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5 Higher-order ODEs and systems of ODEs

5.1 General-purpose discretization schemes for systems of ODEs

The strategy of generalizing a discretization scheme from one to N > 1 ODEs is, for the most
part, straightforward. Therefore, below we will consider only the case of a system of N = 2
ODEs. This case will also allow us to investigate a certain issue that is specific to systems of
ODEs and does not occur for a single ODE. We will denote the exact solutions of the ODE
system in question as y(1)(x) and y(2)(x), while the corresponding numerical solutions of this
system, as Y (1) and Y (2); the functions appearing on the r.h.s. of the system will be denoted
as f (1) and f (2). Thus, the IVP for the two unknowns, y(1) and y(2), is:

y(1) ′ = f (1)(x, y(1), y(2)), y(1)(x0) = y
(1)
0 ,

y(2) ′ = f (2)(x, y(1), y(2)), y(2)(x0) = y
(2)
0 .

(5.1)

We now consider generalizations of some of the methods introduced in Lectures 1 and 2.

Simple Euler method

Probably the most intuitive form of this method for two ODEs is
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Already for this most basic example, we can identify the issue, mentioned above, that is specific
to systems of ODEs and does not occur for a single first-order ODE. Namely, notice that once
we have found the new value Y

(1)
n+1 for the first component of the solution, we can substitute it

into the second equation instead of substituting Y
(1)
n , as it is done in (5.2). The result is:
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(5.3)

Since the components Y (1) and Y (2) enter Eqs. (5.2) on equal footing, we can interchange their
order in (5.3) and obtain:
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(5.4)

It is rather straightforward to see that all the three implementations of the simple Euler method
are first-order methods.

An obvious question that now comes to mind is this: Is there any aspect because of which
methods (5.3) and (5.4) may be preferred over method (5.2)? The short answer is ‘yes, for a
certain form of f (1) and f (2), there is’. We will present more detail in Sec. 5.3 below. For now
we continue with presenting the discretization scheme for the Modified Euler equation for two
first-order ODEs.
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Modified Euler method
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(5.5)

Let us verify that (5.5) is a second-order method, as it has been for a single ODE. We
proceed in exactly the same steps as in Lecture 1. We will also use the shorthand notations:
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Since in the derivation of the local truncation error we always assume that Y
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Expanding the r.h.s. of the second of Eqs. (5.5) about the “point” (xn, ~Yn) in a Taylor
series, we obtain:
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Now expanding the exact solution y
(k)
n+1 = y(k)(xn+1) in a Taylor series, we obtain:
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Here the coefficient of the h2-term has been computed by using the fact that f (k) = f (k)(x, y(1)(x), y(2)(x))
and then using the Chain rule. Comparing the last lines in (5.6) and (5.7), we see that

y
(k)
n+1 = Y

(k)
n+1+O(h3), which confirms that the order of the local truncation error in the Modified

Euler method (5.5) is 3, and hence the method is second-order accurate.

In the homework problems, you will be asked to write out the forms of discretization schemes
for the Midpoint and cRK methods for a system of two ODEs.

To conclude this subsection, we note that any higher-order IVP, say,

y′′′ + f(x, y, y′, y′′) = 0, y(x0) = y0, y′(x0) = z0, y′′(x0) = w0 , (5.8)
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can be rewritten as a system of first-order ODEs with appropriate initial conditions:

y′ = z ,
z′ = w ,
w′ = −f(x, y, z, w) ,

(5.9)

y(x0) = y0, z(x0) = z0, w(x0) = w0 .

This is a system of three first-order ODEs, for which the forms of the discretization schemes
have been considered above. Obviously, any higher-order ODE that can be explicitly solved for
the highest derivative, can be dealt with along the same lines.

5.2 Special methods for the second-order ODE y′′ = f(y).
I: Central-difference methods

A second-order ODE, along with the appropriate initial conditions:

y′′ = f(y), y(x0) = y0, y′(x0) = y′0 , (5.10)

occurs in applications quite frequently because it describes the motion of a Newtonian particle
(i.e. a particle that obeys the laws of Newtonian mechanics) in the presence of a conservative
force (i.e. a force that depends only on the position of the particle but not on its speed and/or
the time). In the remainder of this subsection, it will be convenient to think of y as the position
of the particle, of x — as the time, and of y′ — as the particle’s velocity.

The first special method that we introduce for Eq. (5.10) (and for systems of such equations)
uses a second-order accurate approximation for y′′:

y′′n =
yn+1 − 2yn + yn−1

h2
+ O(h2) ; (5.11)

you encountered a similar formula in Lecture 3 (see Sec. 3.1). Combining Eqs. (5.10) and
(5.11), we arrive at the central-difference method for Eq. (5.10):

Yn+1 − 2Yn + Yn−1 = h2fn . (5.12)

(Method (5.12) is sometimes referred to as the simple central-difference method, because the
r.h.s. of the ODE (5.10) enters it in the simplest possible way.) Since this is a two-step method,
one needs two initial points to start it. The first point, Y0, is simply the initial condition for
the particle’s position: Y0 = y0. The second point, Y1, has to be determined from the initial
position y0 and the initial velocity y′0. The natural question then is: To what accuracy should
we determine Y1 so as to be consistent with the accuracy of the method (5.12)?

To answer this question, we first show that the global error in the simple central-difference
method is O(h2). Indeed, the local truncation error is O(h4), as it follows from (5.10)–(5.12).
For numerical methods for a first-order ODE, considered earlier, this would imply that the
global error must be O( 1

h
) · O(h4) = O(h3), since the local error of O(h4) would accumulate

over O( 1
h
) steps. However, (5.10) is a second-order ODE, and for it, the error accumulates

differently than for a first-order one. To see this qualitatively, we consider the simplest case
where the same error is made at every step, and all these errors simply add together. This can
then be modeled by the following second-order “ODE” in the discrete variable n:

d2(GlobalError)/dn2 = LocalError, where LocalError=const; (5.13)

GlobalError(0) = 0, GlobalError ′ (0) = StartupError . (5.14)
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The “StartupError” is actually the error one makes in computing Y1. If we now treat the
discrete variable n as continuous (which is acceptable if we want to obtain an estimate for the
answer), then the solution of the above is, obviously,

GlobalError(n) = StartupError · n + LocalError · n2

2
, (5.15)

which on the account of

n =
(b− a)

h
= O

(
1

h

)
, ([a, b] being the interval of integration)

becomes

GlobalError(n) = StartupError ·O
(

1

h

)
+ LocalError ·O

(
1

h2

)
. (5.16)

In Appendix 1, we derive an analog of (5.16) for the discrete equation (5.12) rather than for the
continuous equation (5.13); that derivation confirms the validity of our replacing the discrete
equation by its continuous equivalent for the purposes of the estimation of error accumulation.

Equation (5.16) along with the aforementioned fact that the local truncation error is O(h4)
imply that the global error is indeed O(h2), provided that the “startup error” (i.e., the error in
Y1) is appropriately small. Using the same equation (5.16), it is now easy to see that Y1 needs
to be determined with accuracy O(h3). Therefore, we supplement Eq. (5.12) with the following

Initial conditions for method (5.12):

Y0 = y0, Y1 = y0 + hy′0 +
h2

2
f(y0) , (5.17)

where in the last equation we have used the ODE y′′ = f(y).

Another method that uses the central-difference approximation (5.11) for y′′ is:

Yn+1 − 2Yn + Yn−1 =
h2

12
(fn+1 + 10fn + fn−1) . (5.18)

This is called Numerov’s method, or the Royal Road formula. The local truncation error of
this method is O(h6). Therefore, the global error will be O(h4) (i.e., 2 orders better than the
global error in the simple central-difference method), provided we calculate Y1 with accuracy
O(h5). In principle, this can be done using, for example, the Taylor expansion:

Y1 = y0 + hy′0 +
h2

2
y′′0 +

h3

6
y′′′0 +

h4

24
y

(iv)
0 , (5.19)

where y0 and y′0 are given as the initial conditions and the higher-order derivatives are computed
successively as follows:

y′′0 = f(y0),

y′′′0 = d
dx

f(y)
∣∣
y=y0

= fy(y0)y
′
0 ,

y
(iv)
0 = d

dx
[fy(y) y′(x)]

∣∣
y=y0

= fyy(y0)y
′
0 + fy(y0)f(y0) .

(5.20)

However, Numerov’s method is implicit (why?), which makes it unpopular for numerical inte-
gration of the IVPs (5.10). The only exception would be the case when f(y) = ay + b, a linear
function of y, when the equation for Yn+1 can be easily solved. We will encounter Numerov’s
method later in this course when we study boundary value problems; there, this method is the
method of choice because of its high accuracy.
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5.3 Special methods for the second-order ODE y′′ = f(y).
II: Methods that approximately preserve energy

As we said at the beginning of the previous subsection, Eq. (5.10) describes the motion of a
particle in the field of a conservative force. For example, the gravitational or electrostatic force
is conservative, but any form of friction is not. We now rename the independent variable x

as t (the time) and denote v(t) = y′(t) (the velocity). As before, y(t) denotes the particle’s
position. Equation (5.10) can be rewritten as

y′ = v, (5.21)

v′ = f(y), (5.22)

y(t0) = y0, v(t0) = v0 .

In Eq. (5.22), the r.h.s. can be thought of as a force acting on the particle of unit mass. Note
that these equations admit a conserved quantity, called the Hamiltonian (which in Newtonian
mechanics is just the total energy of the particle):

H(v, y) =
1

2
v2 + U(y) , U(y) = −

∫
f(y)dy . (5.23)

The first and second terms on the r.h.s. of (5.23) are the kinetic and potential energies of the
particle. Using the equations of motion, (5.21) and (5.22), it is easy to see that the Hamiltonian
(i.e., the total energy) is indeed conserved:

dH

dt
=

∂H

∂v

dv

dt
+

∂H

∂y

dy

dt
= v · f(y) +

dU

dy
· v = 0 ∀t . (5.24)

It is now natural to ask: Do any of the methods considered so far conserve the Hamiltonian?
That is, if {Vn, Yn} is a numerical solution of (5.21) and (5.22), is H(Vn, Yn) independent of n?
The answer is ‘no’. However, some of the methods do conserve the Hamiltonian approximately
over very long time intervals. We now consider specific examples of such methods.

Consider the three implementations of the simple Euler method, given by Eqs. (5.2)–
(5.4). We will refer to method (5.2) as the regular Euler method; the other two methods are
conventionally referred to as symplectic12 Euler methods. Let us apply these methods with
h = 0.02 to integration of the equations of a simple harmonic oscillator

y′′ = −y, y(0) = 0, y′(0) = 1 . (5.25)

The results are presented below. We plot the numerical solutions along with the exact one in
the phase plane for t ≤ 20, which corresponds to slightly more than 3 oscillation periods. The
orbits of the solutions obtained by the symplectic methods lie very close to the orbit of the
exact solution, while the orbit corresponding to the regular Euler method winds off into infinity
(provided one waits infinitely long, of course).

12“Symplectic” is a term from Hamiltonian mechanics that means “preserving areas in the phase space”. If
this explanation does not make the matter clearer to you, simply ignore it and treat the word “symplectic” just
as a new adjective in your vocabulary.
Perhaps surprisingly, systematic studies of symplectic methods began relatively recently, in the late 1980s. The
theory behind these methods goes far beyond the scope of this course (and the expertise of this instructor). A
review of such methods is posted on the website of this course.
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At this point, we are ready to ask two more questions.

Question: What feature of the symplectic Euler methods allows them to maintain the
Hamiltonian of the numerical solution near that of the exact solution?

Answer: A short answer is ‘stability’. We will provide more details on this in Sec. 5.4.
Another point of view is based on the concept of a so-called modified equation. It is mentioned
in the paper posted on the course website alongside this Lecture. While it is a useful concept,
we do not have the time to cover it in this course.

Question: Among the methods we have considered in this Section, are there other methods
that possess the property of near-conservation of the Hamiltonian?

Answer: A short answer is ‘yes’. To present a more detailed answer, let us look back at
the figure for the error in the Hamiltonian, obtained with the two symplectic Euler methods.
We see that these errors are nearly opposite to each other and hence, being added, will nearly
cancel one another. Therefore, if we somehow manage to combine the symplectic methods
(5.3) and (5.4) so that the Hamiltonian error of the new method is the sum of those two “old”
errors, then that new error will be dramatically reduced in comparison with either of the “old”
errors. (This is similar to how the second-order trapezoidal rule for integration of f(x) is
obtained as the average of the first-order accurate left and right Riemann sums, whose errors
are nearly opposite and thus, being added, nearly cancel each other.) Below we produce such
a combination of methods (5.3) and (5.4).

Let us split the step from xn to xn+1 into two substeps: from xn to xn+ 1
2

and then from

xn+ 1
2

to xn+1 (see the figure below). Let us now advance the solution in the first half-step

using method (5.4) and then advance it in the second half-step using method (5.3). Here is this
process in detail:
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xn → xn+ 1
2
, use (5.4) : Vn+ 1

2
= Vn + h

2
f(Yn) ,

Yn+ 1
2

= Yn + h
2
Vn+ 1

2
,

xn+ 1
2

→ xn+1, use (5.3) : Yn+1 = Yn+ 1
2

+ h
2
Vn+ 1

2
,

Vn+1 = Vn+ 1
2

+ h
2
f(Yn+1) .

(5.26)
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Combining the above equations (simply add the 2nd and 3rd equations, and then add the
1st and 4th ones), we obtain:

Yn+1 = Yn + hVn + h2

2
f(Yn) ,

Vn+1 = Vn + h
2
(f(Yn) + f(Yn+1)) .

(5.27)

Method (5.27) is called the Verlet method, after Dr. Loup Verlet who “discovered” it in 1967.
Later, however, Verlet himself found accounts of his method in works dated as far back as the
late 18th century. In particular, in 1907, G. Störmer used higher-order versions of this method
for computation of the motion of the ionized particles in the Earth’s magnetic field. About 50
years earlier, J.F. Encke had used method (5.27) for computation of planetary orbits. For this
reason, this method is also sometimes related with the names of Störmer and/or Encke.

The Verlet method is extensively used in applications dealing with long-time computations,
such as molecular dynamics, planetary motion, and computer animation13. Its benefits are:
(i) It nearly conserves the energy of the modeled system;
(ii) It is second-order accurate; and
(iii) It requires only one function evaluation per step.

To make the value of these benefits evident, in a homework problem you will be asked to
compare the performance of the Verlet method with that of the higher-order cRK method,
which is not symplectic and does not have the property of near-conservation of the energy.

We now complete the answer to the question asked about a page ago and show that the
Verlet method is equivalent to the simple central-difference method. To this end, let us write

13For example, you may visit a game-developers’ website at http://www.gamedev.net, go to their Forums
and there do a search for ‘Verlet’.



MATH 337, by T. Lakoba, University of Vermont 54

the Verlet equations at two consecutive steps:

Yn+1 = Yn + hVn + h2

2
f(Yn) ,

Vn+1 = Vn + h
2
(f(Yn) + f(Yn+1)) ,

Yn+2 = Yn+1 + hVn+1 + h2

2
f(Yn+1) ,

Vn+2 = Vn+1 + h
2
(f(Yn+1) + f(Yn+2)) .

(5.28)

In fact, we will only need the first three of the above equations. Subtracting the 1st equation
from the 3rd and slightly rearranging the terms, we obtain:

Yn+2 − 2Yn+1 + Yn =

{
hVn+1 +

h2

2
f(Yn+1)

}
−

{
hVn +

h2

2
f(Yn)

}
. (5.29)

We now use the 2nd equation of (5.28) to eliminate Vn+1. The straightforward calculation yields

Yn+2 − 2Yn+1 + Yn = h2f(Yn+1),

which is the simple central-difference method (5.12). Thus, we have shown that the simple
central-difference method nearly conserves the energy of the system.

To conclude this section, we note that although the Verlet method nearly conserves the
Hamiltonian of the simulated system, it may not always conserve or nearly-conserve other
constants of the motion, whenever such exist. As an example, consider the Kepler two-body
problem (two particles in each other’s gravitational field):

q′′ = − q

(q2 + r2)3/2
, r′′ = − r

(q2 + r2)3/2
, (5.30)

where q and r are the Cartesian coordinates of a certain radius vector relative to the center
of mass of the particles. Let us denote the velocities corresponding to q and r as Q and R,
respectively. This problem has the following three constants of the motion:

Hamiltonian of (5.30):

H =
1

2
(Q2 + R2)− 1√

q2 + r2
, (5.31)

Angular momentum of (5.30):

A = qR− rQ , (5.32)

Runge-Lenz vector of (5.30):

L =~i

(
R(qR− rQ)− q√

q2 + r2

)
+~j

(
−Q(qR− rQ)− r√

q2 + r2

)
. (5.33)

It turns out that the Verlet method nearly conserves the Hamiltonian and exactly conserves
the angular momentum A, but does not conserve the Runge-Lenz vector L. In a homework
problem, you will be asked to examine what effect this nonconservation has on the numerical
solution.
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5.4 Stability of numerical methods for systems of ODEs and higher-
order ODEs

Following the lines of the previous three subsections, we will first comment on the stability
of general-purpose methods, and then on that of special methods for y′′ = f(y) and similar
equations.

In Lecture 4, we showed that in order to analyze stability of numerical methods for a single
first-order ODE y′ = f(x, y), we needed to consider that stability for the model problem (4.15),
y′ = λy with λ = const. The motivation for this was given in Sec. 4.2. Namely, we related
the stability concept with the deviation (y − u) between two nearby solutions y and u of the
ODE in question, and this deviation satisfies Eq. (4.16), which we re-state here for the reader’s
convenience:

(y − u) ′ ≈ fy(x, y) · (y − u). (5.34)

Replacing the variable coefficient fy(x, y) with a constant λ, one arrives at the model problem
(4.15). Recall that when we analyze the stability of a particular numerical method, we need
to keep into account what range of values fy, and hence λ, can take on. Thus, as we stated
earlier, the stability of the numerical method depends on the ODE that it is applied to. We will
see below that the same statement also pertains to a system of ODEs.

Question: What is the counterpart of (5.34) for a system of ODEs?
Answer, stated for two ODEs:

(~y − ~u) ′ =
∂(f (1), f (2))

∂(y(1), y(2))
(~y − ~u) , (5.35)

where

~y =

(
y(1)

y(2)

)
, ~u =

(
u(1)

u(2)

)
,

∂(f (1), f (2))

∂(y(1), y(2))
=




∂f (1)

∂y(1)
∂f (1)

∂y(2)

∂f (2)

∂y(1)
∂f (2)

∂y(2)


 . (5.36)

The last matrix is called the Jacobian of the r.h.s. of system (5.1). Equations (5.35) and (5.36)
generalize straightforwardly for more than two equations.

We now give a brief derivation of Eqs. (5.35) and (5.36) which parallels that of Eq. (4.16)
for a single first-order ODE. For convenience of the reader, we re-state here the ODEs from
(5.1):

y(1) ′ = f (1)(x, y(1), y(2)),

y(2) ′ = f (2)(x, y(1), y(2)),

u(1) ′ = f (1)(x, u(1), u(2)),

u(2) ′ = f (2)(x, u(1), u(2)).
(5.37)

We subtract the second equation in the kth line (k = 1 or 2) of (5.37) from the first equation
in the same line and obtain:

(y(k) − u(k)) ′ = f (k)(x, y(1), y(2))− f (k)(x, u(1), u(2))

=
∂f (k)

∂y(1)
(y(1) − u(1)) +

∂f (k)

∂y(2)
(y(2) − u(2)) + O(ε2) . (5.38)

It is now easy to see that Eq. (5.38) is the same as Eqs. (5.35) and (5.36).
Since we do not know the values of the entries in the Jacobian matrix in Eq. (5.35), we

simply replace that matrix by a matrix with constant terms. Thus, the model problem that
one should use to analyze stability of numerical methods for system of ODEs is

~y ′ = A~y , A is a constant matrix. (5.39)
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Now, for a single first-order ODE, we had only one parameter, λ, in the model problem.
Question: How many parameters do we have in the model problem (5.39) for a system of N

ODEs?
The answer depends on which of the two categories of methods one uses. Namely, in Sec.

5.1, we saw that some methods (e.g., the regular Euler (5.2) and the Modified Euler (5.5)) use
the solution ~Yn at x = xn to simultaneously advance to the next step, x = xn+1. Moreover,
each component Y (k) is obtained using the same discretization rule. To be consistent with
the terminology of Sec. 5.1, we will call this first category of methods, the general purpose
methods. Methods of the other category, which included the symplectic Euler and Verlet,
obtain a component Y

(m)
n+1 at xn+1 by using previously obtained components at xn+1, Y

(k)
n+1 with

k < m, as well as the components Y
(p)
n with p ≥ m at xn. In other words, they apply different

discretization rules for different components. We will call methods from this category, special
methods.

Returning to the above question, we will show below that for the general-purpose methods
(regular Euler, modified Euler, cRK, etc.), the answer is ‘N ’ (even though matrix A contains
N2 entries!). We will explain this using the regular Euler method as an example. Details for
other general purpose methods are more involved, but follow the same logic. First, we will
present a diagonalization process (see below) for the model problem (5.39). We will then show
that this process straightforwardly extends to general-purpose numerical methods, but not to
special methods.

Most matrices, or at least those that we will encounter in this course, are diagonalizable14.
This means that there exists a matrix S and a diagonal matrix D such that

A = S−1 D S ; D = diag(λ1, λ2, . . . , λN) . (5.40)

Moreover, the diagonal entries of D are the eigenvalues of A. Substitution of (5.40) into (5.39)
leads to the following sequence of transformations:

~y ′ = A~y ⇒
~y ′ = S−1 D S~y ⇒

S~y ′ = D S~y ⇒
(S~y)′ = D (S~y) ⇒

~z ′ = D~z, where ~z = S~y . (5.41)

Therefore, the important (for the stability analysis) information about a diagonalizable matrix
A is concentrated in its eigenvalues. Namely, given the diagonal form (5.40) of matrix D, the
last equation in (5.41) can be written as

z(k) ′ = λ(k)z(k) , for k = 1, . . . N , (5.42)

which means that the matrix model problem (5.39) reduces to the model problem (4.15) for a
single first-order ODE.

Now, when we apply the regular Euler method to system (5.39), we get

~Yn+1 − ~Yn = hA~Yn . (5.43)

14Some matrices, e.g.
(

1 1
0 1

)
, are not diagonalizable. However, if we perturb it as, say,

(
1.01 1
0 1

)
, this

latter matrix is diagonalizable.
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Repeating now the steps of (5.41), we rewrite this as

~Zn+1 − ~Zn = hD~Zn , (5.44)

where ~Zn is the numerical approximation to ~zn. Given the diagonal form of D, for the compo-
nents of ~Zn we obtain:

Z
(k)
n+1 − Z(k)

n = hλ(k)Z(k)
n , (5.45)

which is just the simple Euler method applied separately to individual model problems (5.42).
Thus, we have confirmed our earlier statement that for a general purpose method, the stability
analysis for a system of ODEs reduces to the stability analysis for a single equation.

We will now show that the above statement does not apply to special methods like the
symplectic Euler etc.. Indeed, let us apply symplectic Euler (5.3) to a 2 × 2 model problem

(5.39), assuming that A =

(
a11 a12

a21 a22

)
. We have (verify):

~Yn+1 − ~Yn = h

(
a11 a12

0 0

)
~Yn + h

(
0 0

a21 a22

)
~Yn+1 . (5.46)

This can no longer be written in the form (5.43), and hence the subsequent calculations that led
to (5.45) are no longer valid. Therefore, the only venue to proceed with the stability analysis
for special methods is to consider the original matrix model problem (5.39); obviously, this
model problem has, in general, as many parameters as the matrix A, i.e. N2.

Below we give an example of doing stability analyses for the regular and symplectic Euler
methods. In a homework problem, you will be asked to do similar calculations for the modified
Euler and Verlet methods. As a particular problem, we choose that of a simple harmonic
oscillator (5.25). That problem can be written in the matrix form as follows:

(
y
v

)′
=

(
0 1
−1 0

) (
y
v

)
, (5.47)

so that y(1) = y and y(2) = v. The matrix in (5.47) has the eigenvalues λ1,2 = ±i:

∣∣∣∣
0− λ 1
−1 0− λ

∣∣∣∣ = 0 ⇒

λ2 + 1 = 0 ⇒
λ = ±i .

Thus, if we use the regular Euler, which is a general purpose method, it suffices to study the
stability of the simple Euler method for a single ODE

y′ = λy with λ = i or λ = −i. (5.48)

Before we proceed, let us perform a sanity check and confirm that Eq. (5.48) does indeed
describe a solution that we expect of a harmonic oscillator, i.e.

y = c1 sin x + c2 cos x (5.49)

for some constants c1, c2. Indeed, the solution of (5.48) with, say, λ = i, is

y = eix . (5.50)
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Using the Euler formula for complex numbers,

eix = cos x + i sin x ,

we see that solution (5.50) is indeed of the form (5.49) with c1 = i and c2 = 1. Now, if we want
both constants c1, c2 to be real, we need to also account for the solution with λ = −i. Namely,
we need to seek

y = D1e
ix + D2e

−ix

and choose D1 and D2 so as to make c1 and c2 in (5.49) real. Upon some additional manipula-
tions involving trigonometric functions, one can show that (5.49) is equivalent to:

y = B sin(x + φ), v = C sin(x + ψ) , (5.51)

where B, C, φ, and ψ are some constants. We will not do these calculations here since this
would have distracted us from our main goal, which is the stability analysis of the regular Euler
method applied to (5.47). We will be content with summarizing the discussion on the above
by stating that the exact solutions (5.51) of the harmonic oscillator model describe oscillations
with a constant amplitude (related to constants B and C).

Let us now return to the stability analysis for the regular Euler method applied to system
(5.47). According to the discussion that led to Eq. (5.45), this reduces to the stability analysis
of the single Eq. (5.48). The result is given by Eq. (4.20) of Lecture 4. Namely, we have that

|r| = |1 + h · i| =
√

1 + h2 ≈ 1 +
1

2
h2 , (5.52)

so that

|r|n = |r|(x/h) ≈ (1 +
1

2
h2)(x/h) = (1 + h · 1

2
h)(x/h) ≈ exh/2 . (5.53)

Since the absolute value |r|n determines the amplitude of the numerical solution, we see that
Eq. (5.53) shows that this amplitude grows with x, whereas the amplitude of the exact solution
of (5.47) is constant (see (5.51))15. Therefore, the regular Euler method applied to (5.47) is
unstable for any step size h!

This result is corroborated by the figure accompanying Eq. (4.20). Namely, for λ = i

or −i, the value hλ lies on the imaginary axis, which is outside the stability region for the
simple Euler method. Since the magnitude of any error will then grow exponentially, so will
the amplitude of the solution, because, as we discussed in Lecture 4, for linear equations the
error and the solution satisfy the same equation. In a homework problem, you will be asked
to show that the behavior of the Hamiltonian of the numerical solution shown in a figure in
Sec. 5.3 quantitatively agrees with Eq. (5.53).

Now we turn to the stability analysis of the symplectic Euler method (say, (5.3)). To that
end, we will apply these finite-difference equations to a model problem, which we take as a
slight generalization of (5.25):

y′′ = −ω2y . (5.54)

15To better visualize what is going on, you may imagine that the numerical solution at each xn is simply the
exact solution multiplied by |r|n.
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The finite-difference equations are:

Yn+1 = Yn + hVn

Vn+1 = Vn − hω2Yn+1

⇒
(

1 0
hω2 1

) (
Y
V

)

n+1

=

(
1 h
0 1

)(
Y
V

)

n

⇒
(

Y
V

)

n+1

=

(
1 0

hω2 1

)−1 (
1 h
0 1

)(
Y
V

)

n

⇒
(

Y
V

)

n+1

=

(
1 0

−hω2 1

)(
1 h
0 1

)(
Y
V

)

n

⇒
(

Y
V

)

n+1

=

(
1 h

−hω2 1− h2ω2

)(
Y
V

)

n

. (5.55)

Once we have obtained this matrix relation between the solutions at the nth and (n + 1)st
steps, we need to obtain the eigenvalues of the matrix on the r.h.s. of (5.55). Indeed, it is
known from Linear Algebra that the solution of (5.55) is

(
Y
V

)

n

= ~u1 rn
1 + ~u2 rn

2 , (5.56)

where r1,2 are the eigenvalues of the matrix in question and ~u1,2 are the corresponding eigenvec-
tors. (We have used the notation r1,2 instead of λ1,2 for the eigenvalues in order to emphasize
the connection with the characteristic root r that arises in the stability analysis of a single
ODE.) If we find that the modulus of either of the eigenvalues r1 or r2 exceeds 1, this would
mean that the symplectic method is unstable (well, we know already that it is not, but we need
to demonstrate that). A simple calculation similar to that found after Eq. (5.47) yields

r1,2 = 1− 1

2

(
h2ω2 ±

√
h4ω4 − 4h2ω2

)
. (5.57)

With some help from Mathematica, one can show that

|r1| = |r2| = 1 for − 2 ≤ hω ≤ 2
either |r1| > 1 or |r2| > 1, for any other complex hω .

(5.58)

Thus, the symplectic Euler method is stable for the simple harmonic oscillator equation (and,
in general, other oscillatory models), provided that h is sufficiently small, so that |hω| < 2.
Note that ω in Eq. (5.54) is a counterpart of iλ in the model equation (4.15): Indeed, simply
differentiate (4.15) with λ being replaced by iλ one more time. Using this relation between
λ and ω, we then observe that the stability region for the symplectic Euler method, given by
the first line of (5.58), is reminescent of the stability region of the Leap-frog method (see Eq.
(4.35)). This may suggest that the Leap-frog method, applied to an oscillatory equation, will
also have the property of near-conservation of the total energy; however, we will not consider
this issue in detail.

The symplectic Euler (and higher-order symplectic) methods may lose their remarkable
property of near-conservation of energy if the step size is varied. This is discussed, e.g., in
the article by J. Dummer posted alongside this Lecture. An explanation of this fact was given
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by Robert Skeel in 1993; his paper is also posted on the course website. In Appendix 2 we
summarize the main idea of his explanation.

However, in practice, a varying step size
does not always cause the symplectic Euler
method to become unstable. To illustrate
this fact, we show the error in the Hamilto-
nian obtained for the same Eq. (5.25) as in
Sec. 5.3 when the step size is sinusoidally var-
ied with a frequency incommensurable with
that of the oscillator itself. Specifically, we
took h = 0.02+0.01 sin(1.95t). We see, how-
ever, that the error in the symplectic meth-
ods is still much smaller than that obtained
by the regular Euler method. 0 10 20 30 40 50 60 70 80 90
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To conclude this subsection, let us mention that for the simple central-difference method
(5.12) and Numerov’s method (5.18), the stability analysis should also be applied to the simple
harmonic oscillator equation (5.54). For example, substituting Yn = rn into the simple central-
difference equation, where f(y) = −ω2y, one finds

r2 − (2− h2ω2)r + 1 = 0 . (5.59)

Again, with the help from Mathematica, one can show that the two roots r1,2 of Eq. (5.59)
satisfy Eq. (5.58). This is not at all surprising, given that the simple central-difference method
is equivalent to the Verlet method (see the text around (5.28)) and the latter, in its turn, is
simply a composition of two symplectic Euler methods.

Similarly, one can show that the stability region for Numerov’s method is given by

−
√

6 ≤ hω ≤
√

6 , where |r1| = |r2| = 1 , (5.60)

whereas for any other complex hω, either |r1| > 1 or |r2| > 1.

5.5 Stiff equations

Here we will encounter, for the first time in this course, a class of equations that are very
difficult to solve numerically. These equations are called numerically stiff. It is important to
be able to recognize cases where one has to deal with such systems of equation; otherwise, the
numerical solution that one would obtain will have no connection to the exact one.

Let us consider an IVP
(

u
v

)′
=

(
998 1998

−999 −1999

)(
u
v

)
,

(
u
v

)∣∣∣∣
x=0

=

(
1
0

)
. (5.61)

Its exact solution is (
u
v

)
=

(
2

−1

)
e−x +

( −1
1

)
e−1000x . (5.62)

The IVP (5.61) is an example of a stiff equation. Although there is no rigorous definition of nu-
merical stiffness, it is often accepted that a stiff system should satisfy the following two criteria:
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(i) The system of ODEs must contain at least two groups of solutions, where solutions in one
group vary rapidly relatively to the solutions of the other group. That is, among the eigenvalues
of the corresponding matrix A there must be two, λslow and λrapid, such that

|Re λrapid|
|λslow| À 1 . (5.63)

(ii) The rapidly changing solution(s) must be stable. That is, the large in magnitude eigen-
values, λrapid, of the matrix A in Eq. (5.39) must have Re λrapid < 0. As for the slowly
changing solutions, they may be either stable or unstable.

Let us verify that system (5.61) is stiff. Indeed, criterion (i) above is satisfied for this system
because of its two solutions, given by the two terms in (5.62), the first (with λslow = −1) varies
slowly compared to the other term (with λrapid = −1000). Criterion (ii) is satisfied because the
rapidly changing solution has λrapid < 0.

Another example of a stiff system is
(

u
v

)′
= −

(
499 501
501 499

)(
u
v

)
,

(
u
v

)∣∣∣∣
x=0

=

(
0
2

)
, (5.64)

whose solution is (
u
v

)
=

( −1
1

)
e2x +

(
1
1

)
e−1000x . (5.65)

Here, again, the first and second terms in (5.65) represent the slow and fast parts of the solution,
with λslow = 2 and λrapid = −1000, so that |λrapid| À |λslow|. Thus, criterion (i) is satisfied.
Criterion (ii) is satisfied because the rapid solution is stable: λrapid < 0.

The difficulty with stiff equations can be understood from the above examples (5.61), (5.62)
and (5.64), (5.65). Namely, the rapid parts of those solutions are important only very close to
x = 0 and are almost zero everywhere else. However, in order to integrate, e.g., (5.61) using,
say, the simple Euler method, one would require to keep h · 1000 ≤ 2 (see Eq. (4.19)), i.e.
h ≤ 0.002. That is, we are forced to use a very small step size in order to avoid the numerical
instability caused by the least important part of the solution!

Thus, in layman terms, a problem that involves processes evolving on two (or more) dis-
parate scales, with the rapid process(es) being stable, is stiff. Moreover, as the above example
shows, the meaning of stiffness is that one needs to work the hardest (i.e., use the smallest
h) to resolve the least important part of the solution (i.e., the second terms on the r.h.s.’es of
(5.62) and (5.65)).

An obvious way to deal with a stiff equation is to use an A-stable method (implicit or
modified implicit Euler). This would eliminate the issue of numerical instability; however, the
problem of (low) accuracy will still remain.

In practice, one strikes a compromise between the accuracy and stability of the method.
Matlab, for example, uses a family of methods known as BDF (backward-difference formula)
methods. Matlab’s built-in solvers for stiff problems are ode15s (this uses a method of order
between 1 and 5) and ode23s.

5.6 Appendix 1: Derivation of Eq. (5.12) with fn = const

Here we will derive the solution of Eq. (5.12) with its right-hand side being replaced by a
constant:

Yn+1 − 2Yn + Yn−1 = M, M = const. (5.66)
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This will provide a rigorous justification for the solution (5.15) of the system (5.13)–(5.14).
The method that we will use closely follows the lines of the method of variation of parameters

for the second-order ODE
y′′ + By′ + Cy = F (x). (5.67)

In what follows we will refer to Eq. (5.67) as the continuous case. Namely, we first obtain the
solutions of the homogeneous version of (5.66):

Yn = c(1) + c(2)n , c(1) and c(2) are arbitrary constants. (5.68)

Solution (5.68) was obtained by the substitution into (5.66) with M = 0 of the ansätze Yn = rn

and Yn = nrn. This is analogous to how the solution y = c(1) + c(2)x of the ODE y′′ = 0 is
obtained.

Next, to solve Eq. (5.66) with M 6= 0, we allow the constants c(1) and c(2) to depend on n.
Substituting the result into (5.66), we obtain:

(
c
(1)
n+1 − 2c(1)

n + c
(1)
n−1

)
+

(
(n + 1)c

(2)
n+1 − 2nc(2)

n + (n− 1)c
(2)
n−1

)
= M. (5.69)

Now, similarly to how in the continuous case the counterparts of our c(1) and c(2) are set to
satisfy an equation (

c(1)
)′

y(1) +
(
c(2)

)′
y(2) = 0,

where y(k), k = 1, 2 are the homogeneous solutions of (5.67), here we impose the following
condition:

k = n :
(
c
(1)
k+1 − c

(1)
k

)
+ k

(
c
(2)
k+1 − c

(2)
k

)
= 0. (5.70)

Subtracting from (5.70) its counterpart for k = n− 1, one obtains:

(
c
(1)
n+1 − 2c(1)

n + c
(1)
n−1

)
+

(
n c

(2)
n+1 − (2n− 1)c(2)

n + (n− 1)c
(2)
n−1

)
= 0. (5.71)

Next, subtracting the last equation from (5.69), we obtain a recurrence equation for c(2) only,

which has a simple solution (assuming c
(2)
0 = 0):

c
(2)
n+1 − c(2)

n = M, ⇒ c(2)
n = nM. (5.72)

From (5.72) and (5.70) one obtains the solution for c(1):

c
(1)
n+1 − c(1)

n = −nM, ⇒ c(1)
n = −n(n− 1)

2
M. (5.73)

(Again, we have assumed that c
(1)
0 = 0.) Finally, combining the results of (5.68), (5.72), and

(5.73), we obtain the solution of Eq. (5.66):

Yn = −n(n− 1)

2
M + n2M =

n(n + 1)

2
M = O(n2) M. (5.74)

The leading-order dependence on n of this solution is that claimed in formula (5.15).
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5.7 Appendix 2: Symplectic methods with a variable step size

Consider the symplectic Euler method performed with two alternating step sizes, h1 and h2.
The corresponding relations follow from (5.55):

(
ωY
V

)

n+1

= M1

(
ωY
V

)

n

,

(
ωY
V

)

n+2

= M2

(
ωY
V

)

n+1

. (5.75a)

Mk =

(
1 hkω

−hkω 1− (hkω)2

)
, k = 1, 2. (5.75b)

Thus, (
ωY
V

)

n+2

= M2M1

(
ωY
V

)

n

, (5.76)

which means that the matrix whose eigenvalues determine the behavior of the numerical solution
(see the text after (5.55)) is (M2M1). These eigenvalues would have been the products of the
corresponding eigenvalues (5.57) computed with h = h1 and h = h2 if M1 and M2 had commuted.
However, these matrices do not commute (as one can straightforwardly verify). Hence the only
way to compute the eigenvalues of M2M1 is by direct calculation. In general, such calculations
for the Verlet method (which, as you may recall, is just a superposition of two symplectic Euler
methods) are performed in a paper “Variable step size destabilizes the Störmer/Leapfrog/Verlet
method” by R. Skeel, which is posted on the course webpage.

Here is a numeric example illustrating the above statement. Take h1 and h2 such that
h1ω = 3/4 and h2ω = 7/4. Both values are within the stability region of the symplectic Euler
method, according to (5.58). However, the eigenvalues of M2M1 are (−647± 3

√
17385)/512,

and the more negative of them has modulus that is slightly greater than 2. Thus, the symplectic
Euler method with a variable step size implemented as per (5.75) with the h1,2ω values as above
not only will not conserve the energy, but also will be strongly unstable.

5.8 Questions for self-assessment

1. Verify (5.6).

2. Verify (5.7).

3. What would be your first step to solve a 5th-order ODE using the methodology of Sec.
5.1?

4. Use Eq. (5.11) to explain why the local truncation error of the simple central-difference
method (5.12) is O(h4).

5. Explain why Y1 for that method needs to be calculated with accuracy O(h3).

6. What is the global error of the simple central-difference method?

7. How does the rate of the error accumulation for a second-order ODE differ from the rate
of the error accumulation for a first-order ODE?

8. Explain the last term in the expression for Y1 in (5.17).

9. Why is Numerov’s method implicit?
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10. What is the physical meaning of the Hamiltonian for a Newtonian particle?

11. Verify (5.24).

12. What is the advantage of the symplectic Euler methods over the regular Euler method?

13. State the observation that prompted us to combine the two symplectic Euler methods
into the Verlet method.

14. Obtain (5.27) from (5.26).

15. Obtain (5.29) and the next (unnumbered) equation.

16. What is the model problem for the stability analysis for a system of ODEs?

17. Show that for a “general-purpose” method, the stability analysis for a system of ODEs
reduces to the stability analysis for the model problem (4.15).

18. Why is this not so for the “special” methods, like the symplectic Euler?

19. Make sure you can follow (5.55).

20. Verify that (5.56) is the solution of (5.55). That is, substitute (5.56), with the correspond-
ing subindices, into both sides of the last equation of (5.55). Then for the expression on
the r.h.s., use the stated fact that ~u1 and ~u2 are the eigenvectors of the matrix appearing
on the r.h.s. of that equation. (You do not need to use the explicit form of that matrix.)

21. Obtain (5.57).

22. Would you apply the Verlet method to the following strongly damped oscillator:

y′′ = −(2 + i)2y ?

Please explain.

23. Same question for Numerov’s method.

24. What is the numerical stiffness, in layman terms?


