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5.9 Derivatives or Integrals of a
Chebyshev-approximated Function

If you have obtained the Chebyshev coefficients that approximate a functionin
a certain range (e.g., from chebft in §5.8), then it is a Simple matter to transform
them to Chebyshev coefficients corresponding to the derivative or integral of the
function. Having done this, you can evaluate the derivative or integral just asiif it
were a function that you had Chebyshev-fitted ab initio.

The relevant formulas are these: If ¢;, i« = 1,..., m are the coefficients that
approximateafunction f in equation (5.8.9), C; are the coefficients that approximate
theindefiniteintegral of f, and ¢ arethe coefficients that approximatethe derivative
of f, then

Ci—1 — Cit+1

Ci = 2(i— 1)

(i>1) (5.9.1)

1 =Ciq +2(i— 1) t=m-1,m-2,...,2) (5.9.2)

Equation (5.9.1) isaugmented by an arbitrary choice of C1, correspondingto an
arbitrary constant of integration. Equation (5.9.2), which is arecurrence, is started
withthevalues ¢, = ¢}, = 0, corresponding to no information about the m + 1st
Chebyshev coefficient of the original function f.

Here are routines for implementing equations (5.9.1) and (5.9.2).

SUBROUTINE chder(a,b,c,cder,n)

INTEGER n

REAL a,b,c(n),cder(n)
Given a,b,c(1:n), as output from routine chebft §5.8, and given n, the desired degree
of approximation (length of ¢ to be used), this routine returns the array cder(1:n), the
Chebyshev coefficients of the derivative of the function whose coefficients are c(1:n).

INTEGER j

REAL con

cder (n)=0. n and n-1 are special cases.

cder (n-1)=2*%(n-1) *c(n)

dou j=n-2,1,-1
cder (j)=cder (j+2)+2*j*c(j+1) Equation (5.9.2).

enddo 11

con=2./(b-a)

do2 j=1,n Normalize to the interval b-a.
cder(j)=cder(j)*con

enddo 12

return

END

SUBROUTINE chint(a,b,c,cint,n)

INTEGER n

REAL a,b,c(n),cint(n)
Given a,b,c(1:n), as output from routine chebft §5.8, and given n, the desired degree
of approximation (length of ¢ to be used), this routine returns the array cint(1:n), the
Chebyshev coefficients of the integral of the function whose coefficients are c. The constant
of integration is set so that the integral vanishes at a.

INTEGER j

REAL con,fac,sum

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes



190 Chapter 5.  Evaluation of Functions

con=0.25%(b-a) Factor that normalizes to the interval b-a.
sum=0. Accumulates the constant of integration.
fac=1. Will equal +1.
dou j=2,n-1
cint(j)=con*(c(j-1)-c(j+1))/(j-1) Equation (5.9.1).
sum=sum+fac*cint (j)
fac=-fac
enddo 11

cint(n)=con*c(n-1)/(n-1) Special case of (5.9.1) for n.
sum=sum+fac*cint(n)

cint (1)=2.*sum Set the constant of integration.
return

END

Clenshaw-Curtis Quadrature

Since a smooth function’s Chebyshev coefficients ¢; decrease rapidly, generally expo-
nentially, equation (5.9.1) is often quite efficient as the basis for a quadrature scheme. The
routines chebft and chint, used in that order, can be followed by repeated callsto chebev
if [ f(x)dx isrequired for many different values of z in therangea < = < b.

If only the single definite integral [;’ f(x)dz is required, then chint and chebev are
replaced by the simpler formula, derived from equation (5.9.1),

1 1 1

b 1
/Gf(x)dx:(b—a) 501—§c3—ﬁcs_..._m62k+l_...
(5.9.3)

where the ¢;'s are as returned by chebft. The series can be truncated when ca541 becomes
negligible, and the first neglected term gives an error estimate.

This schemeis known as Clenshaw-Curtis quadrature[1]. It is often combined with an
adaptive choice of IV, the number of Chebyshev coefficients calculated via equation (5.8.7),
which is also the number of function evaluations of f(x). If a modest choice of N does
not give a sufficiently small cax41 in equation (5.9.3), then a larger value is tried. In this
adaptive case, it is even better to replace equation (5.8.7) by the so-called “trapezoidal” or
Gauss-Lobatto (§4.5) variant,

¢ = %Ié”f {Cos (%)} cos (W) j=1,...,N (5.9.4)

where (N.B.!) the two primes signify that the first and last terms in the sum are to be
multiplied by 1/2. If N is doubled in equation (5.9.4), then half of the new function
evaluation points areidentical to the old ones, allowing the previousfunction evaluationsto be
reused. Thisfeature, plus the analytic weights and abscissas (cosine functionsin 5.9.4), give
Clenshaw-Curtis quadrature an edge over high-order adaptive Gaussian quadrature (cf. §4.5),
which the method otherwise resembles.

If your problemforcesyouto largevaluesof NV, you should be awarethat equation (5.9.4)
can be evaluated rapidly, and simultaneously for all the values of j, by afast cosinetransform.
(See §12.3, especially equation 12.3.17.) (We already remarked that the nontrapezoidal form
(5.8.7) can also be done by fast cosine methods, cf. equation 12.3.22.)

CITED REFERENCES AND FURTHER READING:

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), pp. 78-79.

Clenshaw, C.W., and Curtis, A.R. 1960, Numerische Mathematik, vol. 2, pp. 197-205. [1]
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5.10 Polynomial Approximation from
Chebyshev Coefficients

You may well ask after reading the preceding two sections, “Must | store and
evaluate my Chebyshev approximation as an array of Chebyshev coefficients for a
transformed variable y? Can’t | convert the ¢;,’sinto actual polynomial coefficients
in the original variable z and have an approximation of the following form?’

f(z) ~ i gratt (5.10.1)
k=1

Yes, you can do this (and we will give you the algorithm to do it), but we
caution you against it: Evaluating equation (5.10.1), where the coefficient ¢'sreflect
an underlying Chebyshev approximation, usually requires more significant figures
than evaluation of the Chebyshev sum directly (as by chebev). This is because
the Chebyshev polynomias themselves exhibit a rather delicate cancellation: The
leading coefficient of T, (z), for example, is 2" ~!; other coefficients of T,,(z) are
even bigger; yet they al manage to combineinto apolynomial that lies between +1.
Only when m is no larger than 7 or 8 should you contemplate writing a Chebyshev
fit as a direct polynomial, and even in those cases you should be willing to tolerate
two or so significant figures less accuracy than the roundoff limit of your machine.

You get the g’sin equation (5.10.1) from the ¢’s output from chebft (suitably
truncated at amodest valueof m) by callingin sequencethefollowing two procedures:

SUBROUTINE chebpc(c,d,n)
INTEGER n,NMAX
REAL c(n),d(n)
PARAMETER (NMAX=50) Maximum anticipated value of n.
Chebyshev polynomial coefficients. Given a coefficient array c (1:1n) of length 1, this routine
generates a coefficient array d(1:n) such that 22:1 dpyF—1 = 22:1 cpTi_1(y) —c1/2.
The method is Clenshaw’s recurrence (5.8.11), but now applied algebraically rather than
arithmetically.
INTEGER j,k
REAL sv,dd(NMAX)
dou j=1,n
d(j)=0.
dd(j)=0.
enddo 11
d(1)=c(n)
do1s j=n-1,2,-1
do 12 k=n-j+1,2,-1
sv=d (k)
d(k)=2.*d(k-1)-dd (k)
dd(k)=sv

enddo 12

sv=d (1)

d(1)=-dd(1)+c(j)

dd(1)=sv

enddo 13

dois j=n,2,-1
d(j)=d(j-1)-dd(j)

enddo 14

d(1)=-dd(1)+0.5%c (1)

return

END
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