as a distribution can be. Almost always, the cause of too good a chi-square fit is that the experimenter, in a "fit" of conservativism, has overestimated his or her measurement errors. Very rarely, too good a chi-square signals actual fraud, data that has been "fudged" to fit the model.

A rule of thumb is that a "typical" value of χ^{2} for a "moderately" good fit is $\chi^{2} \approx \nu$. More precise is the statement that the χ^{2} statistic has a mean ν and a standard deviation $\sqrt{2 \nu}$, and, asymptotically for large ν, becomes normally distributed.

In some cases the uncertainties associated with a set of measurements are not known in advance, and considerations related to χ^{2} fitting are used to derive a value for σ. If we assume that all measurements have the same standard deviation, $\sigma_{i}=\sigma$, and that the model does fit well, then we can proceed by first assigning an arbitrary constant σ to all points, next fitting for the model parameters by minimizing χ^{2}, and finally recomputing

$$
\begin{equation*}
\sigma^{2}=\sum_{i=1}^{N}\left[y_{i}-y\left(x_{i}\right)\right]^{2} /(N-M) \tag{15.1.6}
\end{equation*}
$$

Obviously, this approach prohibits an independent assessment of goodness-of-fit, a fact occasionally missed by its adherents. When, however, the measurement error is not known, this approach at least allows some kind of error bar to be assigned to the points.

If we take the derivative of equation (15.1.5) with respect to the parameters a_{k}, we obtain equations that must hold at the chi-square minimum,

$$
\begin{equation*}
0=\sum_{i=1}^{N}\left(\frac{y_{i}-y\left(x_{i}\right)}{\sigma_{i}^{2}}\right)\left(\frac{\partial y\left(x_{i} ; \ldots a_{k} \ldots\right)}{\partial a_{k}}\right) \quad k=1, \ldots, M \tag{15.1.7}
\end{equation*}
$$

Equation (15.1.7) is, in general, a set of M nonlinear equations for the M unknown a_{k}. Various of the procedures described subsequently in this chapter derive from (15.1.7) and its specializations.

CITED REFERENCES AND FURTHER READING:
Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill), Chapters 1-4.
von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic Press), §VI.C. [1]

15.2 Fitting Data to a Straight Line

This problem is often called linear regression, a terminology that originated, long ago, in the social sciences. We assume that the uncertainty σ_{i} associated with each measurement y_{i} is known, and that the x_{i} 's (values of the dependent variable) are known exactly.

To measure how well the model agrees with the data, we use the chi-square merit function (15.1.5), which in this case is

$$
\begin{equation*}
\chi^{2}(a, b)=\sum_{i=1}^{N}\left(\frac{y_{i}-a-b x_{i}}{\sigma_{i}}\right)^{2} \tag{15.2.2}
\end{equation*}
$$

If the measurement errors are normally distributed, then this merit function will give maximum likelihood parameter estimations of a and b; if the errors are not normally distributed, then the estimations are not maximum likelihood, but may still be useful in a practical sense. In $\S 15.7$, we will treat the case where outlier points are so numerous as to render the χ^{2} merit function useless.

Equation (15.2.2) is minimized to determine a and b. At its minimum, derivatives of $\chi^{2}(a, b)$ with respect to a, b vanish.

$$
\begin{align*}
& 0=\frac{\partial \chi^{2}}{\partial a}=-2 \sum_{i=1}^{N} \frac{y_{i}-a-b x_{i}}{\sigma_{i}^{2}} \tag{15.2.3}\\
& 0=\frac{\partial \chi^{2}}{\partial b}=-2 \sum_{i=1}^{N} \frac{x_{i}\left(y_{i}-a-b x_{i}\right)}{\sigma_{i}^{2}}
\end{align*}
$$

These conditions can be rewritten in a convenient form if we define the following sums:

$$
\begin{align*}
S & \equiv \sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}} \quad S_{x}
\end{align*} \begin{array}{|}
i=1 & \frac{x_{i}}{\sigma_{i}^{2}} \quad S_{y} \equiv \sum_{i=1}^{N} \frac{y_{i}}{\sigma_{i}^{2}} \tag{15.2.4}\\
S_{x x} & \equiv \sum_{i=1}^{N} \frac{x_{i}^{2}}{\sigma_{i}^{2}} \quad S_{x y} & \equiv \sum_{i=1}^{N} \frac{x_{i} y_{i}}{\sigma_{i}^{2}}
\end{array}
$$

With these definitions (15.2.3) becomes

$$
\begin{align*}
a S+b S_{x} & =S_{y} \\
a S_{x}+b S_{x x} & =S_{x y} \tag{15.2.5}
\end{align*}
$$

The solution of these two equations in two unknowns is calculated as

$$
\begin{align*}
\Delta & \equiv S S_{x x}-\left(S_{x}\right)^{2} \\
a & =\frac{S_{x x} S_{y}-S_{x} S_{x y}}{\Delta} \tag{15.2.6}\\
b & =\frac{S S_{x y}-S_{x} S_{y}}{\Delta}
\end{align*}
$$

Equation (15.2.6) gives the solution for the best-fit model parameters a and b.

We are not done, however. We must estimate the probable uncertainties in the estimates of a and b, since obviously the measurement errors in the data must introduce some uncertainty in the determination of those parameters. If the data are independent, then each contributes its own bit of uncertainty to the parameters. Consideration of propagation of errors shows that the variance σ_{f}^{2} in the value of any function will be

$$
\begin{equation*}
\sigma_{f}^{2}=\sum_{i=1}^{N} \sigma_{i}^{2}\left(\frac{\partial f}{\partial y_{i}}\right)^{2} \tag{15.2.7}
\end{equation*}
$$

For the straight line, the derivatives of a and b with respect to y_{i} can be directly evaluated from the solution:

$$
\begin{align*}
\frac{\partial a}{\partial y_{i}} & =\frac{S_{x x}-S_{x} x_{i}}{\sigma_{i}^{2} \Delta} \\
\frac{\partial b}{\partial y_{i}} & =\frac{S x_{i}-S_{x}}{\sigma_{i}^{2} \Delta} \tag{15.2.8}
\end{align*}
$$

Summing over the points as in (15.2.7), we get

$$
\begin{align*}
\sigma_{a}^{2} & =S_{x x} / \Delta \\
\sigma_{b}^{2} & =S / \Delta \tag{15.2.9}
\end{align*}
$$

which are the variances in the estimates of a and b, respectively. We will see in $\S 15.6$ that an additional number is also needed to characterize properly the probable uncertainty of the parameter estimation. That number is the covariance of a and b, and (as we will see below) is given by

$$
\begin{equation*}
\operatorname{Cov}(a, b)=-S_{x} / \Delta \tag{15.2.10}
\end{equation*}
$$

The coefficient of correlation between the uncertainty in a and the uncertainty in b, which is a number between -1 and 1 , follows from (15.2.10) (compare equation 14.5.1),

$$
\begin{equation*}
r_{a b}=\frac{-S_{x}}{\sqrt{S S_{x x}}} \tag{15.2.11}
\end{equation*}
$$

A positive value of $r_{a b}$ indicates that the errors in a and b are likely to have the same sign, while a negative value indicates the errors are anticorrelated, likely to have opposite signs.

We are still not done. We must estimate the goodness-of-fit of the data to the model. Absent this estimate, we have not the slightest indication that the parameters a and b in the model have any meaning at all! The probability Q that a value of chi-square as poor as the value (15.2.2) should occur by chance is

$$
\begin{equation*}
Q=\operatorname{gammq}\left(\frac{N-2}{2}, \frac{\chi^{2}}{2}\right) \tag{15.2.12}
\end{equation*}
$$

Here gammq is our routine for the incomplete gamma function $Q(a, x), \S 6.2$. If Q is larger than, say, 0.1 , then the goodness-of-fit is believable. If it is larger than, say, 0.001 , then the fit may be acceptable if the errors are nonnormal or have been moderately underestimated. If Q is less than 0.001 then the model and/or estimation procedure can rightly be called into question. In this latter case, turn to $\S 15.7$ to proceed further.

If you do not know the individual measurement errors of the points σ_{i}, and are proceeding (dangerously) to use equation (15.1.6) for estimating these errors, then here is the procedure for estimating the probable uncertainties of the parameters a and b : Set $\sigma_{i} \equiv 1$ in all equations through (15.2.6), and multiply σ_{a} and σ_{b}, as obtained from equation (15.2.9), by the additional factor $\sqrt{\chi^{2} /(N-2)}$, where χ^{2} is computed by (15.2.2) using the fitted parameters a and b. As discussed above, this procedure is equivalent to assuming a good fit, so you get no independent goodness-of-fit probability Q.

In $\S 14.5$ we promised a relation between the linear correlation coefficient r (equation 14.5.1) and a goodness-of-fit measure, χ^{2} (equation 15.2.2). For unweighted data (all $\sigma_{i}=1$), that relation is

$$
\begin{equation*}
\chi^{2}=\left(1-r^{2}\right) \mathrm{NVar}\left(y_{1} \ldots y_{N}\right) \tag{15.2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{NVar}\left(y_{1} \ldots y_{N}\right) \equiv \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2} \tag{15.2.14}
\end{equation*}
$$

For data with varying weights σ_{i}, the above equations remain valid if the sums in equation (14.5.1) are weighted by $1 / \sigma_{i}^{2}$.

The following subroutine, fit, carries out exactly the operations that we have discussed. When the weights σ are known in advance, the calculations exactly correspond to the formulas above. However, when weights σ are unavailable, the routine assumes equal values of σ for each point and assumes a good fit, as discussed in $\S 15.1$.

The formulas (15.2.6) are susceptible to roundoff error. Accordingly, we rewrite them as follows: Define

$$
\begin{equation*}
t_{i}=\frac{1}{\sigma_{i}}\left(x_{i}-\frac{S_{x}}{S}\right), \quad i=1,2, \ldots, N \tag{15.2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{t t}=\sum_{i=1}^{N} t_{i}^{2} \tag{15.2.16}
\end{equation*}
$$

Then, as you can verify by direct substitution,

$$
\begin{align*}
b & =\frac{1}{S_{t t}} \sum_{i=1}^{N} \frac{t_{i} y_{i}}{\sigma_{i}} \tag{15.2.17}\\
a & =\frac{S_{y}-S_{x} b}{S} \tag{15.2.18}
\end{align*}
$$

$$
\begin{align*}
\sigma_{a}^{2} & =\frac{1}{S}\left(1+\frac{S_{x}^{2}}{S S_{t t}}\right) \tag{15.2.19}\\
\sigma_{b}^{2} & =\frac{1}{S_{t t}} \tag{15.2.20}\\
\operatorname{Cov}(a, b) & =-\frac{S_{x}}{S S_{t t}} \tag{15.2.21}\\
r_{a b} & =\frac{\operatorname{Cov}(a, b)}{\sigma_{a} \sigma_{b}} \tag{15.2.22}
\end{align*}
$$

```
SUBROUTINE fit(x,y,ndata,sig,mwt,a,b,siga,sigb,chi2,q)
INTEGER mwt,ndata
REAL a,b,chi2,q,siga,sigb,sig(ndata),x(ndata),y(ndata)
C USES gammq
```

Given a set of data points x (1:ndata), y (1:ndata) with individual standard deviations $\operatorname{sig}\left(1:\right.$ ndata), fit them to a straight line $y=a+b x$ by minimizing χ^{2}. Returned are a, b and their respective probable uncertainties siga and sigb, the chi-square chi2, and the goodness-of-fit probability q (that the fit would have χ^{2} this large or larger). If mwt=0 on input, then the standard deviations are assumed to be unavailable: q is returned as 1.0 and the normalization of chi2 is to unit standard deviation on all points.

INTEGER i

REAL sigdat,ss,st2,sx,sxoss,sy,t,wt,gammq
$\mathrm{sx}=0$.
sy=0.
st2=0.
$\mathrm{b}=0$.
if (mwt. ne
ss $=0$.
do 11 i=1, ndata
...with weights
wt=1./(sig(i)**2)
ss=ss+wt
$\mathrm{sx}=\mathrm{sx}+\mathrm{x}(\mathrm{i}) * \mathrm{wt}$
sy=sy+y (i) *wt
enddo 11
else
do $12 \mathrm{i}=1$,ndata ...or without weights.
$s x=s x+x(i)$
sy=sy+y(i)
enddo 12
ss=float(ndata)
endif
sxoss=sx/ss
if (mwt.ne.0) then
do 13 i=1, ndata
$\mathrm{t}=(\mathrm{x}(\mathrm{i})-\mathrm{sxoss}) / \mathrm{sig}(\mathrm{i})$
st2=st2+t*t
$\mathrm{b}=\mathrm{b}+\mathrm{t} * \mathrm{y}(\mathrm{i}) / \mathrm{sig}(\mathrm{i})$
enddo 13
else
do 14 i=1, ndata
$\mathrm{t}=\mathrm{x}(\mathrm{i})-\mathrm{sxoss}$
st2=st2+t*t
$b=b+t * y(i)$
enddo 14
endif
$\mathrm{b}=\mathrm{b} / \mathrm{st2} \quad$ Solve for a, b, σ_{a}, and σ_{b}.
$\mathrm{a}=(\mathrm{sy}-\mathrm{sx} * \mathrm{~b}) / \mathrm{ss}$
siga=sqrt((1.+sx*sx/(ss*st2))/ss)
sigb=sqrt(1./st2)
chi2=0.
Calculate χ^{2}.

```
q=1.
if(mwt.eq.0) then
    do 15 i=1,ndata
                chi2=chi2+(y(i)-a-b*x(i))**2
    enddo }1
    sigdat=sqrt(chi2/(ndata-2)) For unweighted data evaluate typical sig us-
    siga=siga*sigdat ing chi2, and adjust the standard devia-
    sigb=sigb*sigdat tions.
else
    do 16 i=1,ndata
        chi2=chi2+((y(i)-a-b*x(i))/sig(i))**2
    enddo }1
    if(ndata.gt.2) q=gammq(0.5*(ndata-2),0.5*chi2) Equation (15.2.12).
endif
return
END
```


15.3 Straight-Line Data with Errors in Both Coordinates

If experimental data are subject to measurement error not only in the y_{i} 's, but also in the x_{i} 's, then the task of fitting a straight-line model

$$
\begin{equation*}
y(x)=a+b x \tag{15.3.1}
\end{equation*}
$$

is considerably harder. It is straightforward to write down the χ^{2} merit function for this case,

$$
\begin{equation*}
\chi^{2}(a, b)=\sum_{i=1}^{N} \frac{\left(y_{i}-a-b x_{i}\right)^{2}}{\sigma_{y i}^{2}+b^{2} \sigma_{x i}^{2}} \tag{15.3.2}
\end{equation*}
$$

where $\sigma_{x i}$ and $\sigma_{y i}$ are, respectively, the x and y standard deviations for the i th point. The weighted sum of variances in the denominator of equation (15.3.2) can be understood both as the variance in the direction of the smallest χ^{2} between each data point and the line with slope b, and also as the variance of the linear combination $y_{i}-a-b x_{i}$ of two random variables x_{i} and y_{i},

$$
\begin{equation*}
\operatorname{Var}\left(y_{i}-a-b x_{i}\right)=\operatorname{Var}\left(y_{i}\right)+b^{2} \operatorname{Var}\left(x_{i}\right)=\sigma_{y i}^{2}+b^{2} \sigma_{x i}^{2} \equiv 1 / w_{i} \tag{15.3.3}
\end{equation*}
$$

The sum of the square of N random variables, each normalized by its variance, is thus χ^{2}-distributed.

We want to minimize equation (15.3.2) with respect to a and b. Unfortunately, the occurrence of b in the denominator of equation (15.3.2) makes the resulting equation for the slope $\partial \chi^{2} / \partial b=0$ nonlinear. However, the corresponding condition for the intercept, $\partial \chi^{2} / \partial a=0$, is still linear and yields

$$
\begin{equation*}
a=\left[\sum_{i} w_{i}\left(y_{i}-b x_{i}\right)\right] / \sum_{i} w_{i} \tag{15.3.4}
\end{equation*}
$$

where the w_{i} 's are defined by equation (15.3.3). A reasonable strategy, now, is to use the machinery of Chapter 10 (e.g., the routine brent) for minimizing a general one-dimensional

