The advantage of Gaussian elimination and backsubstitution over Gauss-Jordan elimination is simply that the former is faster in raw operations count: The innermost loops of Gauss-Jordan elimination, each containing one subtraction and one multiplication, are executed N^{3} and $N^{2} M$ times (where there are N equations and M unknowns). The corresponding loops in Gaussian elimination are executed only $\frac{1}{3} N^{3}$ times (only half the matrix is reduced, and the increasing numbers of predictable zeros reduce the count to one-third), and $\frac{1}{2} N^{2} M$ times, respectively. Each backsubstitution of a right-hand side is $\frac{1}{2} N^{2}$ executions of a similar loop (one multiplication plus one subtraction). For $M \ll N$ (only a few right-hand sides) Gaussian elimination thus has about a factor three advantage over Gauss-Jordan. (We could reduce this advantage to a factor 1.5 by not computing the inverse matrix as part of the Gauss-Jordan scheme.)

For computing the inverse matrix (which we can view as the case of $M=N$ right-hand sides, namely the N unit vectors which are the columns of the identity matrix), Gaussian elimination and backsubstitution at first glance require $\frac{1}{3} N^{3}$ (matrix reduction) $+\frac{1}{2} N^{3}$ (right-hand side manipulations) $+\frac{1}{2} N^{3}$ (N backsubstitutions) $=\frac{4}{3} N^{3}$ loop executions, which is more than the N^{3} for Gauss-Jordan. However, the unit vectors are quite special in containing all zeros except for one element. If this is taken into account, the right-side manipulations can be reduced to only $\frac{1}{6} N^{3}$ loop executions, and, for matrix inversion, the two methods have identical efficiencies.

Both Gaussian elimination and Gauss-Jordan elimination share the disadvantage that all right-hand sides must be known in advance. The $L U$ decomposition method in the next section does not share that deficiency, and also has an equally small operations count, both for solution with any number of right-hand sides, and for matrix inversion. For this reason we will not implement the method of Gaussian elimination as a routine.

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York: McGraw-Hill), §9.3-1.
Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §2.1.
Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: AddisonWesley), §2.2.1.
Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations (New York: Wiley).

2.3 LU Decomposition and Its Applications

Suppose we are able to write the matrix \mathbf{A} as a product of two matrices,

$$
\begin{equation*}
\mathbf{L} \cdot \mathbf{U}=\mathbf{A} \tag{2.3.1}
\end{equation*}
$$

where \mathbf{L} is lower triangular (has elements only on the diagonal and below) and \mathbf{U} is upper triangular (has elements only on the diagonal and above). For the case of
a 4×4 matrix \mathbf{A}, for example, equation (2.3.1) would look like this:

$$
\left[\begin{array}{cccc}
\alpha_{11} & 0 & 0 & 0 \tag{2.3.2}\\
\alpha_{21} & \alpha_{22} & 0 & 0 \\
\alpha_{31} & \alpha_{32} & \alpha_{33} & 0 \\
\alpha_{41} & \alpha_{42} & \alpha_{43} & \alpha_{44}
\end{array}\right] \cdot\left[\begin{array}{cccc}
\beta_{11} & \beta_{12} & \beta_{13} & \beta_{14} \\
0 & \beta_{22} & \beta_{23} & \beta_{24} \\
0 & 0 & \beta_{33} & \beta_{34} \\
0 & 0 & 0 & \beta_{44}
\end{array}\right]=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]
$$

We can use a decomposition such as (2.3.1) to solve the linear set

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{x}=(\mathbf{L} \cdot \mathbf{U}) \cdot \mathbf{x}=\mathbf{L} \cdot(\mathbf{U} \cdot \mathbf{x})=\mathbf{b} \tag{2.3.3}
\end{equation*}
$$

by first solving for the vector \mathbf{y} such that

$$
\begin{equation*}
\mathbf{L} \cdot \mathbf{y}=\mathbf{b} \tag{2.3.4}
\end{equation*}
$$

and then solving

$$
\begin{equation*}
\mathbf{U} \cdot \mathbf{x}=\mathbf{y} \tag{2.3.5}
\end{equation*}
$$

What is the advantage of breaking up one linear set into two successive ones? The advantage is that the solution of a triangular set of equations is quite trivial, as we have already seen in $\S 2.2$ (equation 2.2.4). Thus, equation (2.3.4) can be solved by forward substitution as follows,

$$
\begin{align*}
y_{1} & =\frac{b_{1}}{\alpha_{11}} \\
y_{i} & =\frac{1}{\alpha_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} \alpha_{i j} y_{j}\right] \quad i=2,3, \ldots, N \tag{2.3.6}
\end{align*}
$$

while (2.3.5) can then be solved by backsubstitution exactly as in equations (2.2.2)(2.2.4),

$$
\begin{align*}
x_{N} & =\frac{y_{N}}{\beta_{N N}} \\
x_{i} & =\frac{1}{\beta_{i i}}\left[y_{i}-\sum_{j=i+1}^{N} \beta_{i j} x_{j}\right] \quad i=N-1, N-2, \ldots, 1 \tag{2.3.7}
\end{align*}
$$

Equations (2.3.6) and (2.3.7) total (for each right-hand side b) N^{2} executions of an inner loop containing one multiply and one add. If we have N right-hand sides which are the unit column vectors (which is the case when we are inverting a matrix), then taking into account the leading zeros reduces the total execution count of (2.3.6) from $\frac{1}{2} N^{3}$ to $\frac{1}{6} N^{3}$, while (2.3.7) is unchanged at $\frac{1}{2} N^{3}$.

Notice that, once we have the $L U$ decomposition of \mathbf{A}, we can solve with as many right-hand sides as we then care to, one at a time. This is a distinct advantage over the methods of $\S 2.1$ and $\S 2.2$.

Performing the LU Decomposition

How then can we solve for \mathbf{L} and \mathbf{U}, given \mathbf{A} ? First, we write out the i, j th component of equation (2.3.1) or (2.3.2). That component always is a sum beginning with

$$
\alpha_{i 1} \beta_{1 j}+\cdots=a_{i j}
$$

The number of terms in the sum depends, however, on whether i or j is the smaller number. We have, in fact, the three cases,

$$
\begin{array}{ll}
i<j: & \alpha_{i 1} \beta_{1 j}+\alpha_{i 2} \beta_{2 j}+\cdots+\alpha_{i i} \beta_{i j}=a_{i j} \\
i=j: & \alpha_{i 1} \beta_{1 j}+\alpha_{i 2} \beta_{2 j}+\cdots+\alpha_{i i} \beta_{j j}=a_{i j} \\
i>j: & \alpha_{i 1} \beta_{1 j}+\alpha_{i 2} \beta_{2 j}+\cdots+\alpha_{i j} \beta_{j j}=a_{i j} \tag{2.3.10}
\end{array}
$$

Equations (2.3.8)-(2.3.10) total N^{2} equations for the $N^{2}+N$ unknown α 's and β 's (the diagonal being represented twice). Since the number of unknowns is greater than the number of equations, we are invited to specify N of the unknowns arbitrarily and then try to solve for the others. In fact, as we shall see, it is always possible to take

$$
\begin{equation*}
\alpha_{i i} \equiv 1 \quad i=1, \ldots, N \tag{2.3.11}
\end{equation*}
$$

A surprising procedure, now, is Crout's algorithm, which quite trivially solves the set of $N^{2}+N$ equations (2.3.8)-(2.3.11) for all the α 's and β 's by just arranging the equations in a certain order! That order is as follows:

- Set $\alpha_{i i}=1, i=1, \ldots, N$ (equation 2.3.11).
- For each $j=1,2,3, \ldots, N$ do these two procedures: First, for $i=$ $1,2, \ldots, j$, use (2.3.8), (2.3.9), and (2.3.11) to solve for $\beta_{i j}$, namely

$$
\begin{equation*}
\beta_{i j}=a_{i j}-\sum_{k=1}^{i-1} \alpha_{i k} \beta_{k j} \tag{2.3.12}
\end{equation*}
$$

(When $i=1$ in 2.3.12 the summation term is taken to mean zero.) Second, for $i=j+1, j+2, \ldots, N$ use (2.3.10) to solve for $\alpha_{i j}$, namely

$$
\begin{equation*}
\alpha_{i j}=\frac{1}{\beta_{j j}}\left(a_{i j}-\sum_{k=1}^{j-1} \alpha_{i k} \beta_{k j}\right) . \tag{2.3.13}
\end{equation*}
$$

Be sure to do both procedures before going on to the next j.
If you work through a few iterations of the above procedure, you will see that the α 's and β 's that occur on the right-hand side of equations (2.3.12) and (2.3.13) are already determined by the time they are needed. You will also see that every $a_{i j}$ is used only once and never again. This means that the corresponding $\alpha_{i j}$ or $\beta_{i j}$ can be stored in the location that the a used to occupy: the decomposition is "in place." [The diagonal unity elements $\alpha_{i i}$ (equation 2.3.11) are not stored at all.] In brief, Crout's method fills in the combined matrix of α 's and β 's,

$$
\left[\begin{array}{llll}
\beta_{11} & \beta_{12} & \beta_{13} & \beta_{14} \tag{2.3.14}\\
\alpha_{21} & \beta_{22} & \beta_{23} & \beta_{24} \\
\alpha_{31} & \alpha_{32} & \beta_{33} & \beta_{34} \\
\alpha_{41} & \alpha_{42} & \alpha_{43} & \beta_{44}
\end{array}\right]
$$

by columns from left to right, and within each column from top to bottom (see Figure 2.3.1).

Figure 2.3.1. Crout's algorithm for $L U$ decomposition of a matrix. Elements of the original matrix are modified in the order indicated by lower case letters: a, b, c, etc. Shaded boxes show the previously modified elements that are used in modifying two typical elements, each indicated by an " x ".

What about pivoting? Pivoting (i.e., selection of a salubrious pivot element for the division in equation 2.3.13) is absolutely essential for the stability of Crout's method. Only partial pivoting (interchange of rows) can be implemented efficiently. However this is enough to make the method stable. This means, incidentally, that we don't actually decompose the matrix \mathbf{A} into $L U$ form, but rather we decompose a rowwise permutation of \mathbf{A}. (If we keep track of what that permutation is, this decomposition is just as useful as the original one would have been.)

Pivoting is slightly subtle in Crout's algorithm. The key point to notice is that equation (2.3.12) in the case of $i=j$ (its final application) is exactly the same as equation (2.3.13) except for the division in the latter equation; in both cases the upper limit of the sum is $k=j-1(=i-1)$. This means that we don't have to readable files (including this one) to all 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America). commit ourselves as to whether the diagonal element $\beta_{j j}$ is the one that happens to fall on the diagonal in the first instance, or whether one of the (undivided) $\alpha_{i j}$'s below it in the column, $i=j+1, \ldots, N$, is to be "promoted" to become the diagonal β. This can be decided after all the candidates in the column are in hand. As you should be able to guess by now, we will choose the largest one as the diagonal β (pivot element), then do all the divisions by that element en masse. This is Crout's
method with partial pivoting. Our implementation has one additional wrinkle: It initially finds the largest element in each row, and subsequently (when it is looking for the maximal pivot element) scales the comparison as if we had initially scaled all the equations to make their maximum coefficient equal to unity; this is the implicit pivoting mentioned in $\S 2.1$.

```
SUBROUTINE ludcmp(a,n,np,indx,d)
```

INTEGER n, np,indx (n),NMAX
REAL d, a ($n \mathrm{p}, \mathrm{np}$), TINY
PARAMETER (NMAX=500,TINY=1.0e-20) Largest expected n, and a small number.
Given a matrix $a(1: n, 1: n)$, with physical dimension $n p$ by n, this routine replaces it by
the $L U$ decomposition of a rowwise permutation of itself. a and n are input. a is output,
arranged as in equation (2.3.14) above; indx ($1: n$) is an output vector that records the
row permutation effected by the partial pivoting; d is output as ± 1 depending on whether
the number of row interchanges was even or odd, respectively. This routine is used in
combination with lubksb to solve linear equations or invert a matrix.
INTEGER i,imax,j,k
REAL aamax, dum, sum,vv (NMAX) vv stores the implicit scaling of each row.
$\mathrm{d}=1$. No row interchanges yet.
do $12 \mathrm{i}=1$,n Loop over rows to get the implicit scaling informa-
$\operatorname{aamax}=0$.
tion.
do $11 j=1, n$
if (abs (a(i,j)).gt.aamax) aamax=abs (a(i,j))
enddo ${ }_{11}$
if (aamax.eq.0.) pause 'singular matrix in ludcmp' No nonzero largest element.
$\operatorname{vv}(i)=1 . /$ aamax \quad Save the scaling.
enddo 12
do $19 \mathrm{j}=1$, n
This is the loop over columns of Crout's method.
do $14 \mathrm{i}=1, \mathrm{j}-1 \quad$ This is equation (2.3.12) except for $i=j$.
sum=a(i,j)
do $13 \mathrm{k}=1, \mathrm{i}-1$
sum=sum-a $(i, k) * a(k, j)$
enddo 13
$a(i, j)=$ sum
enddo 14
aamax=0. Initialize for the search for largest pivot element.
do ${ }_{16} \mathrm{i}=\mathrm{j}, \mathrm{n} \quad$ This is $i=j$ of equation (2.3.12) and $i=j+1 \ldots N$
sum=a(i,j) of equation (2.3.13).
do $15 \mathrm{k}=1, \mathrm{j}-1$
sum=sum-a $(i, k) * a(k, j)$
enddo 15
$a(i, j)=$ sum
dum=vv(i)*abs (sum) Figure of merit for the pivot.
if (dum.ge. aamax) then Is it better than the best so far?
imax=i
aamax=dum
endif
enddo 16
if (j.ne.imax)then Do we need to interchange rows?
do $17 \mathrm{k}=1, \mathrm{n}$
Yes, do so...
dum=a(imax,k)
$a(i \max , k)=a(j, k)$
$a(j, k)=$ dum
enddo 17
$d=-\mathrm{d} \quad$...and change the parity of d.
$\mathrm{vv}(\mathrm{imax})=\mathrm{vv}(\mathrm{j}) \quad$ Also interchange the scale factor.
endif
indx $(j)=$ imax
if (a(j, j).eq.0.) a(j, j) =TINY
If the pivot element is zero the matrix is singular (at least to the precision of the al-
gorithm). For some applications on singular matrices, it is desirable to substitute TINY
for zero.

```
    if(j.ne.n)then Now, finally, divide by the pivot element.
        dum=1./a(j,j)
        do 18 i=j+1,n
            a(i,j)=a(i,j)*dum
        enddo 18
    endif
enddo 19 Go back for the next column in the reduction.
return
END
```

Here is the routine for forward substitution and backsubstitution, implementing equations (2.3.6) and (2.3.7).

```
SUBROUTINE lubksb(a,n,np,indx,b)
INTEGER n, np,indx(n)
REAL a(np,np),b(n)
    Solves the set of n linear equations A.X=B. Here a is input, not as the matrix }A\mathrm{ but
    rather as its LU decomposition, determined by the routine ludcmp. indx is input as the
    permutation vector returned by ludcmp. }\textrm{b}(1:\textrm{n})\mathrm{ is input as the right-hand side vector B,
    and returns with the solution vector X. a, n, np, and indx are not modified by this routine
    and can be left in place for successive calls with different right-hand sides b. This routine
    takes into account the possibility that b will begin with many zero elements, so it is efficient
    for use in matrix inversion.
INTEGER i,ii,j,ll
REAL sum
ii=0 When ii is set to a positive value, it will become the in-
do }12\textrm{i}=1,\textrm{n}\mathrm{ dex of the first nonvanishing element of b. We now do
    ll=indx(i) the forward substitution, equation (2.3.6). The only new
    sum=b(ll) wrinkle is to unscramble the permutation as we go.
    b(ll)=b(i)
    if (ii.ne.0)then
        do 11 j=ii,i-1
            sum=sum-a(i,j)*b(j)
        enddo 11
    else if (sum.ne.0.) then
        ii=i A nonzero element was encountered, so from now on we will
    endif
    b(i)=sum
enddo 12
do }14\textrm{i}=\textrm{n},1,-1 Now we do the backsubstitution, equation (2.3.7)
    sum=b(i)
    do 13 j=i+1,n
        sum=sum-a(i,j)*b(j)
    enddo }1
    b}(i)=\operatorname{sum}/\textrm{a}(\textrm{i},\textrm{i})\quad\mathrm{ Store a component of the solution vector X.
enddo 14
return All done!
END
```

The $L U$ decomposition in ludcmp requires about $\frac{1}{3} N^{3}$ executions of the inner loops (each with one multiply and one add). This is thus the operation count for solving one (or a few) right-hand sides, and is a factor of 3 better than the Gauss-Jordan routine gaussj which was given in $\S 2.1$, and a factor of 1.5 better than a Gauss-Jordan routine (not given) that does not compute the inverse matrix. For inverting a matrix, the total count (including the forward and backsubstitution as discussed following equation 2.3.7 above) is $\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{2}\right) N^{3}=N^{3}$, the same as gaussj.

To summarize, this is the preferred way to solve the linear set of equations $\mathbf{A} \cdot \mathbf{x}=\mathbf{b}$:

```
call ludcmp(a,n,np,indx,d)
call lubksb(a,n,np,indx,b)
```

The answer \mathbf{x} will be returned in b. Your original matrix \mathbf{A} will have been destroyed.

If you subsequently want to solve a set of equations with the same \mathbf{A} but a different right-hand side \mathbf{b}, you repeat only

```
call lubksb(a,n,np,indx,b)
```

not, of course, with the original matrix \mathbf{A}, but with a and indx as were already returned from ludcmp.

Inverse of a Matrix

Using the above $L U$ decomposition and backsubstitution routines, it is completely straightforward to find the inverse of a matrix column by column.

```
INTEGER np,indx(np)
REAL a (np,np),y(np,np)
do 12 i=1,n Set up identity matrix.
    do 11 j=1,n
        y(i,j)=0.
    enddo }1
    y(i,i)=1 .
enddo }1
call ludcmp(a,n,np,indx,d) Decompose the matrix just once.
do 13 j=1,n Find inverse by columns.
    call lubksb(a,n,np,indx,y(1,j))
        Note that FORTRAN stores two-dimensional matrices by column, so y(1,j) is the
        address of the jth column of y.
enddo }1
```

The matrix y will now contain the inverse of the original matrix a, which will have been destroyed. Alternatively, there is nothing wrong with using a Gauss-Jordan routine like gaussj (§2.1) to invert a matrix in place, again destroying the original. Both methods have practically the same operations count.

Incidentally, if you ever have the need to compute $\mathbf{A}^{-1} \cdot \mathbf{B}$ from matrices \mathbf{A} and \mathbf{B}, you should $L U$ decompose \mathbf{A} and then backsubstitute with the columns of B instead of with the unit vectors that would give A's inverse. This saves a whole matrix multiplication, and is also more accurate.

Determinant of a Matrix

The determinant of an $L U$ decomposed matrix is just the product of the diagonal elements,

$$
\begin{equation*}
\operatorname{det}=\prod_{j=1}^{N} \beta_{j j} \tag{2.3.15}
\end{equation*}
$$

We don't, recall, compute the decomposition of the original matrix, but rather a decomposition of a rowwise permutation of it. Luckily, we have kept track of whether the number of row interchanges was even or odd, so we just preface the product by the corresponding sign. (You now finally know the purpose of returning d in the routine ludcmp.)

Calculation of a determinant thus requires one call to ludcmp, with no subsequent backsubstitutions by lubksb.

```
INTEGER np,indx(np)
REAL a(np,np)
call ludcmp(a,n,np,indx,d) This returns d as }\pm1\mathrm{ .
do 11 j=1,n
    d=d*a(j,j)
enddo }1
```

The variable d now contains the determinant of the original matrix a, which will have been destroyed.

For a matrix of any substantial size, it is quite likely that the determinant will overflow or underflow your computer's floating-point dynamic range. In this case you can modify the loop of the above fragment and (e.g.) divide by powers of ten, to keep track of the scale separately, or (e.g.) accumulate the sum of logarithms of the absolute values of the factors and the sign separately.

Complex Systems of Equations

If your matrix \mathbf{A} is real, but the right-hand side vector is complex, say $\mathbf{b}+i \mathbf{d}$, then (i) $L U$ decompose \mathbf{A} in the usual way, (ii) backsubstitute \mathbf{b} to get the real part of the solution vector, and (iii) backsubstitute d to get the imaginary part of the solution vector.

If the matrix itself is complex, so that you want to solve the system

$$
\begin{equation*}
(\mathbf{A}+i \mathbf{C}) \cdot(\mathbf{x}+i \mathbf{y})=(\mathbf{b}+i \mathbf{d}) \tag{2.3.16}
\end{equation*}
$$

then there are two possible ways to proceed. The best way is to rewrite ludcmp and lubksb as complex routines. Complex modulus substitutes for absolute value in the construction of the scaling vector vv and in the search for the largest pivot elements. Everything else goes through in the obvious way, with complex arithmetic used as needed.

A quick-and-dirty way to solve complex systems is to take the real and imaginary parts of (2.3.16), giving

$$
\begin{align*}
& \mathbf{A} \cdot \mathbf{x}-\mathbf{C} \cdot \mathbf{y}=\mathbf{b} \\
& \mathbf{C} \cdot \mathbf{x}+\mathbf{A} \cdot \mathbf{y}=\mathbf{d} \tag{2.3.17}
\end{align*}
$$

which can be written as a $2 N \times 2 N$ set of real equations,

$$
\left(\begin{array}{cc}
\mathbf{A} & -\mathbf{C} \tag{2.3.18}\\
\mathbf{C} & \mathbf{A}
\end{array}\right) \cdot\binom{\mathbf{x}}{\mathbf{y}}=\binom{\mathbf{b}}{\mathbf{d}}
$$

and then solved with ludcmp and lubksb in their present forms. This scheme is a factor of 2 inefficient in storage, since \mathbf{A} and \mathbf{C} are stored twice. It is also a factor of 2 inefficient in time, since the complex multiplies in a complexified version of the routines would each use 4 real multiplies, while the solution of a $2 N \times 2 N$ problem involves 8 times the work of an $N \times N$ one. If you can tolerate these factor-of-two inefficiencies, then equation (2.3.18) is an easy way to proceed.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins University Press), Chapter 4.
Dongarra, J.J., et al. 1979, LINPACK User's Guide (Philadelphia: S.I.A.M.).
Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Computations (Englewood Cliffs, NJ: Prentice-Hall), $\S 3.3$, and p. 50.
Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Englewood Cliffs, NJ: Prentice-Hall), Chapters 9, 16, and 18.
Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations (New York: Wiley).
Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag), §4.2.
Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York: McGraw-Hill), §9.11.
Horn, R.A., and Johnson, C.R. 1985, Matrix Analysis (Cambridge: Cambridge University Press).

2.4 Tridiagonal and Band Diagonal Systems of Equations

The special case of a system of linear equations that is tridiagonal, that is, has nonzero elements only on the diagonal plus or minus one column, is one that occurs frequently. Also common are systems that are band diagonal, with nonzero elements only along a few diagonal lines adjacent to the main diagonal (above and below).

For tridiagonal sets, the procedures of $L U$ decomposition, forward- and backsubstitution each take only $O(N)$ operations, and the whole solution can be encoded very concisely. The resulting routine tridag is one that we will use in later chapters.

Naturally, one does not reserve storage for the full $N \times N$ matrix, but only for the nonzero components, stored as three vectors. The set of equations to be solved is

$$
\left[\begin{array}{ccccccc}
b_{1} & c_{1} & 0 & \ldots & & \tag{2.4.1}\\
a_{2} & b_{2} & c_{2} & \cdots & & & \\
& & & \cdots & & & \\
& & & \cdots & a_{N-1} & b_{N-1} & c_{N-1} \\
& & & 0 & a_{N} & b_{N}
\end{array}\right] \cdot\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\cdots \\
u_{N-1} \\
u_{N}
\end{array}\right]=\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\cdots \\
r_{N-1} \\
r_{N}
\end{array}\right]
$$

Notice that a_{1} and c_{N} are undefined and are not referenced by the routine that follows.

