Suggested Solution to Project 1

Model of Water Quality Control in Schweriner Lake

1) Dividing equation (1) by $V\Delta t$ and taking a limit when $\Delta t \rightarrow 0$ we will obtain

$$\frac{dC_N}{dt} = \frac{N}{V} - \frac{QC_N}{V} - KC_N. \tag{2}$$

2') Solving equation (2) by hand.

The equation (2) is an equation with separable variables. Separating the variables and integrating both sides we obtain:

$$\begin{aligned} &\frac{dC_{N}}{dt} = \frac{N}{V} - C_{N}(\frac{Q + VK}{V}) \\ &\int \frac{dC_{N}}{\frac{N}{V} - C_{N}(\frac{Q + VK}{V})} = \int dt \\ &- \frac{V}{Q + VK} \ln \left| \frac{N}{V} - C_{N}(\frac{Q + VK}{V}) \right| = t + C \end{aligned}$$

Making C_N the subject we get:

$$C_N(t) = \frac{V}{Q + VK} \left(\frac{N}{V} - Ce^{-\frac{Q + VK}{V}t}\right)$$

Substituting the initial condition $C_N(0) = 0$ we get:

$$C_N(t) = \frac{N}{Q + KV} (1 - e^{-t(Q/V + K)}).$$
 (3)

2") Solving equation (2) with Matlab

>> dsolve('Dy=N/V-(Q+V*K)/V*y','y(0)=0','t') ans =
$$(N/(Q+V*K)*exp((Q+V*K)*t/V)-1/(Q+V*K)*N)*exp((-Q-V*K)*t/V) >> pretty(ans)$$

3) The equilibrium concentration C_{Ne} can be obtained from formula (3) when $t \rightarrow \infty$ or from equation (2) when $dC_N/dt = 0$. It is equal to

$$C_{Ne} = \frac{N}{Q + KV}$$
.

4) Time needed for reaching p portion ($p = C_N (t)/C_{Ne}$) of equilibrium concentration is obtained by solving the equation:

$$pC_{Ne} = \frac{N}{Q + KV} (1 - e^{-t(Q/V + K)}) \text{ or } p = (1 - e^{-t(Q/V + K)})$$

a) Solving for t by hand:

$$t_{p} = \frac{-V}{Q + KV} \ln(1 - p). \tag{4}$$

b) Solving with Matlab:

In case when pollution is not decomposed (K=0) it takes more time to reach p portion of the equilibrium concentration.

5) If at the initial moment t = 0 the amount of pollution entered the lake was C_0 and after that pollution is not coming in (N = 0) them the equation for the concentration of pollution has the following form:

$$\frac{dC}{dt} = -C(\frac{Q}{V} + K)$$

6) The solution to the above equation is

$$C(t) = C_0 e^{-t(Q/V+K)}$$
.

7) Time needed to reach 1 - p portion $(C(t)/C_0=1 - p)$ of the initial concentration C_0 is determined by formula (4).