
Project 1.3 1

Chapter 1

First-Order Differential Equations

Project 1.3
Direction Fields and Solution Curves

A number of specialized differential equations packages are available as freeware or
shareware.  Links to download sites offering such software packages are provided on the
Web page www.prenhall.com/edwards that supports this text and manual.  Such
systems automate the construction of direction fields and solution curves, as do some
graphing calculators.

Computer algebra systems and technical computing environments such as Maple,
Mathematica and MATLAB provide extensive resources for the study of differential
equations.  For instance, the Maple command

 with(DEtools):
DEplot( diff(y(x),x)=sin(x-y(x)), y(x),
        x=-5..5, y=-5..5 );

and the Mathematica command

Needs["Graphics`PlotField`"]
PlotVectorField[{1, Sin[x-y]}, {x,-5,5}, {y,-5,5}]

produce direction fields similar to the one shown in Fig. 1.3.4 of the text.

Figure 1.3.4 itself was generated by the MATLAB program dfield  (John
Polking and David Arnold, Ordinary Differential Equations Using MATLAB (2nd
edition), Prentice Hall, 1999) that is available free for educational use.  When a
differential equation is entered in the  dfield setup menu (as illustrated in Fig. 1.3.20
of the text), you can immediately plot a direction field and then — with a single mouse
click — plot also the solution curve through any desired point.

For example, the figure at the top of page 2 shows a slope field and typical
solution curves (generated using dfield) for the differential equation  ′ = −y x y .  It
appears that there exists a (single) straight line solution curve that all other solution
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curves approach as  x → ∞ .  Indeed, if we substitute the trial straight line solution

  y(x) = ax + b   in the differential equation, we get

a y x y x ax b a x b= ′ = − = − + = − −( ) ( )1 ,

which is so if and only if  a = 1  and  b = –1.  Thus    y(x) = x −1   is, indeed, a straight line
solution of the differential equation    ′ y = x − y .  The figure then suggests (without
proving it) that

y x x( ) ( )   − − →1 0   as x → ∞ .

The following two investigations involve similar inferences from slope fields and
computer-generated solution curves.  You might warm up by generating the direction
fields and some solution curves for Problems 1-10 in this section.

Investigation A
Plot a direction field and typical solution curves for the differential equation
dy dx x y/ sin( )= −  of Example 3 in the text, but with a larger window than that of Fig.
1.3.4.  With  − ≤ ≤10 10x y, ,  for instance,  a number of apparent straight line solution
curves should be visible.

 (a)  Substitute  y ax b= +   in the differential equation to determine what the coefficients
a  and  b  must be in order to get a solution.

(b)  A computer algebra system gives the general solution
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Can you determine a value of the arbitrary constant  C   that yields the linear solution

y x= − π
2  corresponding to the initial condition  y π

2 0� � = ?

Investigation B
For your own personal differential equation, let  n  be the smallest integer in your student
ID number that is greater than 1, and consider the differential equation

dy

dx n
x n y= −1

cos( ).

(a)  First investigate (as in (a) above) the possibility of straight line solutions.

(b)  Then generate a slope field for this differential equation, with the viewing window
chosen so that you can picture some of these straight lines,  plus a sufficient number of
nonlinear solution curves that you can formulate a conjecture about what happens to  y(x)
as  x → ∞ .  State your inference as plainly as you can.  Given the initial value  y(0) =  y0,
it would be nice to be able to say (perhaps in terms of  y0)  how  y(x)  behaves as x → ∞ .

(c)  A computer algebra system gives the general solution

y x
n

x
x C

( ) tan= +
−

�
�

�
�

�
�	



��

−1
2

11

Can you make a connection between this symbolic solution and your graphically
generated solution curves (straight lines or otherwise)?

In the sections that follow we outline the use of Maple, Mathematica, and
MATLAB to generate slope fields and solution curves.

Using Maple

The differential equation  dy/dx = x – y  is defined in Maple by the command

de := diff( y(x), x) = x – y(x);

de
x

y x x y x :  ( ) ( )= = −∂
∂

Note that we write  y(x),  not just  y,  to specify that the dependent variable  y  is a
function of the independent variable  x,  and that  :=  is used as the assignment operator.
The differential equation solver in Maple is dsolve, and it gives the general solution

yg := dsolve( de, y(x) );
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yg y x x e Cx :  ( ) _( )= = − + −1 1

Observe how Maple writes the (first) arbitrary constant _C1  that appears.  We can verify
that the righthand side expression in the equation  yg  actually satisfies the differential
equation by showing that it yields an identity upon substitution.

subs( y(x) = rhs(yg), de );

  

∂
∂x

(x − 1+ e(−x)_ C1) =  1 − e(−x) _C1

When we enter the command  eval(%) to ask that the derivative on the left be
evaluated, the identity

1− e(−x)_ C1 =  1 − e(−x) _C1

that results shows that the general solution of the differential equation  de is, indeed,

y(x) = x – 1 + Cex.    We can get a particular solution satisfying a given initial condition
either by specifying it in the dsolve command,

y1 := dsolve( {de, y(0)=2}, y(x) );

soln y x x e x1 1 3 :  ( ) ( )= = − + −

or by substituting a specific numerical value for the arbitrary constant in the general
solution:

y2 := subs(_C1=0, yg );

soln y x x2 1 :  ( )= = −

We can plot both these solution curves simultaneously:

y1 := rhs(y1): 
y2 := rhs(y2):
plot( {y1,y2}, x=-1..3 );

The result is shown at the top of page 5.

Any finite number of particular solutions could be plotted simultaneously (as
shown in the figure at the top of page 5) by entering them as a set enclosed by braces.
However, the DEtools package contains the special command DEplot for doing this
sort of thing.  The following rather detailed command shows how to  plot simultaneously
a slope field and a collection of solution curves satisfying a set of separate initial
conditions, each corresponding to a different initial point  (x0, y0).
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with(DEtools):
DEplot( diff(y(x),x) = x - y(x),y(x),

x=-5..5, y=-5..5,
{[0,4],[0,2],[0,1],[0,0],[0 ,-1],[0,-2],
 [0,-4],[-4,-2],[-3,4],[-4,4],[1,4],[2,4],
 [3,4],[-2,-4],[1,-4],[2,-4],[3,-4]},
 dirgrid=[12,12],

      color = black, linecolor = blue,
 thickness = 2 );

We have specified the right hand side  f (x, y) = x – y  of the differential equation
y' = f (x, y),  the axes [x, y]  for plotting, and the window to be plotted.

Here we see a pleasant variety of solution curves — all appearing to funnel in on the
single linear "asymptotic solution"  y = x + 1 — together with a slope field consisting of a
12-by-12 grid of arrows.  We could plot the slope field alone by deleting the initial
points.
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Using Mathematica

To define the differential equation  y'  =  x – y   in Mathematica we enter the command

de = D[y[x],x] == x - y[x]

′ == −y x x y x( ) ( )

Note that Mathematica uses  =  for assignment,  ==  for ordinary equality, and square
brackets for functional notation.  The differential equation solver in Mathematica is
DSolve.

soln = DSolve[ de, y[x], x ]

{ ( ) }}y x x e cx→ + −−
1 1

We can define the general solution explicitly as a function of x by taking the 2nd
element of the 1st element of the 1st element of the nested list soln:

yg[x_] = soln[[1,1,2]]

x e cx+ −−
1 1

We can verify this general solution by substituting it for the function y in the differential
equation.

de /. y -> yg

True

We can get a particular solution satisfying a given initial condition by specifying
it in the DSolve command:

y1 = DSolve[{de, y[0] == 2}, y[x], x];
y1 = y1[[1,1,2]] // Simplify

x e x+ −−3 1

Alternatively, we can substitute a numerical value for the arbitrary constant in the general
solution:

y2 = yg[x] /. C[1] -> 0

x −1
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We can plot both these solution curves simultaneously; the command

Plot[ {y1,y2}, {x, -1,3} ];

produces the same two-curve figure generated previously using Maple.  Indeed, any finite
number of particular solutions could be plotted simultaneously by entering them as a list
enclosed by braces.  We can construct just such a list by substituting a list (or table) of
numerical values for the arbitrary constant  C[1] = c1  in our general solution.

yp = yg[x] /. C[1] -> Table[c, {c,-5,5} ]

, , , , ,

, , , , , }

x e x e x e x e x e

x x e x e x e x e x e

x x x x x

x x x x x

− − − − − − − − − −

− + − + − + − + − + −

− − − − −

− − − − −

5 1 4 1 3 1 2 1 1

1 1 2 1 3 1 4 1 5 1

Here we have specified the values  C[1] = –5,–4, ....., 4,5.

curves =
Plot[ Evaluate[yp], {x,-5,5}, PlotRange -> {-5,5}];

Here we see a family of solution curves, all appearing to funnel in on the single
"asymptotic solution"  y = x + 1.  We can use the PlotVectorField function, after
loading the Mathematica package

Needs["Graphics`PlotField`"]

to superimpose a slope field.  Then the commands

slopes =
PlotVectorField[{1,x-y}, {x,-5,5}, {y,-5,5} ];

Show[ curves, slopes, AspectRatio -> 1 ];

do the job; try it for yourself.
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Using MATLAB

Figures including slope fields are generated with the greatest ease using the menu-driven
dfield function in the ODE Using MATLAB package mentioned previously.  Here we
illustrate also the "hands on" generation of symbolic solutions and solution curves using
the Student Edition of MATLAB  (version 5) — or the professional edition equipped
with the Symbolic Math Toolbox, which calls on an imbedded Maple kernel for the
execution of symbolic operations.

Symbolic variables, formulas, or equations are entered as strings enclosed in
single quotes.  Thus we can define the differential equation  y' = x – y   by entering

syms x y
de = 'Dy = x - y'

de =
Dy = x - y

with D denoting differentiation of the dependent variable y (which immediately follows
the D) with respect to the independent variable x (the other variable in the equation).  The
function dsolve computes explicit symbolic solutions (when possible).  Thus:

yg = dsolve(de,'x');
yg = expand(yg)

yg =
 x-1+1/exp(x)*C1

Apparently we have a general solution involving an arbitrary constant C1.  To verify this,
we check that when we differentiate the expression yg with respect to the symbolic
variable  x,

Dy = diff(yg,x)

Dy =
 1-1/exp(x)*C1

We get the same result as when we substitute yg for y in the differential equation,

subs(de, y, yg)

ans =
Dy = 1-1/exp(x)*C1

[The syntax for symbolic substitution of new for old in the expression expr is
subs(expr, old, new).]
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We can get a particular solution satisfying a given initial condition either by
specifying it in the dsolve command,

y1 = dsolve(de, 'y(0)=2', 'x');
y1 = expand(y1)

y1 =
x-1+3/exp(x)

or by substituting a specific numerical value for the arbitrary constant in the general
solution:

y2 = subs(yg,'C1',0)

y2 =
 x-1

We can use MATLAB's ezplot command to plot both these two solution curves with
the commands

ezplot(y1,[-1 3])
hold on
ezplot(y2,[-1 3])
axis([-1 3 -2 6])
grid on
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The command  ezplot('f', [a b]) plots the expression  'f'  as a
function of  x on the interval  [a, b].  The hold on command holds the first solution
curve in place  while the while the second one is plotted.  The axis command overrides
MATLAB's auto-sizing and shows the picture in the desired viewing window:

Unless the special purpose dfield program is used, plotting slope fields in
MATLAB requiries a bit of work.  The following program utilizes the built-in command
quiver(x,y,dx,dy) that plots an  n × n  array of vectors with x- and y- components
specified by the  n × n  matrices dx and dy,  based at the xy-points in the plane whose x-
and y- coordinates are specified by the n × n matrices x and y.

% slope field program  sfield.m
n = 10;    % no of subintervals
a = -5; b = 5; % x-interval
c = -5; d = 5;    % y-interval
h = (b-a)/n;  k = (d-c)/n; % x- and y-step sizes
x = a : h : b;    % x-subdivision points
y = c : k : d;    % y-subdivision points
[x,y] = meshgrid(x,y);  % grid of points
f = x - y;              % define f(x,y)
t = atan(f);            % angle of inclination
dx = cos(t);   dy = sin(t); % xy-components of arrow
quiver(x,y,dx,dy) % plot slope field
axis([a b c d]) % viewing window
grid on % draw grid lines

However, you need not be concerned about these matrices of coordinates and
components — only the number  n  of subintervals in each direction, the desired viewing
window  a ≤  b, c ≤  d,  and the expression  f defining the right-hand side of the
differential equation      ′ y = f (x ,y)   need be altered when the program sfield is defined
by saving the commands listed above in the text file sfield.m.  (Alternatively, these
commands could be entered individually in command mode).  For instance, once the
slope field program sfield has been defined, the commands

for k = -5 : 5
     ezplot(subs(yg,'C1',k),[-5 5]);

hold on
     end
sfield

first plot the particular solution curves corresponding to the values  –5, –4, ....., 4, 5  of
the arbitrary constant  C1 in the general solution  yg, and then a 10 × 10 grid of direction
field arrows is added.  The result is shown on the next page.



Project 1.3 11

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

x

             

y


