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17.1 The Shooting Method

In this section we discuss “pure” shooting, where the integration proceeds from
x1 to x2, and we try to match boundary conditions at the end of the integration. In
the next section, we describe shooting to an intermediate fitting point, where the
solution to the equations and boundary conditions is found by launching “shots”
from both sides of the interval and trying to match continuity conditions at some
intermediate point.

Our implementation of the shooting method exactly implements multidimen-
sional, globally convergent Newton-Raphson (§9.7). It seeks to zero n2 functions
of n2 variables. The functions are obtained by integrating N differential equations
from x1 to x2. Let us see how this works:

At the starting point x1 there are N starting values yi to be specified, but
subject to n1 conditions. Therefore there are n2 = N −n1 freely specifiable starting
values. Let us imagine that these freely specifiable values are the components of a
vector V that lives in a vector space of dimension n2. Then you, the user, knowing
the functional form of the boundary conditions (17.0.2), can write a subroutine that
generates a complete set of N starting values y, satisfying the boundary conditions
at x1, from an arbitrary vector value of V in which there are no restrictions on the n2

component values. In other words, (17.0.2) converts to a prescription

yi(x1) = yi(x1; V1, . . . , Vn2) i = 1, . . . , N (17.1.1)

Below, the subroutine that implements (17.1.1) will be called load.
Notice that the components of V might be exactly the values of certain “free”

components of y, with the other components of y determined by the boundary
conditions. Alternatively, the components of V might parametrize the solutions that
satisfy the starting boundary conditions in some other convenient way. Boundary
conditions often impose algebraic relations among the yi, rather than specific values
for each of them. Using some auxiliary set of parameters often makes it easier to
“solve” the boundary relations for a consistent set of yi’s. It makes no difference
which way you go, as long as your vector space of V’s generates (through 17.1.1)
all allowed starting vectors y.

Given a particular V, a particular y(x1) is thus generated. It can then be turned
into a y(x2) by integrating the ODEs to x2 as an initial value problem (e.g., using
Chapter 16’s odeint). Now, at x2, let us define a discrepancy vector F, also of
dimension n2, whose components measure how far we are from satisfying the n2

boundary conditions at x2 (17.0.3). Simplest of all is just to use the right-hand
sides of (17.0.3),

Fk = B2k(x2, y) k = 1, . . . , n2 (17.1.2)

As in the case of V, however, you can use any other convenient parametrization,
as long as your space of F’s spans the space of possible discrepancies from the
desired boundary conditions, with all components of F equal to zero if and only if
the boundary conditions at x2 are satisfied. Below, you will be asked to supply a
user-written subroutine score which uses (17.0.3) to convert an N -vector of ending
values y(x2) into an n2-vector of discrepancies F.
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Now, as far as Newton-Raphson is concerned, we are nearly in business. We
want to find a vector value of V that zeros the vector value of F. We do this
by invoking the globally convergent Newton’s method implemented in the routine
newt of §9.7. Recall that the heart of Newton’s method involves solving the set
of n2 linear equations

J · δV = −F (17.1.3)

and then adding the correction back,

Vnew = Vold + δV (17.1.4)

In (17.1.3), the Jacobian matrix J has components given by

Jij =
∂Fi
∂Vj

(17.1.5)

It is not feasible to compute these partial derivatives analytically. Rather, each
requires a separate integration of the N ODEs, followed by the evaluation of

∂Fi
∂Vj
≈ Fi(V1, . . . , Vj + ∆Vj, . . .)− Fi(V1, . . . , Vj, . . .)

∆Vj
(17.1.6)

This is done automatically for you in the routine fdjac that comes with newt. The
only input to newt that you have to provide is the routine funcv that calculates F
by integrating the ODEs. Here is the appropriate routine:

C SUBROUTINE shoot(n2,v,f) is named "funcv" for use with "newt"
SUBROUTINE funcv(n2,v,f)
INTEGER n2,nvar,kmax,kount,KMAXX,NMAX
REAL f(n2),v(n2),x1,x2,dxsav,xp,yp,EPS
PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX coupled ODEs.
COMMON /caller/ x1,x2,nvar
COMMON /path/ kmax,kount,dxsav,xp(KMAXX),yp(NMAX,KMAXX)

C USES derivs,load,odeint,rkqs,score
Routine for use with newt to solve a two point boundary value problem for nvar coupled
ODEs by shooting from x1 to x2. Initial values for the nvar ODEs at x1 are generated
from the n2 input coefficients v(1:n2), using the user-supplied routine load. The routine
integrates the ODEs to x2 using the Runge-Kutta method with tolerance EPS, initial stepsize
h1, and minimum stepsize hmin. At x2 it calls the user-supplied subroutine score to
evaluate the n2 functions f(1:n2) that ought to be zero to satisfy the boundary conditions
at x2. The functions f are returned on output. newt uses a globally convergent Newton’s
method to adjust the values of v until the functions f are zero. The user-supplied subroutine
derivs(x,y,dydx) supplies derivative information to the ODE integrator (see Chapter
16). The common block caller receives its values from the main program so that funcv
can have the syntax required by newt. The common block path is included for compatibility
with odeint.

INTEGER nbad,nok
REAL h1,hmin,y(NMAX)
EXTERNAL derivs,rkqs
kmax=0
h1=(x2-x1)/100.
hmin=0.
call load(x1,v,y)
call odeint(y,nvar,x1,x2,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(x2,y,f)
return
END
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For some problems the initial stepsize ∆V might depend sensitively upon the
initial conditions. It is straightforward to alter load to include a suggested stepsize
h1 as another returned argument and feed it to fdjac via a common block.

A complete cycle of the shooting method thus requires n2 + 1 integrations of
the N coupled ODEs: one integration to evaluate the current degree of mismatch,
and n2 for the partial derivatives. Each new cycle requires a new round of n2 + 1
integrations. This illustrates the enormous extra effort involved in solving two point
boundary value problems compared with intial value problems.

If the differential equations are linear, then only one complete cycle is required,
since (17.1.3)–(17.1.4) should take us right to the solution. A second round can be
useful, however, in mopping up some (never all) of the roundoff error.

As given here, shoot uses the quality controlled Runge-Kutta method of §16.2
to integrate the ODEs, but any of the other methods of Chapter 16 could just as
well be used.

You, the user, must supply shoot with: (i) a subroutine load(x1,v,y) which
returns the n-vector y(1:n) (satisfying the starting boundary conditions, of course),
given the freely specifiable variables of v(1:n2) at the initial point x1; (ii) a
subroutine score(x2,y,f) which returns the discrepancy vector f(1:n2) of the
ending boundary conditions, given the vector y(1:n) at the endpoint x2; (iii) a
starting vector v(1:n2); (iv) a subroutine derivs for the ODE integration; and
other obvious parameters as described in the header comment above.

In §17.4 we give a sample program illustrating how to use shoot.
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17.2 Shooting to a Fitting Point

The shooting method described in §17.1 tacitly assumed that the “shots” would
be able to traverse the entire domain of integration, even at the early stages of
convergence to a correct solution. In some problems it can happen that, for very
wrong starting conditions, an initial solution can’t even get from x1 to x2 without
encountering some incalculable, or catastrophic, result. For example, the argument
of a square root might go negative, causing the numerical code to crash. Simple
shooting would be stymied.

A different, but related, case is where the endpoints are both singular points
of the set of ODEs. One frequently needs to use special methods to integrate near
the singular points, analytic asymptotic expansions, for example. In such cases it is
feasible to integrate in the direction away from a singular point, using the special
method to get through the first little bit and then reading off “initial” values for
further numerical integration. However it is usually not feasible to integrate into
a singular point, if only because one has not usually expended the same analytic


