17.1 The Shooting Method 749

17.1 The Shooting Method

In this section we discuss “pure” shooting, where theintegration proceeds from
x1 t0 2, and we try to match boundary conditions at the end of the integration. In
the next section, we describe shooting to an intermediate fitting point, where the
solution to the equations and boundary conditions is found by launching “shots’
from both sides of the interval and trying to match continuity conditions at some
intermediate point.

Our implementation of the shooting method exactly implements multidimen-
sional, globally convergent Newton-Raphson (§9.7). It seeks to zero ns functions
of ny variables. The functions are obtained by integrating IV differential equations
from x; to z2. Let us see how this works:

At the starting point x; there are N starting values y; to be specified, but
subject to n; conditions. Thereforethereareny, = N — n; freely specifiable starting
values. Let usimagine that these freely specifiable values are the components of a
vector V that livesin a vector space of dimension ne. Then you, the user, knowing
the functional form of the boundary conditions (17.0.2), can write a subroutine that
generates a complete set of N starting valuesy, satisfying the boundary conditions
at x1, froman arbitrary vector value of V in which there are no restrictionson thens
component values. In other words, (17.0.2) convertsto a prescription

yi(z1) = yi(z1; Vi, - ., Vi) i=1,...,N (17.1.2)

Below, the subroutine that implements (17.1.1) will be called 1oad.

Notice that the components of V might be exactly the values of certain “free”
components of y, with the other components of y determined by the boundary
conditions. Alternatively, the components of V might parametrize the solutionsthat
satisfy the starting boundary conditions in some other convenient way. Boundary
conditions often impose a gebraic rel ations among the y;, rather than specific values
for each of them. Using some auxiliary set of parameters often makes it easier to
“solve” the boundary relations for a consistent set of y;’s. It makes no difference
which way you go, as long as your vector space of V's generates (through 17.1.1)
al allowed starting vectors y.

Given aparticular V, aparticular y(x;) isthus generated. It can then be turned
into ay(z2) by integrating the ODEs to x5 as an initia value problem (e.g., using
Chapter 16's odeint). Now, a z2, let us define a discrepancy vector F, also of
dimension ny, whose components measure how far we are from satisfying the no
boundary conditions at x5 (17.0.3). Simplest of al is just to use the right-hand
sides of (17.0.3),

Fy, = Bog(x2,y) k=1,...,n5 (17.1.2)

As in the case of V, however, you can use any other convenient parametrization,
as long as your space of F's spans the space of possible discrepancies from the
desired boundary conditions, with all components of F egua to zero if and only if
the boundary conditions at x5 are satisfied. Below, you will be asked to supply a
user-written subroutine score which uses (17.0.3) to convert an N-vector of ending
values y(x2) into an no-vector of discrepancies F.

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

750 Chapter 17. Two Point Boundary Value Problems

Now, as far as Newton-Raphson is concerned, we are nearly in business. We
want to find a vector value of V that zeros the vector value of F. We do this
by invoking the globally convergent Newton's method implemented in the routine
newt oOf §9.7. Recall that the heart of Newton's method involves solving the set
of ny linear equations

J-68V =—F (17.1.3)
and then adding the correction back,
vrew —yeld 4 sy (17.1.4)
In (17.1.3), the Jacobian matrix J has components given by
OF;
Jij = 17.15

It is not feasible to compute these partial derivatives anaytically. Rather, each
requires a separate integration of the N ODEs, followed by the evaluation of
oF; F(V,...,.Vi+ AV, ..) = F(h,...,Vj,..)
v AV

(17.1.6)

Thisis done automatically for you in the routine fd jac that comes with newt. The
only input to newt that you have to provideis the routine funcv that calculates F
by integrating the ODESs. Here is the appropriate routine:

SUBRQUTI NE shoot (n2, v, f) is naned "funcv" for use with "newt"

SUBROUTINE funcv(n2,v,f)

INTEGER n2,nvar,kmax,kount ,KMAXX,NMAX

REAL £ (n2),v(n2),x1,x2,dxsav,xp,yp,EPS

PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX coupled ODEs.

COMMON /caller/ x1,x2,nvar

COMMON /path/ kmax,kount,dxsav,xp(KMAXX) ,yp (NMAX,KMAXX)

USES deri vs, | oad, odei nt, rkqs, score
Routine for use with newt to solve a two point boundary value problem for nvar coupled
ODEs by shooting from x1 to x2. Initial values for the nvar ODEs at x1 are generated
from the n2 input coefficients v(1:1n2), using the user-supplied routine 1oad. The routine
integrates the ODEs to x2 using the Runge-Kutta method with tolerance EPS, initial stepsize
h1, and minimum stepsize hmin. At x2 it calls the user-supplied subroutine score to
evaluate the n2 functions f (1:n2) that ought to be zero to satisfy the boundary conditions
at x2. The functions £ are returned on output. newt uses a globally convergent Newton's
method to adjust the values of v until the functions £ are zero. The user-supplied subroutine
derivs(x,y,dydx) supplies derivative information to the ODE integrator (see Chapter
16). The common block caller receives its values from the main program so that funcv
can have the syntax required by newt. The common block path is included for compatibility
with odeint.

INTEGER nbad,nok

REAL hi,hmin,y(NMAX)

EXTERNAL derivs,rkqgs

kmax=0

hi1=(x2-x1)/100.

hmin=0.

call load(x1l,v,y)

call odeint(y,nvar,x1,x2,EPS,hl,hmin,nok,nbad,derivs,rkqs)

call score(x2,y,f)

return

END

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

17.2 Shooting to a Fitting Point 751

For some problems the initial stepsize AV might depend sensitively upon the
initia conditions. It is straightforward to ater 1oad to include a suggested stepsize
h1 as another returned argument and feed it to £djac viaacommon block.

A complete cycle of the shooting method thus requires ny 4 1 integrations of
the N coupled ODEs. one integration to evauate the current degree of mismatch,
and ny for the partia derivatives. Each new cycle requires a new round of ns + 1
integrations. Thisillustratesthe enormous extra effort involved in solving two point
boundary value problems compared with intia value problems.

If the differential equationsarelinear, then only one complete cycleisrequired,
since (17.1.3)—(17.1.4) should take us right to the solution. A second round can be
useful, however, in mopping up some (never al) of the roundoff error.

Asgiven here, shoot uses the quality controlled Runge-Kuttamethod of §16.2
to integrate the ODEs, but any of the other methods of Chapter 16 could just as
well be used.

You, the user, must supply shoot with: (i) asubroutineload (x1,v,y) which
returnsthe n-vector y (1:n) (satisfying the starting boundary conditions, of course),
given the freely specifiable variables of v(1:n2) at the initial point x1; (ii) a
subroutine score (x2,y,f) which returns the discrepancy vector £ (1:n2) of the
ending boundary conditions, given the vector y(1:n) at the endpoint x2; (iii) a
starting vector v(1:n2); (iv) a subroutine derivs for the ODE integration; and
other obvious parameters as described in the header comment above.

In §17.4 we give a sample program illustrating how to use shoot.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

17.2 Shooting to a Fitting Point

The shooting method described in §17.1 tacitly assumed that the “shots” would
be able to traverse the entire domain of integration, even at the early stages of
convergence to a correct solution. In some problems it can happen that, for very
wrong starting conditions, an initia solution can’t even get from x; to x5 without
encountering some incalculable, or catastrophic, result. For example, the argument
of a sguare root might go negative, causing the numerical code to crash. Simple
shooting would be stymied.

A different, but related, case is where the endpoints are both singular points
of the set of ODEs. One frequently needs to use special methods to integrate near
the singular points, analytic asymptotic expansions, for example. In such casesitis
feasible to integrate in the direction away from a singular point, using the special
method to get through the first little bit and then reading off “initial” values for
further numerical integration. However it is usualy not feasible to integrate into
a singular point, if only because one has not usually expended the same anaytic

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

