Главная
Новости
Абитуриенту
Студенту
Дипломнику
Аспиранту
Выпускнику
Специалисту
Библиотека
Кафедра
Ссылки
Голосования
Гороскопы
Игры
Скачать
Карта сайта
Анкеты
РАБОТА
Гостевая
ФОРУМ
CHAT
Знакомства
Отправь SMS

 

Методы оптимизации.

(вводный курс)

horizontal rule

СОДЕРЖАНИЕ

Введение

1. Формулировка математической задачи оптимизации.

2. Численные методы решения задач одномерной оптимизации.

Метод перебора

Метод поразрядного поиска

Метод деления попалам

Метод золотого сечения

3. Методы безусловной минимизации функций многих переменных.

3.1. Многомерный поиск без использования производных

Метод циклического покоординатного спуска

Метод Хука и Дживса

Метод Розенброка

Метод минимизации по правильному симплексу

Метод минимизации по деформируемому симплексу

3.2. Многомерный поиск, использующий производные

Метод наискорейшего спуска

3.3. Методы, использующие сопряженные направления

Метод Дэвидона-Флетчера-Пауэлла

Заключение

Литература

horizontal rule

ВВЕДЕНИЕ

Оптимизация как раздел математики существует достаточно давно. Оптимизация - это выбор, т.е. то, чем постоянно приходится заниматься в повседневной жизни. Термином "оптимизация" в литературе обозначают процесс или последовательность операций, позволяющих получить уточненное решение. Хотя конечной целью оптимизации является отыскание наилучшего или "оптимального" решения, обычно приходится довольствоваться улучшением известных решений, а не доведением их до совершенства. По этому под оптимизацией понимают скорее стремление к совершенству, которое, возможно, и не будет достигнуто.

Необходимость принятия наилучших решений так же стара, как само человечество. Испокон веку люди, приступая к осуществлению своих мероприятий, раздумывали над их возможными последствиями и принимали решения, выбирая тем или другим образом зависящие от них параметры - способы организации мероприятий. Но до поры, до времени решения могли приниматься без специального математического анализа, просто на основе опыта и здравого смысла.

Возьмем пример: человек вышел утром из дому, чтобы ехать на работу. По ходу дела ему приходится принять целый ряд решений: брать ли с собой зонтик? В каком месте перейти улицу? Каким видом транспорта воспользоваться? И так далее. Разумеется, все эти решения человек принимает без специальных расчетов, просто опираясь на имеющийся у него опыт и на здравый смысл. Для обоснования таких решений никакая наука не нужна, да вряд ли понадобится и в дальнейшем.

Однако возьмем другой пример. Допусти, организуется работа городского транспорта. В нашем распоряжении имеется какое-то количество транспортных средств. Необходимо принять ряд решений, например: какое количество и каких транспортных средств направить по тому или другому маршруту? Как изменять частоту следования машин в зависимости от времени суток? Где разместить остановки? И так далее.

Эти решения являются гораздо более ответственными, чем решения предыдущего примера. В силу сложности явления последствия каждого из них не столь ясны; для того, чтобы представить себе эти последствия, нужно провести расчеты. А главное, от этих решений гораздо больше зависит. В первом примере неправильный выбор решения затронет интересы одного человека; во втором - может отразиться на деловой жизни целого города.

Конечно, и во втором примере при выборе решения можно действовать интуитивно, опираясь на опыт и здравый смысл. Но решения окажутся гораздо более разумными, если они будут подкреплены количественными, математическими расчетами. Эти предварительные расчеты помогут избежать длительного и дорогостоящего поиска правильного решения "на ощупь".

Наиболее сложно обстоит дело с принятием решений, когда речь идет о мероприятиях, опыта в проведении которых еще не существует и, следовательно, здравому смыслу не на что опереться, а интуиция может обмануть. Пусть, например, составляется перспективный план развития вооружения на несколько лет вперед. Образцы вооружения, о которых может идти речь, еще не существуют, никакого опыта их применения нет. При планировании приходится опираться на большое количество данных, относящихся не столько к прошлому опыту, сколько к предвидимому будущему. Выбранное решение должно по возможности гарантировать нас от ошибок, связанных с неточным прогнозированием, и быть достаточно эффективным для широкого круга условий. Для обоснования такого решения приводится в действие сложная система математических расчетов.

Вообще, чем сложнее организуемое мероприятие, чем больше вкладывается в него материальных средств, чем шире спектр его возможных последствий, тем менее допустимы так называемые "волевые" решения, не опирающиеся на научный расчет, и тем большее значение получает совокупность научных методов, позволяющих заранее оценить последствия каждого решения, заранее отбросить недопустимые варианты и рекомендовать те, которые представляются наиболее удачными.

Практика порождает все новые и новые задачи оптимизации причем их сложность растет. Требуются новые математические модели и методы, которые учитывают наличие многих критериев, проводят глобальный поиск оптимума. Другими словами, жизнь заставляет развивать математический аппарат оптимизации.

Реальные прикладные задачи оптимизации очень сложны. Современные методы оптимизации далеко не всегда справляются с решением реальных задач без помощи человека. Нет, пока такой теории, которая учла бы любые особенности функций, описывающих постановку задачи. Следует отдавать предпочтение таким методам, которыми проще управлять в процессе решения задачи.

Содержание

horizontal rule

1.ФОРМУЛИРОВКА МАТЕМАТИЧЕСКОЙ ЗАДАЧИ ОПТИМИЗАЦИИ

В достаточно общем виде математическую задачу оптимизации можно сформулировать следующим образом:

Минимизировать (максимизировать) целевую функцию с учетом ограничений на управляемые переменные.

Под минимизацией (максимизацией) функции n переменных f(x)=f(x1, ... ,xn) на заданном множестве U n-мерного векторного пространства En понимается определение хотя бы одной из точек минимума (максимума) этой функции на множестве U, а также, если это необходимо, и минимального (максимального) на U значения f(x).

При записи математических задач оптимизации в общем виде обычно используется следующая символика:

f(x) -> min (max),

x принадлежит U,

где f(x) - целевая функция, а U - допустимое множество, заданное ограничениями на управляемые переменные.

Содержание

horizontal rule

2.ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ОДНОМЕРНОЙ ОПТИМИЗАЦИИ

Задачи одномерной минимизации представляют собой простейшую математическую модель оптимизации, в которой целевая функция зависит от одной переменной, а допустимым множеством является отрезок вещественной оси:

f(x) -> min ,

x принадлежит [a, b].

Максимизация целевой функции эквивалента минимизации ( f(x) -> max ) эквивалентна минимизации противоположной величины ( -f(x) -> min ), поэтому, не умаляя общности можно рассматривать только задачи минимизации.

К математическим задачам одномерной минимизации приводят прикладные задачи оптимизации с одной управляемой переменной. Кроме того, необходимость в минимизации функций одной переменной возникает при реализации некоторых методов решения более сложных задач оптимизации.

Для решения задачи минимизации функции f(x) на отрезке [a, b] на практике, как правило, применяют приближенные методы. Они позволяют найти решения этой задачи с необходимой точностью в результате определения конечного числа значений функции f(x) и ее производных в некоторых точках отрезка [a, b]. Методы, использующие только значения функции и не требующие вычисления ее производных, называются прямыми методами минимизации.

Большим достоинством прямых методов является то, что от целевой функции не требуется дифференцируемости и, более того, она может быть не задана в аналитическом виде. Единственное, на чем основаны алгоритмы прямых методов минимизации, это возможность определения значений f(x) в заданных точках.

Рассмотрим наиболее распространенные на практике прямые методы поиска точки минимума. Самым слабым требованием на функцию f(x), позволяющим использовать эти методы, является ее унимодальность. Поэтому далее будем считать функцию f(x) унимодальной на отрезке [a, b].

Метод перебора

Метод поразрядного поиска

Метод деления попалам

Метод золотого сечения

Содержание

horizontal rule

3.МЕТОДЫ БЕЗУСЛОВНОЙ МИНИМИЗАЦИИ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

Задача безусловной оптимизации состоит в нахождении минимума или максимума функции в отсутствие каких-либо ограничений. Несмотря на то что большинство практических задач оптимизации содержит ограничения, изучение методов безусловной оптимизации важно с нескольких точек зрения. Многие алгоритмы решения задачи с ограничениями предполагают сведение ее к последовательности задач безусловной оптимизации. Другой класс методов основан на поиске подходящего направления и последующей минимизации вдоль этого направления. Обоснование методов безусловной оптимизации может быть естественным образом распространено на обоснование процедур решения задач с ограничениями.

 

3.1.Многомерный поиск без использования производных.

Рассмотрим методы решения минимизации функции нескольких переменных f, которые опираются только на вычисление значений функции f(x), не используют вычисление производных, т.е. прямые методы минимизации. Важно отметить, что для применения этих методов не требуется не только дифференцируемости целевой функции, но даже аналитического задания. Нужно лишь иметь возможность вычислять или измерять значения f в произвольных точках. Такие ситуации часто встречаются в практически важных задачах оптимизации. В основном все описанные методы заключаются в следующем. При заданном векторе х определяется допустимое направление d. Затем, отправляясь из точки х, функция f минимизируется вдоль направления d одним из методов одномерной минимизации. Задача линейного поиска заключается в минимизации f(x+lym*d) при условии, что lym принадлежит L, где L обычно задается в форме L=E1, L={lym: lym >= 0} или L={l: a<=lym<=b}. Будем предполагать, что точка минимума lym* существует. Однако в реальных задачах это предположение может не выполняться. Оптимальное значение целевой функции в задаче линейного поиска может быть не ограниченным или оптимальное значение функции конечно, но не достигается ни при каком lym.

Метод циклического покоординатного спуска

Метод Хука и Дживса

Метод Розенброка

Метод минимизации по правильному симплексу

Метод минимизации по деформируемому симплексу

3.2.Многомерный поиск, использующий производные.

Пусть функция f(x) деференцируема в Еn . В этом разделе рассматривается итерационная процедура минимизации вида:

xk = x[k-1] + lym[k]*dk, k=1,... ,

где направление убывания dk определяется тем или иным способом с учетом информации о частных производных функции f(x), а величина шага lym[k] >0 такова, что

f(xk) < f(xk-1), k=1,2,....

Так как функция предполагается дифференцируемой, то в качестве критерия останова в случае бесконечной итерационной последовательности { xk }, как правило, выбирают условие ||grad(f(xk))||<eps, хотя, разумеется, могут быть использованы и другие критерии.

Метод наискорейшего спуска

 

3.3.Методы, использующие сопряженные направления.

Понятие сопряженности очень важно в задачах безусловной минимизации. В частности, если целевая функция квадратична, то поиском вдоль сопряженных направлений можно получить точку минимума не более чем за n шагов.

Определение. Пусть H - симметрическая матрица порядка nxn. Векторы d1,..., dk называются H-сопряженными, или просто сопряженными, если они линейно независимы и di(t)Hdj = 0 при i != j, где di(t) - вектор строка.

Минимум квадратичной функции может быть найден не более чем за n шагов при условии, что поиск ведется вдоль сопряженных относительно матрицы Гессе направлений. Поскольку произвольная функция может быть достаточно хорошо представлена в окрестности оптимальной точки ее квадратичной аппроксимацией, понятие сопряженности становится очень удобным для оптимизации как квадратичных, так и неквадратичных функций.

Метод Дэвидона-Флетчера-Пауэлла

Содержание  

horizontal rule

ЗАКЛЮЧЕНИЕ

Алгоритмы безусловной минимизации функций многих переменных можно сравнивать и исследовать как с теоретической, так и с экспериментальной точек зрения.

Первый подход может быть реализован полностью только для весьма ограниченного класса задач, например, для сильно выпуклых квадратичных функций. При этом возможен широкий спектр результатов от получения бесконечной минимизирующей последовательности в методе циклического покоординатного спуска до сходимости не более чем за n итераций в методе сопряженных направлений.

Мощным инструментом теоретического исследования алгоритмов являются теоремы о сходимости методов. Однако, как правило, формулировки таких теорем абстрактны, при их доказательстве используется аппарат современного функционального анализа. Кроме того, зачастую непросто установить связь полученных математических результатов с практикой вычислений. Дело в том, что условия теорем труднопроверяемы в конкретных задачах, сам факт сходимости мало что дает, а оценки скорости сходимости неточны и неэффективны. При реализации алгоритмов также возникает много дополнительных обстоятельств, строгий учет которых невозможен (ошибки округления, приближенное решение различных вспомогательных задач и т.д.) и которые могут сильно повлиять на ход процесса.

Поэтому на практике часто сравнение алгоритмов проводят с помощью вычислительных экспериментов при решении так называемых специальных тестовых задач. Эти задачи могут быть как с малым, так и с большим числом переменных, иметь различный вид нелинейности. Они могут быть составлены специально и возникать из практических приложений, например задача минимизации суммы квадратов, решение систем нелинейных уравнений и т.п.

 

Литература

 

1. Васильев Ф.П. Численные методы решения экстремальных задач. - М.: Наука, 1980.

2. Сухарев А.Г., Тимохов А.В., Федоров В.В. Курс методов оптимизации. - М.: Наука, 1986.

3. Поляк Б.Т. Введение в оптимизацию. - М.: Наука, 1983.

4. Сеа Ж. Оптимизация. Теория и алгоритмы. - М.: Мир, 1973.

5. Зангвилл У. Нелинейное программирование. Единый подход. - М.: Сов. радио,1973.

6. Банди Б. Методы оптимизации (вводный курс). - М.: Радио и связь,1988.

7. КОМПЬЮТЕРНОЕ МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО МЕТОДАМ ПАРАМЕТРИЧЕСКОЙ ОПТИМИЗАЦИИ. МГТУ им. Баумана, 1997 год

 

Абитуриенту - преимущества специальности 2203 “ Системы автоматизации проектирования ”.

Copyright © 2000-2006 кафедра "САПР в строительстве" МГСУ Все права защищены.

Рейтинг@Mail.ru