? to ?? b). The IPE is shown in the figures
b) Figures ?? to ?? have been shown in Appendix.
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for all three methods: SSA by red lines, SLS by blue lines and GA by green

lines.

As can be seen from these and many other experiments that were conducted,

in the majority of cases, the averaged GA behavior provides the lower IPE

levels. However it is important to note, that the individual GA behavior is

much more fluctuating than the individual numeric methods behavior.

The consistent difference between these types of methods, that was to be

expected, lies in the very mechanism of their behavior. Numeric algorithms

are sequential in operation while genetic algorithms are parallel. The latter

require a set of individuals forming the current population of adaptive filters,

each individual filter working through the mechanism of Figure ??. Large

size of population causes the computation load to rise so that real time data

processing may occur to be difficult to sustain.
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Figure 2: Behavior of the modified GA parameters for Case 1.
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6.1 The Sensor equation
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