Using Matlab for First Order ODEs

Contents

Inline functions

Direction fields

Numerical solution of initial value problems

Plotting the solution
Finding numerical values at given t values

Symbolic solution of ODEs

Finding the general solution
Solving initial value problems
Plotting the solution
Finding numerical values at given t values

Inline Functions

If you want to use a function several times it is convenient to define it as a so-called inline function:

f1 = inline('sin(x)*x','x')
defines the function f1(x)=sin(x)*x. Note that the arguments of inline must be strings (not symbolic expressions). You can then use the function f1 in expressions you type in.

You can also define inline functions of several variables:

g1 = inline('x*y+sin(x)','x','y')
defines the function g1(x,y)=x*y+sin(x) of two variables.

Direction Fields

Download the files dfield.m and pplane.m from http://math.rice.edu/~dfield/ .

The files must be saved in a directory that MATLAB can find. If your copy of MATLAB cannot find dfield or pplane, it is most likely because the directory in which you saved the files is not on the MATLAB path. On modern versions of MATLAB there is a path browser, which can be opened from the menu or from the toolbar. This tool will enable you to add a directory to the path.
Once you click on dfield or pplane an interactive window is open and you can enter your differential equation.
Solving an initial value problem numerically

First define the inline function g corresponding to the right hand side of the differential equation y'(t) = g(t,y(t)). E.g., for the differential equation y'(t) = t y2 define

g = inline('t*y^2','t','y')
To plot the numerical solution of an initial value problem: For the initial condition y(t0)=y0 you can plot the solution for t going from t0 to t1 using ode45(g,[t0,t1],y0).

Example: To plot the solution of the initial value problem y'(t) = t y2, y(-2)=1 in the interval [-2,2] use

ode45(g,[-2,2],1)
[image: image1.png]

The circles mark the values which were actually computed (the points are chosen by Matlab to optimize accuracy and efficiency). You can obtain vectors ts and ys with the coordinates of these points using [ts,ys] = ode45(g,[t0,t1],y0). You can then plot the solution using plot(ts,ys) (this is a way to obtain a plot without the circles).
To obtain numerical values of the solution at certain t values: You can specify a vector tv of t values and use [ts,ys] = ode45(g,tv,y0). The first element of the vector tv is the initial t value; the vector tv must have at least 3 elements. E.g., to obtain the solution with the initial condition y(-2)=1 at t = -2, -1.5, ..., 1.5, 2 and display the results as a table with two columns, use

[ts,ys]=ode45(g,-2:0.5:2,1);
[ts,ys]
To obtain the numerical value of the solution at the final t-value use ys(end) .

Solving a differential equation symbolically
You have to specify the differential equation in a string, using Dy for y'(t) and y for y(t): E.g., for the differential equation y'(t) = t y2 type

sol = dsolve('Dy=t*y^2','t')
The last argument 't' is the name of the independent variable. Do not type y(t) instead of y.

If Matlab can't find a solution it will return an empty symbol. If Matlab finds several solutions it returns a vector of solutions.

Sometimes Matlab can't find an explicit solution, but returns the solution in implicit form. E.g., dsolve('Dy=1/(y-exp(y))','t') returns

t-1/2*y^2+exp(y)+C1=0
Unfortunately Matlab cannot handle initial conditions in this case. You can use ezcontour('t-1/2*y^2+exp(y)',[-4 4 -3 3]) to plot several solution curves for t in [-4,4], y in [-3,3]. You can use ezplot('t-1/2*y^2+exp(y)-1',[-4 4 -3 3]) to plot only the curve where t-1/2*y^2+exp(y)=1.

The solution will contain a constant C1. You can substitute values for the constant using subs(sol,'C1',value). E.g., to set C1 to 5 and plot this solution for t=-2 to 2 use

ezplot(subs(sol,'C1',5) , [-2 2])
To solve an initial value problem additionally specify an initial condition:

sol = dsolve('Dy=t*y^2','y(-2)=1','t')
To plot the solution use ezplot(sol,[t0,t1]). Here is an example for plotting the 13 solution curves with the initial conditions y(-2) = -0.4, -0.2, ..., 1.8, 2:

sol = dsolve('Dy=t*y^2','y(-2)=y0','t')

for y0=-0.4:0.2:2

 ezplot(subs(sol,'y0',y0) , [-2 2])

 hold on

end

hold off

axis tight

[image: image2.png]15

0s

To obtain numerical values at one or more t values use subs(sol,'t',tval) and double (or vpa for more digits):

sol = dsolve('Dy=t*y^2','y(-2)=1','t')
This gives a numerical value of the solution at t=0.5:

double(subs(sol,'t',0.5))
This computes numerical values of the solution at t=-2, -1.5, ..., 2 and displays the result as a table with two columns:

tval = (-2:0.5:2)'; % column vector with t-values
yval = double(subs(sol,'t',tval))% column vector with y-values
[tval,yval] % display 2 columns together
PAGE
1

