CITED REFERENCES AND FURTHER READING:

Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G. 1953, Higher Transcendental Functions, Vol. II, (New York: McGraw-Hill). [1]
Gradshteyn, I.S., and Ryzhik, I.W. 1980, Table of Integrals, Series, and Products (New York: Academic Press). [2]
Carlson, B.C. 1977, SIAM Journal on Mathematical Analysis, vol. 8, pp. 231-242. [3]
Carlson, B.C. 1987, Mathematics of Computation, vol. 49, pp. 595-606 [4]; 1988, op. cit., vol. 51, pp. 267-280 [5]; 1989, op. cit., vol. 53, pp. 327-333 [6]; 1991, op. cit., vol. 56, pp. 267-280. [7]
Bulirsch, R. 1965, Numerische Mathematik, vol. 7, pp. 78-90; 1965, op. cit., vol. 7, pp. 353-354; 1969, op. cit., vol. 13, pp. 305-315. [8]
Carlson, B.C. 1979, Numerische Mathematik, vol. 33, pp. 1-16. [9]
Carlson, B.C., and Notis, E.M. 1981, ACM Transactions on Mathematical Software, vol. 7, pp. 398-403. [10]
Carlson, B.C. 1978, SIAM Journal on Mathematical Analysis, vol. 9, p. 524-528. [11]
Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathematics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by Dover Publications, New York), Chapter 17. [12]
Mathews, J., and Walker, R.L. 1970, Mathematical Methods of Physics, 2nd ed. (Reading, MA: W.A. Benjamin/Addison-Wesley), pp. 78-79.

6.12 Hypergeometric Functions

As was discussed in $\S 5.14$, a fast, general routine for the the complex hypergeometric function ${ }_{2} F_{1}(a, b, c ; z)$, is difficult or impossible. The function is defined as the analytic continuation of the hypergeometric series,

$$
\begin{align*}
{ }_{2} F_{1}(a, b, c ; z)=1 & +\frac{a b}{c} \frac{z}{1!}+\frac{a(a+1) b(b+1)}{c(c+1)} \frac{z^{2}}{2!}+\cdots \\
& +\frac{a(a+1) \ldots(a+j-1) b(b+1) \ldots(b+j-1)}{c(c+1) \ldots(c+j-1)} \frac{z^{j}}{j!}+\cdots \tag{6.12.1}
\end{align*}
$$

This series converges only within the unit circle $|z|<1$ (see [1]), but one's interest in the function is not confined to this region.

Section 5.14 discussed the method of evaluating this function by direct path integration in the complex plane. We here merely list the routines that result.

Implementation of the function hypgeo is straightforward, and is described by comments in the program. The machinery associated with Chapter 16's routine for integrating differential equations, odeint, is only minimally intrusive, and need not even be completely understood: use of odeint requires a common block with one zeroed variable, one subroutine call, and a prescribed format for the derivative routine hypdrv.

The subroutine hypgeo will fail, of course, for values of z too close to the singularity at 1 . (If you need to approach this singularity, or the one at ∞, use the "linear transformation formulas" in $\S 15.3$ of [1].) Away from $z=1$, and for moderate values of a, b, c, it is often remarkable how few steps are required to integrate the equations. A half-dozen is typical.

```
FUNCTION hypgeo(a,b,c,z)
COMPLEX hypgeo,a,b,c,z
REAL EPS
PARAMETER (EPS=1.e-6) Accuracy parameter.
C USES bsstep,hypdrv,hypser,odeint
    Complex hypergeometric function }\mp@subsup{}{2}{}\mp@subsup{F}{1}{}\mathrm{ for complex }a,b,c\mathrm{ , and }z\mathrm{ , by direct integration of
    the hypergeometric equation in the complex plane. The branch cut is taken to lie along
    the real axis, Re z>1.
INTEGER kmax,nbad,nok
EXTERNAL bsstep,hypdrv
COMPLEX z0,dz,aa,bb,cc,y(2)
COMMON /hypg/ aa,bb,cc,z0,dz
COMMON /path/ kmax Used by odeint.
kmax=0
if (real(z)**2+aimag(z)**2.le.0.25) then Use series...
    call hypser(a,b,c,z,hypgeo,y(2))
    return
else if (real(z).lt.O.) then ...or pick a starting point for the path inte-
    z0=cmplx (-0.5,0.)
    gration.
else if (real(z).le.1.0) then
    z0=cmplx(0.5,0.)
else
    z0=cmplx(0.,sign(0.5,\operatorname{aimag}(z)))
endif
aa=a Load the common block, used to pass pa-
Load the common block, used to pass pa-
cc=c
    hypdrv.
dz=z-z0
call hypser(aa,bb,cc,z0,y(1),y(2)) Get starting function and derivative.
call odeint(y,4,0.,1.,EPS,.1,.0001,nok,nbad,hypdrv,bsstep)
    The arguments to odeint are the vector of independent variables, its length, the starting and
    ending values of the dependent variable, the accuracy parameter, an initial guess for stepsize,
    a minimum stepsize, the (returned) number of good and bad steps taken, and the names of
    the derivative routine and the (here Bulirsch-Stoer) stepping routine.
hypgeo=y (1)
return
END
```

SUBROUTINE hypser (a, b, c, z, series, deriv)
INTEGER n
COMPLEX $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{z}$,series, deriv, $\mathrm{aa}, \mathrm{bb}, \mathrm{cc}, \mathrm{fac}, \mathrm{temp}$
Returns the hypergeometric series ${ }_{2} F_{1}$ and its derivative, iterating to machine accuracy.
For cabs $(z) \leq 1 / 2$ convergence is quite rapid.
deriv=cmplx(0.,0.)
fac=cmplx(1.,0.)
temp=fac
$a \mathrm{a}=\mathrm{a}$
$b b=b$
$\mathrm{cc}=\mathrm{c}$
do ${ }_{11} \mathrm{n}=1,1000$
$\mathrm{fac}=((\mathrm{aa} * \mathrm{bb}) / \mathrm{cc}) * \mathrm{fac}$
deriv=deriv+fac
fac=fac*z/n
series=temp+fac
if (series.eq.temp) return
temp=series
$a \mathrm{a}=\mathrm{aa}+1$.
$\mathrm{bb}=\mathrm{bb}+1$.
$c c=c c+1$.
enddo ${ }_{11}$
pause 'convergence failure in hypser'
END

```
SUBROUTINE hypdrv(s,y,dyds)
REAL s
COMPLEX y (2),dyds(2),aa,bb,cc,z0,dz,z
    Derivative subroutine for the hypergeometric equation, see text equation (5.14.4).
COMMON /hypg/ aa,bb,cc,z0,dz
z=z0+s*dz
dyds(1)=y(2)*dz
dyds(2)=((aa*bb)*y(1)-(cc-((aa+bb)+1.)*z)*y(2))*dz/(z*(1.-z))
return
END
```


CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathematics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by Dover Publications, New York). [1]

