Методы безусловной оптимизации делятся на методы одномерной и многомерной оптимизации.
МЕТОДЫ ОДНОМЕРНОЙ ОПТИМИЗАЦИИ
Несмотря на то, что безусловная оптимизация функции одной переменной наиболее простой тип оптимизационных задач, она занимает центральное место в теории оптимизации как с теоретической, так и с практической точек зрения. Это связано с тем, что задачи однопараметрической оптимизации достаточно часто встречаются в инженерной практике и, кроме того, находят свое применение при реализации более сложных итерактивных процедур многопараметрической оптимизации.
Своеобразным индикатором важности методов оптимизации функции одной переменной является огромное множество реализованных алгоритмов, которые условно можно сгруппировать следующим образом:
Необходимые и достаточные условия оптимальности.