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Preface to Volume 2
Fortran 90 is not just the long-awaited updating of the Fortran language to

modern computing practices. It is also the vanguard of a much larger revolution in
computing, that of multiprocessor computers and widespread parallel programming.
Parallel computing has been a feature of the largest supercomputers for quite some
time. Now, however, it is rapidly moving towards the desktop.

As we watched the gestation and birth of Fortran 90 by its governing “X3J3
Committee” (a process interestingly described by a leading committee member,
Michael Metcalf, in the Foreword that follows), it became clear to us that the right
moment for moving Numerical Recipes from Fortran 77 to Fortran 90 was sooner,
rather than later.

Fortran 90 compilers are now widely available. Microsoft’s Fortran PowerSta-
tion for Windows 95 brings that firm’s undeniable marketing force to PC desktop;
we have tested this compiler thoroughly on our code and found it excellent in
compatibility and performance. In the UNIX world, we have similarly tested, and
had generally fine experiences with, DEC’s Fortran 90 for Alpha AXP and IBM’s xlf
for RS/6000 and similar machines. NAG’s Fortran 90 compiler also brings excellent
Fortran 90 compatibility to a variety of UNIX platforms. There are no doubt
other excellent compilers, both available and on the way. Fortran 90 is completely
backwards compatible with Fortran 77, by the way, so you don’t have to throw away
your legacy code, or keep an old compiler around.

There have been previous special versions of Fortran for parallel supercomput-
ers, but always specific to a particular hardware. Fortran 90, by contrast, is designed
to provide a general, architecture-independent framework for parallel computation.
Equally importantly, it is an international standard, agreed upon by a large group of
computer hardware and software manufacturers and international standards bodies.

With the Fortran 90 language as a tool, we want this volume to be your complete
guide for learning how to “think parallel.” The language itself is very general in
this regard, and applicable to many present and future computers, or even to other
parallel computing languages as they come along. Our treatment emphasizes general

principles, but we are also not shy about pointing out parallelization
“tricks” that have frequent applicability. These are not only discussed
in this volume’s principal text chapters (Chapters 21–23), but are also

sprinkled throughout the chapters of Fortran 90 code, called out by a special “parallel

f90
hint” logo (left, above). Also scattered throughout the code chapters
are specific “Fortran 90 tips,” with their own distinct graphic call-out
(left). After you read the text chapters, you might want simply to browse

among these hints and tips.
A special note to C programmers: Right now, there is no effort at producing a

parallel version of C that is comparable to Fortran 90 in maturity, acceptance, and
stability. We think, therefore, that C programmers will be well served by using
this volume for an educational excursion into Fortran 90, its parallel programming
constructions, and the numerical algorithms that capitalize on them. C and C++
programming have not been far from our minds as we have written this volume,
and we think that you will find that time spent in absorbing its principal lessons
(in Chapters 21–23) will be amply repaid in the future, as C and C++ eventually
develop standard parallel extensions.

viii
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A final word of truth in packaging: Don’t buy this volume unless you also
buy (or already have) Volume 1 (now retitled Numerical Recipes in Fortran 77).
Volume 2 does not repeat any of the discussion of what individual programs actually
do, or of the mathematical methods they utilize, or how to use them. While our
Fortran 90 code is thoroughly commented, and includes a header comment for
each routine that describes its input and output quantities, these comments are not
supposed to be a complete description of the programs; the complete descriptions
are in Volume 1, which we reference frequently. But here’s a money-saving hint
to our previous readers: If you already own a Second Edition version whose title
is Numerical Recipes in FORTRAN (which doesn’t indicate either “Volume 1” or
“Volume 2” on its title page) then take a marking pen and write in the words “Volume
1.” There! (Differences between the previous reprintings and the newest reprinting,
the one labeled “Volume 1,” are minor.)
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Foreword
by Michael Metcalf

Sipping coffee on a sunbaked terrace can be surprisingly productive. One of
the Numerical Recipes authors and I were each lecturing at the International Center
for Theoretical Physics in Trieste, Italy, he on numerical analysis and I on Fortran
90. The numerical analysis community had made important contributions to the
development of the new Fortran standard, and so, unsurprisingly, it became quickly
apparent that the algorithms for which Numerical Recipes had become renowned
could, to great advantage, be recast in a new mold. These algorithms had, hitherto,
been expressed in serial form, first in Fortran 77 and then in C, Pascal, and Basic.
Now, nested iterations could be replaced by array operations and assignments, and
the other features of a rich array language could be exploited. Thus was the idea of a
“Numerical Recipes in Fortran 90" first conceived and, after three years’ gestation,
it is a delight to assist at the birth.

But what is Fortran 90? How did it begin, what shaped it, and how, after nearly
foundering, did its driving forces finally steer it to a successful conclusion?

The Birth of a Standard

Back in 1966, the version of Fortran now known as Fortran 66 was the first
language ever to be standardized, by the predecessor of the present American National
Standards Institute (ANSI). It was an all-American affair. Fortran had first been
developed by John Backus of IBM in New York, and it was the dominant scientific
programming language in North America. Many Europeans preferred Algol (in
which Backus had also had a hand). Eventually, however, the mathematicians who
favored Algol for its precisely expressible syntax began to defer to the scientists and
engineers who appreciated Fortran’s pragmatic, even natural, style. In 1978, the
upgraded Fortran 77 was standardized by the ANSI technical committee, X3J3, and
subsequently endorsed by other national bodies and by ISO in Geneva, Switzerland.
Its dominance in all fields of scientific and numerical computing grew as new, highly
optimizing compilers came onto the market. Although newer languages, particularly
Pascal, Basic, PL/1, and later Ada attracted their own adherents, scientific users
throughout the 1980s remained true to Fortran. Only towards the end of that decade
did C draw increasing support from scientific programmers who had discovered the
power of structures and pointers.

During all this time, X3J3 kept functioning, developing the successor version
to Fortran 77. It was to be a decade of strife and contention. The early plans, in the
late 1970s, were mainly to add to Fortran 77 features that had had to be left out of
that standard. Among these were dynamic storage and an array language, enabling
it to map directly onto the architecture of supercomputers, then coming onto the
market. The intention was to have this new version ready within five years, in 1982.
But two new factors became significant at that time. The first was the decision that
the next standard should not just codify existing practice, as had largely been the
case in 1966 and 1978, but also extend the functionality of the language through

x
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innovative additions (even though, for the array language, there was significant
borrowing from John Iverson’s APL and from DAP Fortran). The second factor was
that X3J3 no longer operated under only American auspices. In the course of the
1980s, the standardization of programming languages came increasingly under the
authority of the international body, ISO. Initially this was in an advisory role, but
now ISO is the body that, through its technical committee WG5 (in full, ISO/IEC
JTC1/SC22/WG5), is responsible for determining the course of the language. WG5
also steers the work of the development body, then as now, the highly skilled and
competent X3J3. As we shall see, this shift in authority was crucial at the most
difficult moment of Fortran 90’s development.

The internationalization of the standards effort was reflected in the welcome
given by X3J3 to six or seven European members; they, and about one-third of
X3J3’s U.S. members, provided the overlapping core of membership of X3J3 and
WG5 that was vital in the final years in bringing the work to a successful conclusion.
X3J3 membership, which peaked at about 45, is restricted to one voting member
per organization, and significant decisions require a majority of two-thirds of those
voting. Nationality plays no role, except in determining the U.S. position on an
international issue. Members, who are drawn mainly from the vendors, large
research laboratories, and academia, must be present or represented at two-thirds of
all meetings in order to retain voting rights.

In 1980, X3J3 reported on its plans to the forerunner of WG5 in Amsterdam,
Holland. Fortran 8x, as it was dubbed, was to have a basic array language, new
looping constructs, a bit data type, data structures, a free source form, a mechanism
to “group” procedures, and another to manage the global name space. Old features,
including COMMON, EQUIVALENCE, and the arithmetic-IF, were to be consigned to a
so-called obsolete module, destined to disappear in a subsequent revision. This was
part of the “core plus modules” architecture, for adding new features and retiring
old ones, an aid to backwards compatibility. Even though Fortran 77 compilers
were barely available, the work seemed well advanced and the mood was optimistic.
Publication was intended to take place in 1985. It was not to be.

One problem was the sheer number of new features that were proposed as
additions to the language, most of them worthwhile in themselves but with the
totality being too large. This became a recurrent theme throughout the development
of the standard. One example was the suggestion of Lawrie Schonfelder (Liverpool
University), at a WG5 meeting in Vienna, Austria, in 1982, that certain features
already proposed as additions could be combined to provide a full-blown derived
data type facility, thus providingFortran with abstract data types. This idea was taken
up by X3J3 and has since come to be recognized, along with the array language, as
one of the two main advances brought about by what became Fortran 90. However,
the ramifications go very deep: all the technical details of how to handle arrays of
objects of derived types that in turn have array components that have the pointer
attribute, and so forth, have to be precisely defined and rigorously specified.

Conflict

The meetings of X3J3 were often full of drama. Most compiler vendors were
represented as a matter of course but, for many, their main objective appeared to
be to maintain the status quo and to ensure that Fortran 90 never saw the light of
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day. One vendor’s extended (and much-copied) version of Fortran 77 had virtually
become an industry standard, and it saw as its mission the maintenance of this lead.
A new standard would cost it its perceived precious advantage. Other large vendors
had similar points of view, although those marketing supercomputers were clearly
keen on the array language. Most users, on the other hand, were hardly prepared to
invest large amounts of their employers’ and their own resources in simply settling
for a trivial set of improvements to the existing standard. However, as long as
X3J3 worked under a simple-majority voting rule, at least some apparent progress
could be made, although the underlying differences often surfaced. These were even
sometimes between users — those who wanted Fortran to become a truly modern
language and those wanting to maintain indefinite backwards compatibility for their
billions of lines of existing code.

At a watershed meeting, in Scranton, Pennsylvania, in 1986, held in an
atmosphere that sometimes verged on despair, a fragile compromise was reached
as a basis for further work. One breakthrough was to weaken the procedures for
removing outdated features from the language, particularly by removing no features
whatsoever from the next standard and by striking storage association (i.e., COMMON
and EQUIVALENCE) from the list of features to be designated as obsolescent (as they
are now known). A series of votes definitively removed from the language all plans
to add: arrays of arrays, exception handling, nesting of internal procedures, the
FORALL statement (now in Fortran 95), and a means to access skew array sections.
There were other features on this list that, although removed, were reinstated at
later meetings: user-defined operators, operator overloading, array and structure
constructors, and vector-valued subscripts. After many more travails, the committee
voted, a year later, by 26 votes to 9, to forward the document for what was to become
the first of three periods of public comment.

While the document was going through the formal standards bureaucracy and
being placed before the public, X3J3 polished it further. X3J3 also prepared
procedures for processing the comments it anticipated receiving from the public,
and to each of which, under the rules, it would have to reply individually. It was
just as well. Roughly 400 replies flooded in, many of them very detailed and,
disappointingly for those of us wanting a new standard quickly, unquestionably
negative towards our work. For many it was too radical, but many others pleaded
for yet more modern features, such as pointers.

Now the committee was deadlocked. Given that a document had already
been published, any further change required not a simple but a two-thirds majority.
The conservatives and the radicals could each block a move to modify the draft
standard, or to accept a revised one for public review — and just that happened,
in Champagne-Urbana, Illinois, in 1988. Any change, be it on the one hand to
modify the list of obsolescent features, to add the pointers or bit data type wanted
by the public, to add multi-byte characters to support Kanji and other non-European
languages or, on the other hand, to emasculate the language by removing modules or
operator overloading, and hence abstract data types, to name but some suggestions,
none of these could be done individually or collectively in a way that would achieve
consensus. I wrote:

“In my opinion, no standard can now emerge without either a huge concession
by the users to the vendors (MODULE / USE) and/or a major change in the composition
of the committee. I do not see how members who have worked for up to a decade
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or more, devoting time and intellectual energy far beyond the call of duty, can be
expected to make yet more personal sacrifices if no end to the work is in sight, or
if that end is nothing but a travesty of what had been designed and intended as a
modern scientific programming language. . . . I think the August meeting will be a
watershed — if no progress is achieved there will be dramatic resignations, and ISO
could even remove the work from ANSI, which is failing conspicuously in its task."

(However, the same notes began with a quotation from The Taming of the
Shrew: “And do as adversaries do in law, / Strive mightily, but eat and drink / as
friend." That we always did, copiously.)

Resolution

The “August meeting” was, unexpectedly, imbued with a spirit of compromise
that had been so sadly lacking at the previous one. Nevertheless, after a week of
discussing four separate plans to rescue the standard, no agreement was reached.
Now the question seriously arose: Was X3J3 incapable of producing a new Fortran
standard for the international community, doomed to eternal deadlock, a victim of
ANSI procedures?

Breakthrough was achieved at a traumatic meeting of WG5 in Paris, France, a
month later. The committee spent several extraordinary days drawing up a detailed
list of what it wanted to be in Fortran 8x. Finally, it set X3J3 an ultimatum that was
unprecedented in the standards world: The ANSI committee was to produce a new
draft document, corresponding to WG5’s wishes, within five months! Failing that,
WG5 would assume responsibility and produce the new standard itself.

This decision was backed by the senior U.S. committee, X3, which effectively
directed X3J3 to carry out WG5’s wishes. And it did! The following November, it
implemented most of the technical changes, adding pointers, bit manipulation intrin-
sic procedures, and vector-valued subscripts, and removing user-defined elemental
functions (now in Fortran 95). The actual list of changes was much longer. X3J3 and
WG5, now collaborating closely, often in gruelling six-day meetings, spent the next
18 months and two more periods of (positive) public comment putting the finishing
touches to what was now called Fortran 90, and it was finally adopted, after some
cliff-hanging votes, for forwarding as a U.S. and international standard on April 11,
1991, in Minneapolis, Minnesota.

Among the remaining issues that were decided along the way were whether
pointers should be a data type or be defined in terms of an attribute of a variable,
implying strong typing (the latter was chosen), whether the new standard should
coexist alongside the old one rather than definitively replace it (it coexisted for a
while in the U.S., but was a replacement elsewhere, under ISO rules), and whether,
in the new free source form, blanks should be significant (fortunately, they are).

Fortran 90

The main new features of Fortran 90 are, first and foremost, the array language
and abstract data types. The first is built on whole array operations and assignments,
array sections, intrinsic procedures for arrays, and dynamic storage. It was designed
with optimization in mind. The second is built on modules and module procedures,
derived data types, operator overloading and generic interfaces, together with



xiv Foreword

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

pointers. Also important are the new facilities for numerical computation including
a set of numeric inquiry functions, the parametrization of the intrinsic types, new
control constructs — SELECT CASE and new forms of DO, internal and recursive
procedures and optional and keyword arguments, improved I/O facilities, and many
new intrinsic procedures. Last but not least are the new free source form, an
improved style of attribute-oriented specifications, the IMPLICIT NONE statement,
and a mechanism for identifying redundant features for subsequent removal from the
language. The requirement on compilers to be able to identify, for example, syntax
extensions, and to report why a program has been rejected, are also significant. The
resulting language is not only a far more powerful tool than its successor, but a safer
and more reliable one too. Storage association, with its attendant dangers, is not
abolished, but rendered unnecessary. Indeed, experience shows that compilers detect
errors far more frequently than before, resulting in a faster development cycle. The
array syntax and recursion also allow quite compact code to be written, a further
aid to safe programming.

No programming language can succeed if it consists simply of a definition
(witness Algol 68). Also required are robust compilers from a wide variety of
vendors, documentation at various levels, and a body of experience. The first Fortran
90 compiler appeared surprisingly quickly, in 1991, especially in view of the widely
touted opinion that it would be very difficult to write one. Even more remarkable
was that it was written by one person, Malcolm Cohen of NAG, in Oxford, U.K.
There was a gap before other compilers appeared, but now they exist as native
implementations for almost all leading computers, from the largest to PCs. For the
most part, they produce very efficient object code; where, for certain new features,
this is not the case, work is in progress to improve them.

The first book, Fortran 90 Explained, was published by John Reid and me
shortly before the standard itself was published. Others followed in quick succession,
including excellent texts aimed at the college market. At the time of writing there
are at least 19 books in English and 22 in various other languages: Chinese, Dutch,
French, Japanese, Russian, and Swedish. Thus, the documentation condition is
fulfilled.

The body of experience, on the other hand, has yet to be built up to a critical size.
Teaching of the language at college level has only just begun. However, I am certain
that this present volume will contribute decisively to a significant breakthrough, as it
provides models not only of the numerical algorithms for which previous editions are
already famed, but also of an excellent Fortran 90 style, something that can develop
only with time. Redundant features are abjured. It shows that, if we abandon these
features and use new ones in their place, the appearance of code can initially seem
unfamiliar, but, in fact, the advantages become rapidly apparent. This new edition
of Numerical Recipes stands as a landmark in this regard.

Fortran Evolution

The formal procedures under which languages are standardized require them
either to evolve or to die. A standard that has not been revised for some years must
either be revised and approved anew, or be withdrawn. This matches the technical
pressure on the language developers to accommodate the increasing complexity both
of the problems to be tackled in scientific computation and of the underlyinghardware
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on which programs run. Increasing problem complexity requires more powerful
features and syntax; new hardware needs language features that map onto it well.

Thus it was that X3J3 and WG5, having finished Fortran 90, began a new round
of improvement. They decided very quickly on new procedures that would avoid
the disputes that bedevilled the previous work: WG5 would decide on a plan for
future standards, and X3J3 would act as the so-called development body that would
actually produce them. This would be done to a strict timetable, such that any feature
that could not be completed on time would have to wait for the next round. It was
further decided that the next major revision should appear a decade after Fortran 90
but, given the somewhat discomforting number of requests for interpretation that had
arrived, about 200, that a minor revision should be prepared for mid-term, in 1995.
This should contain only “corrections, clarifications and interpretations” and a very
limited number (some thought none) of minor improvements.

At the same time, scientific programmers were becoming increasingly concerned
at the variety of methods that were necessary to gain efficient performance from the
ever-more widely used parallel architectures. Each vendor provided a different set
of parallel extensions for Fortran, and some academic researchers had developed yet
others. On the initiative of Ken Kennedy of Rice University, a High-Performance
Fortran Forum was established. A coalition of vendors and users, its aim was to
produce an ad hoc set of extensions to Fortran that would become an informal but
widely accepted standard for portable code. It set itself the daunting task of achieving
that in just one year, and succeeded. Melding existing dialects like Fortran D, CM
Fortran, and Vienna Fortran, and adopting the new Fortran 90 as a base, because
of its array syntax, High-Performance Fortran (HPF) was published in 1993 and
has since become widely implemented. However, although HPF was designed for
data parallel codes and mainly implemented in the form of directives that appear
to non-HPF processors as comment lines, an adequate functionality could not be
achieved without extending the Fortran syntax. This was done in the form of the
PURE attribute for functions — an assertion that they contain no side effects — and the
FORALL construct — a form of array assignment expressed with the help of indices.

The dangers of having diverging or competing forms of Fortran 90 were
immediately apparent, and the standards committees wisely decided to incorporate
these two syntactic changes also into Fortran 95. But they didn’t stop there. Two
further extensions, useful not only for their expressive power but also to access
parallel hardware, were added: elemental functions, ones written in terms of scalars
but that accept array arguments of any permitted shape or size, and an extension to
allow nesting of WHERE constructs, Fortran’s form of masked assignment. To readers
of Numerical Recipes, perhaps the most relevant of the minor improvements that
Fortran 95 brings are the ability to distinguish between a negative and a positive real
zero, automatic deallocation of allocatable arrays, and a means to initialize the values
of components of objects of derived data types and to initialize pointers to null.

The medium-term objective of a relatively minor upgrade has been achieved on
schedule. But what does the future hold? Developments in the underlying principles
of procedural programming languages have not ceased. Early Fortran introduced the
concepts of expression abstraction (X=Y+Z) and later control expression (e.g., the DO
loop). Fortran 77 continued this with the if-then-else, and Fortran 90 with the
DO and SELECT CASE constructs. Fortran 90 has a still higher level of expression
abstraction (array assignments and expressions) as well as data structures and even
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full-blown abstract data types. However, during the 1980s the concept of objects
came to the fore, with methods bound to the objects on which they operate. Here,
one particular language, C++, has come to dominate the field. Fortran 90 lacks
a means to point to functions, but otherwise has most of the necessary features in
place, and the standards committees are now faced with the dilemma of deciding
whether to make the planned Fortran 2000 a fully object-oriented language. This
could possibly jeopardize its powerful, and efficient, numerical capabilities by too
great an increase in language complexity, so should they simply batten down the
hatches and not defer to what might be only a passing storm? At the time of writing,
this is an open issue. One issue that is not open is Fortran’s lack of in-built exception
handling. It is virtually certain that such a facility, much requested by the numerical
community, and guided by John Reid, will be part of the next major revision. The
list of other requirements is long but speculative, but some at the top of the list
are conditional compilation, command line argument handling, I/O for objects of
derived type, and asynchronous I/O (which is also planned for the next release
of HPF). In the meantime, some particularly pressing needs have been identified,
for the handling of floating-point exceptions, interoperability with C, and allowing
allocatable arrays as structure components, dummy arguments, and function results.
These have led WG5 to begin processing these three items using a special form of
fast track, so that they might become optional but standard extensions well before
Fortran 2000 itself is published in the year 2001.

Conclusion

Writing a book is always something of a gamble. Unlike a novel that stands
or falls on its own, a book devoted to a programming language is dependent on
the success of others, and so the risk is greater still. However, this new Numerical
Recipes in Fortran 90 volume is no ordinary book, since it comes as the continuation
of a highly successful series, and so great is its significance that it can, in fact,
influence the outcome in its own favor. I am entirely confident that its publication
will be seen as an important event in the story of Fortran 90, and congratulate its
authors on having performed a great service to the field of numerical computing.

Geneva, Switzerland
January 1996

Michael Metcalf
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License Information

Read this section if you want to use the programs in this book on a computer.
You’ll need to read the following Disclaimer of Warranty, get the programs onto your
computer, and acquire a Numerical Recipes software license. (Without this license,
which can be the free “immediate license” under terms described below, the book is
intended as a text and reference book, for reading purposes only.)

Disclaimer of Warranty

We make no warranties, express or implied, that the programs contained
in this volume are free of error, or are consistent with any particular standard
of merchantability, or that they will meet your requirements for any particular
application. They should not be relied on for solving a problem whose incorrect
solution could result in injury to a person or loss of property. If you do use the
programs in such a manner, it is at your own risk. The authors and publisher
disclaim all liability for direct or consequential damages resulting from your
use of the programs.

How to Get the Code onto Your Computer

Pick one of the following methods:

• You can type the programs from this book directly into your computer. In
this case, the only kind of license available to you is the free “immediate
license” (see below). You are not authorized to transfer or distribute a
machine-readable copy to any other person, nor to have any other person
type the programs into a computer on your behalf. We do not want to hear
bug reports from you if you choose this option, because experience has
shown that virtually all reported bugs in such cases are typing errors!

• You can download the Numerical Recipes programs electronically from
the Numerical Recipes On-Line Software Store, located at our Web site
(http://www.nr.com). They are packaged as a password-protected
file, and you’ll need to purchase a license to unpack them. You can
get a single-screen license and password immediately, on-line, from the
On-Line Store, with fees ranging from $50 (PC, Macintosh, educational
institutions’ UNIX) to $140 (general UNIX). Downloading the packaged
software from the On-Line Store is also the way to start if you want to
acquire a more general (multiscreen, site, or corporate) license.

• You can purchase media containing the programs from Cambridge Uni-
versity Press. Diskette versions are available in IBM-compatible format
for machines running Windows 3.1, 95, or NT. CDROM versions in ISO-
9660 format for PC, Macintosh, and UNIX systems are also available;
these include both Fortran and C versions (as well as versions in Pascal

xvii
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and BASIC from the first edition) on a single CDROM. Diskettes pur-
chased from Cambridge University Press include a single-screen license
for PC or Macintosh only. The CDROM is available with a single-
screen license for PC or Macintosh (order ISBN 0 521 576083), or (at a
slightly higher price) with a single-screen license for UNIX workstations
(order ISBN 0 521 576075). Orders for media from Cambridge Univer-
sity Press can be placed at 800 872-7423 (North America only) or by
email to orders@cup.org (North America) or trade@cup.cam.ac.uk (rest
of world). Or, visit the Web sites http://www.cup.org (North America)
or http://www.cup.cam.ac.uk (rest of world).

Types of License Offered

Here are the types of licenses that we offer. Note that some types are
automatically acquired with the purchase of media from Cambridge University
Press, or of an unlocking password from the Numerical Recipes On-Line Software
Store, while other types of licenses require that you communicate specifically with
Numerical Recipes Software (email: orders@nr.com or fax: 781 863-1739). Our
Web site http://www.nr.com has additional information.

• [“Immediate License”] If you are the individual owner of a copy of this
book and you type one or more of its routines into your computer, we
authorize you to use them on that computer for your own personal and
noncommercial purposes. You are not authorized to transfer or distribute
machine-readable copies to any other person, or to use the routines on
more than one machine, or to distribute executable programs containing
our routines. This is the only free license.

• [“Single-Screen License”] This is the most common type of low-cost
license, with terms governed by our Single Screen (Shrinkwrap) License
document (complete terms available through our Web site). Basically, this
license lets you use Numerical Recipes routines on any one screen (PC,
workstation, X-terminal, etc.). You may also, under this license, transfer
pre-compiled, executable programs incorporating our routines to other,
unlicensed, screens or computers, providing that (i) your application is
noncommercial (i.e., does not involve the selling of your program for a
fee), (ii) the programs were first developed, compiled, and successfully
run on a licensed screen, and (iii) our routines are bound into the programs
in such a manner that they cannot be accessed as individual routines and
cannot practicably be unbound and used in other programs. That is, under
this license, your program user must not be able to use our programs as
part of a program library or “mix-and-match” workbench. Conditions for
other types of commercial or noncommercial distribution may be found
on our Web site (http://www.nr.com).

• [“Multi-Screen, Server, Site, and Corporate Licenses”] The terms of
the Single Screen License can be extended to designated groups of
machines, defined by number of screens, number of machines, locations,
or ownership. Significant discounts from the corresponding single-screen
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prices are available when the estimated number of screens exceeds 40.
Contact Numerical Recipes Software (email: orders@nr.com or fax: 781
863-1739) for details.

• [“Course Right-to-Copy License”] Instructors at accredited educational
institutions who have adopted this book for a course, and who have
already purchased a Single Screen License (either acquired with the
purchase of media, or from the Numerical Recipes On-Line Software
Store), may license the programs for use in that course as follows: Mail
your name, title, and address; the course name, number, dates, and
estimated enrollment; and advance payment of $5 per (estimated) student
to Numerical Recipes Software, at this address: P.O. Box 243, Cambridge,
MA 02238 (USA). You will receive by return mail a license authorizing
you to make copies of the programs for use by your students, and/or to
transfer the programs to a machine accessible to your students (but only
for the duration of the course).

About Copyrights on Computer Programs

Like artistic or literary compositions, computer programs are protected by
copyright. Generally it is an infringement for you to copy into your computer a
program from a copyrighted source. (It is also not a friendly thing to do, since it
deprives the program’s author of compensation for his or her creative effort.) Under
copyright law, all “derivative works” (modified versions, or translations into another
computer language) also come under the same copyright as the original work.

Copyright does not protect ideas, but only the expression of those ideas in
a particular form. In the case of a computer program, the ideas consist of the
program’s methodology and algorithm, including the necessary sequence of steps
adopted by the programmer. The expression of those ideas is the program source
code (particularly any arbitrary or stylistic choices embodied in it), its derived object
code, and any other derivative works.

If you analyze the ideas contained in a program, and then express those
ideas in your own completely different implementation, then that new program
implementation belongs to you. That is what we have done for those programs in
this book that are not entirely of our own devising. When programs in this book are
said to be “based” on programs published in copyright sources, we mean that the
ideas are the same. The expression of these ideas as source code is our own. We
believe that no material in this book infringes on an existing copyright.

Trademarks

Several registered trademarks appear within the text of this book: Sun is a
trademark of Sun Microsystems, Inc. SPARC and SPARCstation are trademarks of
SPARC International, Inc. Microsoft, Windows 95, Windows NT, PowerStation,
and MS are trademarks of Microsoft Corporation. DEC, VMS, Alpha AXP, and
ULTRIX are trademarks of Digital Equipment Corporation. IBM is a trademark of
International Business Machines Corporation. Apple and Macintosh are trademarks
of Apple Computer, Inc. UNIX is a trademark licensed exclusively through X/Open
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Co. Ltd. IMSL is a trademark of Visual Numerics, Inc. NAG refers to proprietary
computer software of Numerical Algorithms Group (USA) Inc. PostScript and
Adobe Illustrator are trademarks of Adobe Systems Incorporated. Last, and no doubt
least, Numerical Recipes (when identifying products) is a trademark of Numerical
Recipes Software.

Attributions

The fact that ideas are legally “free as air” in no way supersedes the ethical
requirement that ideas be credited to their known originators. When programs in
this book are based on known sources, whether copyrighted or in the public domain,
published or “handed-down,” we have attempted to give proper attribution. Unfor-
tunately, the lineage of many programs in common circulation is often unclear. We
would be grateful to readers for new or corrected information regarding attributions,
which we will attempt to incorporate in subsequent printings.
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Chapter 21. Introduction
to Fortran 90
Language Features

21.0 Introduction

Fortran 90 is in many respects a backwards-compatible modernization of the
long-used (and much abused) Fortran 77 language, but it is also, in other respects,
a new language for parallel programming on present and future multiprocessor
machines. These twin design goals of the language sometimes add confusion to the
process of becoming fluent in Fortran 90 programming.

In a certain trivial sense, Fortran 90 is strictly backwards-compatible with
Fortran 77. That is, any Fortran 90 compiler is supposed to be able to compile any
legacy Fortran 77 code without error. The reason for terming this compatibility
trivial, however, is that you have to tell the compiler (usually via a source file name
ending in “.f” or “.for”) that it is dealing with a Fortran 77 file. If you instead
try to pass off Fortran 77 code as native Fortran 90 (e.g., by naming the source file
something ending in “.f90”) it will not always work correctly!

It is best, therefore, to approach Fortran 90 as a new computer language, albeit
one with a lot in common with Fortran 77. Indeed, in such terms, Fortran 90 is a
fairly big language, with a large number of new constructions and intrinsic functions.
Here, in one short chapter, we do not pretend to provide a complete description of
the language. Luckily, there are good books that do exactly that. Our favorite one
is by Metcalf and Reid [1], cited throughout this chapter as “M&R.” Other good
starting points include [2] and [3].

Our goal, in the remainder of this chapter, is to give a good, working description
of those Fortran 90 language features that are not immediately self-explanatory
to Fortran 77 programmers, with particular emphasis on those that occur most
frequently in the Fortran 90 versions of the Numerical Recipes routines. This
chapter, by itself, will not teach you to write Fortran 90 code. But it ought to help
you acquire a reading knowledge of the language, and perhaps provide enough of
a head start that you can rapidly pick up the rest of what you need to know from
M&R or another Fortran 90 reference book.

CITED REFERENCES AND FURTHER READING:

Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press). [1]

935



936 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Kerrigan, J.F. 1993, Migrating to Fortran 90 (Sebastopol, CA: O’Reilly). [2]

Brainerd, W.S., Goldberg, C.H., and Adams, J.C. 1996, Programmer’s Guide to Fortran 90, 3rd
ed. (New York: Springer-Verlag). [3]

21.1 Quick Start: Using the Fortran 90
Numerical Recipes Routines

This section is for people who want to jump right in. We’ll compute a Bessel
function J0(x), where x is equal to the fourth root of the Julian Day number of the
200th full moon since January 1900. (Now there’sa useful quantity!)

First, locate the important files nrtype.f90, nrutil.f90, and nr.f90, as
listed in Appendices C1, C1, and C2, respectively. These contain modulesthat
either are (i) used by our routines, or else (ii) describe the calling conventions of our
routines to (your) user programs. Compile each of these files, producing (with most
compilers) a .mod file and a .o (or similarly named) file for each one.

Second, create this main program file:

PROGRAM hello_bessel
USE nrtype
USE nr, ONLY: flmoon, bessj0
IMPLICIT NONE
INTEGER(I4B) :: n=200,nph=2,jd
REAL(SP) :: x,frac,ans
call flmoon(n,nph,jd,frac)
x=jd**0.25_sp
ans=bessj0(x)
write (*,*) ’Hello, Bessel: ’, ans
END PROGRAM

Here is a quick explanation of some elements of the above program:

The first USE statement includes a module of ours named nrtype, whose purpose is to
give symbolic names to some kinds of data types, among them single-precision reals (“sp”)
and four-byte integers (“i4b”). The second USE statement includes a module of ours that
defines the calling sequences, and variable types, expected by (in this case) the Numerical
Recipes routines flmoon and bessj0.

The IMPLICIT NONE statement signals that we want the compiler to require us explicitly
to declare all variable types. We strongly urge that you always take this option.

The next two lines declare integer and real variables of the desired kinds. The variable
n is initialized to the value 200, nph to 2 (a value expected by flmoon).

We call flmoon, and take the fourth root of the answer it returns as jd. Note that the
constant 0.25 is typed to be single-precision by the appended sp.

We call the bessj0 routine, and print the answer.

Third, compile the main program file, and also the files flmoon.f90,
bessj0.f90. Then, link the resulting object files with also nrutil.o (or sim-
ilar system-dependent name, as produced in step 1). Some compilers will also
require you to link with nr.o and nrtype.o.

Fourth, run the resulting executable file. Typical output is:

Hello, Bessel: 7.3096365E-02
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21.2 Fortran 90 Language Concepts

The Fortran 90 language standard defines and uses a number of standard terms
for concepts that occur in the language. Here we summarize briefly some of the
most important concepts. Standard Fortran 90 terms are shown in italics. While by
no means complete, the information in this section should help you get a quick start
with your favorite Fortran 90 reference book or language manual.

A note on capitalization: Outside a character context, Fortran 90 is not case-
sensitive, so you can use upper and lower case any way you want, to improve
readability. A variable like SP (see below) is the same variable as the variable sp.
We like to capitalize keywords whose use is primarily at compile-time (statements
that delimit program and subprogram boundaries, declaration statements of variables,
fixed parameter values), and use lower case for the bulk of run-time code. You can
adopt any convention that you find helpful to your own programming style; but we
strongly urge you to adopt and follow someconvention.

Data Types and Kinds

Data types(also called simply types) can be either intrinsic data types(the
familiar INTEGER, REAL, LOGICAL, and so forth) or else derived data typesthat are
built up in the manner of what are called “structures” or “records” in other computer
languages. (We’ll use derived data types very sparingly in this book.) Intrinsic data
types are further specified by their kind parameter(or simply kind), which is simply
an integer. Thus, on many machines, REAL(4) (with kind = 4) is a single-precision
real, while REAL(8) (with kind = 8) is a double-precision real. Literal constants
(or simply literals) are specified as to kind by appending an underscore, as 1.5 4

for single precision, or 1.5 8 for double precision. [M&R, §2.5–§2.6]
Unfortunately, the specific integer values that define the different kind types

are not specified by the language, but can vary from machine to machine. For
that reason, one almost never uses literal kind parameters like 4 or 8, but rather
defines in some central file, and imports into all one’s programs, symbolic names
for the kinds. For this book, that central file is the modulenamed nrtype, and the
chosen symbolic names include SP, DP (for reals); I2B, I4B (for two- and four-byte
integers); and LGT for the default logical type. You will therefore see us consistently
writing REAL(SP), or 1.5 sp, and so forth.

Here is an example of declaring some variables, including a one-dimensional
array of length 500, and a two-dimensional array with 100 rows and 200 columns:

USE nrtype
REAL(SP) :: x,y,z
INTEGER(I4B) :: i,j,k
REAL(SP), DIMENSION(500) :: arr
REAL(SP), DIMENSION(100,200) :: barr
REAL(SP) :: carr(500)

The last line shows an alternative form for array syntax. And yes, there are default
kind parameters for each intrinsic type, but these vary from machine to machine and
can get you into trouble when you try to move code. We therefore specify all kind
parameters explicitly in almost all situations.
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Array Shapes and Sizes

The shapeof an array refers to both its dimensionality (called its rank), and
also the lengths along each dimension (called the extents). The shape of an array is
specified by a rank-one array whose elements are the extents along each dimension,
and can be queried with the shape intrinsic (see p. 949). Thus, in the above example,
shape(barr) returns an array of length 2 containing the values (100, 200).

The sizeof an array is its total number of elements, so the intrinsic size(barr)
would return 20000 in the above example. More often one wants to know the
extents along each dimension, separately: size(barr,1) returns the value 100,
while size(barr,2) returns the value 200. [M&R, §2.10]

Section §21.3, below, discusses additional aspects of arrays in Fortran 90.

Memory Management

Fortran 90 is greatly superior to Fortran 77 in its memory-management capa-
bilities, seen by the user as the ability to create, expand, or contract workspace for
programs. Within subprograms(that is, subroutinesand functions), one can have
automatic arrays(or other automatic data objects) that come into existence each
time the subprogram is entered, and disappear (returning their memory to the pool)
when the subprogram is exited. The size of automatic objects can be specified
by arbitrary expressions involving values passed as actual argumentsin the calling
program, and thus received by the subprogram through its corresponding dummy
arguments. [M&R, §6.4]

Here is an example that creates some automatic workspace named carr:

SUBROUTINE dosomething(j,k)
USE nrtype
REAL(SP), DIMENSION(2*j,k**2) :: carr

Finer control on when workspace is created or destroyed can be achieved by
declaring allocatable arrays, which exist as names only, without associated memory,
until they are allocatedwithin the program or subprogram. When no longer needed,
they can be deallocated. The allocation statusof an allocatable array can be tested
by the program via the allocated intrinsic function (p. 952). [M&R, §6.5]

Here is an example in outline:

REAL(SP), DIMENSION(:,:), ALLOCATABLE :: darr
...
allocate(darr(10,20))
...
deallocate(darr)
...
allocate(darr(100,200))
...
deallocate(darr)

Notice that darr is originally declared with only “slots” (colons) for its dimensions,
and is then allocated/deallocated twice, with different sizes.

Yet finer control is achieved by the use of pointers. Like an allocatable array,
a pointer can be allocated, at will, its own associated memory. However, it has
the additional flexibility of alternatively being pointer associatedwith a target that
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already exists under another name. Thus, pointers can be used as redefinable aliases
for other variables, arrays, or (see §21.3) array sections. [M&R, §6.12]

Here is an example that first associates the pointer parr with the array earr,
then later cancels that association and allocates it its own storage of size 50:

REAL(SP), DIMENSION(:), POINTER :: parr
REAL(SP), DIMENSION(100), TARGET :: earr
...
parr => earr
...
nullify(parr)
allocate(parr(50))
...
deallocate(parr)

Procedure Interfaces

When a procedure is referenced(e.g., called) from within a program or
subprogram (examples of scoping units), the scoping unit must be told, or must
deduce, the procedure’s interface, that is, its calling sequence, including the types
and kinds of all dummy arguments, returned values, etc. The recommended
procedure is to specify this interface via an explicit interface, usually an interface
block(essentially a declaration statement for subprograms) in the calling subprogram
or in some modulethat the calling program includes via a USE statement. In this
book all interfaces are explicit, and the module named nr contains interface blocks
for all of the Numerical Recipes routines. [M&R, §5.11]

Here is a typical example of an interface block:

INTERFACE
SUBROUTINE caldat(julian,mm,id,iyyy)
USE nrtype
INTEGER(I4B), INTENT(IN) :: julian
INTEGER(I4B), INTENT(OUT) :: mm,id,iyyy
END SUBROUTINE caldat

END INTERFACE

Once this interface is made known to a program that you are writing (by either
explicit inclusion or a USE statement), then the compiler is able to flag for you a
variety of otherwise difficult-to-find bugs. Although interface blocks can sometimes
seem overly wordy, they give a big payoff in ultimately minimizing programmer
time and frustration.

For compatibility with Fortran 77, the language also allows for implicit inter-
faces, where the calling program tries to figure out the interface by the old rules of
Fortran 77. These rules are quite limited, and prone to producing devilishly obscure
program bugs. We strongly recommend that implicit interfaces never be used.

Elemental Procedures and Generic Interfaces

Many intrinsic procedures(those defined by the language standard and thus
usable without any further definition or specification) are also generic. This means
that a single procedure name, such as log(x), can be used with a variety of types
and kind parameters for the argument x, and the result returned will have the same
type and kind parameter as the argument. In this example, log(x) allows any real
or complex argument type.
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Better yet, most generic functions are also elemental. The argument of an
elemental function can be an array of arbitrary shape! Then, the returned result is
an array of the same shape, with each element containing the result of applying the
function to the corresponding element of the argument. (Hence the name elemental,
meaning “applied element by element.”) [M&R, §8.1] For example:

REAL(SP), DIMENSION(100,100) :: a,b
b=sin(a)

Fortran 90 has no facility for creating new, user-defined elemental functions.
It does have, however, the related facility of overloadingby the use of generic
interfaces. This is invoked by the use of an interface block that attaches a single
generic nameto a number of distinct subprograms whose dummy arguments have
different types or kinds. Then, when the generic name is referenced (e.g., called),
the compiler chooses the specific subprogram that matches the types and kinds of the
actual arguments used. [M&R, §5.18] Here is an example of a generic interface block:

INTERFACE myfunc
FUNCTION myfunc_single(x)
USE nrtype
REAL(SP) :: x,myfunc_single
END FUNCTION myfunc_single

FUNCTION myfunc_double(x)
USE nrtype
REAL(DP) :: x,myfunc_double
END FUNCTION myfunc_double

END INTERFACE

A program with knowledge of this interface could then freely use the function
reference myfunc(x) for x’s of both type SP and type DP.

We use overloading quite extensively in this book. A typical use is to provide,
under the same name, both scalar and vector versions of a function such as a
Bessel function, or to provide both single-precision and double-precision versions
of procedures (as in the above example). Then, to the extent that we have provided
all the versions that you need, you can pretend that our routine is elemental. In
such a situation, if you ever call our function with a type or kind that we have
not provided, the compiler will instantly flag the problem, because it is unable to
resolve the generic interface.

Modules

Modules, already referred to several times above, are Fortran 90’s generalization
of Fortran 77’s common blocks, INCLUDEd files of parameter statements, and (to
some extent) statement functions. Modules are program units, like main programs or
subprograms (subroutines and functions), that can be separately compiled. A module
is a convenient place to stash global data, named constants(what in Fortran 77
are called “symbolic constants” or “PARAMETERs”), interface blocks to subprograms
and/or actual subprograms themselves (module subprograms). The convenience is
that a module’s information can be incorporated into another program unit via a
simple, one-line USE statement. [M&R, §5.5]

Here is an example of a simple module that defines a few parameters, creates
some global storage for an array named arr (as might be done with a Fortran 77
common block), and defines the interface to a function yourfunc:
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MODULE mymodule
USE nrtype
REAL(SP), PARAMETER :: con1=7.0_sp/3.0_sp,con2=10.0_sp
INTEGER(I4B), PARAMETER :: ndim=10,mdim=9
REAL(SP), DIMENSION(ndim,mdim) :: arr
INTERFACE

FUNCTION yourfunc(x)
USE nrtype
REAL(SP) :: x,yourfunc
END FUNCTION yourfunc

END INTERFACE
END MODULE mymodule

As mentioned earlier, the module nr contains INTERFACE declarations for all
the Numerical Recipes. When we include a statement of the form

USE nr, ONLY: recipe1

it means that the program uses the additional routine recipe1. The compiler is
able to use the explicit interface declaration in the module to check that recipe1 is
invoked with arguments of the correct type, shape, and number. However, a weakness
of Fortran 90 is that there is no fail-safe way to be sure that the interface module
(here nr) stays synchronized with the underlying routine (here recipe1). You might
think that you could accomplish this by putting USE nr, ONLY: recipe1 into the
recipe1 program itself. Unfortunately, the compiler interprets this as an erroneous
double definition of recipe1’s interface, rather than (as would be desirable) as an
opportunity for a consistency check. (To achieve this kind of consistency check, you
can put the procedures themselves, not just their interfaces, into the module.)

CITED REFERENCES AND FURTHER READING:

Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).

21.3 More on Arrays and Array Sections

Arrays are the central conceptual core of Fortran 90 as a parallel programming
language, and thus worthy of some further discussion. We have already seen that
arrays can “come into existence” in Fortran 90 in several ways, either directly
declared, as

REAL(SP), DIMENSION(100,200) :: arr

or else allocated by an allocatablevariable or a pointervariable,

REAL(SP), DIMENSION(:,:), ALLOCATABLE :: arr
REAL(SP), DIMENSION(:,:), POINTER :: barr
...
allocate(arr(100,200),barr(100,200))

or else (not previously mentioned) passed into a subprogram through a dummy
argument:

SUBROUTINE myroutine(carr)
USE nrtype
REAL(SP), DIMENSION(:,:) :: carr
...
i=size(carr,1)
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j=size(carr,2)

In the above example we also show how the subprogram can find out the size of
the actual array that is passed, using the size intrinsic. This routine is an example
of the use of an assumed-shape array, new to Fortran 90. The actual extents along
each dimension are inherited from the calling routine at run time. A subroutine
with assumed-shape array arguments musthave an explicit interface in the calling
routine, otherwise the compiler doesn’t know about the extra information that must
be passed. A typical setup for calling myroutine would be:

PROGRAM use_myroutine
USE nrtype
REAL(SP), DIMENSION(10,10) :: arr
INTERFACE

SUBROUTINE myroutine(carr)
USE nrtype
REAL(SP), DIMENSION(:,:) :: carr
END SUBROUTINE myroutine

END INTERFACE
...
call myroutine(a)

Of course, for the recipes we have provided all the interface blocks in the file nr.f90,
and you need only a USE nr statement in your calling program.

Conformable Arrays

Two arrays are said to be conformableif their shapes are the same. Fortran 90
allows practically all operations among conformable arrays and elemental functions
that are allowed for scalar variables. Thus, if arr, barr, and carr are mutually
conformable, we can write,

arr=barr+cos(carr)+2.0_sp

and have the indicated operations performed, element by corresponding element,
on the entire arrays. The above line also illustrates that a scalar (here the constant
2.0 sp, but a scalar variable would also be fine) is deemed conformable with any
array — it gets “expanded” to the shape of the rest of the expression that it is
in. [M&R, §3.11]

In Fortran 90, as in Fortran 77, the default lower bound for an array subscript is
1; however, it can be made some other value at the time that the array is declared:

REAL(SP), DIMENSION(100,200) :: farr
REAL(SP), DIMENSION(0:99,0:199) :: garr
...
farr = 3.0_sp*garr + 1.0_sp

Notice that farr and garr are conformable, since they have the same shape, in
this case (100, 200). Also note that when they are used in an array expression,
the operations are taken between the corresponding elements of their shapes, not
necessarily the corresponding elements of their indices. [M&R, §3.10] In other
words, one of the components evaluated is,

farr(1,1) = 3.0_sp*garr(0,0) + 1.0_sp

This illustrates a fundamental aspect of array (or data) parallelism in Fortran 90.
Array constructions should not be thought of as merely abbreviations for do-loops
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over indices, but rather as genuinely parallel operations on same-shaped objects,
abstracted of their indices. This is why the standard makes no statement about the
order in which the individual operations in an array expression are executed; they
might in fact be carried out simultaneously, on parallel hardware.

By default, array expressions and assignments are performed for all elements
of the same-shaped arrays referenced. This can be modified, however, by use of
a where construction like this:

where (harr > 0.0_sp)
farr = 3.0_sp*garr + 1.0_sp

end where

Here harrmust also be conformable to farrand garr. Analogously with the Fortran
if-statement, there is also a one-line form of the where-statement. There is also
a where ... elsewhere ... end where form of the statement, analogous to
if ... else if ... end if. A significant language limitation in Fortran 90
is that nested where-statements are not allowed. [M&R, §6.8]

Array Sections

Much of the versatility of Fortran 90’s array facilities stems from the availability
of array sections. An array section acts like an array, but its memory location, and
thus the values of its elements, is actually a subset of the memory location of an
already-declared array. Array sections are thus “windows into arrays,” and they can
appear on either the left side, or the right side, or both, of a replacement statement.
Some examples will clarify these ideas.

Let us presume the declarations

REAL(SP), DIMENSION(100) :: arr
INTEGER(I4B), DIMENSION(6) :: iarr=(/11,22,33,44,55,66/)

Note that iarr is not only declared, it is also initializedby an initializationexpression
(a replacement for Fortran 77’s DATA statement). [M&R, §7.5] Here are some array
sections constructed from these arrays:

Array Section What It Means

arr(:) same as arr

arr(1:100) same as arr

arr(1:10) one-dimensional array containing first
10 elements of arr

arr(51:100) one-dimensional array containing sec-
ond half of arr

arr(51:) same as arr(51:100)

arr(10:1:-1) one-dimensional array containing first
10 elements of arr, but in reverse order

arr( (/10,99,1,6/) ) one-dimensional array containing ele-
ments 10, 99, 1, and 6 of arr, in that
order

arr(iarr) one-dimensional array containing ele-
ments 11, 22, 33, 44, 55, 66 of arr, in
that order
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Now let’s try some array sections of the two-dimensional array

REAL(SP), DIMENSION(100,100) :: barr

Array Section What It Means

barr(:,:) same as barr

barr(1:100,1:100) same as barr

barr(7,:) one-dimensional array containing the
7th row of barr

barr(7,1:100) same as barr(7,:)

barr(:,7) one-dimensional array containing the
7th column of barr

barr(21:30,71:90) two-dimensional array containing the
sub-block of barr with the indicated
ranges of indices; the shape of this
array section is (10, 20)

barr(100:1:-1,100:1:-1) two-dimensional array formed by flip-
ping barr upside down and backwards

barr(2:100:2,2:100:2) two-dimensional array of shape (50, 50)
containing the elements of barr whose
row and column indices are both even

Some terminology: A construction like 2:100:2, above, is called a subscript
triplet. Its integer pieces (which may be integer constants, or more general integer
expressions) are called lower, upper, and stride. Any of the three may be omitted.
An omitted stride defaults to the value 1. Notice that, if (upper− lower) has a
different sign from stride, then a subscript triplet defines an empty or zero-length
array, e.g., 1:5:-1 or 10:1:1 (or its equivalent form, simply 10:1). Zero-length
arrays are not treated as errors in Fortran 90, but rather as “no-ops.” That is, no
operation is performed in an expression or replacement statement among zero-length
arrays. (This is essentially the same convention as in Fortran 77 for do-loop indices,
which array expressions often replace.) [M&R, §6.10]

It is important to understand that array sections, when used in array expressions,
match elements with other parts of the expression according to shape, not according
to indices. (This is exactly the same principle that we applied, above, to arrays
with subscript lower bounds different from the default value of 1.) One frequently
exploits this feature in using array sections to carry out operations on arrays that
access neighboring elements. For example,

carr(1:n-1,1:n-1) = barr(1:n-1,1:n-1)+barr(2:n,2:n)

constructs in the (n−1)× (n−1) matrix carr the sum of each of the corresponding
elements in n × n barr added to its diagonally lower-right neighbor.

Pointers are often used as aliases for array sections, especially if the same array
sections are used repeatedly. [M&R, §6.12] For example, with the setup

REAL(SP), DIMENSION(:,:), POINTER :: leftb,rightb
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leftb=>barr(1:n-1,1:n-1)
rightb=>barr(2:n,2:n)

the statement above can be coded as

carr(1:n-1,1:n-1)=leftb+rightb

We should also mention that array sections, while powerful and concise, are
sometimes not quite powerful enough. While any row or column of a matrix is easily
accessible as an array section, there is no good way, in Fortran 90, to access (e.g.)
the diagonal of a matrix, even though its elements are related by a linear progression
in the Fortran storage order (by columns). These so-called skew-sectionswere much
discussed by the Fortran 90 standards committee, but they were not implemented.
We will see examples later in this volume of work-around programming tricks (none
totally satisfactory) for this omission. (Fortran 95 corrects the omission; see §21.6.)

CITED REFERENCES AND FURTHER READING:

Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).

21.4 Fortran 90 Intrinsic Procedures

Much of Fortran 90’s power, both for parallel programming and for its concise
expression of algorithmic ideas, comes from its rich set of intrinsicprocedures. These
have the effect of making the language “large,” hence harder to learn. However,
effort spent on learning to use the intrinsics — particularly some of their more
obscure, and more powerful, optional arguments — is often handsomely repaid.

This section summarizes the intrinsics that we find useful in numerical work.
We omit, here, discussion of intrinsics whose exclusive use is for character and string
manipulation. We intend only a summary, not a complete specification, which can
be found in M&R’s Chapter 8, or other reference books.

If you find the sheer number of new intrinsic procedures daunting, you might
want to start with our list of the “top 10” (with the number of different Numerical
Recipes routines that use each shown in parentheses): size (254), sum (44),
dot product (31), merge (27), all (25), maxval (23), matmul (19), pack (18),
any (17), and spread (15). (Later, in Chapter 23, you can compare these numbers
with our frequency of using the short utility functions that we define in a module
named nrutil — several of which we think ought to have been included as Fortran
90 intrinsic procedures.)

The type, kind, and shape of the value returned by intrinsic functions will
usually be clear from the short description that we give. As an additional hint
(though not necessarily a precise description), we adopt the following codes:
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Hint What It Means

[Int] an INTEGER kind type

[Real] a REAL kind type

[Cmplx] a COMPLEX kind type

[Num] a numerical type and kind

[Lgcl] a LOGICAL kind type

[Iarr] a one-dimensional INTEGER array

[argTS] same type and shape as the first
argument

[argT] same type as the first argument, but
not necessarily the same shape

Numerical Elemental Functions

Little needs to be said about the numerical functions with identical counterparts
in Fortran 77: abs, acos, aimag, asin, atan, atan2, conjg, cos, cosh, dim, exp,
log, log10, max, min, mod, sign, sin, sinh, sqrt, tan, and tanh. In Fortran
90 these are all elementalfunctions, so that any plausible type, kind, and shape of
argument may be used. Except for aimag, which returns a real type from a complex
argument, these all return [argTS] (see table above).

Although Fortran 90 recognizes, for compatibility,Fortran 77’s so-called specific
namesfor these functions (e.g., iabs, dabs, and cabs for the generic abs), these
are entirely superfluous and should be avoided.

Fortran 90 corrects some ambiguity (or at least inconvenience) in Fortran 77’s
mod(a,p) function, by introducing a new function modulo(a,p). The functions
are essentially identical for positive arguments, but for negative a and positive p,
modulo gives results more compatible with one’s mathematical expectation that the
answer should always be in the positive range 0 to p. E.g., modulo(11,5)=1, and
modulo(-11,5)=4. [M&R, §8.3.2]

Conversion and Truncation Elemental Functions

Fortran 90’s conversion (or, in the language of C, casting) and truncation
functions are generally modeled on their Fortran 77 antecedents, but with the
addition of an optional second integer argument, kind, that determines the kind of
the result. Note that, if kind is omitted, you get a default kind — not necessarily
related to the kind of your argument. The kind of the argument is of course known
to the compiler by its previous declaration. Functions in this category (see below
for explanation of arguments in slanted type) are:

[Real] aint(a,kind)

Truncate to integer value, return as a real kind.

[Real] anint(a,kind)

Nearest whole number, return as a real kind.

[Cmplx] cmplx(x,y,kind)
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Convert to complex kind. If y is omitted, it is taken to be 0.

[Int] int(a,kind)

Convert to integer kind, truncating towards zero.

[Int] nint(a,kind)

Convert to integer kind, choosing the nearest whole number.

[Real] real(a,kind)

Convert to real kind.

[Lgcl] logical(a,kind)

Convert one logical kind to another.

We must digress here to explain the use of optional argumentsand keywords
as Fortran 90 language features. [M&R, §5.13] When a routine (either intrinsic
or user-defined) has arguments that are declared to be optional, then the dummy
names given to them also become keywords that distinguish — independent of their
position in a calling list — which argument is intended to be passed. (There are some
additional rules about this that we will not try to summarize here.) In this section’s
tabular listings, we indicate optional arguments in intrinsic routines by printing them
in smaller slanted type. For example, the intrinsic function

eoshift(array,shift,boundary,dim)

has two required arguments, array and shift, and two optional arguments,
boundary and dim. Suppose we want to call this routine with the actual arguments
myarray, myshift, and mydim, but omitting the argument in the boundary slot.
We do this by the expression

eoshift(myarray,myshift,dim=mydim)

Conversely, if we wanted a boundary argument, but no dim, we might write
eoshift(myarray,myshift,boundary=myboundary)

It is always a good idea to use this kind of keyword construction when invoking
optional arguments, even though the rules allow keywords to be omitted in some
unambiguous cases. Now back to the lists of intrinsic routines.

A peculiarity of the real function derives from its use both as a type conversion
and for extracting the real part of complex numbers (related, but not identical,
usages): If the argument of real is complex, and kind is omitted, then the result
isn’t a default real kind, but rather is (as one generally would want) the real kind
type corresponding to the kind type of the complex argument, that is, single-precision
real for single-precision complex, double-precision for double-precision, and so on.
[M&R, §8.3.1] We recommend neverusing kind when you intend to extract the
real part of a complex, and alwaysusing kind when you intend conversion of a
real or integer value to a particular kind of REAL. (Use of the deprecated function
dble is not recommended.)

The last two conversion functions are the exception in that they don’t allow
a kind argument, but rather return default integer kinds. (The X3J3 standards
committee has fixed this in Fortran 95.)

[Int] ceiling(a)

Convert to integer, truncating towards more positive.
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[Int] floor(a)

Convert to integer, truncating towards more negative.

Reduction and Inquiry Functions on Arrays

These are mostly the so-called transformational functionsthat accept array
arguments and return either scalar values or else arrays of lesser rank. [M&R,
§8.11] With no optional arguments, such functions act on all the elements of their
single array argument, regardless of its shape, and produce a scalar result. When
the optional argument dim is specified, they instead act on all one-dimensional
sections that span the dimension dim, producing an answer one rank lower than
the first argument (that is, omitting the dim dimension from its shape). When the
optional argument mask is specified, only the elements with a corresponding true
value in mask are scanned.

[Lgcl] all(mask,dim)

Returns true if all elements of mask are true, false otherwise.

[Lgcl] any(mask,dim)

Returns true if any of the elements of mask are true, false otherwise.

[Int] count(mask,dim)

Counts the true elements in mask.

[Num] maxval(array,dim,mask)

Maximum value of the array elements.

[Num] minval(array,dim,mask)

Minimum value of the array elements.

[Num] product(array,dim,mask)

Product of the array elements.

[Int] size(array,dim)

Size (total number of elements) of array, or its extent along dimension
dim.

[Num] sum(array,dim,mask)

Sum of the array elements.

The use of the dim argument can be confusing, so an example may be helpful.
Suppose we have

myarray =




1 2 3 4
5 6 7 8
9 10 11 12




where, as always, the i index in array(i,j) numbers the rows while the j index
numbers the columns. Then

sum(myarray,dim=1) = (15, 18, 21, 24)

that is, the i indices are “summed away” leaving only a j index on the result; while

sum(myarray,dim=2) = (10, 26, 42)



21.4 Fortran 90 Intrinsic Procedures 949

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

that is, the j indices are “summed away” leaving only an i index on the result.
Of course we also have

sum(myarray) = 78

Two related functions return the location of particular elements in an array. The
returned value is a one-dimensional integer array containing the respective subscript
of the element along each dimension. Note that when the argument object is a
one-dimensional array, the returned object is an integer array of length 1, not simply
an integer. (Fortran 90 distinguishes between these.)

[Iarr] maxloc(array,mask)

Location of the maximum value in an array.

[Iarr] minloc(array,mask)

Location of the minimum value in an array.

Similarly returning a one-dimensional integer array are

[Iarr] shape(array)

Returns the shape of array as a one-dimensional integer array.

[Iarr] lbound(array,dim)

When dim is absent, returns an array of lower bounds for each
dimension of subscripts of array. When dim is present, returns the
value only for dimension dim, as a scalar.

[Iarr] ubound(array,dim)

When dim is absent, returns an array of upper bounds for each
dimension of subscripts of array. When dim is present, returns the
value only for dimension dim, as a scalar.

Array Unary and Binary Functions

The most powerful array operations are simply built into the language as
operators. All the usual arithmetic and logical operators (+, -, *, /, **, .not.,
.and., .or., .eqv., .neqv.) can be applied to arrays of arbitrary shape or (for
the binary operators) between two arrays of the same shape, or between arrays and
scalars. The types of the arrays must, of course, be appropriate to the operator used.
The result in all cases is to perform the operation element by element on the arrays.

We also have the intrinsic functions,

[Num] dot product(veca,vecb)

Scalar dot product of two one-dimensional vectors veca and vecb.

[Num] matmul(mata,matb)

Result of matrix-multiplying the two two-dimensional matrices mata
and matb. The shapes have to be such as to allow matrix multiplication.
Vectors (one-dimensional arrays) are additionally allowed as either the
first or second argument, but not both; they are treated as row vectors
in the first argument, and as column vectors in the second.

You might wonder how to form the outerproduct of two vectors, since matmul
specifically excludes this case. (See §22.1 and §23.5 for answer.)
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Array Manipulation Functions

These include many powerful features that a good Fortran 90 programmer
should master.

[argTS] cshift(array,shift,dim)

If dim is omitted, it is taken to be 1. Returns the result of circularly
left-shifting every one-dimensional section of array (in dimension
dim) by shift (which may be negative). That is, for positive shift,
values are moved to smaller subscript positions. Consult a Fortran 90
reference (e.g., [M&R, §8.13.5]) for the case where shift is an array.

[argTS] merge(tsource,fsource,mask)

Returns same shape object as tsource and fsource containing the
former’s components where mask is true, the latter’s where it is false.

[argTS] eoshift(array,shift,boundary,dim)

If dim is omitted, it is taken to be 1. Returns the result of end-off left-
shifting every one-dimensional section of array (in dimension dim)
by shift (which may be negative). That is, for positive shift, values
are moved to smaller subscript positions. If boundary is present as a
scalar, it supplies elements to fill in the blanks; if it is not present, zero
values are used. Consult a Fortran 90 reference (e.g., [M&R, §8.13.5])
for the case where boundary and/or shift is an array.

[argT] pack(array,mask,vector)

Returns a one-dimensional array containing the elements of array

that pass the mask. Components of optional vector are used to pad
out the result to the size of vector with specified values.

[argT] reshape(source,shape,pad,order)

Takes the elements of source, in normal Fortran order, and returns
them (as many as will fit) as an array whose shape is specified by
the one-dimensional integer array shape. If there is space remaining,
then pad must be specified, and is used (as many sequential copies
as necessary) to fill out the rest. For description of order, consult a
Fortran 90 reference, e.g., [M&R, 8.13.3].

[argT] spread(source,dim,ncopies)

Returns an array whose rank is one greater than source, and whose
dim dimension is of length ncopies. Each of the result’s ncopies
array sections having a fixed subscript in dimension dim is a copy of
source. (That is, it spreads source into the dimth dimension.)

[argT] transpose(matrix)

Returns the transpose of matrix, which must be two-dimensional.

[argT] unpack(vector,mask,field)

Returns an array whose type is that of vector, but whose shape is
that of mask. The components of vector are put, in order, into the
positions where mask is true. Where mask is false, components of
field (which may be a scalar or an array with the same shape as
mask) are used instead.
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Bitwise Functions

Most of the bitwise functions should be familiar to Fortran 77 programmers
as longstanding standard extensions of that language. Note that the bit positions
number from zero to one less than the value returned by the bit size function.
Also note that bit positions number from right to left. Except for bit size, the
following functions are all elemental.

[Int] bit size(i)

Number of bits in the integer type of i.

[Lgcl] btest(i,pos)

True if bit position pos is 1, false otherwise.

[Int] iand(i,j)

Bitwise logical and.

[Int] ibclr(i,pos)

Returns i but with bit position pos set to zero.

[Int] ibits(i,pos,len)

Extracts len consecutive bits starting at position pos and puts them
in the low bit positions of the returned value. (The high positions
are zero.)

[Int] ibset(i,pos)

Returns i but with bit position pos set to 1.

[Int] ieor(i,j)

Bitwise exclusive or.

[Int] ior(i,j)

Bitwise logical or.

[Int] ishft(i,shift)

Bitwise left shift by shift (which may be negative) with zeros shifted
in from the other end.

[Int] ishftc(i,shift)

Bitwise circularly left shift by shift (which may be negative).

[Int] not(i)

Bitwise logical complement.

Some Functions Relating to Numerical Representations

[Real] epsilon(x)

Smallest nonnegligible quantity relative to 1 in the numerical model
of x.

[Num] huge(x)

Largest representable number in the numerical model of x.

[Int] kind(x)
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Returns the kind value for the numerical model of x.

[Real] nearest(x,s)

Real number nearest to x in the direction specified by the sign of s.

[Real] tiny(x)

Smallest positive number in the numerical model of x.

Other Intrinsic Procedures

[Lgcl] present(a)

True, within a subprogram, if an optional argument is actually present,
otherwise false.

[Lgcl] associated(pointer,target)

True if pointer is associated with target or (if target is absent)
with any target, otherwise false.

[Lgcl] allocated(array)

True if the allocatable array is allocated, otherwise false.

There are some pitfalls in using associated and allocated, having to do
with arrays and pointers that can find themselves in undefinedstatus [see §21.5,
and also M&R, §3.3 and §6.5.1]. For example, pointers are always “born” in an
undefined status, where the associated function returns unpredictable values.

For completeness, here is a list of Fortran 90’s intrinsic procedures not already
mentioned:

Other Numerical Representation Functions: digits, exponent, fraction,
rrspacing, scale, set exponent, spacing, maxexponent, minexponent,
precision, radix, range, selected int kind, selected real kind.

Lexical comparison: lge, lgt, lle, llt.
Character functions: ichar, char, achar, iachar, index, adjustl,

adjustr, len trim, repeat, scan, trim, verify.
Other: mvbits, transfer, date and time, system clock, random seed,

random number. (We will discuss random numbers in some detail in Chapter B7.)

CITED REFERENCES AND FURTHER READING:

Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).
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21.5 Advanced Fortran 90 Topics

Pointers, Arrays, and Memory Management

One of the biggest improvements in Fortran 90 over Fortran 77 is in the
handling of arrays, which are the cornerstone of many numerical algorithms. In this
subsection we will take a closer look at how to use some of these new array features
effectively. We will look at how to code certain commonly occurring elements of
program design, and we will pay particular attention to avoiding “memory leaks,”
where — usually inadvertently — we keep cumulatively allocating new storage for
an array, every time some piece of code is invoked.

Let’s first review some of the rules for using allocatable arrays and pointers to
arrays. Recall that a pointer is born with an undefined status. Its status changes
to “associated” when you make it refer to a target, and to “disassociated” when
you nullify the pointer. [M&R, §3.3] You can also use nullify on a newly
born pointer to change its status from undefined to disassociated; this allows you to
test the status with the associated inquiry function. [M&R, §6.5.4] (While many
compilers will not produce a run-time error if you test an undefined pointer with
associated, you can’t rely on this laissez-fairein your programming.)

The initial status of an allocatable array is “not currently allocated.” Its status
changes to “allocated” when you give it storage with allocate, and back to “not
currently allocated” when you use deallocate. [M&R, §6.5.1] You can test the
status with the allocated inquiry function. Note that while you can also give a
pointer fresh storage with allocate, you can’t test this with allocated — only
associated is allowed with pointers. Note also that nullifying an allocated pointer
leaves its associated storage in limbo. You must instead deallocate, which gives
the pointer a testable “disassociated” status.

While allocating an array that is already allocated gives an error, you are allowed
to allocate a pointer that already has a target. This breaks the old association, and
could leave the old target inaccessible if there is no other pointer associated with
it. [M&R, §6.5.2] Deallocating an array or pointer that has not been allocated is
always an error.

Allocated arrays that are local to a subprogram acquire the “undefined” status
on exit from the subprogram unless they have the SAVE attribute. (Again, not all
compilers enforce this, but be warned!) Such undefined arrays cannot be referenced
in any way, so you should explicitly deallocate all allocated arrays that are not
saved before returning from a subprogram. [M&R, §6.5.1] The same rule applies
to arrays declared in modules that are currently accessed only by the subprogram.
While you can reference undefined pointers (e.g., by first nullifying them), it is good
programming practice to deallocate explicitly any allocated pointers declared locally
before leaving a subprogram or module.

Now let’s turn to using these features in programs. The simplest example is
when we want to implement global storage of an array that needs to be accessed by
two or more different routines, and we want the size of the array to be determined
at run time. As mentioned earlier, we implement global storage with a MODULE

rather than a COMMON block. (We ignore here the additional possibility of passing
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global variables by having one routine CONTAINed within the other.) There are
two good ways of handling the dynamical allocation in a MODULE. Method 1 uses
an allocatable array:

MODULE a
REAL(SP), DIMENSION(:), ALLOCATABLE :: x
END MODULE a

SUBROUTINE b(y)
USE a
REAL(SP), DIMENSION(:) :: y
...
allocate(x(size(y)))
... [other routines usingx called here] ...
END SUBROUTINE b

Here the global variable x gets assigned storage in subroutine b (in this case,
the same as the length of y). The length of y is of course defined in the procedure
that calls b. The array x is made available to any other subroutine called by b by
including a USE a statement. The status of x can be checked with an allocated

inquiry function on entry into either b or the other subroutine if necessary. As
discussed above, you must be sure to deallocate x before returning from subroutine
b. If you want x to retain its values between calls to b, you add the SAVE attribute
to its declaration in a, and don’t deallocate it on returning from b. (Alternatively,
you could put a USE a in your main program, but we consider that bug-prone, since
forgetting to do so can create all manner of difficult-to-diagnose havoc.) To avoid
allocating x more than once, you test it on entry into b:

if (.not. allocated(x)) allocate(x(size(y)))

The second way to implement this type of global storage (Method 2) uses
a pointer:

MODULE a
REAL(SP), DIMENSION(:), POINTER :: x
END MODULE a

SUBROUTINE b(y)
USE a
REAL(SP), DIMENSION(:) :: y
REAL(SP), DIMENSION(size(y)), TARGET :: xx
...
x=>xx
... [other routines usingx called here] ...
END SUBROUTINE b

Here the automatic arrayxx gets its temporary storage automatically on entry
into b, and automatically gets deallocated on exit from b. [M&R, §6.4] The global
pointer x can access this storage in any routine with a USE a that is called by b.
You can check that things are in order in such a called routine by testing x with
associated. If you are going to use x for some other purpose as well, you should
nullify it on leaving b so that it doesn’t have undefined status. Note that this
implementation does not allow values to be saved between calls: You can’t SAVE
automatic arrays — that’s not what they’re for. You would have to SAVE x in
the module, and allocate it in the subroutine instead of pointing it to a suitable
automatic array. But this is essentially Method 1 with the added complication of using
a pointer, so Method 1 is simpler when you want to save values. When you don’t
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need to save values between calls, we lean towards Method 2 over Method 1 because
we like the automatic allocation and deallocation, but either method works fine.

An example of Method 1 (allocatable array) is in routine rkdumb on page 1297.
An example of Method 1 with SAVE is in routine pwtset on p. 1265. Method
2 (pointer) shows up in routines newt (p. 1196), broydn (p. 1199), and fitexy

(p. 1286). A variation is shown in routines linmin (p. 1211) and dlinmin (p. 1212):
When the array that needs to be shared is an argument of one of the routines,
Method 2 is better.

An extension of these ideas occurs if we allocate some storage for an array
initially, but then might need to increase the size of the array later without losing
the already-stored values. The function reallocate in our utility module nrutil
will handle this for you, but it expects a pointer argument as in Method 2. Since
no automatic arrays are used, you are free to SAVE the pointer if necessary. Here
is a simple example of how to use reallocate to create a workspace array that
is local to a subroutine:

SUBROUTINE a
USE nrutil, ONLY : reallocate
REAL(SP), DIMENSION(:), POINTER, SAVE :: wksp
LOGICAL(LGT), SAVE :: init=.true.
if (init) then

init=.false.
nullify(wksp)
wksp=>reallocate(wksp,100)

end if
...
if (nterm > size(wksp)) wksp=>reallocate(wksp,2*size(wksp))
...
END SUBROUTINE a

Here the workspace is initially allocated a size of 100. If the number of elements
used (nterm) ever exceeds the size of the workspace, the workspace is doubled. (In
a realistic example, one would of course check that the doubled size is in fact big
enough.) Fortran 90 experts can note that the SAVE on init is not strictly necessary:
Any local variable that is initialized is automatically saved. [M&R, §7.5]

You can find similar examples of reallocate (with some further discussion) in
eulsum (p. 1070), hufenc (p. 1348), and arcode (p. 1350). Examples of reallocate
used with global variables in modules are in odeint (p. 1300) and ran state

(p. 1144).
Another situation where we have to use pointers and not allocatable arrays

is when the storage is required for components of a derived type, which are not
allowed to have the allocatable attribute. Examples are in hufmak (p. 1346) and
arcmak (p. 1349).

Turning away from issues relating to global variables, we now consider several
other important programming situations that are nicely handled with pointers. The
first case is when we want a subroutine to return an array whose size is not known
in advance. Since dummy arguments are not allocatable, we must use a pointer.
Here is the basic construction:

SUBROUTINE a(x,nx)
REAL(SP), DIMENSION(:), POINTER :: x
INTEGER(I4B), INTENT(OUT) :: nx
LOGICAL(LGT), SAVE :: init=.true.
if (init) then
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init=.false.
nullify(x)

else
if (associated(x)) deallocate(x)

end if
...
nx=...
allocate(x(nx))
x(1:nx)=...
END SUBROUTINE a

Since the length of x can be found from size(x), it is not absolutely necessary
to pass nx as an argument. Note the use of the initial logic to avoid memory
leaks. If a higher-level subroutine wants to recover the memory associated with x

from the last call to SUBROUTINE a, it can do so by first deallocating it, and then
nullifying the pointer. Examples of this structure are in zbrak (p. 1184), period
(p. 1258), and fasper (p. 1259). A related situation is where we want a function
to return an array whose size is not predetermined, such as in voltra on (p. 1326).
The discussion of voltra also explains the potential pitfalls of functions returning
pointers to dynamically allocated arrays.

A final useful pointer construction enables us to set up a data structure that is
essentially an array of arrays, independently allocatable on each part. We are not
allowed to declare an array of pointers in Fortran 90, but we can do this indirectly
by defining a derived type that consists of a pointer to the appropriate kind of array.
[M&R, §6.11] We can then define a variable that is an allocatable array of the new
type. For example,

TYPE ptr_to_arr
REAL(SP), DIMENSION(:), POINTER :: arr

END TYPE
TYPE(ptr_to_arr), DIMENSION(:), ALLOCATABLE :: x
...
allocate(x(n))
...
do i=1,n

allocate(x(i)%arr(m))
end do

sets up a set x of n arrays of length m. See also the example in mglin (p. 1334).
There is a potential problem with dynamical memory allocation that we should

mention. The Fortran 90 standard does not require that the compiler perform
“garbage collection,” that is, it is not required to recover deallocated memory into
nice contiguous pieces for reuse. If you enter and exit a subroutine many times,
and each time a large chunk of memory gets allocated and deallocated, you could
run out of memory with a “dumb” compiler. You can often alleviate the problem
by deallocating variables in the reverse order that you allocated them. This tends to
keep a large contiguous piece of memory free at the top of the heap.

Scope, Visibility, and Data Hiding

An important principle of good programming practice is modularization, the
idea that different parts of a program should be insulated from each other as much
as possible. An important subcase of modularization is data hiding, the principle
that actions carried out on variables in one part of the code should not be able to
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affect the values of variables in other parts of the code. When it is necessary for
one “island” of code to communicate with another, the communication should be
through a well-defined interface that makes it obvious exactly what communication
is taking place, and prevents any other interchange from occurring. Otherwise,
different sections of code should not have access to variables that they don’t need.

The concept of data hiding extends not only to variables, but also to the names
of procedures that manipulate the variables: A program for screen graphics might
give the user access to a routine for drawing a circle, but it might “hide” the
names (and methods of operation) of the primitive routines used for calculating
the coordinates of the points on the circumference. Besides producing code that
is easier to understand and to modify, data hiding prevents unintended side effects
from producing hard-to-find errors.

In Fortran, the principal language construction that effects data hiding is the
use of subroutines. If all subprograms were restricted to have no more than ten
executable statements per routine, and to communicate between routines only by
an explicit list of arguments, the number of programming errors might be greatly
reduced! Unfortunately few tasks can be easily coded in this style. For this and
other reasons, we think that too much procedurization is a bad thing; one wants
to find the right amount. Fortunately Fortran 90 provides several additional tools
to help with data hiding.

Global variables and routine names are important, but potentially dangerous,
things. In Fortran 90, global variables are typically encapsulated in modules. Access
is granted only to routines with an appropriate USE statement, and can be restricted
to specific identifiers by the ONLY option. [M&R, §7.10] In addition, variable and
routine names within the module can be designated as PUBLIC or PRIVATE (see,
e.g., quad3d on p. 1065). [M&R, §7.6]

The other way global variables get communicated is by having one routine
CONTAINed within another. [M&R, §5.6] This usage is potentially lethal, however,
because all the outer routine’s variables are visible to the inner routine. You can
try to control the problem somewhat by passing some variables back and forth as
arguments of the inner routine, but that still doesn’t prevent inadvertent side effects.
(The most common, and most stupid, is inadvertent reuse of variables named i or j
in the CONTAINed routine.) Also, a long list of arguments reduces the convenience
of using an internal routine in the first place. We advise that internal subprograms
be used with caution, and only to carry out simple tasks.

There are some good ways to use CONTAINS, however. Several of our recipes
have the following structure: A principal routine is invoked with several arguments.
It calls a subsidiary routine, which needs to know some of the principal routine’s
arguments, some global variables, and some values communicated directly as
arguments to the subsidiary routine. In Fortran 77, we have usually coded this by
passing the global variables in a COMMON block and all other variables as arguments
to the subsidiary routine. If necessary, we copied the arguments of the primary
routine before passing them to the subsidiary routine. In Fortran 90, there is a more
elegant way of accomplishing this, as follows:

SUBROUTINE recipe(arg)
REAL(SP) :: arg
REAL(SP) :: global_var
call recipe_private
CONTAINS
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SUBROUTINE recipe_private
...
call subsidiary(local_arg)
...
END SUBROUTINE recipe_private

SUBROUTINE subsidiary(local_arg)
...
END SUBROUTINE subsidiary
END SUBROUTINE recipe

Notice that the principal routine (recipe) has practically nothing in it — only dec-
larations of variables intended to be visible to the subsidiary routine (subsidiary).
All the real work of recipe is done in recipe private. This latter routine
has visibility on all of recipe’s variables, while any additional variables that
recipe private defines are not visible to subsidiary — which is the whole
purpose of this way of organizing things. Obviously arg and global var can
be much more general data types than the example shown here, including function
names. For examples of this construction, see amoeba (p. 1208), amebsa (p. 1222),
mrqmin (p. 1292), and medfit (p. 1294).

Recursion

A subprogram is recursive if it calls itself. While forbidden in Fortran
77, recursion is allowed in Fortran 90. [M&R, §5.16–§5.17] You must supply the
keyword RECURSIVE in front of the FUNCTIONor SUBROUTINEkeyword. In addition,
if a FUNCTION calls itself directly, as opposed to calling another subprogram that in
turn calls it, you must supply a variable to hold the result with the RESULT keyword.
Typical syntax for this case is:

RECURSIVE FUNCTION f(x) RESULT(g)
REAL(SP) :: x,g
if ...

g=...
else

g=f(...)
end if
END FUNCTION f

When a function calls itself directly, as in this example, there always has to be a
“base case” that does not call the function; otherwise the recursion never terminates.
We have indicated this schematically with the if...else...end if structure.

On serial machines we tend to avoid recursive implementations because of the
additional overhead they incur at execution time. Occasionally there are algorithms
for which the recursion overhead is relatively small, and the recursive implementation
is simpler than an iterative version. Examples in this book are quad 3d (p. 1065),
miser (p. 1164), and mglin (p. 1334). Recursion is much more important when
parallelization is the goal. We will encounter in Chapter 22 numerous examples of
algorithms that can be parallelized with recursion.

SAVE Usage Style

A quirk of Fortran 90 is that any variable with initial values acquires the
SAVE attribute automatically. [M&R, §7.5 and §7.9] As a help to understanding
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an algorithm, we have elected to put an explicit SAVE on all variables that really
do need to retain their values between calls to a routine. We do this even if it is
redundant because the variables are initialized. Note that we generally prefer to
assign initial values with initialization expressions rather than with DATA statements.
We reserve DATA statements for cases where it is convenient to use the repeat count
feature to set multiple occurrences of a value, or when binary, octal, or hexadecimal
constants are used. [M&R, §2.6.1]

Named Control Structures

Fortran 90 allows control structures such as do loops and if blocks to be
named. [M&R, §4.3–§4.5] Typical syntax is

name:do i=1,n
...

end do name

One use of naming control structures is to improve readability of the code,
especially when there are many levels of nested loops and if blocks. A more
important use is to allow exit and cycle statements, which normally refer to the
innermost do loop in which they are contained, to transfer execution to the end
of some outer loop. This is effected by adding the name of the outer loop to the
statement: exit name or cycle name.

There is great potential for misuse with named control structures, since they
share some features of the much-maligned goto. We recommend that you use them
sparingly. For a good example of their use, contrast the Fortran 77 version of simplx
with the Fortran 90 version on p. 1216.

CITED REFERENCES AND FURTHER READING:

Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).

21.6 And Coming Soon: Fortran 95

One of the more positive effects of Fortran 90’s long gestation period has been
the general recognition, both by the X3J3 committee and by the community at large,
that Fortran needs to evolve over time. Indeed, as we write, the process of bringing
forth a minor, but by no means insignificant, updating of Fortran 90 — named
Fortran 95 — is well under way.

Fortran 95 will differ from Fortran 90 in about a dozen features, only a handful
of which are of any importance to this book. Generally these are extensions that
will make programming, especially parallel programming, easier. In this section we
give a summary of the anticipated language changes. In §22.1 and §22.5 we will
comment further on the implications of Fortran 95 to some parallel programming
tasks; in §23.7 we comment on what differences Fortran 95 will make to our nrutil
utility functions.

No programs in Chapters B1 through B20 of this book edition use any Fortran
95 extensions.
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FORALL Statements and Blocks

Fortran 95 introduces a new forall control structure, somewhat akin to the
where construct, but allowing for greater flexibility. It is something like a do-loop,
but with the proviso that the indices looped over are allowed to be done in any order
(ideally, in parallel). The forall construction comes in both single-statement and
block variants. Instead of using the do-loop’s comma-separated triplets of lower-
value, upper-value, and increment, it borrows its syntax from the colon-separated
form of array sections. Some examples will give you the idea.

Here is a simple example that could alternatively be done with Fortran 90’s
array sections and transpose intrinsic:

forall (i=1:20, j=1:10:2) x(i,j)=y(j,i)

The block form allows more than one executable statement:

forall (i=1:20, j=1:10:2)
x(i,j)=y(j,i)
z(i,j)=y(i,j)**2

end forall

Here is an example that cannot be done with Fortran 90 array sections:

forall (i=1:20, j=1:20) a(i,j)=3*i+j**2

forall statements can also take optional masks that restrict their action to a
subset of the loop index combinations:

forall (i=1:100, j=1:100, (i>=j .and. x(i,j)/=0.0) ) x(i,j)=1.0/x(i,j)

forall constructions can be nested, or nested inside where blocks, or have
where constructions inside them. An additional new feature in Fortran 95 is that
where blocks can themselves be nested.

PURE Procedures

Because the inside iteration of a forall block can be done in any order, or in
parallel, there is a logical difficulty in allowing functions or subroutines inside such
blocks: If the function or subroutine has side effects(that is, if it changes any data
elsewhere in the machine, or in its own saved variables) then the result of a forall
calculation could depend on the order in which the iterations happen to be done.
This can’t be tolerated, of course; hence a new PURE attribute for subprograms.

While the exact stipulations are somewhat technical, the basic idea is that if you
declare a function or subroutine as PURE, with a syntax like,

PURE FUNCTION myfunc(x,y,z)

or
PURE SUBROUTINE mysub(x,y,z)

then you are guaranteeing to the compiler (and it will enforce) that the only values
changed by mysubor myfuncare returned function values, subroutine arguments with
the INTENT(OUT) attribute, and automatic (scratch) variables within the procedure.

You can then use your pure procedures within forall constructions. Pure
functions are also allowed in some specification statements.
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ELEMENTAL Procedures

Fortran 95 removes Fortran 90’s nagging restriction that only intrinsic functions
are elemental. The way this works is that you write a pure procedure that operates
on scalar values, but include the attribute ELEMENTAL (which automatically implies
PURE). Then, as long as the function has an explicit interface in the referencing
program, you can call it with any shape of argument, and it will act elementally.
Here’s an example:

ELEMENTAL FUNCTION myfunc(x,y,z)
REAL :: x,y,z,myfunc
...
myfunc = ...
END

In a program with an explicit interface for myfunc you could now have

REAL, DIMENSION(10,20) :: x,y,z,w
...
w=myfunc(x,y,z)

Pointer and Allocatable Improvements

Fortran 95, unlike Fortran 90, requires that any allocatable variables (except
those with SAVE attributes) that are allocated within a subprogram be automatically
deallocated by the compiler when the subprogram is exited. This will remove Fortran
90’s “undefined allocation status” bugaboo.

Fortran 95 also provides a method for pointer variables to be born with
disassociated association status, instead of the default (and often inconvenient)
“undefined” status. The syntax is to add an initializing=> NULL() to the declaration,
as:

REAL, DIMENSION(:,:), POINTER :: mypoint => NULL()

This does not, however, eliminate the possibility of undefined association status,
because you have to remember to use the null initializer if want your pointer to
be disassociated.

Some Other Fortran 95 Features

In Fortran 95, maxloc and minloc have the additional optional argument DIM,
which causes them to act on all one-dimensional sections that span through the
named dimension. This provides a means for getting the locations of the values
returned by the corresponding functions maxval and minval in the case that their
DIM argument is present.

The sign intrinsic can now distinguish a negative from a positive real zero
value: sign(2.0,-0.0) is −2.0.

There is a new intrinsic subroutine cpu time(time) that returns as a real value
time a process’s elapsed CPU time.

There are some minor changes in the namelist facility, in defining minimum
field widths for the I, B, O, Z, and F edit descriptors, and in resolving minor conflicts
with some other standards.
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Chapter 22. Introduction
to Parallel
Programming

22.0 Why Think Parallel?

In recent years we Numerical Recipes authors have increasingly become
convinced that a certain revolution, cryptically denoted by the words “parallel
programming,” is about to burst forth from its gestation and adolescence in the
community of supercomputer users, and become the mainstream methodology for
all computing.

Let’s review the past: Take a screwdriver and open up the computer (workstation
or PC) that sits on your desk. (Don’t blame us if this voids your warranty; and
be sure to unplug it first!) Count the integrated circuits — just the bigger ones,
with more than a million gates (transistors). As we write, in 1995, even lowly
memory chips have one or four million gates, and this number will increase rapidly
in coming years. You’ll probably count at least dozens, and often hundreds, of
such chips in your computer.

Next ask, how many of these chips are CPUs? That is, how many implement
von Neumann processors capable of executing arbitrary, stored program code?
For most computers, in 1995, the answer is: about one. A significant number
of computers do have secondary processors that offload input-output and/or video
functions. So, two or three is often a more accurate answer, but only one is usually
under the user’s direct control.

Why do our desktop computers have dozens or hundreds of memory chips, but
most often only one (user-accessible) CPU? Do CPU chips intrinsically cost more
to manufacture? No. Are CPU chips more expensive than memory chips? Yes,
primarily because fixed development and design costs must be distributed over a
smaller number of units sold. We have been in a kind of economic equilibrium:
CPU’s are relatively expensive because there is only one per computer; and there is
only one per computer, because they are relatively expensive.

Stabilizing this equilibrium has been the fact that there has been no standard, or
widely taught, methodology for parallel programming. Except for the special case of
scientific computing on supercomputers (where large problems often have a regular
or geometric character), it is not too much of an exaggeration to say that nobody
really knows how to program multiprocessor machines. Symmetric multiprocessor

962
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operating systems, for example, have been very slow in developing; and efficient,
parallel methodologies for query-serving on large databases are even now a subject
of continuing research.

However, things are now changing. We consider it an easy prognostication that,
by the first years of the new century, the typical desktop computer will have 4 to 8
user-accessible CPUs; ten years after that, the typical number will be between 16 and
512. It is not coincidence that these numbers are characteristic of supercomputers
(including some quite different architectures) in 1995. The rough rule of ten years’
lag from supercomputer to desktop has held firm for quite some time now.

Scientists and engineers have the advantage that techniques for parallel com-
putation in their disciplineshave already been developed. With multiprocessor
workstations right around the corner, we think that now is the right time for scientists
and engineers who use computers to startthinking parallel. We don’t mean that you
should put an axe through the screen of your fast serial (single-CPU) workstation.
We do mean, however, that you should start programming somewhat differently
on that workstation, indeed, start thinking a bit differently about the way that you
approach numerical problems in general.

In this volume ofNumerical Recipes in Fortran, our pedagogical goal is to
show you that there are conceptual and practical benefits in parallel thinking, even
if you are using a serial machine today. These benefits include conciseness and
clarity of code, reusability of code in wider contexts, and (not insignificantly)
increased portability of code to today’s parallel supercomputers. Of course, on
parallel machines, either supercomputers today or desktop machines tomorrow, the
benefits of thinking parallel are much more tangible: They translate into significant
improvements in efficiency and computational capability.

Thinking Parallel with Fortran 90

Until very recently, a strong inhibition to thinking parallel was the lack of any
standard, architecture-independent, computer language in which to think. That has
changed with the finalization of the Fortran 90 language standard, and with the
availability of good, optimizing Fortran 90 compilers on a variety of platforms.

There is a significant body of opinion (with which we, however, disagree) that
there is no such thing as architecture-independent parallel programming. Proponents
of this view, who are generally committed wizards at programming on one or another
particular architecture, point to the fact that algorithms that are optimized to one
architecture can run hundreds of times more slowly on other architectures. And,
they are correct!

Our opposing point of view is one of pragmatism. We think that it is not
hard to learn, in a general way, what kinds of architectures are in general use, and
what kinds of parallel constructions work well (or poorly) on each kind. With this
knowledge (much of which we hope to develop in this book) the user can, we think,
write good, general-purpose parallel code that works on a variety of architectures
— including, importantly, on purely serial machines. Equally important, the user
will be aware of when certain parts of a code can be significantly improved on
some, but not other, architectures.

Fortran 90 is a good test-bench for this point of view. It is not the perfect
language for parallel programming. But it isa language, and it is the only
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cross-platformstandard language now available. The committee that developed
the language between 1978 and 1991 (known technically as X3J3) had strong
representation from both a traditional “vectorization” viewpoint (e.g., from the Cray
XMP and YMP series of computers), and also from the “data parallel” or “SIMD”
viewpoints of parallel machines like the CM-2 and CM-5 from Thinking Machines,
Inc. Language compromises were made, and a few (in our view) almost essential
features were left out (see§22.5). But, by and large, the necessary tools are there: If
you learn to think parallel in Fortran 90, you will easily be able to transfer the skill
to future parallel standards, whether they are Fortran-based, C-based, or other.

CITED REFERENCES AND FURTHER READING:

Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).

22.1 Fortran 90 Data Parallelism: Arrays
and Intrinsics

The underlying model for parallel computation in Fortran 90 isdata parallelism,
implemented by the use of arrays of data, and by the provision of operations and
intrinsic functions that act on those arrays in parallel, in a manner optimized by
the compiler for each particular hardware architecture. We will not try to draw a
fine definitional distinction between “data parallelism” and so-called SIMD (single
instruction multiple data) programming. For our purposes the two terms mean about
the same thing: The programmer writes a single operation, “+” say, and the compiler
causes it to be carried out on multiple pieces of data in as parallel a manner as the
underlying hardware allows.

Any kind of parallel computing that is not SIMD is generally called MIMD
(multiple instruction multiple data). A parallel programming language with MIMD
features might allow, for example, several different subroutines — acting on different
parts of the data — to be called into execution simultaneously. Fortran 90 has few, if
any, MIMD constructions. A Fortran 90 compiler might, on some machines, execute
MIMD code in implementing some Fortran 90 intrinsic functions (pack or unpack,
e.g.), but this will be hidden from the Fortran 90 user. Some extensions of Fortran
90, like HPF, do implement MIMD features explicitly; but we will not consider these
in this book. Fortran 95’sforall andPURE extensions (see§21.6) will allow some
significantly greater access to MIMD features (see§22.5).

Array Parallel Operations

We have already met the most basic, and most important, parallel facility of
Fortran 90, namely, the ability to use whole arrays in expressions and assignments,
with the indicated operations being effected in parallel across the array. Suppose,
for example, we have the two-dimensional matricesa, b, andc,

REAL, DIMENSION(30,30) :: a,b,c
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Then, instead of the serial construction,

do j=1,30
do k=1,30

c(j,k)=a(j,k)+b(j,k)
end do

end do

which is of course perfectly valid Fortran 90 code, we can simply write

c=a+b

The compiler deduces from the declaration statement thata, b, andc are matrices,
and what their bounding dimensions are.

Let us dwell for a moment on the conceptual differences between the serial
code and parallel code for the above matrix addition. Although one is perhaps
used to seeing the nested do-loops as simply an idiom for “do-the-enclosed-on-all-
components,” it in fact, according to the rules of Fortran, specifies a very particular
time-ordering for the desired operations. The matrix elements are added by rows, in
order (j=1,30), and within each row, by columns, in order (k=1,30).

In fact, the serial code aboveoverspecifies the desired task, since it is guaranteed
by the laws of mathematics that the order in which the element operations are done
is of no possible relevance. Over the 50 year lifetime of serial von Neuman
computers, we programmers have been brainwashed to break up all problems into
single executable streamsin the time dimension only. Indeed, the major design
problem for supercomputer compilers for the last 20 years has been toundo such
serial constructions and recover the underlying “parallel thoughts,” for execution in
vector or parallel processors. Now, rather than taking this expensive detour into and
out of serial-land, we are asked simply to say what we mean in the first place,c=a+b.

The essence of parallel programming is not to force “into the time dimen-
sion” (i.e., to serialize) operations that naturally extend across a span of data,
that is, “in the space dimension.” If it were not for 50-year-old collective habits,
and the languages designed to support them, parallel programming would probably
strike us as more natural than its serial counterpart.

Broadcasts and Dimensional Expansion: SSP vs. MMP

We have previously mentioned the Fortran 90 rule that a scalar variable is
conformable with any shape array. Thus, we can implement a calculation such as

yi = xi + s, i = 1, . . . , n (22.1.1)

with code like

y=x+s

where we of course assume previous declarations like

REAL(SP) :: s
REAL(SP), DIMENSION(n) :: x,y

with n a compile-time constant or dummy argument. (Hereafter, we will omit the
declarations in examples that are this simple.)

This seemingly simple construction actually hides an important underlying
parallel capability, namely, that ofbroadcast. The sums iny=x+s are done in parallel
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on different CPUs, each CPU accessing different components ofx andy. Yet, they
all must access the same scalar values. If the hardware has local memory for each
CPU, the value ofs must be replicated and transferred to each CPU’s local memory.
On the other hand, if the hardware implements a single, global memory space, it is
vital to do something that mitigates the traffic jam potentially caused by all the CPUs
trying to access the same memory location at the same time. (We will use the term
“broadcast” to refer equally to both cases.) Although hidden from the user, Fortran
90’s ability to do broadcasts is an essential feature of it as a parallel language.

Broadcasts can be more complicated than the above simple example. Consider,
for example, the calculation

wi =

n∑
j=1

|xi + xj|, i = 1, . . . , n (22.1.2)

Here, we are doingn2 operations: For each ofn values ofi there is a sum over
n values of j.

Serial code for this calculation might be

do i=1,n
w(i)=0.
do j=1,n

w(i)=w(i)+abs(x(i)+x(j))
end do

end do

The obvious immediate parallelization in Fortran 90 uses thesum intrinsic
function to eliminate the inner do-loop. This would be a suitable amount of
parallelization for a small-scale parallel machine, with a few processors:

do i=1,n
w(i)=sum(abs(x(i)+x))

end do

Notice that the conformability rule implies that a new value ofx(i), a scalar, is
being broadcast to all the processors involved in theabs andsum, with each iteration
of the loop overi.

What about the outer do-loop? Do we need, or want, to eliminate it, too?
That depends on the architecture of your computer, and on the tradeoff between
time and memory in your problem (a common feature of all computing, no less
so parallel computing). Here is an implementation that is free of all do-loops,
in principle capable of being executed in a small number (independent ofn) of
parallel operations:

REAL(SP), DIMENSION(n,n) :: a
...
a = spread(x,dim=2,ncopies=n)+spread(x,dim=1,ncopies=n)
w = sum(abs(a),dim=1)

This is an example of what we calldimensional expansion, as implemented by
thespread intrinsic. Although the above may strike you initially as quite a cryptic
construction, it is easy to learn to read it. In the first assignment line, a matrix is
constructed with all possible values ofx(i)+x(j). In the second assignment line,
this matrix is collapsed back to a vector by applying the sum operation to the absolute
value of its elements, across one of its dimensions.
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More explicitly, the first line creates a matrixa by adding two matrices each
constructed viaspread. In spread, thedim argument specifies which argument
is duplicated, so that the first termvaries across its first (row) dimension, and vice
versa for the second term:

aij = xi + xj

=



x1 x1 x1 . . .
x2 x2 x2 . . .
x3 x3 x3 . . .
...

...
...

. . .


+



x1 x2 x3 . . .
x1 x2 x3 . . .
x1 x2 x3 . . .
...

...
...

. . .


 (22.1.3)

Since equation (22.1.2) above is symmetric ini andj, it doesn’t really matter what
value ofdim we put in thesum construction, but the valuedim=1 corresponds to
summing across the rows, that is, down each column of equation (22.1.3).

Be sure that you understand that thespread construction changed anO(n)
memory requirement into anO(n2) one! If your values ofn are large, this is an
impossible burden, and the previous implementation with a single do-loop remains
the only practical one. On the other hand, if you are working on a massively parallel
machine, whose number of processors is comparable ton2 (or at least much larger
thann), then thespread construction, and the underlying broadcast capability that
it invokes, leads to a big win: Alln2 operations can be done in parallel. This
distinction between small-scale parallel machines — which we will hereafter refer to
asSSP machines — and massively multiprocessor machines — which we will refer
to asMMP machines — is an important one. A main goal of parallelism is to saturate
the available number of processors, and algorithms for doing so are often different
in the SSP and MMP opposite limits. Dimensional expansion is one method for
saturating processors in the MMP case.

Masks and “Index Loss”

An instructive extension of the above example is the following case of a product
that omits one term (the diagonal one):

wi =

n∏
j=1
j �=i

(xj − xi), i = 1, . . . , n (22.1.4)

Formulas like equation (22.1.4) frequently occur in the context of interpolation,
where all thexi’s are known to be distinct, so let us for the moment assume that
this is the case.

Serial code for equation (22.1.4) could be

do i=1,n
w(i)=1.0_sp
do j=1,n

if (j /= i) w(i)=w(i)*(x(j)-x(i))
end do

end do

Parallel code for SSP machines, or for large enoughn on MMP machines,
could be
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do i=1,n
w(i)=product( x-x(i), mask=(x/=x(i)) )

end do

Here, themask argument in theproduct intrinsic function causes the diagonal term
to be omitted from the product, as we desire. There are some features of this code,
however, that bear commenting on.

First, notice that, according to the rules of conformability, the expression
x/=x(i) broadcasts the scalarx(i) and generates a logical array of lengthn,
suitable for use as amask in theproduct intrinsic. It is quite common in Fortran
90 to generate masks “on the fly” in this way, particularly if the mask is to be
used only once.

Second, notice that thej index has disappeared completely. It is now implicit
in the two occurrences ofx (equivalent tox(1:n)) on the right-hand side. With
the disappearance of thej index, we also lose the ability to do the test oni andj,
but must use, in essence,x(i) andx(j) instead! That is a very general feature
in Fortran 90: when an operation is done in parallel across an array, there isno
associated index available within the operation. This “index loss,” as we will see in
later discussion, can sometimes be quite an annoyance.

A language construction present in CM [Connection Machine] Fortran, the
so-calledforall, which would have allowed access to an associated index in many
cases, was eliminated from Fortran 90 by the X3J3 committee, in a controversial
decision. Such a construction will come into the language in Fortran 95.

What about code for an MMP machine, where we are willing to use dimensional
expansion to achieve greater parallelism? Here, we can write,

a = spread(x,dim=2,ncopies=n)-spread(x,dim=1,ncopies=n)
w = product(a,dim=1,mask=(a/=0.))

This time it does matter that the value ofdim in theproduct intrinsic is1 rather
than2. If you write out the analog of equation (22.1.3) for the present example,
you’ll see that the above fragment is the right way around. The problem of index
loss is still with us: we have to construct a mask from the arraya, not from its
indices,both of which are now lost to us!

In most cases, there are workarounds (more, or less, awkward as they may be)
for the problem of index loss. In the worst cases, which are quite rare, you have to
create objects to hold, and thus bring back into play, the lost indices. For example,

INTEGER(I4B), DIMENSION(n) :: jj
...
jj = (/ (i,i=1,n) /)
do i=1,n

w(i)=product( x-x(i), mask=(jj/=i) )
end do

Now the arrayjj is filled with the “lost” j index, so that it is available for use in
the mask. A similar technique, involving spreads ofjj, can be used in the above
MMP code fragment, which used dimensional expansion. (Fortran 95’sforall

construction will make index loss much less of a problem. See§21.6.)
Incidentally, the above Fortran 90 construction,(/ (i,i=1,n) /), is called

anarray constructor with implied do list. For reasons to be explained in§22.2, we
almost never use this construction, in most cases substituting a Numerical Recipes
utility function for generating arithmetical progressions, which we callarth.
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Interprocessor Communication Costs

It is both a blessing and a curse that Fortran 90 completely hides from the user
the underlying machinery of interprocessor communication, that is, the way that data
values computed by (or stored locally near) one CPU make their way to a different
CPU that might need them next. The blessing is that, by and large, the Fortran 90
programmer need not be concerned with how this machinery works. If you write

a(1:10,1:10) = b(1:10,1:10) + c(10:1:-1,10:1:-1)

the required upside-down-and-backwards values of the arrayc are justthere, no
matter that a great deal of routing and switching may have taken place. An ancillary
blessing is that this book, unlike so many other (more highly technical) books on
parallel programming (see references below) need not be filled with complex and
subtle discussions of CPU connectivity, topology, routing algorithms, and so on.

The curse is, just as you might expect, that the Fortran 90 programmer can’t
control the interprocessor communication, even when it is desirable to do so. A
few regular communication patterns are “known” to the compiler through Fortran
90 intrinsic functions, for exampleb=transpose(a). These, presumably, are
done in an optimal way. However, many other regular patterns of communication,
which might also allow highly optimized implementations, don’t have corresponding
intrinsic functions. (An obvious example is the “butterfly” pattern of communication
that occurs in fast Fourier transforms.) These, if coded in Fortran 90 by using
general vector subscripts (e.g.,barr=arr(iarr)or barr(jarr)=arr, whereiarr
andjarr are integer arrays), lose all possibility of being optimized. The compiler
can’t distinguish a communication step with regular structure from one with general
structure, so it must assume the worst case, potentially resulting in very slow
execution.

About the only thing a Fortran 90 programmer can do is to start with a general
awareness of the kind of apparently parallel constructions thatmight be quite slow
on his/her parallel machine, and then to refine that awareness by actual experience
and experiment. Here is our list of constructions most likely to cause interprocessor
communication bottlenecks:

• vector subscripts, likebarr=arr(iarr) or barr(jarr)=arr (that is,
general gather/scatter operations)

• the pack andunpack intrinsic functions
• mixing positive strides and negative strides in a single expression (as in

the aboveb(1:10,1:10)+c(10:1:-1,10:1:-1))
• thereshape intrinsic when used with theorder argument
• possibly, thecshift and eoshift extrinsics, especially for nonsmall

values of the shift.
On the other hand, the fact is that these constructionsare parallel, andare there

for you to use. If the alternative to using them is strictly serial code, you should
almost always give them a try.

Linear Algebra

You should be alert for opportunities to use combinations of thematmul,
spread, anddot product intrinsics to perform complicated linear algebra calcu-
lations. One useful intrinsic that is not provided in Fortran 90 is theouter product



970 Chapter 22. Introduction to Parallel Programming

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

of two vectors,

cij = aibj (22.1.5)

We already know how to implement this (cf. equation 22.1.3):

c = spread(a,dim=2,ncopies=size(b))*spread(b,dim=1,ncopies=size(a))

In fact, this operation occurs frequently enough to justify making it a utility function,
outerprod, which we will do in Chapter 23. There we also define other “outer”
operations between vectors, where the multiplication in the outer product is replaced
by another binary operation, such as addition or division.

Here is an example of using these various functions: Many linear algebra
routines require that a submatrix be updated according to a formula like

ajk = ajk + biaji

m∑
p=i

apiapk, j = i, . . . , m, k = l, . . . , n (22.1.6)

where i, m, l, andn are fixed values. Using an array slice likea(:,i) to turn
api into a vector indexed byp, we can code the sum with amatmul, yielding a
vector indexed byk:

temp(l:n)=b(i)*matmul(a(i:m,i),a(i:m,l:n))

Here we have also included the multiplication byb i, a scalar for fixedi. The vector
temp, along with the vectoraji = a(:,i), is then turned into a matrix by the
outerprod utility and used to incrementajk:

a(i:m,l:n)=a(i:m,l:n)+outerprod(a(i:m,i),temp(l:n))

Sometimes the update formula is similar to (22.1.6), but with a slight permutation
of the indices. Such cases can be coded as above if you are careful about the order
of the quantities in thematmul and theouterprod.
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Akl, S.G. 1989, The Design and Analysis of Parallel Algorithms (Englewood Cliffs, NJ: Prentice
Hall).

Bertsekas, D.P., and Tsitsiklis, J.N. 1989, Parallel and Distributed Computation: Numerical Meth-
ods (Englewood Cliffs, NJ: Prentice Hall).

Carey, G.F. 1989, Parallel Supercomputing: Methods, Algorithms, and Applications (New York:
Wiley).

Fountain, T.J. 1994, Parallel Computing: Principles and Practice (New York: Cambridge Univer-
sity Press).

Golub, G., and Ortega, J.M. 1993, Scientific Computing: An Introduction with Parallel Computing
(San Diego, CA: Academic Press).

Fox, G.C., et al. 1988, Solving Problems on Concurrent Processors, Volume I (Englewood Cliffs,
NJ: Prentice Hall).

Hockney, R.W., and Jesshope, C.R. 1988, Parallel Computers 2 (Bristol and Philadelphia: Adam
Hilger).

Kumar, V., et al. 1994, Introduction to Parallel Computing: Design and Analysis of Parallel
Algorithms (Redwood City, CA: Benjamin/Cummings).

Lewis, T.G., and El-Rewini, H. 1992, Introduction to Parallel Computing (Englewood Cliffs, NJ:
Prentice Hall).



22.2 Linear Recurrence and Related Calculations 971

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Modi, J.J. 1988, Parallel Algorithms and Matrix Computation (New York: Oxford University Press).

Smith, J.R. 1993, The Design and Analysis of Parallel Algorithms (New York: Oxford University
Press).

Van de Velde, E. 1994, Concurrent Scientific Computing (New York: Springer-Verlag).

22.2 Linear Recurrence and Related
Calculations

We have already seen that Fortran 90’sarray constructor with implied do list
can be used to generate simple series of integers, like(/ (i,i=1,n) /). Slightly
more generally, one might want to generate an arithmetic progression, by the formula

vj = b+ (j − 1)a, j = 1, . . . , n (22.2.1)

This is readily coded as

v(1:n) = (/ (b+(j-1)*a, j=1,n) /)

Although it is concise, and valid,we don’t like this coding. The reason is that
it violates the fundamental rule of “thinking parallel”: it turns a parallel operation
across a data vector into a serial do-loop over the components of that vector. Yes, we
know that the compiler might be smart enough to generate parallel code for implied
do lists; but it also mightnot be smart enough, here or in more complicated examples.

Equation (22.2.1) is also the simplest example of alinear recurrence relation.
It can be rewritten as

v1 = b, vj = vj−1 + a, j = 2, . . . , n (22.2.2)

In this form (assuming that, in more complicated cases, one doesn’t know an explicit
solution like equation 22.2.1) one can’t write an explicit array constructor. Code like

v(1) = b
v(2:n) = (/ (v(j-1)+a,j=2,n) /) ! wrong

is legal Fortran 90 syntax, but illegal semantics; it doesnot do the desired recurrence!
(The rules of Fortran 90 require that all the components ofv on the right-hand side
be evaluated before any of the components on the left-hand side are set.) Yet, as we
shall see, techniques for accomplishing the evaluation in parallel are available.

With this as our starting point, we now survey some particular tricks of the
(parallel) trade.
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Subvector Scaling: Arithmetic and Geometric Progressions

For explicit arithmetic progressions like equation (22.2.1), the simplest parallel
technique issubvector scaling [1]. The idea is to work your way through the desired
vector in larger and larger parallel chunks:

v1 = b

v2 = b+ a

v3...4 = v1...2 + 2a

v5...8 = v1...4 + 4a

v9...16 = v1...8 + 8a (22.2.3)

And so on, until you reach the length of your vector. (The last step will not
necessarily go all the way to the next power of 2, therefore.) The powers of 2,
timesa, can of course be obtained by successive doublings, rather than the explicit
multiplications shown above.

You can see that subvector scaling requires aboutlog2 n parallel steps to process
a vector of lengthn. Equally important for serial machines, or SSP machines, the
scalar operation count for subvector scaling is no worse than entirely serial code:
each new componentvi is produced by a single addition.

If addition is replaced by multiplication, the identical algorithm will produce
geometric progressions, instead of arithmetic progressions. In Chapter 23, we will
use subvector scaling to implement our utility functionsarth andgeop for these
two progressions. (You can then call one of these functions instead of recoding
equation 22.2.3 every time you need it.)

Vector Reduction: Evaluation of Polynomials

Logically related to subvector scaling is the case where a calculation can be
parallelized across a vector thatshrinks by a factor of 2 in each iteration, until a
desiredscalar result is reached. A good example of this is the parallel evaluation
of a polynomial[2]

P (x) =
N∑
j=0

cjx
j (22.2.4)

For clarity we take the special case ofN = 5. Start with the vector of coefficients
(imagining appended zeros, as shown):

c0, c1, c2, c3, c4, c5, 0, . . .

Now, add the elements by pairs, multiplying the second of each pair byx:

c0 + c1x, c2 + c3x, c4 + c5x, 0, . . .

Now, the same operation, but with the multiplierx2:

(c0 + c1x) + (c2 + c3x)x
2, (c4 + c5x) + (0)x2, 0, . . .
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And a final time, with multiplierx4:

[(c0 + c1x) + (c2 + c3x)x
2] + [(c4 + c5x) + (0)x2]x4, 0, . . .

We are left with a vector of (active) length 1, whose value is the desired polynomial
evaluation. (You can see that the zeros are just a bookkeeping device for taking
account of the case where the active subvector has odd length.) The key point is that
the combining by pairs is a parallel operation at each stage.

As in subvector scaling, there are aboutlog2 n parallel stages. Also as in
subvector scaling, our total operations count is only negligibly different from purely
scalar code: We do one add and one multiply for each original coefficientcj. The
only extra operations arelog2 n successive squarings ofx; but this comes with
the extra benefit of better roundoff properties than the standard scalar coding. In
Chapter 23 we use vector reduction to implement our utility functionpoly for
polynomial evaluation.

Recursive Doubling: Linear Recurrence Relations

Please don’t confuse our use of the word “recurrence” (as in “recurrence
relation,” “linear recurrence,” or equation 22.2.2) with the words “recursion” and
“recursive,” which both refer to the idea of a subroutine calling itself to obtain an
efficient or concise algorithm. There are ample grounds for confusion, because
recursive algorithms are in fact a good way of obtaining parallel solutions to linear
recurrence relations, as we shall now see!

Consider the general first order linear recurrence relation

uj = aj + bj−1uj−1, j = 2, 3, . . . , n (22.2.5)

with initial valueu1 = a1. On a serial machine, we evaluate such a recurrence with
a simple do-loop. To parallelize the recurrence, we can employ the powerful general
strategy ofrecursive doubling. Write down equation (22.2.5) for2j and for2j − 1:

u2j = a2j + b2j−1u2j−1 (22.2.6)

u2j−1 = a2j−1 + b2j−2u2j−2 (22.2.7)

Substitute equation (22.2.7) in equation (22.2.6) to eliminateu 2j−1 and get

u2j = (a2j + a2j−1b2j−1) + (b2j−2b2j−1)u2j−2 (22.2.8)

This is a new recurrence of the same form as (22.2.5) but over only the evenuj, and
hence involving onlyn/2 terms. Clearly we can continue this process recursively,
halving the number of terms in the recurrence at each stage, until we are left with a
recurrence of length 1 or 2 that we can do explicitly. Each time we finish a subpart of
the recursion, we fill in the odd terms in the recurrence, using equation (22.2.7). In
practice, it’s even easier than it sounds. Turn to Chapter B5 to see a straightforward
implementation of this algorithm as the reciperecur1.

On a machine with more processors thann, all the arithmetic at each stage of
the recursion can be done simultaneously. Since there are of orderlogn stages in the
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recursion, the execution time isO(logn). The total number of operations carried out
is of ordern+ n/2 + n/4 + · · · = O(n), the same as for the obvious serial do-loop.

In the utility routines of Chapter 23, we will use recursive doubling to
implement the routinespoly term, cumsum, andcumprod. Wecould use recursive
doubling to implement parallel versions ofarth andgeop (arithmetic and geometric
progressions), andzroots unity (complexnth roots of unity), but these can be
done slightly more efficiently by subvector scaling, as discussed above.

Cyclic Reduction: Linear Recurrence Relations

There is a variant of recursive doubling, calledcyclic reduction, that can be
implemented with a straightforward iteration loop, instead of a recursive procedure
call. [3] Here we start by writing down the recurrence (22.2.5) forall adjacent terms
uj and uj−1 (not just the even ones, as before). Eliminatinguj−1, just as in
equation (22.2.8), gives

uj = (aj + aj−1bj−1) + (bj−2bj−1)uj−2 (22.2.9)

which is a first order recurrence with new coefficientsa′j and b′j. Repeating this
process gives successive formulas foruj in terms ofuj−2, uj−4, uj−8. . . . The
procedure terminates when we reachuj−n (for n a power of 2), which is zero for all
j. Thus the last step givesuj equal to the last set ofa′j ’s.

Here is a code fragment that implements cyclic reduction by direct iteration.
The quantitiesa′j are stored in the variablerecur1.

recur1=a
bb=b
j=1
do

if (j >= n) exit
recur1(j+1:n)=recur1(j+1:n)+bb(j:n-1)*recur1(1:n-j)
bb(2*j:n-1)=bb(2*j:n-1)*bb(j:n-j-1)
j=2*j

enddo

In cyclic reduction the length of the vectoru j that is updated at each stage does
not decrease by a factor of 2 at each stage, but rather only decreases from∼ n to
∼ n/2 during all log2 n stages. Thus the total number of operations carried out is
O(n logn), as opposed toO(n) for recursive doubling. For a serial machine or SSP
machine, therefore, cyclic reduction is rarely superior to recursive doubling when
the latter can be used. For an MMP machine, however, the issue is less clear cut,
because the pattern of communication in cyclic reduction is quite different (and, for
some parallel architectures, possibly more favorable) than that of recursive doubling.

Second Order Recurrence Relations

Consider the second order recurrence relation

yj = aj + bj−2yj−1 + cj−2yj−2, j = 3, 4, . . . , n (22.2.10)

with initial values

y1 = a1, y2 = a2 (22.2.11)
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Our labeling of subscripts is designed to make it easy to enter the coefficients in a
computer program: You need to supplya1, . . . , an, b1, . . . , bn−2, andc1, . . . , cn−2.
Rewrite the recurrence relation in the form ([3])(

yj
yj+1

)
=

(
0
aj+1

)
+

(
0 1
cj−1 bj−1

)(
yj−1

yj

)
, j = 2, . . . , n− 1

(22.2.12)
that is,

uj = aj + bj−1 · uj−1, j = 2, . . . , n− 1 (22.2.13)

where

uj =

(
yj
yj+1

)
, aj =

(
0
aj+1

)
, bj−1 =

(
0 1
cj−1 bj−1

)
, j = 2, . . . , n− 1

(22.2.14)
and

u1 = a1 =

(
y1
y2

)
=

(
a1
a2

)
(22.2.15)

This is a first order recurrence relation for the vectorsuj, and can be solved by
the algorithm described above (and implemented in the reciperecur1). The only
difference is that the multiplicationsare matrix multiplicationswith the2×2 matrices
bj . After the first recursive call, the zeros ina andb are lost, so we have to write
the routine for general two-dimensional vectors and matrices.

Note that this algorithm does not avoid the potential instability problems
associated with second order recurrences that are discussed in§5.5 of Volume
1. Also note that the algorithm generalizes in the obvious way to higher-order
recurrences: Annth order recurrence can be written as a first order recurrence
involving n-dimensional vectors and matrices.

Parallel Solution of Tridiagonal Systems

Closely related to recurrence relations, recursive doubling, and cyclic reduction
is the parallel solution of tridiagonal systems. Since Fortran 90 vectors “know
their own size,” it is most logical to number the components of both the sub- and
super-diagonals of the tridiagonal matrix from1 to N − 1. Thus equation (2.4.1),
here written in the special case ofN = 7, becomes (blank elements denoting zero),




b1 c1
a1 b2 c2

a2 b3 c3
a3 b4 c4

a4 b5 c5
a5 b6 c6

a6 b7



·




u1

u2

u3

u4

u5

u6

u7




=




r1
r2
r3
r4
r5
r6
r7




(22.2.16)

The basic idea for solving equation (22.2.16) on a parallel computer is to
partition the problem into even and odd elements, recurse to solve the former, and
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then solve the latter in parallel. Specifically, we first rewrite (22.2.16), by permuting
its rows and columns, as




b1 c1
b3 a2 c3

b5 a4 c5
b7 a6

a1 c2 b2
a3 c4 b4

a5 c6 b6



·




u1

u3

u5

u7

u2

u4

u6




=




r1
r3
r5
r7
r2
r4
r6




(22.2.17)

Now observe that, by row operations that subtract multiples of the first four
rows from each of the last three rows, we can eliminate all nonzero elements in
the lower-left quadrant. The price we pay is bringing some new elements into the
lower-right quadrant, whose nonzero elements we now callx’s, y’s, andz’s. We call
the modified right-hand sidesq. The transformed problem is now




b1 c1
b3 a2 c3

b5 a4 c5
b7 a6

y1 z1
x1 y2 z2

x2 y3



·




u1

u3

u5

u7

u2

u4

u6




=




r1
r3
r5
r7
q1
q2
q3




(22.2.18)

Notice that the last three rows form a new, smaller, tridiagonal problem, which
we can solve simply by recursing! Once its solution is known, the first four rows can
be solved by a simple, parallelizable, substitution. This algorithm is implemented
in tridag in Chapter B2.

The above method is essentially cyclic reduction, but in the case of the
tridiagonal problem, it does not “unwind” into a simple iteration; on the contrary,
a recursive subroutine is required. For discussion of this and related methods for
parallelizing tridiagonal systems, and references to the literature, see Hockney and
Jesshope[3].

Recursive doubling can also be used to solve tridiagonal systems, the method
requiring the parallel solution (as above) of both a first order recurrence and a second
order recurrence[3,4]. For tridiagonal systems, however, cyclic reduction is usually
more efficient than recursive doubling.

CITED REFERENCES AND FURTHER READING:

Van Loan, C.F. 1992, Computational Frameworks for the Fast Fourier Transform (Philadelphia:
S.I.A.M.) §1.4.2. [1]

Estrin, G. 1960, quoted in Knuth, D.E. 1981, Seminumerical Algorithms, volume 2 of The Art of
Computer Programming (Reading, MA: Addison-Wesley), §4.6.4. [2]

Hockney, R.W., and Jesshope, C.R. 1988, Parallel Computers 2: Architecture, Programming,
and Algorithms (Bristol and Philadelphia: Adam Hilger), §5.2.4 (cyclic reduction); §5.4.2
(second order recurrences); §5.4 (tridiagonal systems). [3]

Stone, H.S. 1973, Journal of the ACM, vol. 20, pp. 27–38; 1975, ACM Transactions on Mathe-
matical Software, vol. 1, pp. 289–307. [4]
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22.3 Parallel Synthetic Division and Related
Algorithms

There are several techniques for parallelization that relate to synthetic division
but that can also find application in wider contexts, as we shall see.

Cumulants of a Polynomial

Suppose we have a polynomial

P (x) =

N∑
j=0

cjx
N−j (22.3.1)

(Note that, here, thecj ’s are indexed from highest degree to lowest, the reverse of
the usual convention.) Then we can define thecumulants of the polynomial to be
partial sums that occur in the polynomial’s usual, serial evaluation,

P0 = c0

P1 = c0x+ c1

· · ·
PN = c0x

N + · · ·+ cN = P (x) (22.3.2)

Evidently, the cumulants satisfy a simple, linear first order recurrence relation,

P0 = c0, Pj = cj + xPj−1, j = 2, . . . , N (22.3.3)

This is slightly simpler than the general first order recurrence, because the value of
x does not depend onj. We already know, from§22.2’s discussion of recursive
doubling, how to parallelize equation (22.3.3) via a recursive subroutine. In Chapter
23, the utility routinepoly termwill implement just such a procedure. An example
of a routine that callspoly term to evaluate a recurrence equivalent to equation
(22.3.3) iseulsum in Chapter B5.

Notice that while we could use equation (22.3.3), parallelized by recursive
doubling, simply to evaluate the polynomialP (x) = PN , this is likely somewhat
slower than the alternative technique of vector reduction, also discussed in§22.2,
and implemented in the utility functionpoly. Equation (22.3.3) should be saved for
cases where the rest of thePj ’s (not justPN ) can be put to good use.

Synthetic Division by a Monomial

We now show that evaluation of the cumulants of a polynomial is equivalent
to synthetic division of the polynomial by a monomial, also calleddeflation (see
§9.5 in Volume 1). To review briefly, and by example, here is a standard tableau
from high school algebra for the (long) division of a polynomial2x 3 − 7x2 + x+ 3
by the monomial factorx − 3.
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x− 3

2x2− x − 2∣∣ 2x3− 7x2 + x+ 3
2x3− 6x2

−x2 + x
−x2 +3x

−2x+ 3
−2x+6

− 3 (remainder) (22.3.4)

Now, here is the same calculation written as asynthetic division, really the same
procedure as tableau (22.3.4), but with unnecessary notational baggage omitted
(and also a changed sign for the monomial’s constant, so that subtractions become
additions):

3

6 −3 −6∣∣ 2 −7 +1 +3

2 −1 −2 −3 (22.3.5)

If we substitute symbols for the above quantities with the correspondence

x
∣∣ c0 c1 c2 c3
P0 P1 P2 P3 (22.3.6)

then it is immediately clear that thePj ’s in equation (22.3.6) are simply thePj ’s of
equation (22.3.3); the calculation is thus parallelizable by recursive doubling. In this
context, the utility routinepoly term is used by the routinezroots in Chapter B9.

Repeated Synthetic Division

It is well known from high-school algebra that repeated synthetic division of
a polynomial yields, as the remainders that occur, first the value of the polynomial,
next the value of its first derivative, and then (up to multiplication by the factorial
of an integer) the values of higher derivatives.

If you want to parallelize the calculation of the value of a polynomial and one or
two of its derivatives, it is not unreasonable to evaluate equation (22.3.3), parallelized
by recursive doubling, two or three times. Our routineddpoly in Chapter B5 is
meant for such use, and it does just this, as does the routinelaguer in Chapter B9.

There are other cases, however, for which you want to perform repeated synthetic
division and “go all the way,” until only a constant remains. For example, this is
the preferred way of “shifting a polynomial,” that is, evaluating the coefficients
of a polynomial in a variabley that differs from the original variablex by an
additive constant. (The recipepcshft has this as its assigned task.) By way of
example, consider the polynomial3x3 + x2 + 4x+ 7, and let us perform repeated
synthetic division by a general monomialx − a. The conventional calculation then
proceeds according to the following tableau, reading it in conventional lexical order
(left-to-right and top-to-bottom):
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3 1 4 7� � � �
3

a−→ 3a+ 1
a−→ 3a2 + a+ 4

a−→ 3a3 + a2 + 4a+ 7� � �
3

a−→ 6a+ 1
a−→ 9a2 + 2a+ 4� �

3
a−→ 9a+ 1�

3 (22.3.7)

Here, each row (after the first) shows a synthetic division or, equivalently, evaluation
of the cumulants of the polynomial whose coefficients are the preceding row. The
results at the right edge of the rows are the values of the polynomial and (up to
integer factorials) its three nonzero derivatives, or (equivalently, without factorials)
coefficients of the shifted polynomial.

We could parallelize the calculation of each row of tableau (22.3.7) by recursive
doubling. That is a lot of recursion, which incurs a nonnegligible overhead. A
much better way of doing the calculation is to deform tableau (22.3.7) into the
following equivalent tableau,

3 −→ 3

a
� ↘

1 −→ 3a+ 1 3

a
� ↘ a

� ↘
4 −→ 3a2 + a+ 4 6a+ 1 3

a
� ↘ a

� ↘ a
� ↘

7 −→ 3a3 + a2 + 4a+ 7 9a2 + 2a+ 4 9a+ 1 3 (22.3.8)

Now each row explicitly depends on only the previous row (and the given first
column), so the rows can be calculated in turn by an explicit parallel expression,
with no recursive calls needed. An example of coding (22.3.8) in Fortran 90 can be
found in the routinepcshft in Chapter B5. (It is also possible to eliminate most of
the multiplications in (22.3.8), at the expense of a much smaller number of divisions.
We have not done this because of the necessity for then treating all possible divisions
by zero as special cases. See[1] for details and references.)

Actually, the deformation of (22.3.7) into (22.3.8) is the same trick as was used
in Volume 1, p. 167, for evaluating a polynomial and its derivative simultaneously,
also generalized in the Fortran 77 implementation of the routineddpoly (Chapter
5). In the Fortran 90 implementation ofddpoly (Chapter B5) wedon’t use this trick,
but instead usepoly term, because, there, we want to parallelize over the length of
the polynomial, not over the number of desired derivatives.
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Don’t confuse the cases ofiterated synthetic division, discussed here, with the
simpler case of doing many simultaneous synthetic divisions. In the latter case,
you can simply implement equation (22.3.3) serially, exactly as written, but with
each operation being data-parallel across your problem set. (This case occurs in
our routinepolcoe in Chapter B3.)

Polynomial Coefficients from Roots

A parallel calculation algorithmically very similar to (22.3.7) or (22.3.8)
occurs when we want to find the coefficients of a polynomialP (x) from its roots
r1, . . . , rN . For this, the tableau is

r1

r2 :

↓ ↘
r1 + r2 r1r2

r3 :

↓ ↘ ↓ ↘
r1 + r2 + r3 r1r2 + r3(r1 + r2) r1r2r3 (22.3.9)

As before, the rows are computed consecutively, from top to bottom. Each row
is computed via a single parallel expression. Note that values moving on vertical
arrows are simply added in, while values moving on diagonal arrows are multiplied
by a new root before adding. Examples of coding (22.3.9) in Fortran 90 can be found
in the routinesvander (Chapter B2) andpolcoe (Chapter B3).

An equivalent deformation of (22.3.9) is

r1

r2 :

↓ ↘
r1r2 r1 + r2

r3 :

↓ ↘ ↓ ↘
r1r2r3 r1r2 + r3(r1 + r2) r1 + r2 + r3 (22.3.10)

Here the diagonal arrows are simple additions, while the vertical arrows represent
multiplication by a root value. Note that the coefficient answers in (22.3.10) come
out in the opposite order from (22.3.9). An example of coding (22.3.10) in Fortran
90 can be found in the routinefixrts in Chapter B13.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), §4.6.4, p. 470. [1]
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22.4 Fast Fourier Transforms

Fast Fourier transforms are beloved by computer scientists, especially those
who are interested in parallel algorithms, because the FFT’s hierarchical structure
generates a complicated, but analyzable, set of requirements for interprocessor
communication on MMPs. Thus, almost all books on parallel algorithms (e.g.,
[1–3]) have a chapter on FFTs.

Unfortunately, the resulting algorithms are highly specific to particular parallel
architectures, and therefore of little use to us in writing general purpose code in an
architecture-independent parallel language like Fortran 90.

Luckily there is a good alternative that covers almost all cases of both serial
and parallel machines. If, for a one-dimensional FFT of sizeN , one is satisfied with
parallelism of order

√
N , then there is a good, general way of achieving a parallel FFT

with quite minimal interprocessor communication; and the communication required
is simply the matrix transpose operation, which Fortran 90 implements as an intrinsic.
That is the approach that we discuss in this section, and implement in Chapter B12.

For a machine withM processors, this approach will saturate the processors (the
desirable condition where none are idle) when the size of a one-dimensional Fourier
transform,N , is large enough:N > M 2. SmallerN ’s will not achieve maximum
parallelism. But suchN ’s are in fact so small for one-dimensional problems that
they are unlikely to be the rate-determining step in scientific calculations. If they
are, it is usually because you are doing many such transforms independently, and
you should recover “outer parallelism” by doing them all at once.

For two or more dimensions, the adopted approach will saturateM processors
wheneach dimension of the problem is larger thanM .

Column- and Row-Parallel FFTs

The basic building block that we assume (and implement in Chapter B12) is a
routine for simultaneously taking the FFT of eachrow of a two-dimensional matrix.
The method is exactly that of Volume 1’sfour1 routine, but with array sections
like data(:,j) replacing scalars likedata(j). Chapter B12’s implementation of
this is a routine calledfourrow. If all the data for one column (that is, all the
valuesdata(i,:), for somei) are local to a single processor, then the parallelism
involves no interprocessor communication at all: The independent FFTs simply
proceed, data parallel and in lockstep. This is architecture-independent parallelism
with a vengeance.

We will also need to take the FFT of eachcolumn of a two-dimensional matrix.
One way to do this is to take the transpose (a Fortran 90 intrinsic that hides a lot
of interprocessor communication), then take the FFT of the rows usingfourrow,
then take the transpose again. An alternative method is to recode thefour1 routine
with array sections in the other dimension (data(j,:)) replacingfour1’s scalars
(data(j)). This scheme, in Chapter B12, is a routine calledfourcol. In this
case, good parallelism will be achieved only if the valuesdata(:,i), for somei,
are local to a single processor. Of course, Fortran 90 does not give the user direct
control over how data are distributed over the machine; but extensions such as HPF
are designed to give just such control.



982 Chapter 22. Introduction to Parallel Programming

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

On a serial machine, you might think thatfourrow andfourcol should have
identical timings (acting on a square matrix, say). The two routines do exactly
the same operations, after all. Not so! On modern serial computers,fourrow

and fourcol can have timings that differ by a factor of 2 or more, even when
their detailed arithmetic is made identical (by giving to one a data array that is the
transpose of the data array given to the other). This effect is due to the multilevel
cache architecture of most computer memories, and the fact that serial Fortran always
stores matrices by columns (first index changing most rapidly). On our workstations,
fourrow is significantly faster thanfourcol, and this is likely the generic behavior.
However, we do not exclude the possibility that some machines, and some sizes of
matrices, are the other way around.

One-Dimensional FFTs

Turn now to the problem of how to do a single, one-dimensional, FFT. We are
given a complex arrayf of lengthN , an integer power of 2. The basic idea is to
address the input array as if it were a two-dimensional array of sizem×M , wherem
andM are each integer powers of 2. Then the components off can be addressed as

f(Jm + j), 0 ≤ j < m, 0 ≤ J < M (22.4.1)

where thej index changes more rapidly, theJ index more slowly, and parentheses
denote Fortran-style subscripts.

Now, suppose we had some magical (parallel) method to compute the discrete
Fourier transform

F (kM +K) ≡
∑
j,J

e2πi(kM+K)(Jm+j)/(Mm)f(Jm + j),

0 ≤ k < m, 0 ≤ K < M (22.4.2)

Then, you can see that the indicesk andK would address the desired result (FFT
of the original array), withK varying more rapidly.

Starting with equation (22.4.2) it is easy to verify the following identity,

F (kM +K) =
∑
j

[
e2πijk/m

(
e2πijK/(Mm)

[∑
J

e2πiJK/M f(Jm+ j)

])]

(22.4.3)
But this, reading it from the innermost operation outward, is just the magical method
that we need:

• Reshape the original array tom ×M in Fortran normal order (storage
by columns).

• FFT on the second (column) index for all values of the first (row) index,
using the routinefourrow.

• Multiply each component by a phase factorexp[2πijK/(Mm)].
• Transpose.
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• Again FFT on the second (column) index for all values of the first (row)
index, using the routinefourrow.

• Reshape the two-dimensional array back into one-dimensional output.
The above scheme usesfourrow exclusively, on the assumption that it is faster

than its siblingfourcol. When that is the case (as we typically find), it is likely
that the above method, implemented asfour1 in Chapter B12, is faster, even on
scalar machines, than Volume 1’s scalar version offour1 (Chapter 12). The reason,
as already mentioned, is thatfourrow’s parallelism is taking better advantage of
cache memory locality.

If fourrow is not faster thanfourcol on your machine, then you should instead
try the following alternative scheme, usingfourcol only:

• Reshape the original array tom ×M in Fortran normal order (storage
by columns).

• Transpose.
• FFT on the first (row) index for all values of the second (column) index,

using the routinefourcol.
• Multiply each component by a phase factorexp[2πijK/(Mm)].
• Transpose.
• Again FFT on the first (row) index for all values of the second (column)

index, using the routinefourcol.
• Transpose.
• Reshape the two-dimensional array back into one-dimensional output.
In Chapter B12, this scheme is implemented asfour1 alt. You might

wonder whyfour1 alt has three transpose operations, whilefour1 had only one.
Shouldn’t there be a symmetry here? No. Fortran makes the arbitrary, but consistent,
choice of storing two-dimensional arrays by columns, and this choice favorsfour1

in terms of transposes. Luckily, at least on our serial workstations,fourrow (used
by four1) is faster thanfourcol (used byfour1 alt), so it is a double win.

For further discussion and references on the ideas behindfour1andfour1 alt

see [4], where these algorithms are called the four-step and six-step frameworks,
respectively.

CITED REFERENCES AND FURTHER READING:

Fox, G.C., et al. 1988, Solving Problems on Concurrent Processors, Volume I (Englewood Cliffs,
NJ: Prentice Hall), Chapter 11. [1]

Akl, S.G. 1989, The Design and Analysis of Parallel Algorithms (Englewood Cliffs, NJ: Prentice
Hall), Chapter 9. [2]

Hockney, R.W., and Jesshope, C.R. 1988, Parallel Computers 2 (Bristol and Philadelphia: Adam
Hilger), §5.5. [3]

Van Loan, C. 1992, Computational Frameworks for the Fast Fourier Transform (Philadelphia:
S.I.A.M.), §3.3. [4]

22.5 Missing Language Features

A few facilities that are fairly important to parallel programming are missing
from the Fortran 90 language standard. On scalar machines this lack is not a
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problem, since one can readily program the missing features by using do-loops.
On parallel machines, both SSP machines and MMP machines, one must hope
that hardware manufacturers provide library routines, callable from Fortran 90, that
provide access to the necessary facilities, or use extensions of Fortran 90, such as
High Performance Fortran (HPF).

Scatter-with-Combine Functions

Fortran 90 allows the use ofvector subscripts for so-calledgather andscatter
operations. For example, with the setup

REAL(SP), DIMENSION(6) :: arr,barr,carr
INTEGER(I4B), DIMENSION(6) :: iarr,jarr
...
iarr = (/ 1,3,5,2,4,6 /)
jarr = (/ 3,2,3,2,1,1 /)

Fortran 90 allows both theone-to-one gather and theone-to-many gather,

barr=arr(iarr)
carr=arr(jarr)

It also allows the one-to-one scatter,

barr(iarr)=carr

where the elements ofcarr are “scattered” intobarr under the direction of the
vector subscriptiarr.

Fortran 90 doesnot allow the many-to-one scatter

barr(jarr)=carr ! illegal for this jarr

because the repeated values injarr try to assign different components ofcarr to
the same location inbarr. The result would not be deterministic.

Sometimes, however, one would in fact like a many-to-one construction, where
the colliding elements get combined by a (commutative and associative) operation,
like + or *, or max(). These so-calledscatter-with-combine functions are readily
implemented on serial machines by a do-loop, for example,

barr=0.
do j=1,size(carr)

barr(jarr(j))=barr(jarr(j))+carr(j)
end do

Fortran 90 unfortunately provides no means for effecting scatter-with-combine
functions in parallel. Luckily, almost all parallel machines do provide such a facility
as a library program, as does HPF, where the above facility is calledSUM SCATTER.
In Chapter 23 we will define utility routinesscatter add andscatter max for
scatter-with-combine functionalities, but the implementation given in Fortran 90 will
be strictly serial, with a do-loop.
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Skew Sections

Fortran 90 provides no good, parallel way to access the diagonal elements of
a matrix, either to read them or to set them. Do-loops will obviously serve this
need on serial machines. In principle, a construction like the following bizarre
fragment could also be utilized,

REAL(SP), DIMENSION(n,n) :: mat
REAL(SP), DIMENSION(n*n) :: arr
REAL(SP), DIMENSION(n) :: diag
...
arr = reshape(mat,shape(arr))
diag = arr(1:n*n:n+1)

which extracts every(n + 1)st element from a one-dimensional array derived by
reshaping the input matrix. However, it is unlikely that any foreseeable parallel
compiler will implement the above fragment without a prohibitive amount of
unnecessary data movement; and code like the above is also exceedingly slow on
all serial machines that we have tried.

In Chapter 23 we will define utility routinesget diag, put diag, diagadd,
diagmult, andunit matrix to manipulate diagonal elements, but the implemen-
tation given in Fortran 90 will again be strictly serial, with do-loops.

Fortran 95 (see§21.6) will essentially fix Fortran 90’s skew sections deficiency.
For example, using itsforall construction, the diagonal elements of an array can
be accessed by a statement like

forall (j=1:20) diag(j) = arr(j,j)

SIMD vs. MIMD

Recall that we use “SIMD” (single-instruction,multiple data) and “data parallel”
as interchangeable terms, and that “MIMD” (multiple-instruction, multiple data) is
a more general programming model. (See§22.1.)

You should not be too quick to jump to the conclusion that Fortran 90’s data
parallel or SIMD model is “bad,” and that MIMD features, absent in Fortran 90, are
therefore “good.” On the contrary, Fortran 90’s basic data-parallel paradigm has a
lot going for it. As we discussed in§22.1, most scientific problems naturally have
a “data dimension” across which the time ordering of the calculation is irrelevant.
Parallelism across this dimension, which is by nature most often SIMD, frees the
mind to think clearly about the computational steps in an algorithm that actually need
to be sequential. SIMD code has advantages of clarity and predictability that should
not be taken lightly. The general MIMD model of “lots of different things all going
on at the same time and communicating data with each other” is a programming
and debugging nightmare.

Having said this, we must at the same time admit that a few MIMD features
— most notably the ability to go through different logical branches for calculating
different data elements in a data-parallel computation — are badly needed in certain
programming situations. Fortran 90 is quite weak in this area.

Note that thewhere...elsewhere...end where construction isnot a MIMD
construction. Fortran 90 requires that thewhereclause be executed completely before
theelsewhere is started. (This allows the results of any calculations in the former



986 Chapter 22. Introduction to Parallel Programming

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

clause to be available for use in the latter.) So, this construction cannot be used to
allow two logical branches to be calculated in parallel.

Special functions, where one would like to calculate function values for an
array of input quantities, are a particularly compelling example of the need for
some MIMD access. Indeed, you will find that Chapter B6 contains a number of
intricate, and in a few cases truly bizarre, workarounds, using allowed combinations
of merge, where, andCONTAINS (the latter, for separating different logical branches
into formally different subprograms).

Fortran 95’sELEMENTAL and PURE constructions, and to some extent also
forall (whose body will be able to includePURE function calls), will go a long way
towards providing exactly the kind of MIMD constructions that are most needed.
Once Fortran 95 becomes available and widespread, you can expect to see a new
version of this volume, with a much-improved Chapter B6.

Conversely, the number of routines outside of Chapter B6 that can be signif-
icantly improved by the use of MIMD features is relatively small; this illustrates
the underlying viability of the basic data-parallel SIMD model, even in a future
language version with useful MIMD features.
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Chapter 23. Numerical Recipes
Utility Functions for
Fortran 90

23.0 Introduction and Summary Listing

This chapter describes and summarizes the Numerical Recipes utility routines
that are used throughout the rest of this volume. A complete implementation of these
routines in Fortran 90 is listed in Appendix C1.

Why do we need utility routines? Aren’t there already enough of them built
into the language as Fortran 90 intrinsics? The answers lie in this volume’s dual
purpose: to implement the Numerical Recipes routines in Fortran 90 code that runs
efficiently on fast serial machines,and to implement them, wherever possible, with
efficient parallel code for multiprocessor machines that will become increasingly
common in the future. We have found three kinds of situations where additional
utility routines seem desirable:

1. Fortran 90 is a big language, with many high-level constructs — single
statements that actually result in a lot of computing. We like this; it gives the
language the potential for expressing algorithms very readably, getting them “out
of the mud” of microscopic coding. In coding the 350+ Recipes for this volume,
we kept a systematic watch for bits of microscopic coding that were repeated in
many routines, and that seemed to be at a lower level of coding than that aspired
to by good Fortran 90 style. Once these bits were identified, we pulled them out
and substituted calls to new utility routines. These are the utilities that arguably
ought to be new language intrinsics, equally useful for serial and parallel machines.
(A prime example isswap.)

2. Fortran 90 contains many highly parallelizable language constructions. But,
as we have seen in§22.5, it is also missing a few important constructions. Most
parallel machines will provide these missing elements as machine-coded library
subroutines. Some of our utility routines are provided simply as a standard interface
to these common, but nonstandard, functionalities. Note that it is the nature of
these routines that our specific implementation, in Appendix C1, will be serial,
and therefore inefficient on parallel machines. If you have a parallel machine,
you will need to recode these; this often involves no more than substituting a
one-line library function call for the body of our implementation. Utilities in this
category will likely become unnecessary over time, either as machine-dependent
libraries converge to standard interfaces, or as the utilities get added to future Fortran

987
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versions. (Indeed, some routines in this category will be unnecessary in Fortran
95, once it is available; see§23.7.)

3. Some tasks should just be done differently in serial, versus parallel,
implementation. Linear recurrence relations are a good example (§22.2). These
are trivially coded with a do-loop on serial machines, but require a fairly elaborate
recursive construction for good parallelization. Rather than provide separate serial
and parallel versions of the Numerical Recipes, we have chosen to pull out of the
Recipes, and into utility routines, some identifiable tasks of this kind. These are
cases where some recoding of our implementation in Appendix C1 might result
in improved performance on your particular hardware. Unfortunately, it is not so
simple as providing a single “serial implementation” and another single “parallel
implementation,” because even the seemingly simple word “serial” hides, at the
hardware level, a variety of different degrees of pipelining, wide instructions, and
so on. Appendix C1 therefore provides only a single implementation, although with
some adjustable parameters that you can customize (by experiment) to maximize
performance on your hardware.

The above three cases are not really completely distinct, and it is therefore not
possible to assign any single utility routine to exactly one situation. Instead, we
organize the rest of this chapter as follows: first, an alphabetical list, with short
summary, of all the new utility routines; next, a series of short sections, grouped by
functionality, that contain the detailed descriptions of the routines.

Alphabetical Listing

The following list gives an abbreviated mnemonic for the type, rank, and/or
shape of the returned values (as in§21.4), the routine’s calling sequence (optional
arguments shown in italics), and a brief, often incomplete, description. The complete
description of the routine is given in the later section shown in square brackets.

For each entry, the number shown in parentheses is the approximate number of
distinct Recipes in this book that make use of that particular utility function, and is
thus a rough guide to that utility’s importance. (There may be multiple invocations
of the utility in each such Recipe.) Where this number is small or zero, it is usually
because the utility routine is a member of a related family of routines whose total
usage was deemed significant enough to include, and we did not want users to have
to “guess” which family members were instantiated.

call array copy(src,dest,n copied,n not copied)

Copy one-dimensional array (whose size is not necessarily known).
[23.1] (9)

[Arr] arth(first,increment,n)

Return an arithmetic progression as an array. [23.4] (55)

call assert(n1,n2,...,string)

Exit with error message if any logical arguments are false. [23.3] (50)

[Int] assert eq(n1,n2,...,string)

Exit with error message if all integer arguments are not equal;otherwise
return common value. [23.3] (133)

[argTS] cumprod(arr,seed)
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Cumulative products of one-dimensional array, with optional seed
value. [23.4] (3)

[argTS] cumsum(arr,seed)
Cumulative sums of one-dimensional array, with optional seed value.
[23.4] (9)

call diagadd(mat,diag)

Adds vector to diagonal of a matrix. [23.7] (4)

call diagmult(mat,diag)

Multiplies vector into diagonal of a matrix. [23.7] (2)

[Arr] geop(first,factor,n)

Return a geometrical progression as an array. [23.4] (7)

[Arr] get diag(mat)

Gets diagonal of a matrix. [23.7] (2)

[Int] ifirstloc(arr)

Location of first true value in a logical array, returned as an integer.
[23.2] (3)

[Int] imaxloc(arr)

Location of array maximum, returned as an integer. [23.2] (11)

[Int] iminloc(arr)

Location of array minimum, returned as an integer. [23.2] (8)

[Mat] lower triangle(j,k,extra)

Returns a lower triangular logical mask. [23.7] (1)

call nrerror(string)

Exit with error message. [23.3] (96)

[Mat] outerand(a,b)

Returns the outer logical and of two vectors. [23.5] (1)

[Mat] outerdiff(a,b)

Returns the outer difference of two vectors. [23.5] (4)

[Mat] outerdiv(a,b)

Returns the outer quotient of two vectors. [23.5] (0)

[Mat] outerprod(a,b)

Returns the outer product of two vectors. [23.5] (14)

[Mat] outersum(a,b)

Returns the outer sum of two vectors. [23.5] (0)

[argTS] poly(x,coeffs,mask)
Evaluate a polynomialP (x) for one or more valuesx, with optional
mask. [23.4] (15)

[argTS] poly term(a,x)

Returns partial cumulants of a polynomial, equivalent to synthetic
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division. [23.4] (4)

call put diag(diag,mat)

Sets diagonal of a matrix. [23.7] (0)

[Ptr] reallocate(p,n,m,...)

Reallocate pointer to new size, preserving its contents. [23.1] (5)

call scatter add(dest,source,dest index)

Scatter-adds source vector to specified components of destination
vector. [23.6] (2)

call scatter max(dest,source,dest index)

Scatter-max source vector to specified components of destination
vector. [23.6] (0)

call swap(a,b,mask)

Swap corresponding elements ofa andb. [23.1] (24)

call unit matrix(mat)

Sets matrix to be a unit matrix. [23.7] (6)

[Mat] upper triangle(j,k,extra)

Returns an upper triangular logical mask. [23.7] (4)

[Real] vabs(v)

Length of a vector inL2 norm. [23.8] (6)

[CArr] zroots unity(n,nn)

Returnsnn consecutive powers of the complexnth root of unity.
[23.4] (4)

Comment on Relative Frequencies of Use

We find it interesting to compare our frequency of using thenrutil utility
routines, with our most used language intrinsics (see§21.4). On this basis, the
following routines are as useful to us as thetop 10 language intrinsics:arth,
assert, assert eq, outerprod, poly, andswap. We strongly recommend that
the X3J3 standards committee, as well as individual compiler library implementors,
consider the inclusion of new language intrinsics (or library routines) that subsume
the capabilities of at least these routines. In the next tier of importance, we
would put some further cumulative operations (geop, cumsum), some other “outer”
operations on vectors (e.g.,outerdiff), basic operations on the diagonals of
matrices (get diag, put diag, diag add), and some means of access to an array
of unknown size (array copy).

23.1 Routines That Move Data

To describe our utility routines, we introduce two items of Fortran 90 pseu-
docode: We use the symbolT to denote some type and rank declaration (including
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scalar rank, i.e., zero); and when we append a colon to a type specification, as in
INTEGER(I4B)(:), for example, we denote an array of the given type.

The routinesswap, array copy, andreallocate simply move data around
in useful ways.

� � �

swap (swaps corresponding elements)

User interface (or, “USE nrutil”):
SUBROUTINE swap(a,b,mask)
T, INTENT(INOUT) :: a,b
LOGICAL(LGT), INTENT(IN), OPTIONAL :: mask
END SUBROUTINE swap

Applicable types and ranks:
T ≡ any type, any rank

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B), REAL(SP), REAL(SP)(:), REAL(DP),

COMPLEX(SPC), COMPLEX(SPC)(:), COMPLEX(SPC)(:,:),

COMPLEX(DPC), COMPLEX(DPC)(:), COMPLEX(DPC)(:,:)

Action:
Swaps the corresponding elements ofa andb. If mask is present, performs
the swap only wheremask is true. (Following code is the unmasked case.
For speed at run time, the masked case is implemented by overloading, not
by testing for the optional argument.)

Reference implementation:
T :: dum
dum=a
a=b
b=dum

� � �

array copy (copy one-dimensional array)

User interface (or, “USE nrutil”):
SUBROUTINE array_copy(src,dest,n_copied,n_not_copied)
T, INTENT(IN) :: src
T, INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
END SUBROUTINE array_copy

Applicable types and ranks:
T ≡ any type, rank 1

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B)(:), REAL(SP)(:), REAL(DP)(:)

Action:
Copies to a destination arraydest the one-dimensional arraysrc, or as
much ofsrc as will fit in dest. Returns the number of components copied
asn copied, and the number of components not copied asn not copied.

The main use of this utility is wheresrc is an expression that returns an
array whose size is not known in advance, for example, the value returned
by the pack intrinsic.
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Reference implementation:
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)

� � �

reallocate (reallocate a pointer, preserving contents)

User interface (or, “USE nrutil”):
FUNCTION reallocate(p,n[,m, . . .])
T, POINTER :: p, reallocate
INTEGER(I4B), INTENT(IN) :: n[,m, . . .]
END FUNCTION reallocate

Applicable types and ranks:
T ≡ any type, rank 1 or greater

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B)(:), INTEGER(I4B)(:,:), REAL(SP)(:),

REAL(SP)(:,:), CHARACTER(1)(:)

Action:
Allocates storage for a new array with shape specified by the integer(s)n, m,
. . . (equal in number to the rank of pointerp). Then, copies the contents of
p’s target (or as much as will fit) into the new storage. Then, deallocatesp

and returns a pointer to the new storage.

The typical use isp=reallocate(p,n[, m, . . .]), which has the effect of
changing the allocated size ofp while preserving the contents.

The reference implementation, below, shows only the case of rank 1.

Reference implementation:
INTEGER(I4B) :: nold,ierr
allocate(reallocate(n),stat=ierr)
if (ierr /= 0) call &

nrerror(’reallocate: problem in attempt to allocate memory’)
if (.not. associated(p)) RETURN
nold=size(p)
reallocate(1:min(nold,n))=p(1:min(nold,n))
deallocate(p)

23.2 Routines Returning a Location

Fortran 90’s intrinsicsmaxloc andminloc return rank-one arrays. When, in the
most frequent usage, their argument is a one-dimensional array, the answer comes
back in the inconvenient form of an array containing a single component, which
cannot be itself used in a subscript calculation. While there are workaround tricks
(e.g., use of thesum intrinsic to convert the array to a scalar), it seems clearer to
define routinesimaxloc andiminloc that return integers directly.

The routineifirstloc adds a related facility missing among the intrinsics:
Return the first true location in a logical array.

� � �
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imaxloc (location of array maximum as an integer)

User interface (or, “USE nrutil”):
FUNCTION imaxloc(arr)
T, INTENT(IN) :: arr
INTEGER(I4B) :: imaxloc
END FUNCTION imaxloc

Applicable types and ranks:
T ≡ any integer or real type, rank 1

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B)(:), REAL(SP)(:)

Action:
For one-dimensional arrays, identical to themaxloc intrinsic, except returns
its answer as an integer rather than asmaxloc’s somewhat awkward rank-one
array containing a single component.

Reference implementation:
INTEGER(I4B), DIMENSION(1) :: imax
imax=maxloc(arr(:))
imaxloc=imax(1)

� � �

iminloc (location of array minimum as an integer)

User interface (or, “USE nrutil”):
FUNCTION iminloc(arr)
T, INTENT(IN) :: arr
INTEGER(I4B) :: iminloc
END FUNCTION iminloc

Applicable types and ranks:
T ≡ any integer or real type, rank 1

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)(:)

Action:
For one-dimensional arrays, identical to theminloc intrinsic, except returns
its answer as an integer rather than asminloc’s somewhat awkward rank-one
array containing a single component.

Reference implementation:
INTEGER(I4B), DIMENSION(1) :: imin
imin=minloc(arr(:))
iminloc=imin(1)

� � �

ifirstloc (returns location of first “true” in a logical vector)

User interface (or, “USE nrutil”):
FUNCTION ifirstloc(mask)
T, INTENT(IN) :: mask
INTEGER(I4B) :: ifirstloc
END FUNCTION ifirstloc
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Applicable types and ranks:
T ≡ any logical type, rank 1

Types and ranks implemented (overloaded) innrutil:
T ≡ LOGICAL(LGT)

Action:
Returns the index (subscript value) of the first location, in a one-dimensional
logical mask, that has the value.TRUE., or returnssize(mask)+1 if all
components ofmask are .FALSE.

Note that while the reference implementation uses a do-loop, the function is
parallelized innrutil by instead using themerge andmaxloc intrinsics.

Reference implementation:
INTEGER(I4B) :: i
do i=1,size(mask)

if (mask(i)) then
ifirstloc=i
return

end if
end do
ifirstloc=i

23.3 Argument Checking and Error Handling

It is good programming practice for a routine to check the assumptions
(“assertions”) that it makes about the sizes of input arrays, allowed range of
numerical arguments, and so forth. The routinesassert andassert eq are meant
for this kind of use. The routinenrerror is our default error reporting routine.

� � �

assert (exit with error message if any assertion is false)

User interface (or, “USE nrutil”):
SUBROUTINE assert(n1,n2,...,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1,n2,...
END SUBROUTINE assert

Action:
Embedding program dies gracefully with an error message if any of the
logical arguments are false. Typical use is with logical expressions as the
actual arguments.nrutil implements and overloads forms with 1, 2, 3, and
4 logical arguments, plus a form with a vector logical argument,
LOGICAL, DIMENSION(:), INTENT(IN) :: n

that is checked by theall(n) intrinsic.
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Reference implementation:
if (.not. (n1.and.n2.and...)) then

write (*,*) ’nrerror: an assertion failed with this tag:’, string
STOP ’program terminated by assert’

end if

� � �

assert eq (exit with error message if integer arguments not all equal)

User interface (or, “USE nrutil”):
FUNCTION assert_eq(n1,n2,n3,...,string)
CHARACTER(LEN=*), INTENT(IN) :: string
INTEGER, INTENT(IN) :: n1,n2,n3,...
INTEGER :: assert_eq
END FUNCTION assert_eq

Action:
Embedding program dies gracefully with an error message if any of the
integer arguments are not equal to the first. Otherwise, return the value of
the first argument. Typical use is for enforcing equality on the sizes of arrays
passed to a subprogram.nrutil implements and overloads forms with 1, 2,
3, and 4 integer arguments, plus a form with a vector integer argument,
INTEGER, DIMENSION(:), INTENT(IN) :: n

that is checked by the conditionalif (all(nn(2:)==nn(1))).

Reference implementation:
if (n1==n2.and.n2==n3.and...) then

assert_eq=n1
else

write (*,*) ’nrerror: an assert_eq failed with this tag:’, string
STOP ’program terminated by assert_eq’

end if

� � �

nrerror (report error message and stop)

User interface (or, “USE nrutil”):
SUBROUTINE nrerror(string)
CHARACTER(LEN=*), INTENT(IN) :: string
END SUBROUTINE nrerror

Action:
This is the minimal error handler used in this book. In applications of
any complexity, it is intended only as a placeholder for a user’s more
complicated error handling strategy.

Reference implementation:
write (*,*) ’nrerror: ’,string
STOP ’program terminated by nrerror’
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23.4 Routines for Polynomials and Recurrences

Apart from programming convenience, these routines are designed to allow for
nontrivial parallel implementations, as discussed in§22.2 and§22.3.

� � �

arth (returns arithmetic progression as an array)

User interface (or, “USE nrutil”):
FUNCTION arth(first,increment,n)
T, INTENT(IN) :: first,increment
INTEGER(I4B), INTENT(IN) :: n
T, DIMENSION(n) [or, 1 rank higher thanT]:: arth
END FUNCTION arth

Applicable types and ranks:
T ≡ any numerical type, any rank

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B), REAL(SP), REAL(DP)

Action:
Returns an array of lengthn containing an arithmetic progression whose
first value isfirst and whose increment isincrement. If first and
increment have rank greater than zero, returns an array of one larger rank,
with the last subscript having sizen and indexing the progressions. Note that
the following reference implementation (for the scalar case) is definitional
only, and neither parallelized nor optimized for roundoff error. See§22.2
and Appendix C1 for implementation by subvector scaling.

Reference implementation:
INTEGER(I4B) :: k
if (n > 0) arth(1)=first
do k=2,n

arth(k)=arth(k-1)+increment
end do

� � �

geop (returns geometric progression as an array)

User interface (or, “USE nrutil”):
FUNCTION geop(first,factor,n)
T, INTENT(IN) :: first,factor
INTEGER(I4B), INTENT(IN) :: n
T, DIMENSION(n) [or, 1 rank higher thanT]:: geop
END FUNCTION geop

Applicable types and ranks:
T ≡ any numerical type, any rank

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B), REAL(SP), REAL(DP), REAL(DP)(:),

COMPLEX(SPC)
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Action:
Returns an array of lengthn containing a geometric progression whose first
value isfirst and whose multiplier isfactor. If first and factor

have rank greater than zero, returns an array of one larger rank, with the
last subscript having sizen and indexing the progression. Note that the
following reference implementation (for the scalar case) is definitional only,
and neither parallelized nor optimized for roundoff error. See§22.2 and
Appendix C1 for implementation by subvector scaling.

Reference implementation:
INTEGER(I4B) :: k
if (n > 0) geop(1)=first
do k=2,n

geop(k)=geop(k-1)*factor
end do

� � �

cumsum (cumulative sum on an array, with optional additive seed)

User interface (or, “USE nrutil”):
FUNCTION cumsum(arr,seed)
T, DIMENSION(:), INTENT(IN) :: arr
T, OPTIONAL, INTENT(IN) :: seed
T, DIMENSION(size(arr)), INTENT(OUT) :: cumsum
END FUNCTION cumsum

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B), REAL(SP)

Action:
Given the rank 1 arrayarr of typeT, returns an array of identical type and
size containing the cumulative sums ofarr. If the optional argumentseed
is present, it is added to the first component (and therefore, by cumulation,
all components) of the result. See§22.2 for parallelization ideas.

Reference implementation:
INTEGER(I4B) :: n,j
T :: sd
n=size(arr)
if (n == 0) return
sd=0.0
if (present(seed)) sd=seed
cumsum(1)=arr(1)+sd
do j=2,n

cumsum(j)=cumsum(j-1)+arr(j)
end do

� � �

cumprod (cumulative prod on an array, with optional multiplicative seed)

User interface (or, “USE nrutil”):
FUNCTION cumprod(arr,seed)
T, DIMENSION(:), INTENT(IN) :: arr
T, OPTIONAL, INTENT(IN) :: seed
T, DIMENSION(size(arr)), INTENT(OUT) :: cumprod
END FUNCTION cumprod
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Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Given the rank 1 arrayarr of typeT, returns an array of identical type and
size containing the cumulative products ofarr. If the optional argument
seed is present, it is multiplied into the first component (and therefore, by
cumulation, into all components) of the result. See§22.2 for parallelization
ideas.

Reference implementation:
INTEGER(I4B) :: n,j
T :: sd
n=size(arr)
if (n == 0) return
sd=1.0
if (present(seed)) sd=seed
cumprod(1)=arr(1)*sd
do j=2,n

cumprod(j)=cumprod(j-1)*arr(j)
end do

� � �

poly (polynomial evaluation)

User interface (or, “USE nrutil”):
FUNCTION poly(x,coeffs,mask)
T,, DIMENSION(:,...), INTENT(IN) :: x
T, DIMENSION(:), INTENT(IN) :: coeffs
LOGICAL(LGT), DIMENSION(:,...), OPTIONAL, INTENT(IN) :: mask
T :: poly
END FUNCTION poly

Applicable types and ranks:
T ≡ any numerical type (xmay be scalar or have any rank;x and

coeffs may have different numerical types)
Types and ranks implemented (overloaded) innrutil:

T ≡ various combinations ofREAL(SP), REAL(SP)(:), REAL(DP),

REAL(DP)(:), COMPLEX(SPC) (see Appendix C1 for de-
tails)

Action:
Returns a scalar value or array with the same type and shape asx, containing
the result of evaluating the polynomial with one-dimensional coefficient
vectorcoeffs on each component ofx. The optional argumentmask, if
present, has the same shape asx, and suppresses evaluation of the polynomial
where its components are.false.. The following reference code shows
the case wheremask is not present. (The other case can be included by
overloading.)
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Reference implementation:
INTEGER(I4B) :: i,n
n=size(coeffs)
if (n <= 0) then

poly=0.0
else

poly=coeffs(n)
do i=n-1,1,-1

poly=x*poly+coeffs(i)
end do

end if

� � �

poly term (partial cumulants of a polynomial)

User interface (or, “USE nrutil”):
FUNCTION poly_term(a,x)
T, DIMENSION(:), INTENT(IN) :: a
T, INTENT(IN) :: x
T, DIMENSION(size(a)) :: poly_term
END FUNCTION poly_term

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP), COMPLEX(SPC)

Action:
Returns an array of type and size the same as the one-dimensional array
a, containing the partial cumulants of the polynomial with coefficientsa

(arranged from highest-order to lowest-order coefficients, n.b.) evaluated
at x. This is equivalent to synthetic division, and can be parallelized. See
§22.3. Note that the order of arguments is reversed inpoly andpoly term

— each routine returns a value with the size and shape of thefirst argument,
the usual Fortran 90 convention.

Reference implementation:
INTEGER(I4B) :: n,j
n=size(a)
if (n <= 0) return
poly_term(1)=a(1)
do j=2,n

poly_term(j)=a(j)+x*poly_term(j-1)
end do

� � �

zroots unity (returns powers of complexnth root of unity)

User interface (or, “USE nrutil”):
FUNCTION zroots_unity(n,nn)
INTEGER(I4B), INTENT(IN) :: n,nn
COMPLEX(SPC), DIMENSION(nn) :: zroots_unity
END FUNCTION zroots_unity



1000 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Action:
Returns a complex array containingnn consecutive powers of thenth
complex root of unity. Note that the following reference implementation is
definitional only, and neither parallelized nor optimized for roundoff error.
See Appendix C1 for implementation by subvector scaling.

Reference implementation:
INTEGER(I4B) :: k
REAL(SP) :: theta
if (nn==0) return
zroots_unity(1)=1.0
if (nn==1) return
theta=TWOPI/n
zroots_unity(2)=cmplx(cos(theta),sin(theta))
do k=3,nn

zroots_unity(k)=zroots_unity(k-1)*zroots_unity(2)
end do

23.5 Routines for Outer Operations on Vectors

Outer operations on vectors take two vectors as input, and return a matrix as
output. One dimension of the matrix is the size of the first vector, the other is the
size of the second vector. Our convention is always the standard one,

result(i,j) = first operand(i) (op) second operand(j)

where(op) is any of addition, subtraction, multiplication, division, and logicaland.
The reason for coding these as utility routines is that Fortran 90’s native construction,
with two spreads (cf.§22.1), is difficult to read and thus prone to programmer errors.

� � �

outerprod (outer product)

User interface (or, “USE nrutil”):
FUNCTION outerprod(a,b)
T, DIMENSION(:), INTENT(IN) :: a,b
T, DIMENSION(size(a),size(b)) :: outerprod
END FUNCTION outerprod

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP), REAL(DP)

Action:
Returns a matrix that is the outer product of two vectors.

Reference implementation:
outerprod = spread(a,dim=2,ncopies=size(b)) * &

spread(b,dim=1,ncopies=size(a))

� � �
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outerdiv (outer quotient)

User interface (or, “USE nrutil”):
FUNCTION outerdiv(a,b)
T, DIMENSION(:), INTENT(IN) :: a,b
T, DIMENSION(size(a),size(b)) :: outerdiv
END FUNCTION outerdiv

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Returns a matrix that is the outer quotient of two vectors.

Reference implementation:
outerdiv = spread(a,dim=2,ncopies=size(b)) / &

spread(b,dim=1,ncopies=size(a))

� � �

outersum (outer sum)

User interface (or, “USE nrutil”):
FUNCTION outersum(a,b)
T, DIMENSION(:), INTENT(IN) :: a,b
T, DIMENSION(size(a),size(b)) :: outersum
END FUNCTION outersum

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Returns a matrix that is the outer sum of two vectors.

Reference implementation:
outersum = spread(a,dim=2,ncopies=size(b)) + &

spread(b,dim=1,ncopies=size(a))

� � �

outerdiff (outer difference)

User interface (or, “USE nrutil”):
FUNCTION outerdiff(a,b)
T, DIMENSION(:), INTENT(IN) :: a,b
T, DIMENSION(size(a),size(b)) :: outerdiff
END FUNCTION outerdiff

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B), REAL(SP), REAL(DP)

Action:
Returns a matrix that is the outer difference of two vectors.
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Reference implementation:
outerdiff = spread(a,dim=2,ncopies=size(b)) - &

spread(b,dim=1,ncopies=size(a))

� � �

outerand (outer logical and)

User interface (or, “USE nrutil”):
FUNCTION outerand(a,b)
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: a,b
LOGICAL(LGT), DIMENSION(size(a),size(b)) :: outerand
END FUNCTION outerand

Applicable types and ranks:
T ≡ any logical type

Types and ranks implemented (overloaded) innrutil:
T ≡ LOGICAL(LGT)

Action:
Returns a matrix that is the outer logical and of two vectors.

Reference implementation:
outerand = spread(a,dim=2,ncopies=size(b)) .and. &

spread(b,dim=1,ncopies=size(a))

23.6 Routines for Scatter with Combine

These are common parallel functions that Fortran 90 simply doesn’t provide
a means for implementing. If you have a parallel machine, you should substitute
library routines specific to your hardware.

� � �

scatter add (scatter-add source to specified components of destination)

User interface (or, “USE nrutil”):
SUBROUTINE scatter_add(dest,source,dest_index)
T, DIMENSION(:), INTENT(OUT) :: dest
T, DIMENSION(:), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: dest_index
END SUBROUTINE scatter_add

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP), REAL(DP)
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Action:
Adds each component of the arraysource into a component ofdest
specified by the index arraydest index. (The user will usually have
zeroed dest before the call to this routine.) Note thatdest index

has the size ofsource, but must contain values in the range from1 to
size(dest), inclusive. Out-of-range values are ignored. There is no
parallel implementation of this routine accessible from Fortran 90; most
parallel machines supply an implementation as a library routine.

Reference implementation:
INTEGER(I4B) :: m,n,j,i
n=assert_eq(size(source),size(dest_index),’scatter_add’)
m=size(dest)
do j=1,n

i=dest_index(j)
if (i > 0 .and. i <= m) dest(i)=dest(i)+source(j)

end do

� � �

scatter max (scatter-max source to specified components of destination)

User interface (or, “USE nrutil”):
SUBROUTINE scatter_max(dest,source,dest_index)
T, DIMENSION(:), INTENT(OUT) :: dest
T, DIMENSION(:), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: dest_index
END SUBROUTINE scatter_max

Applicable types and ranks:
T ≡ any integer or real type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP), REAL(DP)

Action:
Takes themax operation between each component of the arraysource and
a component ofdest specified by the index arraydest index, replacing
that component ofdest with the value obtained (“maxing into” operation).
(The user will often want to fill the arraydest with the value−huge before
the call to this routine.) Note thatdest index has the size ofsource,
but must contain values in the range from1 to size(dest), inclusive.
Out-of-range values are ignored. There is no parallel implementation of
this routine accessible from Fortran 90; most parallel machines supply an
implementation as a library routine.

Reference implementation:
INTEGER(I4B) :: m,n,j,i
n=assert_eq(size(source),size(dest_index),’scatter_max’)
m=size(dest)
do j=1,n

i=dest_index(j)
if (i > 0 .and. i <= m) dest(i)=max(dest(i),source(j))

end do
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23.7 Routines for Skew Operations on Matrices

These are also missing parallel capabilities in Fortran 90. In Appendix C1 they
are coded serially, with one or more do-loops.

� � �

diagadd (adds vector to diagonal of a matrix)

User interface (or, “USE nrutil”):
SUBROUTINE diagadd(mat,diag)
T, DIMENSION(:,:), INTENT(INOUT) :: mat
T, DIMENSION(:), INTENT(IN) :: diag
END SUBROUTINE diagadd

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
The argumentdiag, either a scalar or else a vector whose size must be the
smaller of the two dimensions of matrixmat, is added to the diagonal of
the matrixmat. The following shows an implementation wherediag is a
vector; the scalar case can be overloaded (see Appendix C1).

Reference implementation:
INTEGER(I4B) :: j,n
n = assert_eq(size(diag),min(size(mat,1),size(mat,2)),’diagadd’)
do j=1,n

mat(j,j)=mat(j,j)+diag(j)
end do

� � �

diagmult (multiplies vector into diagonal of a matrix)

User interface (or, “USE nrutil”):
SUBROUTINE diagmult(mat,diag)
T, DIMENSION(:,:), INTENT(INOUT) :: mat
T, DIMENSION(:), INTENT(IN) :: diag
END SUBROUTINE diagmult

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
The argumentdiag, either a scalar or else a vector whose size must be the
smaller of the two dimensions of matrixmat, is multiplied onto the diagonal
of the matrixmat. The following shows an implementation wherediag is a
vector; the scalar case can be overloaded (see Appendix C1).
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Reference implementation:
INTEGER(I4B) :: j,n
n = assert_eq(size(diag),min(size(mat,1),size(mat,2)),’diagmult’)
do j=1,n

mat(j,j)=mat(j,j)*diag(j)
end do

� � �

get diag (gets diagonal of matrix)

User interface (or, “USE nrutil”):
FUNCTION get_diag(mat)
T, DIMENSION(:,:), INTENT(IN) :: mat
T, DIMENSION(min(size(mat,1),size(mat,2))) :: get_diag
END FUNCTION get_diag

Applicable types and ranks:
T ≡ any type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP), REAL(DP)

Action:
Returns a vector containing the diagonal values of the matrixmat.

Reference implementation:
INTEGER(I4B) :: j
do j=1,min(size(mat,1),size(mat,2))

get_diag(j)=mat(j,j)
end do

� � �

put diag (sets the diagonal elements of a matrix)

User interface (or, “USE nrutil”):
SUBROUTINE put_diag(diag,mat)
T, DIMENSION(:), INTENT(IN) :: diag
T, DIMENSION(:,:), INTENT(INOUT) :: mat
END SUBROUTINE put_diag

Applicable types and ranks:
T ≡ any type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Sets the diagonal of matrixmat equal to the argumentdiag, either a scalar or
else a vector whose size must be the smaller of the two dimensions of matrix
mat. The following shows an implementation wherediag is a vector; the
scalar case can be overloaded (see Appendix C1).

Reference implementation:
INTEGER(I4B) :: j,n
n=assert_eq(size(diag),min(size(mat,1),size(mat,2)),’put_diag’)
do j=1,n

mat(j,j)=diag(j)
end do

� � �
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unit matrix (returns a unit matrix)

User interface (or, “USE nrutil”):
SUBROUTINE unit_matrix(mat)
T, DIMENSION(:,:), INTENT(OUT) :: mat
END SUBROUTINE unit_matrix

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Sets the diagonal components ofmat to unity, all other components to zero.
Whenmat is square, this will be the unit matrix; otherwise, a unit matrix
with appended rows or columns of zeros.

Reference implementation:
INTEGER(I4B) :: i,n
n=min(size(mat,1),size(mat,2))
mat(:,:)=0.0
do i=1,n

mat(i,i)=1.0
end do

� � �

upper triangle (returns an upper triangular mask)

User interface (or, “USE nrutil”):
FUNCTION upper_triangle(j,k,extra)
INTEGER(I4B), INTENT(IN) :: j,k
INTEGER(I4B), OPTIONAL, INTENT(IN) :: extra
LOGICAL(LGT), DIMENSION(j,k) :: upper_triangle
END FUNCTION upper_triangle

Action:
When the optionalargumentextra is zero or absent, returns a logical mask of
shape(j, k) whose values are true above and to the right of the diagonal, false
elsewhere (including on the diagonal). Whenextra is present and positive,
a corresponding number of additional (sub-)diagonals are returned as true.
(extra = 1 makes the main diagonal return true.) Whenextra is present
and negative, it suppresses a corresponding number of superdiagonals.

Reference implementation:
INTEGER(I4B) :: n,jj,kk
n=0
if (present(extra)) n=extra
do jj=1,j

do kk=1,k
upper_triangle(jj,kk)= (jj-kk < n)

end do
end do

� � �
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lower triangle (returns a lower triangular mask)

User interface (or, “USE nrutil”):
FUNCTION lower_triangle(j,k,extra)
INTEGER(I4B), INTENT(IN) :: j,k
INTEGER(I4B), OPTIONAL, INTENT(IN) :: extra
LOGICAL(LGT), DIMENSION(j,k) :: lower_triangle
END FUNCTION lower_triangle

Action:
When the optional argumentextra is zero or absent, returns a logical mask
of shape(j, k) whose values are true below and to the left of the diagonal,
false elsewhere (including on the diagonal). Whenextra is present and
positive, a corresponding number of additional (super-)diagonals are returned
as true. (extra = 1 makes the main diagonal return true.) Whenextra is
present and negative, it suppresses a corresponding number of subdiagonals.

Reference implementation:
INTEGER(I4B) :: n,jj,kk
n=0
if (present(extra)) n=extra
do jj=1,j

do kk=1,k
lower_triangle(jj,kk)= (kk-jj < n)

end do
end do

Fortran 95’sforall construction will make the parallel implementation of
all our skew operations utilities extremely simple. For example, the do-loop in
diagadd will collapse to

forall (j=1:n) mat(j,j)=mat(j,j)+diag(j)

In fact, this implementation is so simple as to raise the question of whether a separate
utility like diagaddwill be needed at all. There are valid arguments on both sides of
this question: The “con” argument, against a routine likediagadd, is that it is just
another reserved name that you have to remember (if you want to use it). The “pro”
argument is that a separate routine avoids the “index pollution” (the opposite disease
from “index loss” discussed in§22.1) of introducinga superfluous variablej, and that
a separate utility allows for additional error checking on the sizes and compatibility
of its arguments. We expect that different programmers will have differing tastes.

The argument for keeping a routine likeupper triangleorlower triangle,
once Fortran 95’smaskedforall constructions become available, is less persuasive.
We recommend that you consider these two routines as placeholders for “remember
to recode this in Fortran 95, someday.”

23.8 Other Routine(s)

You might argue that we don’t really need a routine for the idiom

sqrt(dot product(v,v))
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You might be right. The ability to overload the complex case, with its additional
complex conjugate, is an argument in its favor, however.

� � �

vabs (L2 norm of a vector)

User interface (or, “USE nrutil”):
FUNCTION vabs(v)
T, DIMENSION(:), INTENT(IN) :: v
T :: vabs
END FUNCTION vabs

Applicable types and ranks:
T ≡ any real or complex type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Returns the length of a vectorv inL2 norm, that is, the square root of the sum
of the squares of the components. (For complex types, thedot product

should be between the vector and its complex conjugate.)

Reference implementation:
vabs=sqrt(dot_product(v,v))
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Fortran 90 Code Chapters B1–B20

Fortran 90 versions of all the Numerical Recipes routines appear in the following
Chapters B1 through B20, numbered in correspondence with Chapters 1 through 20
in Volume 1. Within each chapter, the routines appear in the same order as in Volume
1, but not broken out separately by section number within Volume 1’s chapters.

There are commentaries accompanying many of the routines, generally follow-
ing the printed listing of the routine to which they apply. These are of two kinds:
issues related to parallelizing the algorithm in question, and issues related to the
Fortran 90 implementation. To distinguish between these two, rather different, kinds
of discussions, we use the two icons,

f90
the left icon (above) indicating a “parallel note,” and the right icon denoting a
“Fortran 90 tip.” Specific code segments of the routine that are discussed in these
commentaries are singled out by reproducing some of the code as an “index line”
next to the icon, or at the beginning of subsequent paragraphs if there are several
items that are commented on.

d=merge(FPMIN,d,abs(d)<FPMIN) This would be the start of a discussion of
code that begins at the line in the listing containing the indicated code fragment.

� � �

A row of stars, like the above, is used between unrelated routines, or at the
beginning and end of related groups of routines.

Some chapters contain discussions that are more general than commentary on
individual routines, but that were deemed too specific for inclusion in Chapters 21
through 23. Here are some highlights of this additional material:

• Approximations to roots of orthogonal polynomials for parallel computa-
tion of Gaussian quadrature formulas (Chapter B4)

• Difficulty of, and tricks for, parallel calculation of special function values
in a SIMD model of computation (Chapter B6)

• Parallel random number generation (Chapter B7)
• Fortran 90 tricks for dealing with ties in sorted arrays, counting things in

boxes, etc. (Chapter B14)
• Use of recursion in implementing multigrid elliptic PDE solvers (Chapter

B19)

1009
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Chapter B1. Preliminaries

SUBROUTINE flmoon(n,nph,jd,frac)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n,nph
INTEGER(I4B), INTENT(OUT) :: jd
REAL(SP), INTENT(OUT) :: frac

Our programs begin with an introductory comment summarizing their purpose and explain-
ing their calling sequence. This routine calculates the phases of the moon. Given an integer
n and a code nph for the phase desired (nph = 0 for new moon, 1 for first quarter, 2 for
full, 3 for last quarter), the routine returns the Julian Day Number jd, and the fractional
part of a day frac to be added to it, of the nth such phase since January, 1900. Greenwich
Mean Time is assumed.

REAL(SP), PARAMETER :: RAD=PI/180.0_sp
INTEGER(I4B) :: i
REAL(SP) :: am,as,c,t,t2,xtra
c=n+nph/4.0_sp This is how we comment an individual line.
t=c/1236.85_sp
t2=t**2
as=359.2242_sp+29.105356_sp*c You aren’t really intended to understand this al-

gorithm, but it does work!am=306.0253_sp+385.816918_sp*c+0.010730_sp*t2
jd=2415020+28*n+7*nph
xtra=0.75933_sp+1.53058868_sp*c+(1.178e-4_sp-1.55e-7_sp*t)*t2
select case(nph)

case(0,2)
xtra=xtra+(0.1734_sp-3.93e-4_sp*t)*sin(RAD*as)-0.4068_sp*sin(RAD*am)

case(1,3)
xtra=xtra+(0.1721_sp-4.0e-4_sp*t)*sin(RAD*as)-0.6280_sp*sin(RAD*am)

case default
call nrerror(’flmoon: nph is unknown’) This is how we will indicate error

conditions.end select
i=int(merge(xtra,xtra-1.0_sp, xtra >= 0.0))
jd=jd+i
frac=xtra-i
END SUBROUTINE flmoon

f90
select case(nph)...case(0,2)...end select Fortran 90 includes a
case construction that executes at most one of several blocks of code,
depending on the value of an integer, logical, or character expression.

Ideally, thecase construction will execute more efficiently than a long sequence of
cascadedif...else if...else if... constructions.C programmers should note that
the Fortran 90 construction, perhaps mercifully, does not haveC’s “drop-through”
feature.

merge(xtra,xtra-1.0_sp, xtra >= 0.0) The merge construction in Fortran
90, while intended primarily for use with vector arguments, is also a convenient way
of generating conditional scalar expressions, that is, expressions with one value, or
another, depending on the result of a logical test.

1010
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When the arguments of amerge are vectors, parallelization by the
compiler is straightforward as an array parallel operation (see p. 964).
Less obvious is how the scalar case, as above, is handled. For small-scale

parallel (SSP) machines, the natural gain is via speculative evaluation of both of the
first two arguments simultaneously with evaluation of the test.

A good compiler should not penalize a scalar machine for use of either the
scalar or vectormerge construction. The Fortran 90 standard states that “it is not
necessary for a processor to evaluate all of the operands of an expression, or to
evaluate entirely each operand, if the value of the expression can be determined
otherwise.” Therefore, for each test on a scalar machine, only one or the other of
the first two argument components need be evaluated.

� � �

FUNCTION julday(mm,id,iyyy)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: mm,id,iyyy
INTEGER(I4B) :: julday

In this routine julday returns the Julian Day Number that begins at noon of the calendar
date specified by month mm, day id, and year iyyy, all integer variables. Positive year
signifies A.D.; negative, B.C. Remember that the year after 1 B.C. was 1 A.D.

INTEGER(I4B), PARAMETER :: IGREG=15+31*(10+12*1582) Gregorian Calendar adopted
Oct. 15, 1582.INTEGER(I4B) :: ja,jm,jy

jy=iyyy
if (jy == 0) call nrerror(’julday: there is no year zero’)
if (jy < 0) jy=jy+1
if (mm > 2) then Here is an example of a block IF-structure.

jm=mm+1
else

jy=jy-1
jm=mm+13

end if
julday=int(365.25_sp*jy)+int(30.6001_sp*jm)+id+1720995
if (id+31*(mm+12*iyyy) >= IGREG) then Test whether to change to Gregorian Cal-

endar.ja=int(0.01_sp*jy)
julday=julday+2-ja+int(0.25_sp*ja)

end if
END FUNCTION julday

� � �

PROGRAM badluk
USE nrtype
USE nr, ONLY : flmoon,julday
IMPLICIT NONE
INTEGER(I4B) :: ic,icon,idwk,ifrac,im,iyyy,jd,jday,n
INTEGER(I4B) :: iybeg=1900,iyend=2000 The range of dates to be searched.
REAL(SP) :: frac
REAL(SP), PARAMETER :: TIMZON=-5.0_sp/24.0_sp
Time zone −5 is Eastern Standard Time.

write (*,’(1x,a,i5,a,i5)’) ’Full moons on Friday the 13th from’,&
iybeg,’ to’,iyend

do iyyy=iybeg,iyend Loop over each year,
do im=1,12 and each month.

jday=julday(im,13,iyyy) Is the 13th a Friday?
idwk=mod(jday+1,7)
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if (idwk == 5) then
n=12.37_sp*(iyyy-1900+(im-0.5_sp)/12.0_sp)
This value n is a first approximation to how many full moons have occurred
since 1900. We will feed it into the phase routine and adjust it up or down until
we determine that our desired 13th was or was not a full moon. The variable
icon signals the direction of adjustment.

icon=0
do

call flmoon(n,2,jd,frac) Get date of full moon n.
ifrac=nint(24.0_sp*(frac+TIMZON)) Convert to hours in correct time

zone.if (ifrac < 0) then
jd=jd-1 Convert from Julian Days beginning at noon

to civil days beginning at midnight.ifrac=ifrac+24
end if
if (ifrac > 12) then

jd=jd+1
ifrac=ifrac-12

else
ifrac=ifrac+12

end if
if (jd == jday) then Did we hit our target day?

write (*,’(/1x,i2,a,i2,a,i4)’) im,’/’,13,’/’,iyyy
write (*,’(1x,a,i2,a)’) ’Full moon ’,ifrac,&

’ hrs after midnight (EST).’
Don’t worry if you are unfamiliar with FORTRAN’s esoteric input/output
statements; very few programs in this book do any input/output.

exit Part of the break-structure, case of a match.
else Didn’t hit it.

ic=isign(1,jday-jd)
if (ic == -icon) exit Another break, case of no match.
icon=ic
n=n+ic

end if
end do

end if
end do

end do
END PROGRAM badluk

f90
...IGREG=15+31*(10+12*1582) (in julday), ...TIMZON=-5.0_sp/24.0_sp

(in badluk) These are two examples of initialization expressions for
“named constants” (that is,PARAMETERs). Because the initialization

expressions will generally be evaluated at compile time, Fortran 90 puts some
restrictions on what kinds of intrinsic functions they can contain. Although the
evaluation of a real expression like-5.0_sp/24.0_sp ought to give identical results
at compile time and at execution time, all the way down to the least significant
bit, in our opinion the conservative programmer shouldn’t count on strict identity at
the level of floating-point roundoff error. (In the special case ofcross-compilers,
such roundoff-level discrepancies between compile time and run time are almost
inevitable.)

� � �
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SUBROUTINE caldat(julian,mm,id,iyyy)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: julian
INTEGER(I4B), INTENT(OUT) :: mm,id,iyyy

Inverse of the function julday given above. Here julian is input as a Julian Day Number,
and the routine outputs mm,id, and iyyy as the month, day, and year on which the specified
Julian Day started at noon.

INTEGER(I4B) :: ja,jalpha,jb,jc,jd,je
INTEGER(I4B), PARAMETER :: IGREG=2299161
if (julian >= IGREG) then Cross-over to Gregorian Calendar produces this

correction.jalpha=int(((julian-1867216)-0.25_sp)/36524.25_sp)
ja=julian+1+jalpha-int(0.25_sp*jalpha)

else if (julian < 0) then Make day number positive by adding integer num-
ber of Julian centuries, then subtract them
off at the end.

ja=julian+36525*(1-julian/36525)
else

ja=julian
end if
jb=ja+1524
jc=int(6680.0_sp+((jb-2439870)-122.1_sp)/365.25_sp)
jd=365*jc+int(0.25_sp*jc)
je=int((jb-jd)/30.6001_sp)
id=jb-jd-int(30.6001_sp*je)
mm=je-1
if (mm > 12) mm=mm-12
iyyy=jc-4715
if (mm > 2) iyyy=iyyy-1
if (iyyy <= 0) iyyy=iyyy-1
if (julian < 0) iyyy=iyyy-100*(1-julian/36525)
END SUBROUTINE caldat
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Chapter B2. Solution of
Linear Algebraic
Equations

SUBROUTINE gaussj(a,b)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror,outerand,outerprod,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a,b

Linear equation solution by Gauss-Jordan elimination, equation (2.1.1). a is an N×N input
coefficient matrix. b is an N ×M input matrix containing M right-hand-side vectors. On
output, a is replaced by its matrix inverse, and b is replaced by the corresponding set of
solution vectors.

INTEGER(I4B), DIMENSION(size(a,1)) :: ipiv,indxr,indxc
These arrays are used for bookkeeping on the pivoting.

LOGICAL(LGT), DIMENSION(size(a,1)) :: lpiv
REAL(SP) :: pivinv
REAL(SP), DIMENSION(size(a,1)) :: dumc
INTEGER(I4B), TARGET :: irc(2)
INTEGER(I4B) :: i,l,n
INTEGER(I4B), POINTER :: irow,icol
n=assert_eq(size(a,1),size(a,2),size(b,1),’gaussj’)
irow => irc(1)
icol => irc(2)
ipiv=0
do i=1,n Main loop over columns to be reduced.

lpiv = (ipiv == 0) Begin search for a pivot element.
irc=maxloc(abs(a),outerand(lpiv,lpiv))
ipiv(icol)=ipiv(icol)+1
if (ipiv(icol) > 1) call nrerror(’gaussj: singular matrix (1)’)

We now have the pivot element, so we interchange rows, if needed, to put the pivot
element on the diagonal. The columns are not physically interchanged, only relabeled:
indxc(i), the column of the ith pivot element, is the ith column that is reduced, while
indxr(i) is the row in which that pivot element was originally located. If indxr(i) �=
indxc(i) there is an implied column interchange. With this form of bookkeeping, the
solution b’s will end up in the correct order, and the inverse matrix will be scrambled
by columns.

if (irow /= icol) then
call swap(a(irow,:),a(icol,:))
call swap(b(irow,:),b(icol,:))

end if
indxr(i)=irow We are now ready to divide the pivot row by the pivot

element, located at irow and icol.indxc(i)=icol
if (a(icol,icol) == 0.0) &

call nrerror(’gaussj: singular matrix (2)’)
pivinv=1.0_sp/a(icol,icol)
a(icol,icol)=1.0
a(icol,:)=a(icol,:)*pivinv
b(icol,:)=b(icol,:)*pivinv
dumc=a(:,icol) Next, we reduce the rows, except for the pivot one, of

course.a(:,icol)=0.0

1014
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a(icol,icol)=pivinv
a(1:icol-1,:)=a(1:icol-1,:)-outerprod(dumc(1:icol-1),a(icol,:))
b(1:icol-1,:)=b(1:icol-1,:)-outerprod(dumc(1:icol-1),b(icol,:))
a(icol+1:,:)=a(icol+1:,:)-outerprod(dumc(icol+1:),a(icol,:))
b(icol+1:,:)=b(icol+1:,:)-outerprod(dumc(icol+1:),b(icol,:))

end do
It only remains to unscramble the solution in view of the column interchanges. We do this
by interchanging pairs of columns in the reverse order that the permutation was built up.

do l=n,1,-1
call swap(a(:,indxr(l)),a(:,indxc(l)))

end do
END SUBROUTINE gaussj

f90
irow => irc(1) ... icol => irc(2) The maxloc intrinsic returns the
location of the maximum value of an array as an integer array, in this
case of size 2. Pre-pointing pointer variables to components of the array

that will be thus set makes possible convenient references to the desired row and
column positions.

irc=maxloc(abs(a),outerand(lpiv,lpiv)) The combination ofmaxloc and
one of theouter... routines fromnrutil allows for a very concise formulation.
If this task is done with loops, it becomes the ungainly “flying vee,”

aa=0.0
do i=1,n

if (lpiv(i)) then
do j=1,n

if (lpiv(j)) then
if (abs(a(i,j)) > aa) then

aa=abs(a(i,j))
irow=i
icol=j

endif
endif

end do
end do

end do

call swap(a(irow,:),a(icol,:)) The swap routine (in nrutil) is concise
and convenient. Fortran 90’s ability to overload multiple routines onto a single name
is vital here: Much of the convenience would vanish if we had to remember variant
routine names for each variable type and rank of object that might be swapped.

Even better, here, than overloading would be if Fortran 90 allowed user-written
elemental procedures (procedures with unspecified or arbitrary rank and shape),
like the intrinsic elemental procedures built into the language. Fortran 95 will,
but Fortran 90 doesn’t.

One quick (if superficial) test for how much parallelism is achieved in
a Fortran 90 routine is to count its do-loops, and compare that number
to the number of do-loops in the Fortran 77 version of the same routine.

Here, ingaussj, 13 do-loops are reduced to 2.

a(1:icol-1,:)=... b(1:icol-1,:)=...

a(icol+1:,:)=... b(icol+1:,:)=...
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Here the same operation is applied to every row ofa, and to every row ofb, except
row numbericol. On a massively multiprocessor (MMP) machine it would be
better to use a logical mask and do all ofa in a single statement, all ofb in another
one. For a small-scale parallel (SSP) machine, the lines as written should saturate the
machine’s concurrency, and they avoid the additional overhead of testing the mask.

This would be a good place to point out, however, that linear algebra routines
written in Fortran 90 are likelynever to be competitive with the hand-coded library
routines that are generally supplied as part of MMP programming environments. If
you are using our routines instead of library routines written specifically for your
architecture, you are wasting cycles!

� � �

SUBROUTINE ludcmp(a,indx,d)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,nrerror,outerprod,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: indx
REAL(SP), INTENT(OUT) :: d

Given an N × N input matrix a, this routine replaces it by the LU decomposition of a
rowwise permutation of itself. On output, a is arranged as in equation (2.3.14); indx is an
output vector of length N that records the row permutation effected by the partial pivoting;
d is output as ±1 depending on whether the number of row interchanges was even or odd,
respectively. This routine is used in combination with lubksb to solve linear equations or
invert a matrix.

REAL(SP), DIMENSION(size(a,1)) :: vv vv stores the implicit scaling of each row.
REAL(SP), PARAMETER :: TINY=1.0e-20_sp A small number.
INTEGER(I4B) :: j,n,imax
n=assert_eq(size(a,1),size(a,2),size(indx),’ludcmp’)
d=1.0 No row interchanges yet.
vv=maxval(abs(a),dim=2) Loop over rows to get the implicit scaling

information.if (any(vv == 0.0)) call nrerror(’singular matrix in ludcmp’)
There is a row of zeros.

vv=1.0_sp/vv Save the scaling.
do j=1,n

imax=(j-1)+imaxloc(vv(j:n)*abs(a(j:n,j))) Find the pivot row.
if (j /= imax) then Do we need to interchange rows?

call swap(a(imax,:),a(j,:)) Yes, do so...
d=-d ...and change the parity of d.
vv(imax)=vv(j) Also interchange the scale factor.

end if
indx(j)=imax
if (a(j,j) == 0.0) a(j,j)=TINY

If the pivot element is zero the matrix is singular (at least to the precision of the al-
gorithm). For some applications on singular matrices, it is desirable to substitute TINY
for zero.

a(j+1:n,j)=a(j+1:n,j)/a(j,j) Divide by the pivot element.
a(j+1:n,j+1:n)=a(j+1:n,j+1:n)-outerprod(a(j+1:n,j),a(j,j+1:n))

Reduce remaining submatrix.
end do
END SUBROUTINE ludcmp

f90
vv=maxval(abs(a),dim=2) A single statement finds the maximum abso-
lute value in each row. Fortran 90 intrinsics likemaxval generally “do
their thing” in the dimension specified bydim and return a result with

a shape corresponding to theother dimensions. Thus, here,vv’s size is that of
the first dimension ofa.
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imax=(j-1)+imaxloc(vv(j:n)*abs(a(j:n,j)) Here we see why thenrutil
routine imaxloc is handy: We want the index, in the range1:n of a quantity
to be searched for only in the limited rangej:n. Using imaxloc, we just add
back the proper offset ofj-1. (Using only Fortran 90 intrinsics, we could write
imax=(j-1)+sum(maxloc(vv(j:n)*abs(a(j:n,j)))), but the use ofsum just to turn an
array of length1 into a scalar seems sufficiently confusing as to be avoided.)

a(j+1:n,j+1:n)=a(j+1:n,j+1:n)-outerprod(a(j+1:n,j),a(j,j+1:n))

The Fortran 77 version ofludcmp, using Crout’s algorithm for the
reduction, does not parallelize well: The elements are updated byO(N 2)

separate dot product operations in a particular order. Here we use a slightly different
reduction, termed “outer product Gaussian elimination” by Golub and Van Loan[1],
that requires justN steps of matrix-parallel reduction. (See their§3.2.3 and§3.2.9
for the algorithm, and their§3.4.1 to understand how the pivoting is performed.)

We usenrutil’s routineouterprod instead of the more cumbersome pure
Fortran 90 construction:

spread(a(j+1:n,j),dim=2,ncopies=n-j)*spread(a(j,j+1:n),dim=1,ncopies=n-j)

SUBROUTINE lubksb(a,indx,b)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b

Solves the set of N linear equations A ·X = B. Here the N × N matrix a is input, not
as the original matrix A, but rather as its LU decomposition, determined by the routine
ludcmp. indx is input as the permutation vector of length N returned by ludcmp. b is
input as the right-hand-side vector B, also of length N , and returns with the solution vector
X . a and indx are not modified by this routine and can be left in place for successive calls
with different right-hand sides b. This routine takes into account the possibility that b will
begin with many zero elements, so it is efficient for use in matrix inversion.

INTEGER(I4B) :: i,n,ii,ll
REAL(SP) :: summ
n=assert_eq(size(a,1),size(a,2),size(indx),’lubksb’)
ii=0 When ii is set to a positive value, it will become the in-

dex of the first nonvanishing element of b. We now do
the forward substitution, equation (2.3.6). The only new
wrinkle is to unscramble the permutation as we go.

do i=1,n
ll=indx(i)
summ=b(ll)
b(ll)=b(i)
if (ii /= 0) then

summ=summ-dot_product(a(i,ii:i-1),b(ii:i-1))
else if (summ /= 0.0) then

ii=i A nonzero element was encountered, so from now on we will
have to do the dot product above.end if

b(i)=summ
end do
do i=n,1,-1 Now we do the backsubstitution, equation (2.3.7).

b(i) = (b(i)-dot_product(a(i,i+1:n),b(i+1:n)))/a(i,i)
end do
END SUBROUTINE lubksb

Conceptually, the search for the first nonvanishingelement of b (indexii)
should be moved out of the first do-loop. However, in practice, the need
to unscramble the permutation, and also considerations of performance
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on scalar machines, cause us to write this very scalar-looking code. The performance
penalty on parallel machines should be minimal.

� � �

Serial and parallel algorithms for tridiagonal problems are quite different.
We therefore provide separate routinestridag ser and tridag par. In the
MODULE nr interface file, one or the other of these (your choice) is given the generic
nametridag. Of course,either version will work correctly on any computer;
it is only a question of efficiency. See§22.2 for the numbering of the equation
coefficients, and for a description of the parallel algorithm.

SUBROUTINE tridag_ser(a,b,c,r,u)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,c,r
REAL(SP), DIMENSION(:), INTENT(OUT) :: u

Solves for a vector u of size N the tridiagonal linear set given by equation (2.4.1) using a
serial algorithm. Input vectors b (diagonal elements) and r (right-hand sides) have size N ,
while a and c (off-diagonal elements) are size N − 1.

REAL(SP), DIMENSION(size(b)) :: gam One vector of workspace, gam is needed.
INTEGER(I4B) :: n,j
REAL(SP) :: bet
n=assert_eq((/size(a)+1,size(b),size(c)+1,size(r),size(u)/),’tridag_ser’)
bet=b(1)
if (bet == 0.0) call nrerror(’tridag_ser: Error at code stage 1’)

If this happens then you should rewrite your equations as a set of order N − 1, with u2

trivially eliminated.
u(1)=r(1)/bet
do j=2,n Decomposition and forward substitution.

gam(j)=c(j-1)/bet
bet=b(j)-a(j-1)*gam(j)
if (bet == 0.0) & Algorithm fails; see below routine in Vol. 1.

call nrerror(’tridag_ser: Error at code stage 2’)
u(j)=(r(j)-a(j-1)*u(j-1))/bet

end do
do j=n-1,1,-1 Backsubstitution.

u(j)=u(j)-gam(j+1)*u(j+1)
end do
END SUBROUTINE tridag_ser

RECURSIVE SUBROUTINE tridag_par(a,b,c,r,u)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : tridag_ser
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,c,r
REAL(SP), DIMENSION(:), INTENT(OUT) :: u

Solves for a vector u of size N the tridiagonal linear set given by equation (2.4.1) using a
parallel algorithm. Input vectors b (diagonal elements) and r (right-hand sides) have size
N , while a and c (off-diagonal elements) are size N − 1.

INTEGER(I4B), PARAMETER :: NPAR_TRIDAG=4 Determines when serial algorithm is in-
voked.INTEGER(I4B) :: n,n2,nm,nx

REAL(SP), DIMENSION(size(b)/2) :: y,q,piva
REAL(SP), DIMENSION(size(b)/2-1) :: x,z
REAL(SP), DIMENSION(size(a)/2) :: pivc
n=assert_eq((/size(a)+1,size(b),size(c)+1,size(r),size(u)/),’tridag_par’)
if (n < NPAR_TRIDAG) then

call tridag_ser(a,b,c,r,u)
else

if (maxval(abs(b(1:n))) == 0.0) & Algorithm fails; see below routine in Vol. 1.
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call nrerror(’tridag_par: possible singular matrix’)
n2=size(y)
nm=size(pivc)
nx=size(x)
piva = a(1:n-1:2)/b(1:n-1:2) Zero the odd a’s and even c’s, giving x,

y, z, q.pivc = c(2:n-1:2)/b(3:n:2)
y(1:nm) = b(2:n-1:2)-piva(1:nm)*c(1:n-2:2)-pivc*a(2:n-1:2)
q(1:nm) = r(2:n-1:2)-piva(1:nm)*r(1:n-2:2)-pivc*r(3:n:2)
if (nm < n2) then

y(n2) = b(n)-piva(n2)*c(n-1)
q(n2) = r(n)-piva(n2)*r(n-1)

end if
x = -piva(2:n2)*a(2:n-2:2)
z = -pivc(1:nx)*c(3:n-1:2)
call tridag_par(x,y,z,q,u(2:n:2)) Recurse and get even u’s.
u(1) = (r(1)-c(1)*u(2))/b(1) Substitute and get odd u’s.
u(3:n-1:2) = (r(3:n-1:2)-a(2:n-2:2)*u(2:n-2:2) &

-c(3:n-1:2)*u(4:n:2))/b(3:n-1:2)
if (nm == n2) u(n)=(r(n)-a(n-1)*u(n-1))/b(n)

end if
END SUBROUTINE tridag_par

f90
The serial versiontridag ser is called when the routine has recursed
its way down to sufficiently small subproblems. The point at which
this occurs is determined by the parameterNPAR TRIDAGwhose optimal

value is likely machine-dependent. Notice thattridag ser must here be called
by its specific name, not by the generictridag (which might itself be overloaded
with either tridag ser or tridag par).

� � �

SUBROUTINE banmul(a,m1,m2,x,b)
USE nrtype; USE nrutil, ONLY : assert_eq,arth
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
INTEGER(I4B), INTENT(IN) :: m1,m2
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: b

Matrix multiply b = A · x, where A is band diagonal with m1 rows below the diagonal and
m2 rows above. If the input vector x and output vector b are of length N , then the array
a(1:N,1:m1+m2+1) stores A as follows: The diagonal elements are in a(1:N,m1+1).
Subdiagonal elements are in a(j:N,1:m1) (with j > 1 appropriate to the number of
elements on each subdiagonal). Superdiagonal elements are in a(1:j,m1+2:m1+m2+1)
with j < N appropriate to the number of elements on each superdiagonal.

INTEGER(I4B) :: m,n
n=assert_eq(size(a,1),size(b),size(x),’banmul: n’)
m=assert_eq(size(a,2),m1+m2+1,’banmul: m’)
b=sum(a*eoshift(spread(x,dim=2,ncopies=m), &

dim=1,shift=arth(-m1,1,m)),dim=2)
END SUBROUTINE banmul

f90
b=sum(a*eoshift(spread(x,dim=2,ncopies=m), &

dim=1,shift=arth(-m1,1,m)),dim=2)

This is a good example of Fortran 90 at both its best and its worst: best,
because it allows quite subtle combinations of fully parallel operations to be built
up; worst, because the resulting code is virtually incomprehensible!
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What is going on becomes clearer if we imagine a temporary arrayy with a
declaration likeREAL(SP), DIMENSION(size(a,1),size(a,2)) :: y. Then, the above
single line decomposes into
y=spread(x,dim=2,ncopies=m) [Duplicatex into columns ofy.]
y=eoshift(y,dim=1,shift=arth(-m1,1,m)) [Shift columns by a linear progression.]
b=sum(a*y,dim=2) [Multiply by the band-diagonal elements,

and sum.]
We use here a relatively rare subcase of theeoshift intrinsic, using a vector value for
theshift argument to accomplish the simultaneous shifting of a bunch of columns,
by different amounts (here specified by the linear progression returned byarth).

If you still don’t see how this accomplishes the multiplicationof a band diagonal
matrix by a vector, work through a simple example by hand.

SUBROUTINE bandec(a,m1,m2,al,indx,d)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,swap,arth
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: m1,m2
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: al
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: indx
REAL(SP), INTENT(OUT) :: d
REAL(SP), PARAMETER :: TINY=1.0e-20_sp

Given an N × N band diagonal matrix A with m1 subdiagonal rows and m2 superdiagonal
rows, compactly stored in the array a(1:N,1:m1+m2+1) as described in the comment for
routine banmul, this routine constructs an LU decomposition of a rowwise permutation of
A. The upper triangular matrix replaces a, while the lower triangular matrix is returned in
al(1:N,1:m1). indx is an output vector of length N that records the row permutation
effected by the partial pivoting; d is output as ±1 depending on whether the number of
row interchanges was even or odd, respectively. This routine is used in combination with
banbks to solve band-diagonal sets of equations.

INTEGER(I4B) :: i,k,l,mdum,mm,n
REAL(SP) :: dum
n=assert_eq(size(a,1),size(al,1),size(indx),’bandec: n’)
mm=assert_eq(size(a,2),m1+m2+1,’bandec: mm’)
mdum=assert_eq(size(al,2),m1,’bandec: mdum’)
a(1:m1,:)=eoshift(a(1:m1,:),dim=2,shift=arth(m1,-1,m1)) Rearrange the storage a

bit.d=1.0
do k=1,n For each row...

l=min(m1+k,n)
i=imaxloc(abs(a(k:l,1)))+k-1 Find the pivot element.
dum=a(i,1)
if (dum == 0.0) a(k,1)=TINY

Matrix is algorithmically singular, but proceed anyway with TINY pivot (desirable in some
applications).

indx(k)=i
if (i /= k) then Interchange rows.

d=-d
call swap(a(k,1:mm),a(i,1:mm))

end if
do i=k+1,l Do the elimination.

dum=a(i,1)/a(k,1)
al(k,i-k)=dum
a(i,1:mm-1)=a(i,2:mm)-dum*a(k,2:mm)
a(i,mm)=0.0

end do
end do
END SUBROUTINE bandec
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f90
a(1:m1,:)=eoshift(a(1:m1,:),... See similar discussion ofeoshift
for banmul, just above.

i=imaxloc(abs(a(k:l,1)))+k-1 See discussion ofimaxloc on p. 1017.

Notice that the above isnot well parallelized for MMP machines:
the outer do-loop is doneN times, whereN , the diagonal length, is
potentially the largest dimension in the problem. Small-scale parallel

(SSP) machines, and scalar machines, are not disadvantaged, because the parallelism
of ordermm=m1+m2+1 in the inner loops can be enough to saturate their concurrency.

We don’t know of anN -parallel algorithm for decomposing band diagonal
matrices, at least one that has any reasonably concise expression in Fortran 90.
Conceptually, one can view a band diagonal matrix as ablock tridiagonal matrix,
and then apply the same recursive strategy as was used intridag par. However, the
implementation details of this are daunting. (We would welcome a user-contributed
routine, clear, concise, and with parallelism of orderN .)

SUBROUTINE banbks(a,m1,m2,al,indx,b)
USE nrtype; USE nrutil, ONLY : assert_eq,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a,al
INTEGER(I4B), INTENT(IN) :: m1,m2
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b

Given the arrays a, al, and indx as returned from bandec, and given a right-hand-side
vector b, solves the band diagonal linear equations A·x = b. The solution vector x overwrites
b. The other input arrays are not modified, and can be left in place for successive calls with
different right-hand sides.

INTEGER(I4B) :: i,k,l,mdum,mm,n
n=assert_eq(size(a,1),size(al,1),size(b),size(indx),’banbks: n’)
mm=assert_eq(size(a,2),m1+m2+1,’banbks: mm’)
mdum=assert_eq(size(al,2),m1,’banbks: mdum’)
do k=1,n Forward substitution, unscrambling the permuted rows as we

go.l=min(n,m1+k)
i=indx(k)
if (i /= k) call swap(b(i),b(k))
b(k+1:l)=b(k+1:l)-al(k,1:l-k)*b(k)

end do
do i=n,1,-1 Backsubstitution.

l=min(mm,n-i+1)
b(i)=(b(i)-dot_product(a(i,2:l),b(1+i:i+l-1)))/a(i,1)

end do
END SUBROUTINE banbks

As for bandec, the routinebanbks is not parallelized on the large
dimensionN , though it does give the compiler the opportunity for ample
small-scale parallelization inside the loops.

� � �
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SUBROUTINE mprove(a,alud,indx,b,x)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : lubksb
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a,alud
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
REAL(SP), DIMENSION(:), INTENT(IN) :: b
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x

Improves a solution vector x of the linear set of equations A ·X = B. The N ×N matrix a
and the N -dimensional vectors b and x are input. Also input is alud, the LU decomposition
of a as returned by ludcmp, and the N -dimensional vector indx also returned by that
routine. On output, only x is modified, to an improved set of values.

INTEGER(I4B) :: ndum
REAL(SP), DIMENSION(size(a,1)) :: r
ndum=assert_eq((/size(a,1),size(a,2),size(alud,1),size(alud,2),size(b),&

size(x),size(indx)/),’mprove’)
r=matmul(real(a,dp),real(x,dp))-real(b,dp)

Calculate the right-hand side, accumulating the residual in double precision.
call lubksb(alud,indx,r) Solve for the error term,
x=x-r and subtract it from the old solution.
END SUBROUTINE mprove

f90
assert_eq((/.../),’mprove’) This overloaded version of thenrutil
routineassert eq makes use of a trick for passing a variable number
of scalar arguments to a routine: Put them into an array constructor,

(/.../), and pass the array. The receiving routine can use thesize intrinsic to
count them. The technique has some obvious limitations: All the arguments in the
array must be of the same type; and the arguments are passed, in effect, byvalue,
not by address, so they must be, in effect,INTENT(IN).

r=matmul(real(a,dp),real(x,dp))-real(b,dp) Since Fortran 90’s elemental
intrinsics operate with the type of their arguments, we can use thereal(...,dp)’s
to force thematmul matrix multiplication to be done in double precision, which is
what we want. In Fortran 77, we would have to do the matrix multiplication with
temporary double precision variables, both inconvenient and (since Fortran 77 has
no dynamic memory allocation) a waste of memory.

� � �

SUBROUTINE svbksb_sp(u,w,v,b,x)
USE nrtype; USE nrutil, ONLY : assert_eq
REAL(SP), DIMENSION(:,:), INTENT(IN) :: u,v
REAL(SP), DIMENSION(:), INTENT(IN) :: w,b
REAL(SP), DIMENSION(:), INTENT(OUT) :: x

Solves A · X = B for a vector X , where A is specified by the arrays u, v, w as returned
by svdcmp. Here u is M × N , v is N ×N , and w is of length N . b is the M -dimensional
input right-hand side. x is the N -dimensional output solution vector. No input quantities
are destroyed, so the routine may be called sequentially with different b’s.

INTEGER(I4B) :: mdum,ndum
REAL(SP), DIMENSION(size(x)) :: tmp
mdum=assert_eq(size(u,1),size(b),’svbksb_sp: mdum’)
ndum=assert_eq((/size(u,2),size(v,1),size(v,2),size(w),size(x)/),&

’svbksb_sp: ndum’)
where (w /= 0.0)

tmp=matmul(b,u)/w Calculate diag(1/wj)U
TB,

elsewhere
tmp=0.0 but replace 1/wj by zero if wj = 0.

end where
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x=matmul(v,tmp) Matrix multiply by V to get answer.
END SUBROUTINE svbksb_sp

f90
where (w /= 0.0)...tmp=...elsewhere...tmp= Normally, when awhere
...elsewhere construction is used to set a variable (heretmp) to one
or another value, we like to replace it with amerge expression. Here,

however, thewhere is required to guarantee that a division by zero doesn’t occur.
The rule is thatwherewill never evaluate expressions that are excluded by the mask
in the where line, but other constructions, likemerge, might perform speculative
evaluation of more than one possible outcome before selecting the applicable one.

Because singular value decomposition is something that one often wants to do
in double precision, we include a double-precision version. Innr, the single- and
double-precision versions are overloaded onto the namesvbksb.

SUBROUTINE svbksb_dp(u,w,v,b,x)
USE nrtype; USE nrutil, ONLY : assert_eq
REAL(DP), DIMENSION(:,:), INTENT(IN) :: u,v
REAL(DP), DIMENSION(:), INTENT(IN) :: w,b
REAL(DP), DIMENSION(:), INTENT(OUT) :: x
INTEGER(I4B) :: mdum,ndum
REAL(DP), DIMENSION(size(x)) :: tmp
mdum=assert_eq(size(u,1),size(b),’svbksb_dp: mdum’)
ndum=assert_eq((/size(u,2),size(v,1),size(v,2),size(w),size(x)/),&

’svbksb_dp: ndum’)
where (w /= 0.0)

tmp=matmul(b,u)/w
elsewhere

tmp=0.0
end where
x=matmul(v,tmp)
END SUBROUTINE svbksb_dp

SUBROUTINE svdcmp_sp(a,w,v)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror,outerprod
USE nr, ONLY : pythag
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: w
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: v

Given an M × N matrix a, this routine computes its singular value decomposition, A =
U · W · V T . The matrix U replaces a on output. The diagonal matrix of singular values
W is output as the N -dimensional vector w. The N ×N matrix V (not the transpose V T )
is output as v.

INTEGER(I4B) :: i,its,j,k,l,m,n,nm
REAL(SP) :: anorm,c,f,g,h,s,scale,x,y,z
REAL(SP), DIMENSION(size(a,1)) :: tempm
REAL(SP), DIMENSION(size(a,2)) :: rv1,tempn
m=size(a,1)
n=assert_eq(size(a,2),size(v,1),size(v,2),size(w),’svdcmp_sp’)
g=0.0
scale=0.0
do i=1,n Householder reduction to bidiagonal form.

l=i+1
rv1(i)=scale*g
g=0.0
scale=0.0
if (i <= m) then
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scale=sum(abs(a(i:m,i)))
if (scale /= 0.0) then

a(i:m,i)=a(i:m,i)/scale
s=dot_product(a(i:m,i),a(i:m,i))
f=a(i,i)
g=-sign(sqrt(s),f)
h=f*g-s
a(i,i)=f-g
tempn(l:n)=matmul(a(i:m,i),a(i:m,l:n))/h
a(i:m,l:n)=a(i:m,l:n)+outerprod(a(i:m,i),tempn(l:n))
a(i:m,i)=scale*a(i:m,i)

end if
end if
w(i)=scale*g
g=0.0
scale=0.0
if ((i <= m) .and. (i /= n)) then

scale=sum(abs(a(i,l:n)))
if (scale /= 0.0) then

a(i,l:n)=a(i,l:n)/scale
s=dot_product(a(i,l:n),a(i,l:n))
f=a(i,l)
g=-sign(sqrt(s),f)
h=f*g-s
a(i,l)=f-g
rv1(l:n)=a(i,l:n)/h
tempm(l:m)=matmul(a(l:m,l:n),a(i,l:n))
a(l:m,l:n)=a(l:m,l:n)+outerprod(tempm(l:m),rv1(l:n))
a(i,l:n)=scale*a(i,l:n)

end if
end if

end do
anorm=maxval(abs(w)+abs(rv1))
do i=n,1,-1 Accumulation of right-hand transformations.

if (i < n) then
if (g /= 0.0) then

v(l:n,i)=(a(i,l:n)/a(i,l))/g Double division to avoid possible under-
flow.tempn(l:n)=matmul(a(i,l:n),v(l:n,l:n))

v(l:n,l:n)=v(l:n,l:n)+outerprod(v(l:n,i),tempn(l:n))
end if
v(i,l:n)=0.0
v(l:n,i)=0.0

end if
v(i,i)=1.0
g=rv1(i)
l=i

end do
do i=min(m,n),1,-1 Accumulation of left-hand transformations.

l=i+1
g=w(i)
a(i,l:n)=0.0
if (g /= 0.0) then

g=1.0_sp/g
tempn(l:n)=(matmul(a(l:m,i),a(l:m,l:n))/a(i,i))*g
a(i:m,l:n)=a(i:m,l:n)+outerprod(a(i:m,i),tempn(l:n))
a(i:m,i)=a(i:m,i)*g

else
a(i:m,i)=0.0

end if
a(i,i)=a(i,i)+1.0_sp

end do
do k=n,1,-1 Diagonalization of the bidiagonal form: Loop over

singular values, and over allowed iterations.do its=1,30
do l=k,1,-1 Test for splitting.
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nm=l-1
if ((abs(rv1(l))+anorm) == anorm) exit

Note that rv1(1) is always zero, so can never fall through bottom of loop.
if ((abs(w(nm))+anorm) == anorm) then

c=0.0 Cancellation of rv1(l), if l > 1.
s=1.0
do i=l,k

f=s*rv1(i)
rv1(i)=c*rv1(i)
if ((abs(f)+anorm) == anorm) exit
g=w(i)
h=pythag(f,g)
w(i)=h
h=1.0_sp/h
c= (g*h)
s=-(f*h)
tempm(1:m)=a(1:m,nm)
a(1:m,nm)=a(1:m,nm)*c+a(1:m,i)*s
a(1:m,i)=-tempm(1:m)*s+a(1:m,i)*c

end do
exit

end if
end do
z=w(k)
if (l == k) then Convergence.

if (z < 0.0) then Singular value is made nonnegative.
w(k)=-z
v(1:n,k)=-v(1:n,k)

end if
exit

end if
if (its == 30) call nrerror(’svdcmp_sp: no convergence in svdcmp’)
x=w(l) Shift from bottom 2-by-2 minor.
nm=k-1
y=w(nm)
g=rv1(nm)
h=rv1(k)
f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0_sp*h*y)
g=pythag(f,1.0_sp)
f=((x-z)*(x+z)+h*((y/(f+sign(g,f)))-h))/x
c=1.0 Next QR transformation:
s=1.0
do j=l,nm

i=j+1
g=rv1(i)
y=w(i)
h=s*g
g=c*g
z=pythag(f,h)
rv1(j)=z
c=f/z
s=h/z
f= (x*c)+(g*s)
g=-(x*s)+(g*c)
h=y*s
y=y*c
tempn(1:n)=v(1:n,j)
v(1:n,j)=v(1:n,j)*c+v(1:n,i)*s
v(1:n,i)=-tempn(1:n)*s+v(1:n,i)*c
z=pythag(f,h)
w(j)=z Rotation can be arbitrary if z = 0.
if (z /= 0.0) then

z=1.0_sp/z
c=f*z
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s=h*z
end if
f= (c*g)+(s*y)
x=-(s*g)+(c*y)
tempm(1:m)=a(1:m,j)
a(1:m,j)=a(1:m,j)*c+a(1:m,i)*s
a(1:m,i)=-tempm(1:m)*s+a(1:m,i)*c

end do
rv1(l)=0.0
rv1(k)=f
w(k)=x

end do
end do
END SUBROUTINE svdcmp_sp

The SVD algorithm implemented above does not parallelize very well.
There are two parts to the algorithm. The first, reduction to bidiagonal
form, can be parallelized. The second, the iterative diagonalization of

the bidiagonal form, uses QR transformations that are intrinsically serial. There
have been proposals for parallel SVD algorithms[2], but we do not have sufficient
experience with them yet to recommend them over the well-established serial
algorithm.

tempn(l:n)=matmul...a(i:m,l:n)=...outerprod... Here is an example of an
update as in equation (22.1.6). In this casebi is independent ofi: It is simply1/h.
The lines beginningtempm(l:m)=matmul about 16 lines down are of a similar form,
but with the terms in the opposite order in thematmul.

f90
As with svbksb, single- and double-precision versions of the routines
are overloaded onto the namesvdcmp in nr.

SUBROUTINE svdcmp_dp(a,w,v)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror,outerprod
USE nr, ONLY : pythag
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(DP), DIMENSION(:), INTENT(OUT) :: w
REAL(DP), DIMENSION(:,:), INTENT(OUT) :: v
INTEGER(I4B) :: i,its,j,k,l,m,n,nm
REAL(DP) :: anorm,c,f,g,h,s,scale,x,y,z
REAL(DP), DIMENSION(size(a,1)) :: tempm
REAL(DP), DIMENSION(size(a,2)) :: rv1,tempn
m=size(a,1)
n=assert_eq(size(a,2),size(v,1),size(v,2),size(w),’svdcmp_dp’)
g=0.0
scale=0.0
do i=1,n

l=i+1
rv1(i)=scale*g
g=0.0
scale=0.0
if (i <= m) then

scale=sum(abs(a(i:m,i)))
if (scale /= 0.0) then

a(i:m,i)=a(i:m,i)/scale
s=dot_product(a(i:m,i),a(i:m,i))
f=a(i,i)
g=-sign(sqrt(s),f)
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h=f*g-s
a(i,i)=f-g
tempn(l:n)=matmul(a(i:m,i),a(i:m,l:n))/h
a(i:m,l:n)=a(i:m,l:n)+outerprod(a(i:m,i),tempn(l:n))
a(i:m,i)=scale*a(i:m,i)

end if
end if
w(i)=scale*g
g=0.0
scale=0.0
if ((i <= m) .and. (i /= n)) then

scale=sum(abs(a(i,l:n)))
if (scale /= 0.0) then

a(i,l:n)=a(i,l:n)/scale
s=dot_product(a(i,l:n),a(i,l:n))
f=a(i,l)
g=-sign(sqrt(s),f)
h=f*g-s
a(i,l)=f-g
rv1(l:n)=a(i,l:n)/h
tempm(l:m)=matmul(a(l:m,l:n),a(i,l:n))
a(l:m,l:n)=a(l:m,l:n)+outerprod(tempm(l:m),rv1(l:n))
a(i,l:n)=scale*a(i,l:n)

end if
end if

end do
anorm=maxval(abs(w)+abs(rv1))
do i=n,1,-1

if (i < n) then
if (g /= 0.0) then

v(l:n,i)=(a(i,l:n)/a(i,l))/g
tempn(l:n)=matmul(a(i,l:n),v(l:n,l:n))
v(l:n,l:n)=v(l:n,l:n)+outerprod(v(l:n,i),tempn(l:n))

end if
v(i,l:n)=0.0
v(l:n,i)=0.0

end if
v(i,i)=1.0
g=rv1(i)
l=i

end do
do i=min(m,n),1,-1

l=i+1
g=w(i)
a(i,l:n)=0.0
if (g /= 0.0) then

g=1.0_dp/g
tempn(l:n)=(matmul(a(l:m,i),a(l:m,l:n))/a(i,i))*g
a(i:m,l:n)=a(i:m,l:n)+outerprod(a(i:m,i),tempn(l:n))
a(i:m,i)=a(i:m,i)*g

else
a(i:m,i)=0.0

end if
a(i,i)=a(i,i)+1.0_dp

end do
do k=n,1,-1

do its=1,30
do l=k,1,-1

nm=l-1
if ((abs(rv1(l))+anorm) == anorm) exit
if ((abs(w(nm))+anorm) == anorm) then

c=0.0
s=1.0
do i=l,k
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f=s*rv1(i)
rv1(i)=c*rv1(i)
if ((abs(f)+anorm) == anorm) exit
g=w(i)
h=pythag(f,g)
w(i)=h
h=1.0_dp/h
c= (g*h)
s=-(f*h)
tempm(1:m)=a(1:m,nm)
a(1:m,nm)=a(1:m,nm)*c+a(1:m,i)*s
a(1:m,i)=-tempm(1:m)*s+a(1:m,i)*c

end do
exit

end if
end do
z=w(k)
if (l == k) then

if (z < 0.0) then
w(k)=-z
v(1:n,k)=-v(1:n,k)

end if
exit

end if
if (its == 30) call nrerror(’svdcmp_dp: no convergence in svdcmp’)
x=w(l)
nm=k-1
y=w(nm)
g=rv1(nm)
h=rv1(k)
f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0_dp*h*y)
g=pythag(f,1.0_dp)
f=((x-z)*(x+z)+h*((y/(f+sign(g,f)))-h))/x
c=1.0
s=1.0
do j=l,nm

i=j+1
g=rv1(i)
y=w(i)
h=s*g
g=c*g
z=pythag(f,h)
rv1(j)=z
c=f/z
s=h/z
f= (x*c)+(g*s)
g=-(x*s)+(g*c)
h=y*s
y=y*c
tempn(1:n)=v(1:n,j)
v(1:n,j)=v(1:n,j)*c+v(1:n,i)*s
v(1:n,i)=-tempn(1:n)*s+v(1:n,i)*c
z=pythag(f,h)
w(j)=z
if (z /= 0.0) then

z=1.0_dp/z
c=f*z
s=h*z

end if
f= (c*g)+(s*y)
x=-(s*g)+(c*y)
tempm(1:m)=a(1:m,j)
a(1:m,j)=a(1:m,j)*c+a(1:m,i)*s
a(1:m,i)=-tempm(1:m)*s+a(1:m,i)*c
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end do
rv1(l)=0.0
rv1(k)=f
w(k)=x

end do
end do
END SUBROUTINE svdcmp_dp

FUNCTION pythag_sp(a,b)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: pythag_sp

Computes (a2 + b2)1/2 without destructive underflow or overflow.
REAL(SP) :: absa,absb
absa=abs(a)
absb=abs(b)
if (absa > absb) then

pythag_sp=absa*sqrt(1.0_sp+(absb/absa)**2)
else

if (absb == 0.0) then
pythag_sp=0.0

else
pythag_sp=absb*sqrt(1.0_sp+(absa/absb)**2)

end if
end if
END FUNCTION pythag_sp

FUNCTION pythag_dp(a,b)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(IN) :: a,b
REAL(DP) :: pythag_dp
REAL(DP) :: absa,absb
absa=abs(a)
absb=abs(b)
if (absa > absb) then

pythag_dp=absa*sqrt(1.0_dp+(absb/absa)**2)
else

if (absb == 0.0) then
pythag_dp=0.0

else
pythag_dp=absb*sqrt(1.0_dp+(absa/absb)**2)

end if
end if
END FUNCTION pythag_dp

� � �
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SUBROUTINE cyclic(a,b,c,alpha,beta,r,x)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : tridag
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN):: a,b,c,r
REAL(SP), INTENT(IN) :: alpha,beta
REAL(SP), DIMENSION(:), INTENT(OUT):: x

Solves the “cyclic” set of linear equations given by equation (2.7.9). a, b, c, and r are
input vectors, while x is the output solution vector, all of the same size. alpha and beta
are the corner entries in the matrix. The input is not modified.

INTEGER(I4B) :: n
REAL(SP) :: fact,gamma
REAL(SP), DIMENSION(size(x)) :: bb,u,z
n=assert_eq((/size(a),size(b),size(c),size(r),size(x)/),’cyclic’)
call assert(n > 2, ’cyclic arg’)
gamma=-b(1) Avoid subtraction error in forming bb(1).
bb(1)=b(1)-gamma Set up the diagonal of the modified tridiag-

onal system.bb(n)=b(n)-alpha*beta/gamma
bb(2:n-1)=b(2:n-1)
call tridag(a(2:n),bb,c(1:n-1),r,x) Solve A · x = r.
u(1)=gamma Set up the vector u.
u(n)=alpha
u(2:n-1)=0.0
call tridag(a(2:n),bb,c(1:n-1),u,z) Solve A · z = u.
fact=(x(1)+beta*x(n)/gamma)/(1.0_sp+z(1)+beta*z(n)/gamma) Form v·x/(1+v·z).
x=x-fact*z Now get the solution vector x.
END SUBROUTINE cyclic

The parallelism incyclic is in tridag. Users with multiprocessor
machines will want to be sure that, innrutil, they have set the name
tridag to be overloaded withtridag par instead oftridag ser.

� � �

The routinessprsin, sprsax, sprstx, sprstp, andsprsdiag give roughly
equivalent functionality to the corresponding Fortran 77 routines, but they arenot
plug compatible. Instead, they take advantage of (and illustrate) several Fortran 90
features that are not present in Fortran 77.

In the modulenrtypewe define aTYPE sprs2 sp for two-dimensional sparse,
square, matrices, in single precision, as follows

TYPE sprs2_sp
INTEGER(I4B) :: n,len
REAL(SP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_sp

This has much less structure to it than the “row-indexed sparse storage mode” used
in Volume 1. Here, a sparse matrix is just a list of values, and corresponding lists
giving the row and column number that each value is in. Two integersn andlen
give, respectively, the underlying size (number of rows or columns) in the full matrix,
and the number of stored nonzero values. While the previously used row-indexed
scheme can be somewhat more efficient for serial machines, it does not parallelize
conveniently, while this one does (though with some caveats; see below).
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SUBROUTINE sprsin_sp(a,thresh,sa)
USE nrtype; USE nrutil, ONLY : arth,assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), INTENT(IN) :: thresh
TYPE(sprs2_sp), INTENT(OUT) :: sa

Converts a square matrix a to sparse storage format as sa. Only elements of a with mag-
nitude ≥ thresh are retained.

INTEGER(I4B) :: n,len
LOGICAL(LGT), DIMENSION(size(a,1),size(a,2)) :: mask
n=assert_eq(size(a,1),size(a,2),’sprsin_sp’)
mask=abs(a)>thresh
len=count(mask) How many elements to store?
allocate(sa%val(len),sa%irow(len),sa%jcol(len))
sa%n=n
sa%len=len
sa%val=pack(a,mask) Grab the values, row, and column numbers.
sa%irow=pack(spread(arth(1,1,n),2,n),mask)
sa%jcol=pack(spread(arth(1,1,n),1,n),mask)
END SUBROUTINE sprsin_sp

SUBROUTINE sprsin_dp(a,thresh,sa)
USE nrtype; USE nrutil, ONLY : arth,assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(IN) :: a
REAL(DP), INTENT(IN) :: thresh
TYPE(sprs2_dp), INTENT(OUT) :: sa
INTEGER(I4B) :: n,len
LOGICAL(LGT), DIMENSION(size(a,1),size(a,2)) :: mask
n=assert_eq(size(a,1),size(a,2),’sprsin_dp’)
mask=abs(a)>thresh
len=count(mask)
allocate(sa%val(len),sa%irow(len),sa%jcol(len))
sa%n=n
sa%len=len
sa%val=pack(a,mask)
sa%irow=pack(spread(arth(1,1,n),2,n),mask)
sa%jcol=pack(spread(arth(1,1,n),1,n),mask)
END SUBROUTINE sprsin_dp

f90
Note that the routinessprsin sp andsprsin dp — single and double
precision versions of the same algorithm — are overloaded onto the
namesprsin in modulenr. We supply both forms because the routine

linbcg, below, works in double precision.

sa%irow=pack(spread(arth(1,1,n),2,n),mask) The trick here is to use the same
mask,abs(a)>thresh, in three consecutivepack expressions, thus guaranteeing
that the corresponding elements of the array argument get selected for packing.
The first time, we get the desired matrix element values. The second time (above
code fragment), we construct a matrix with each element having the value of its
row number. The third time, we construct a matrix with each element having the
value of its column number.
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SUBROUTINE sprsax_sp(sa,x,b)
USE nrtype; USE nrutil, ONLY : assert_eq,scatter_add
IMPLICIT NONE
TYPE(sprs2_sp), INTENT(IN) :: sa
REAL(SP), DIMENSION (:), INTENT(IN) :: x
REAL(SP), DIMENSION (:), INTENT(OUT) :: b

Multiply a matrix sa in sparse matrix format by a vector x, giving a vector b.
INTEGER(I4B) :: ndum
ndum=assert_eq(sa%n,size(x),size(b),’sprsax_sp’)
b=0.0_sp
call scatter_add(b,sa%val*x(sa%jcol),sa%irow)

Each sparse matrix entry adds a term to some component of b.
END SUBROUTINE sprsax_sp

SUBROUTINE sprsax_dp(sa,x,b)
USE nrtype; USE nrutil, ONLY : assert_eq,scatter_add
IMPLICIT NONE
TYPE(sprs2_dp), INTENT(IN) :: sa
REAL(DP), DIMENSION (:), INTENT(IN) :: x
REAL(DP), DIMENSION (:), INTENT(OUT) :: b
INTEGER(I4B) :: ndum
ndum=assert_eq(sa%n,size(x),size(b),’sprsax_dp’)
b=0.0_dp
call scatter_add(b,sa%val*x(sa%jcol),sa%irow)
END SUBROUTINE sprsax_dp

call scatter_add(b,sa%val*x(sa%jcol),sa%irow) Since more than one
component of the middle vector argument will, in general, need to be
added into the same component ofb, we must resort to a call to the

nrutil routine scatter add to achieve parallelism.However, this parallelism
is achieved only if a parallel version ofscatter add is available! As we have
discussed previously (p. 984), Fortran 90 does not provide any scatter-with-combine
(here, scatter-with-add) facility, insisting instead that indexed operations yield non-
colliding addresses. Luckily, almost all parallel machines do provide such a facility
as a library program. In HPF, for example, the equivalent ofscatter add is
SUM SCATTER.

The call toscatter add above is equivalent to the do-loop

b=0.0
do k=1,sa%len

b(sa%irow(k))=b(sa%irow(k))+sa%val(k)*x(sa%jcol(k))
end do

SUBROUTINE sprstx_sp(sa,x,b)
USE nrtype; USE nrutil, ONLY : assert_eq,scatter_add
IMPLICIT NONE
TYPE(sprs2_sp), INTENT(IN) :: sa
REAL(SP), DIMENSION (:), INTENT(IN) :: x
REAL(SP), DIMENSION (:), INTENT(OUT) :: b

Multiply the transpose of a matrix sa in sparse matrix format by a vector x, giving a vector b.
INTEGER(I4B) :: ndum
ndum=assert_eq(sa%n,size(x),size(b),’sprstx_sp’)
b=0.0_sp
call scatter_add(b,sa%val*x(sa%irow),sa%jcol)

Each sparse matrix entry adds a term to some component of b.
END SUBROUTINE sprstx_sp
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SUBROUTINE sprstx_dp(sa,x,b)
USE nrtype; USE nrutil, ONLY : assert_eq,scatter_add
IMPLICIT NONE
TYPE(sprs2_dp), INTENT(IN) :: sa
REAL(DP), DIMENSION (:), INTENT(IN) :: x
REAL(DP), DIMENSION (:), INTENT(OUT) :: b
INTEGER(I4B) :: ndum
ndum=assert_eq(sa%n,size(x),size(b),’sprstx_dp’)
b=0.0_dp
call scatter_add(b,sa%val*x(sa%irow),sa%jcol)
END SUBROUTINE sprstx_dp

Precisely the same comments as forsprsax apply tosprstx. The call
to scatter add is here equivalent to

b=0.0
do k=1,sa%len

b(sa%jcol(k))=b(sa%jcol(k))+sa%val(k)*x(sa%irow(k))
end do

SUBROUTINE sprstp(sa)
USE nrtype
IMPLICIT NONE
TYPE(sprs2_sp), INTENT(INOUT) :: sa

Replaces sa, in sparse matrix format, by its transpose.
INTEGER(I4B), DIMENSION(:), POINTER :: temp
temp=>sa%irow We need only swap the row and column pointers.
sa%irow=>sa%jcol
sa%jcol=>temp
END SUBROUTINE sprstp

SUBROUTINE sprsdiag_sp(sa,b)
USE nrtype; USE nrutil, ONLY : array_copy,assert_eq
IMPLICIT NONE
TYPE(sprs2_sp), INTENT(IN) :: sa
REAL(SP), DIMENSION(:), INTENT(OUT) :: b

Extracts the diagonal of a matrix sa in sparse matrix format into a vector b.
REAL(SP), DIMENSION(size(b)) :: val
INTEGER(I4B) :: k,l,ndum,nerr
INTEGER(I4B), DIMENSION(size(b)) :: i
LOGICAL(LGT), DIMENSION(:), ALLOCATABLE :: mask
ndum=assert_eq(sa%n,size(b),’sprsdiag_sp’)
l=sa%len
allocate(mask(l))
mask = (sa%irow(1:l) == sa%jcol(1:l)) Find diagonal elements.
call array_copy(pack(sa%val(1:l),mask),val,k,nerr) Grab the values...
i(1:k)=pack(sa%irow(1:l),mask) ...and their locations.
deallocate(mask)
b=0.0 Zero b because zero values not stored in sa.
b(i(1:k))=val(1:k) Scatter values into correct slots.
END SUBROUTINE sprsdiag_sp
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SUBROUTINE sprsdiag_dp(sa,b)
USE nrtype; USE nrutil, ONLY : array_copy,assert_eq
IMPLICIT NONE
TYPE(sprs2_dp), INTENT(IN) :: sa
REAL(DP), DIMENSION(:), INTENT(OUT) :: b
REAL(DP), DIMENSION(size(b)) :: val
INTEGER(I4B) :: k,l,ndum,nerr
INTEGER(I4B), DIMENSION(size(b)) :: i
LOGICAL(LGT), DIMENSION(:), ALLOCATABLE :: mask
ndum=assert_eq(sa%n,size(b),’sprsdiag_dp’)
l=sa%len
allocate(mask(l))
mask = (sa%irow(1:l) == sa%jcol(1:l))
call array_copy(pack(sa%val(1:l),mask),val,k,nerr)
i(1:k)=pack(sa%irow(1:l),mask)
deallocate(mask)
b=0.0
b(i(1:k))=val(1:k)
END SUBROUTINE sprsdiag_dp

f90
call array_copy(pack(sa%val(1:l),mask),val,k,nerr) We use the
nrutil routinearray copy because we don’t know in advance how
many nonzero diagonal elements will be selected bymask. Of course

we could count them with acount(mask), but this is an extra step, and inefficient
on scalar machines.

i(1:k)=pack(sa%irow(1:l),mask) Using the same mask, we pick out the cor-
responding locations of the diagonal elements. No need to usearray copy now,
since we know the value ofk.

b(i(1:k))=val(1:k) Finally, we can put each element in the right place.
Notice that if the sparse matrix is ill-formed, with more than one value stored for the
same diagonal element (which should not happen!) then the vector subscripti(1:k)

is a “many-one section” and its use on the left-hand side is illegal.

� � �

SUBROUTINE linbcg(b,x,itol,tol,itmax,iter,err)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : atimes,asolve,snrm
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(IN) :: b Double precision is a good idea in this

routine.REAL(DP), DIMENSION(:), INTENT(INOUT) :: x
INTEGER(I4B), INTENT(IN) :: itol,itmax
REAL(DP), INTENT(IN) :: tol
INTEGER(I4B), INTENT(OUT) :: iter
REAL(DP), INTENT(OUT) :: err
REAL(DP), PARAMETER :: EPS=1.0e-14_dp

Solves A · x = b for x, given b of the same length, by the iterative biconjugate gradient
method. On input x should be set to an initial guess of the solution (or all zeros); itol is
1,2,3, or 4, specifying which convergence test is applied (see text); itmax is the maximum
number of allowed iterations; and tol is the desired convergence tolerance. On output, x
is reset to the improved solution, iter is the number of iterations actually taken, and err
is the estimated error. The matrix A is referenced only through the user-supplied routines
atimes, which computes the product of either A or its transpose on a vector; and asolve,
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which solves Ã · x = b or Ã
T · x = b for some preconditioner matrix Ã (possibly the trivial

diagonal part of A).
INTEGER(I4B) :: n
REAL(DP) :: ak,akden,bk,bkden,bknum,bnrm,dxnrm,xnrm,zm1nrm,znrm
REAL(DP), DIMENSION(size(b)) :: p,pp,r,rr,z,zz
n=assert_eq(size(b),size(x),’linbcg’)
iter=0
call atimes(x,r,0) Calculate initial residual. Input to atimes is

x(1:n), output is r(1:n); the final 0
indicates that the matrix (not its trans-
pose) is to be used.

r=b-r
rr=r

! call atimes(r,rr,0)
Uncomment this line to get the “minimum residual” variant of the algorithm.

select case(itol) Calculate norms for use in stopping criterion,
and initialize z.case(1)

bnrm=snrm(b,itol)
call asolve(r,z,0) Input to asolve is r(1:n), output is z(1:n);

the final 0 indicates that the matrix Ã
(not its transpose) is to be used.

case(2)
call asolve(b,z,0)
bnrm=snrm(z,itol)
call asolve(r,z,0)

case(3:4)
call asolve(b,z,0)
bnrm=snrm(z,itol)
call asolve(r,z,0)
znrm=snrm(z,itol)

case default
call nrerror(’illegal itol in linbcg’)

end select
do Main loop.

if (iter > itmax) exit
iter=iter+1

call asolve(rr,zz,1) Final 1 indicates use of transpose matrix Ã
T
.

bknum=dot_product(z,rr) Calculate coefficient bk and direction vectors
p and pp.if (iter == 1) then

p=z
pp=zz

else
bk=bknum/bkden
p=bk*p+z
pp=bk*pp+zz

end if
bkden=bknum Calculate coefficient ak, new iterate x, and

new residuals r and rr.call atimes(p,z,0)
akden=dot_product(z,pp)
ak=bknum/akden
call atimes(pp,zz,1)
x=x+ak*p
r=r-ak*z
rr=rr-ak*zz
call asolve(r,z,0) Solve Ã ·z = r and check stopping criterion.
select case(itol)

case(1)
err=snrm(r,itol)/bnrm

case(2)
err=snrm(z,itol)/bnrm

case(3:4)
zm1nrm=znrm
znrm=snrm(z,itol)
if (abs(zm1nrm-znrm) > EPS*znrm) then

dxnrm=abs(ak)*snrm(p,itol)
err=znrm/abs(zm1nrm-znrm)*dxnrm

else
err=znrm/bnrm Error may not be accurate, so loop again.
cycle
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end if
xnrm=snrm(x,itol)
if (err <= 0.5_dp*xnrm) then

err=err/xnrm
else

err=znrm/bnrm Error may not be accurate, so loop again.
cycle

end if
end select
write (*,*) ’ iter=’,iter,’ err=’,err
if (err <= tol) exit

end do
END SUBROUTINE linbcg

f90
case default...call nrerror(’illegal itol in linbcg’) It’s always a
good idea to trap errors when the value of a case construction is supplied
externally to the routine, as here.

FUNCTION snrm(sx,itol)
USE nrtype
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(IN) :: sx
INTEGER(I4B), INTENT(IN) :: itol
REAL(DP) :: snrm

Compute one of two norms for a vector sx, as signaled by itol. Used by linbcg.
if (itol <= 3) then

snrm=sqrt(dot_product(sx,sx)) Vector magnitude norm.
else

snrm=maxval(abs(sx)) Largest component norm.
end if
END FUNCTION snrm

SUBROUTINE atimes(x,r,itrnsp)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : sprsax,sprstx DOUBLE PRECISION versions of sprsax and sprstx.
USE xlinbcg_data The matrix is accessed through this module.
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(:), INTENT(OUT) :: r
INTEGER(I4B), INTENT(IN) :: itrnsp
INTEGER(I4B) :: n
n=assert_eq(size(x),size(r),’atimes’)
if (itrnsp == 0) then

call sprsax(sa,x,r)
else

call sprstx(sa,x,r)
end if
END SUBROUTINE atimes
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SUBROUTINE asolve(b,x,itrnsp)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : sprsdiag DOUBLE PRECISION version of sprsdiag.
USE xlinbcg_data The matrix is accessed through this module.
REAL(DP), DIMENSION(:), INTENT(IN) :: b
REAL(DP), DIMENSION(:), INTENT(OUT) :: x
INTEGER(I4B), INTENT(IN) :: itrnsp
INTEGER(I4B) :: ndum
ndum=assert_eq(size(b),size(x),’asolve’)
call sprsdiag(sa,x)

The matrix Ã is taken to be the diagonal part of A. Since the transpose matrix has the same
diagonal, the flag itrnsp is not used.

if (any(x == 0.0)) call nrerror(’asolve: singular diagonal matrix’)
x=b/x
END SUBROUTINE asolve

f90
The routinesatimes andasolve are examples of user-supplied routines
that interfacelinbcg to a user-supplied method for multiplying the
user’s sparse matrix by a vector, and for solving the preconditioner matrix

equation. Here, we have used these routines to connectlinbcg to the sparse matrix
machinery developed above. If we were instead using the different sparse matrix
machinery of Volume 1, we would modifyatimes andasolve accordingly.

USE xlinbcg_data This user-supplied module is assumed to havesa (the
sparse matrix) in it.

� � �

FUNCTION vander(x,q)
USE nrtype; USE nrutil, ONLY : assert_eq,outerdiff
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(IN) :: x,q
REAL(DP), DIMENSION(size(x)) :: vander

Solves the Vandermonde linear system
∑N

i=1 x
k−1
i wi = qk (k = 1, . . . ,N). Input consists

of the vectors x and q of length N . The solution w (also of lengthN) is returned in vander.
REAL(DP), DIMENSION(size(x)) :: c
REAL(DP), DIMENSION(size(x),size(x)) :: a
INTEGER(I4B) :: i,n
n=assert_eq(size(x),size(q),’vander’)
if (n == 1) then

vander(1)=q(1)
else

c(:)=0.0 Initialize array.
c(n)=-x(1) Coefficients of the master polynomial are found

by recursion.do i=2,n
c(n+1-i:n-1)=c(n+1-i:n-1)-x(i)*c(n+2-i:n)
c(n)=c(n)-x(i)

end do
a(:,:)=outerdiff(x,x) Make vector wj =

∏
n�=j(xj − xn).

vander(:)=product(a,dim=2,mask=(a /= 0.0))
Now do synthetic division by x− xj . The division for all xj can be done in parallel (on
a parallel machine), since the : in the loop below is over j.

a(:,1)=-c(1)/x(:)
do i=2,n

a(:,i)=-(c(i)-a(:,i-1))/x(:)
end do
vander(:)=matmul(a,q)/vander(:) Solve linear system and supply denomina-

tor.end if
END FUNCTION vander
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f90
a=outerdiff...w=product... Here is an example of the coding of equa-
tion (22.1.4). Since in this case the product is over the second index (n
in xj − xn), we havedim=2 in the product.

FUNCTION toeplz(r,y)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: r,y
REAL(SP), DIMENSION(size(y)) :: toeplz

Solves the Toeplitz system
∑N

j=1 R(N+i−j)xj = yi (i = 1, . . . , N). The Toeplitz matrix

need not be symmetric. y (of length N) and r (of length 2N − 1) are input arrays; the
solution x (of length N) is returned in toeplz.

INTEGER(I4B) :: m,m1,n,ndum
REAL(SP) :: sd,sgd,sgn,shn,sxn
REAL(SP), DIMENSION(size(y)) :: g,h,t
n=size(y)
ndum=assert_eq(2*n-1,size(r),’toeplz: ndum’)
if (r(n) == 0.0) call nrerror(’toeplz: initial singular minor’)
toeplz(1)=y(1)/r(n) Initialize for the recursion.
if (n == 1) RETURN
g(1)=r(n-1)/r(n)
h(1)=r(n+1)/r(n)
do m=1,n Main loop over the recursion.

m1=m+1
sxn=-y(m1)+dot_product(r(n+1:n+m),toeplz(m:1:-1))

Compute numerator and denominator for x,
sd=-r(n)+dot_product(r(n+1:n+m),g(1:m))
if (sd == 0.0) exit
toeplz(m1)=sxn/sd whence x.
toeplz(1:m)=toeplz(1:m)-toeplz(m1)*g(m:1:-1)
if (m1 == n) RETURN
sgn=-r(n-m1)+dot_product(r(n-m:n-1),g(1:m)) Compute numerator and denom-

inator for G and H ,shn=-r(n+m1)+dot_product(r(n+m:n+1:-1),h(1:m))
sgd=-r(n)+dot_product(r(n-m:n-1),h(m:1:-1))
if (sd == 0.0 .or. sgd == 0.0) exit
g(m1)=sgn/sgd whence G and H .
h(m1)=shn/sd
t(1:m)=g(1:m)
g(1:m)=g(1:m)-g(m1)*h(m:1:-1)
h(1:m)=h(1:m)-h(m1)*t(m:1:-1)

end do Back for another recurrence.
if (m > n) call nrerror(’toeplz: sanity check failed in routine’)
call nrerror(’toeplz: singular principal minor’)
END FUNCTION toeplz

� � �

SUBROUTINE choldc(a,p)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: p

Given an N × N positive-definite symmetric matrix a, this routine constructs its Cholesky
decomposition, A = L · LT . On input, only the upper triangle of a need be given; it is
not modified. The Cholesky factor L is returned in the lower triangle of a, except for its
diagonal elements, which are returned in p, a vector of length N .

INTEGER(I4B) :: i,n
REAL(SP) :: summ
n=assert_eq(size(a,1),size(a,2),size(p),’choldc’)
do i=1,n
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summ=a(i,i)-dot_product(a(i,1:i-1),a(i,1:i-1))
if (summ <= 0.0) call nrerror(’choldc failed’) a, with rounding errors, is

not positive definite.p(i)=sqrt(summ)
a(i+1:n,i)=(a(i,i+1:n)-matmul(a(i+1:n,1:i-1),a(i,1:i-1)))/p(i)

end do
END SUBROUTINE choldc

SUBROUTINE cholsl(a,p,b,x)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(IN) :: p,b
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x

Solves the set of N linear equations A · x = b, where a is a positive-definite symmetric
matrix. a (N × N) and p (of length N) are input as the output of the routine choldc.
Only the lower triangle of a is accessed. b is the input right-hand-side vector, of length N .
The solution vector, also of length N , is returned in x. a and p are not modified and can be
left in place for successive calls with different right-hand sides b. b is not modified unless
you identify b and x in the calling sequence, which is allowed.

INTEGER(I4B) :: i,n
n=assert_eq((/size(a,1),size(a,2),size(p),size(b),size(x)/),’cholsl’)
do i=1,n Solve L · y = b, storing y in x.

x(i)=(b(i)-dot_product(a(i,1:i-1),x(1:i-1)))/p(i)
end do
do i=n,1,-1 Solve LT · x = y.

x(i)=(x(i)-dot_product(a(i+1:n,i),x(i+1:n)))/p(i)
end do
END SUBROUTINE cholsl

� � �

SUBROUTINE qrdcmp(a,c,d,sing)
USE nrtype; USE nrutil, ONLY : assert_eq,outerprod,vabs
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: c,d
LOGICAL(LGT), INTENT(OUT) :: sing

Constructs the QR decomposition of the n× n matrix a. The upper triangular matrix R is
returned in the upper triangle of a, except for the diagonal elements of R, which are returned
in the n-dimensional vector d. The orthogonal matrix Q is represented as a product of n−1
Householder matrices Q1 . . .Qn−1, where Qj = 1− uj ⊗ uj/cj . The ith component of uj

is zero for i = 1, . . . , j − 1 while the nonzero components are returned in a(i,j) for
i = j, . . . , n. sing returns as true if singularity is encountered during the decomposition,
but the decomposition is still completed in this case.

INTEGER(I4B) :: k,n
REAL(SP) :: scale,sigma
n=assert_eq(size(a,1),size(a,2),size(c),size(d),’qrdcmp’)
sing=.false.
do k=1,n-1

scale=maxval(abs(a(k:n,k)))
if (scale == 0.0) then Singular case.

sing=.true.
c(k)=0.0
d(k)=0.0

else Form Qk and Qk · A.
a(k:n,k)=a(k:n,k)/scale
sigma=sign(vabs(a(k:n,k)),a(k,k))
a(k,k)=a(k,k)+sigma
c(k)=sigma*a(k,k)
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d(k)=-scale*sigma
a(k:n,k+1:n)=a(k:n,k+1:n)-outerprod(a(k:n,k),&

matmul(a(k:n,k),a(k:n,k+1:n)))/c(k)
end if

end do
d(n)=a(n,n)
if (d(n) == 0.0) sing=.true.
END SUBROUTINE qrdcmp

f90
a(k:n,k+1:n)=a(k:n,k+1:n)-outerprod...matmul... See discussion of equa-
tion (22.1.6).

SUBROUTINE qrsolv(a,c,d,b)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : rsolv
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(IN) :: c,d
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b

Solves the set of n linear equations A · x = b. The n × n matrix a and the n-dimensional
vectors c and d are input as the output of the routine qrdcmp and are not modified. b is
input as the right-hand-side vector of length n, and is overwritten with the solution vector
on output.

INTEGER(I4B) :: j,n
REAL(SP) :: tau
n=assert_eq((/size(a,1),size(a,2),size(b),size(c),size(d)/),’qrsolv’)

do j=1,n-1 Form QT · b.
tau=dot_product(a(j:n,j),b(j:n))/c(j)
b(j:n)=b(j:n)-tau*a(j:n,j)

end do
call rsolv(a,d,b) Solve R · x = QT · b.
END SUBROUTINE qrsolv

SUBROUTINE rsolv(a,d,b)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b

Solves the set of n linear equations R · x = b, where R is an upper triangular matrix stored
in a and d. The n×n matrix a and the vector d of length n are input as the output of the
routine qrdcmp and are not modified. b is input as the right-hand-side vector of length n,
and is overwritten with the solution vector on output.

INTEGER(I4B) :: i,n
n=assert_eq(size(a,1),size(a,2),size(b),size(d),’rsolv’)
b(n)=b(n)/d(n)
do i=n-1,1,-1

b(i)=(b(i)-dot_product(a(i,i+1:n),b(i+1:n)))/d(i)
end do
END SUBROUTINE rsolv

� � �
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SUBROUTINE qrupdt(r,qt,u,v)
USE nrtype; USE nrutil, ONLY : assert_eq,ifirstloc
USE nr, ONLY : rotate,pythag
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: r,qt
REAL(SP), DIMENSION(:), INTENT(INOUT) :: u
REAL(SP), DIMENSION(:), INTENT(IN) :: v

Given the QR decomposition of some n × n matrix, calculates the QR decomposition of
the matrix Q · (R + u ⊗ v). Here r and qt are n × n matrices, u and v are n-dimensional

vectors. Note that QT is input and returned in qt.
INTEGER(I4B) :: i,k,n
n=assert_eq((/size(r,1),size(r,2),size(qt,1),size(qt,2),size(u),&

size(v)/),’qrupdt’)
k=n+1-ifirstloc(u(n:1:-1) /= 0.0) Find largest k such that u(k) �= 0.
if (k < 1) k=1
do i=k-1,1,-1 Transform R + u ⊗ v to upper Hessenberg.

call rotate(r,qt,i,u(i),-u(i+1))
u(i)=pythag(u(i),u(i+1))

end do
r(1,:)=r(1,:)+u(1)*v
do i=1,k-1 Transform upper Hessenberg matrix to upper

triangular.call rotate(r,qt,i,r(i,i),-r(i+1,i))
end do
END SUBROUTINE qrupdt

f90
k=n+1-ifirstloc(u(n:1:-1) /= 0.0) The function ifirstloc in
nrutil returns the first occurrence of.true. in a logical vector.
See the discussion of the analogous routineimaxloc on p. 1017.

SUBROUTINE rotate(r,qt,i,a,b)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), TARGET, INTENT(INOUT) :: r,qt
INTEGER(I4B), INTENT(IN) :: i
REAL(SP), INTENT(IN) :: a,b

Given n×n matrices r and qt, carry out a Jacobi rotation on rows i and i+1 of each matrix.

a and b are the parameters of the rotation: cos θ = a/
√
a2 + b2, sin θ = b/

√
a2 + b2.

REAL(SP), DIMENSION(size(r,1)) :: temp
INTEGER(I4B) :: n
REAL(SP) :: c,fact,s
n=assert_eq(size(r,1),size(r,2),size(qt,1),size(qt,2),’rotate’)
if (a == 0.0) then Avoid unnecessary overflow or underflow.

c=0.0
s=sign(1.0_sp,b)

else if (abs(a) > abs(b)) then
fact=b/a
c=sign(1.0_sp/sqrt(1.0_sp+fact**2),a)
s=fact*c

else
fact=a/b
s=sign(1.0_sp/sqrt(1.0_sp+fact**2),b)
c=fact*s

end if
temp(i:n)=r(i,i:n) Premultiply r by Jacobi rotation.
r(i,i:n)=c*temp(i:n)-s*r(i+1,i:n)
r(i+1,i:n)=s*temp(i:n)+c*r(i+1,i:n)
temp=qt(i,:) Premultiply qt by Jacobi rotation.
qt(i,:)=c*temp-s*qt(i+1,:)
qt(i+1,:)=s*temp+c*qt(i+1,:)
END SUBROUTINE rotate
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CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press). [1]

Gu, M., Demmel, J., and Dhillon, I. 1994, LAPACK Working Note #88 (Computer Science De-
partment, University of Tennessee at Knoxville, Preprint UT-CS-94-257; available from
Netlib, or as http://www.cs.utk.edu/∼library/TechReports/1994/ut-cs-94-257.ps.Z). [2] See
also discussion after tqli in Chapter B11.
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Chapter B3. Interpolation and
Extrapolation

SUBROUTINE polint(xa,ya,x,y,dy)
USE nrtype; USE nrutil, ONLY : assert_eq,iminloc,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: y,dy

Given arrays xa and ya of length N , and given a value x, this routine returns a value y,
and an error estimate dy. If P (x) is the polynomial of degree N − 1 such that P (xai) =
yai, i = 1, . . . , N , then the returned value y = P (x).

INTEGER(I4B) :: m,n,ns
REAL(SP), DIMENSION(size(xa)) :: c,d,den,ho
n=assert_eq(size(xa),size(ya),’polint’)
c=ya Initialize the tableau of c’s and d’s.
d=ya
ho=xa-x
ns=iminloc(abs(x-xa)) Find index ns of closest table entry.
y=ya(ns) This is the initial approximation to y.
ns=ns-1
do m=1,n-1 For each column of the tableau,

den(1:n-m)=ho(1:n-m)-ho(1+m:n) we loop over the current c’s and d’s and up-
date them.if (any(den(1:n-m) == 0.0)) &

call nrerror(’polint: calculation failure’)
This error can occur only if two input xa’s are (to within roundoff) identical.

den(1:n-m)=(c(2:n-m+1)-d(1:n-m))/den(1:n-m)
d(1:n-m)=ho(1+m:n)*den(1:n-m) Here the c’s and d’s are updated.
c(1:n-m)=ho(1:n-m)*den(1:n-m)
if (2*ns < n-m) then After each column in the tableau is completed, we decide

which correction, c or d, we want to add to our accu-
mulating value of y, i.e., which path to take through
the tableau—forking up or down. We do this in such a
way as to take the most “straight line” route through the
tableau to its apex, updating ns accordingly to keep track
of where we are. This route keeps the partial approxima-
tions centered (insofar as possible) on the target x. The
last dy added is thus the error indication.

dy=c(ns+1)
else

dy=d(ns)
ns=ns-1

end if
y=y+dy

end do
END SUBROUTINE polint

SUBROUTINE ratint(xa,ya,x,y,dy)
USE nrtype; USE nrutil, ONLY : assert_eq,iminloc,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: y,dy

Given arrays xa and ya of length N , and given a value of x, this routine returns a value of y
and an accuracy estimate dy. The value returned is that of the diagonal rational function,
evaluated at x, that passes through the N points (xai,yai), i = 1 . . .N .

INTEGER(I4B) :: m,n,ns
REAL(SP), DIMENSION(size(xa)) :: c,d,dd,h,t

1043
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REAL(SP), PARAMETER :: TINY=1.0e-25_sp A small number.
n=assert_eq(size(xa),size(ya),’ratint’)
h=xa-x
ns=iminloc(abs(h))
y=ya(ns)
if (x == xa(ns)) then

dy=0.0
RETURN

end if
c=ya
d=ya+TINY The TINY part is needed to prevent

a rare zero-over-zero condition.ns=ns-1
do m=1,n-1

t(1:n-m)=(xa(1:n-m)-x)*d(1:n-m)/h(1+m:n) h will never be zero, since this was
tested in the initializing loop.dd(1:n-m)=t(1:n-m)-c(2:n-m+1)

if (any(dd(1:n-m) == 0.0)) &
call nrerror(’failure in ratint’) This error condition indicates that

the interpolating function has a
pole at the requested value of
x.

dd(1:n-m)=(c(2:n-m+1)-d(1:n-m))/dd(1:n-m)
d(1:n-m)=c(2:n-m+1)*dd(1:n-m)
c(1:n-m)=t(1:n-m)*dd(1:n-m)
if (2*ns < n-m) then

dy=c(ns+1)
else

dy=d(ns)
ns=ns-1

end if
y=y+dy

end do
END SUBROUTINE ratint

� � �

SUBROUTINE spline(x,y,yp1,ypn,y2)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : tridag
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(IN) :: yp1,ypn
REAL(SP), DIMENSION(:), INTENT(OUT) :: y2

Given arrays x and y of length N containing a tabulated function, i.e., yi = f(xi), with x1 <
x2 < . . . < xN , and given values yp1 and ypn for the first derivative of the interpolating
function at points 1 and N , respectively, this routine returns an array y2 of length N
that contains the second derivatives of the interpolating function at the tabulated points
xi. If yp1 and/or ypn are equal to 1 × 1030 or larger, the routine is signaled to set the
corresponding boundary condition for a natural spline, with zero second derivative on that
boundary.

INTEGER(I4B) :: n
REAL(SP), DIMENSION(size(x)) :: a,b,c,r
n=assert_eq(size(x),size(y),size(y2),’spline’)
c(1:n-1)=x(2:n)-x(1:n-1) Set up the tridiagonal equations.
r(1:n-1)=6.0_sp*((y(2:n)-y(1:n-1))/c(1:n-1))
r(2:n-1)=r(2:n-1)-r(1:n-2)
a(2:n-1)=c(1:n-2)
b(2:n-1)=2.0_sp*(c(2:n-1)+a(2:n-1))
b(1)=1.0
b(n)=1.0
if (yp1 > 0.99e30_sp) then The lower boundary condition is set either to be “nat-

ural”r(1)=0.0
c(1)=0.0

else or else to have a specified first derivative.
r(1)=(3.0_sp/(x(2)-x(1)))*((y(2)-y(1))/(x(2)-x(1))-yp1)
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c(1)=0.5
end if The upper boundary condition is set either to be

“natural”if (ypn > 0.99e30_sp) then
r(n)=0.0
a(n)=0.0

else or else to have a specified first derivative.
r(n)=(-3.0_sp/(x(n)-x(n-1)))*((y(n)-y(n-1))/(x(n)-x(n-1))-ypn)
a(n)=0.5

end if
call tridag(a(2:n),b(1:n),c(1:n-1),r(1:n),y2(1:n))
END SUBROUTINE spline

FUNCTION splint(xa,ya,y2a,x)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY: locate
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya,y2a
REAL(SP), INTENT(IN) :: x
REAL(SP) :: splint

Given the arrays xa and ya, which tabulate a function (with the xai’s in increasing or
decreasing order), and given the array y2a, which is the output from spline above, and
given a value of x, this routine returns a cubic-spline interpolated value. The arrays xa, ya
and y2a are all of the same size.

INTEGER(I4B) :: khi,klo,n
REAL(SP) :: a,b,h
n=assert_eq(size(xa),size(ya),size(y2a),’splint’)
klo=max(min(locate(xa,x),n-1),1)

We will find the right place in the table by means of locate’s bisection algorithm. This is
optimal if sequential calls to this routine are at random values of x. If sequential calls are in
order, and closely spaced, one would do better to store previous values of klo and khi and
test if they remain appropriate on the next call.

khi=klo+1 klo and khi now bracket the input value of x.
h=xa(khi)-xa(klo)
if (h == 0.0) call nrerror(’bad xa input in splint’) The xa’s must be distinct.
a=(xa(khi)-x)/h Cubic spline polynomial is now evaluated.
b=(x-xa(klo))/h
splint=a*ya(klo)+b*ya(khi)+((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi))*(h**2)/6.0_sp
END FUNCTION splint

f90
klo=max(min(locate(xa,x),n-1),1) In the Fortran 77 version of splint,
there is in-line code to find the location in the table by bisection. Here
we prefer an explicit call to locate, which performs the bisection. On

some massively multiprocessor (MMP) machines, one might substitute a different,
more parallel algorithm (see next note).

� � �

FUNCTION locate(xx,x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), INTENT(IN) :: x
INTEGER(I4B) :: locate

Given an array xx(1:N), and given a value x, returns a value j such that x is between
xx(j) and xx(j + 1). xx must be monotonic, either increasing or decreasing. j = 0 or
j = N is returned to indicate that x is out of range.

INTEGER(I4B) :: n,jl,jm,ju
LOGICAL :: ascnd
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n=size(xx)
ascnd = (xx(n) >= xx(1)) True if ascending order of table, false otherwise.
jl=0 Initialize lower
ju=n+1 and upper limits.
do

if (ju-jl <= 1) exit Repeat until this condition is satisfied.
jm=(ju+jl)/2 Compute a midpoint,
if (ascnd .eqv. (x >= xx(jm))) then

jl=jm and replace either the lower limit
else

ju=jm or the upper limit, as appropriate.
end if

end do
if (x == xx(1)) then Then set the output, being careful with the endpoints.

locate=1
else if (x == xx(n)) then

locate=n-1
else

locate=jl
end if
END FUNCTION locate

The use of bisection is perhaps a sin on a genuinely parallel machine, but
(since the process takes only logarithmicallymany sequential steps) it is at
most a small sin. One can imagine a “fully parallel” implementation like,

k=iminloc(abs(x-xx))
if ((x < xx(k)) .eqv. (xx(1) < xx(n))) then

locate=k-1
else

locate=k
end if

Problem is, unless the number of physical (not logical) processors participating in
the iminloc is larger than N , the length of the array, this “parallel” code turns a
logN algorithm into one scaling as N , quite an unacceptable inefficiency. So we
prefer to be small sinners and bisect.

SUBROUTINE hunt(xx,x,jlo)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: jlo
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: xx

Given an array xx(1:N), and given a value x, returns a value jlo such that x is between
xx(jlo) and xx(jlo+1). xxmust be monotonic, either increasing or decreasing. jlo = 0
or jlo = N is returned to indicate that x is out of range. jlo on input is taken as the
initial guess for jlo on output.

INTEGER(I4B) :: n,inc,jhi,jm
LOGICAL :: ascnd
n=size(xx)
ascnd = (xx(n) >= xx(1)) True if ascending order of table, false otherwise.
if (jlo <= 0 .or. jlo > n) then Input guess not useful. Go immediately to bisec-

tion.jlo=0
jhi=n+1

else
inc=1 Set the hunting increment.
if (x >= xx(jlo) .eqv. ascnd) then Hunt up:

do
jhi=jlo+inc
if (jhi > n) then Done hunting, since off end of table.
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jhi=n+1
exit

else
if (x < xx(jhi) .eqv. ascnd) exit
jlo=jhi Not done hunting,
inc=inc+inc so double the increment

end if
end do and try again.

else Hunt down:
jhi=jlo
do

jlo=jhi-inc
if (jlo < 1) then Done hunting, since off end of table.

jlo=0
exit

else
if (x >= xx(jlo) .eqv. ascnd) exit
jhi=jlo Not done hunting,
inc=inc+inc so double the increment

end if
end do and try again.

end if
end if Done hunting, value bracketed.
do Hunt is done, so begin the final bisection phase:

if (jhi-jlo <= 1) then
if (x == xx(n)) jlo=n-1
if (x == xx(1)) jlo=1
exit

else
jm=(jhi+jlo)/2
if (x >= xx(jm) .eqv. ascnd) then

jlo=jm
else

jhi=jm
end if

end if
end do
END SUBROUTINE hunt

� � �

FUNCTION polcoe(x,y)
USE nrtype; USE nrutil, ONLY : assert_eq,outerdiff
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), DIMENSION(size(x)) :: polcoe

Given same-size arrays x and y containing a tabulated function yi = f(xi), this routine

returns a same-size array of coefficients cj , such that yi =
∑

j cjx
j−1
i .

INTEGER(I4B) :: i,k,n
REAL(SP), DIMENSION(size(x)) :: s
REAL(SP), DIMENSION(size(x),size(x)) :: a
n=assert_eq(size(x),size(y),’polcoe’)
s=0.0 Coefficients si of the master polynomial P (x) are found by

recurrence.s(n)=-x(1)
do i=2,n

s(n+1-i:n-1)=s(n+1-i:n-1)-x(i)*s(n+2-i:n)
s(n)=s(n)-x(i)

end do
a=outerdiff(x,x) Make vector wj =

∏
j �=n(xj −xn), using polcoe for tempo-
rary storage.polcoe=product(a,dim=2,mask=a /= 0.0)
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Now do synthetic division by x − xj . The division for all xj can be done in parallel (on a
parallel machine), since the : in the loop below is over j.

a(:,1)=-s(1)/x(:)
do k=2,n

a(:,k)=-(s(k)-a(:,k-1))/x(:)
end do
s=y/polcoe
polcoe=matmul(s,a) Solve linear system.
END FUNCTION polcoe

For a description of the coding here, see §22.3, especially equation
(22.3.9). You might also want to compare the coding here with the
Fortran 77 version, and also look at the description of the method on

p. 84 in Volume 1. The Fortran 90 implementation here is in fact much closer to that
description than is the Fortran 77 method, which goes through some acrobatics to
roll the synthetic division and matrix multiplication into a single set of two nested
loops. The price we pay, here, is storage for the matrix a. Since the degree of any
useful polynomial is not a very large number, this is essentially no penalty.

Also worth noting is the way that parallelism is brought to the required synthetic
division. For a single such synthetic division (e.g., as accomplished by the nrutil
routine poly term), parallelism can be obtained only by recursion. Here things are
much simpler, because we need a whole bunch of simultaneous and independent
synthetic divisions; so we can just do them in the obvious, data-parallel, way.

FUNCTION polcof(xa,ya)
USE nrtype; USE nrutil, ONLY : assert_eq,iminloc
USE nr, ONLY : polint
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), DIMENSION(size(xa)) :: polcof

Given same-size arrays xa and ya containing a tabulated function yai = f(xai), this routine

returns a same-size array of coefficients cj such that yai =
∑

j cj xa
j−1
i .

INTEGER(I4B) :: j,k,m,n
REAL(SP) :: dy
REAL(SP), DIMENSION(size(xa)) :: x,y
n=assert_eq(size(xa),size(ya),’polcof’)
x=xa
y=ya
do j=1,n

m=n+1-j
call polint(x(1:m),y(1:m),0.0_sp,polcof(j),dy)

Use the polynomial interpolation routine of §3.1 to extrapolate to x = 0.
k=iminloc(abs(x(1:m))) Find the remaining xk of smallest absolute value,
where (x(1:m) /= 0.0) y(1:m)=(y(1:m)-polcof(j))/x(1:m) reduce all the terms,
y(k:m-1)=y(k+1:m) and eliminate xk.
x(k:m-1)=x(k+1:m)

end do
END FUNCTION polcof

� � �
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SUBROUTINE polin2(x1a,x2a,ya,x1,x2,y,dy)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : polint
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: ya
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), INTENT(OUT) :: y,dy

Given arrays x1a of length M and x2a of length N of independent variables, and an M×N
array of function values ya, tabulated at the grid points defined by x1a and x2a, and given
values x1 and x2 of the independent variables, this routine returns an interpolated function
value y, and an accuracy indication dy (based only on the interpolation in the x1 direction,
however).

INTEGER(I4B) :: j,m,ndum
REAL(SP), DIMENSION(size(x1a)) :: ymtmp
REAL(SP), DIMENSION(size(x2a)) :: yntmp
m=assert_eq(size(x1a),size(ya,1),’polin2: m’)
ndum=assert_eq(size(x2a),size(ya,2),’polin2: ndum’)
do j=1,m Loop over rows.

yntmp=ya(j,:) Copy row into temporary storage.
call polint(x2a,yntmp,x2,ymtmp(j),dy) Interpolate answer into temporary stor-

age.end do
call polint(x1a,ymtmp,x1,y,dy) Do the final interpolation.
END SUBROUTINE polin2

� � �

SUBROUTINE bcucof(y,y1,y2,y12,d1,d2,c)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: d1,d2
REAL(SP), DIMENSION(4), INTENT(IN) :: y,y1,y2,y12
REAL(SP), DIMENSION(4,4), INTENT(OUT) :: c

Given arrays y, y1, y2, and y12, each of length 4, containing the function, gradients, and
cross derivative at the four grid points of a rectangular grid cell (numbered counterclockwise
from the lower left), and given d1 and d2, the length of the grid cell in the 1- and 2-
directions, this routine returns the 4× 4 table c that is used by routine bcuint for bicubic
interpolation.

REAL(SP), DIMENSION(16) :: x
REAL(SP), DIMENSION(16,16) :: wt
DATA wt /1,0,-3,2,4*0,-3,0,9,-6,2,0,-6,4,&

8*0,3,0,-9,6,-2,0,6,-4,10*0,9,-6,2*0,-6,4,2*0,3,-2,6*0,-9,6,&
2*0,6,-4,4*0,1,0,-3,2,-2,0,6,-4,1,0,-3,2,8*0,-1,0,3,-2,1,0,-3,&
2,10*0,-3,2,2*0,3,-2,6*0,3,-2,2*0,-6,4,2*0,3,-2,0,1,-2,1,5*0,&
-3,6,-3,0,2,-4,2,9*0,3,-6,3,0,-2,4,-2,10*0,-3,3,2*0,2,-2,2*0,&
-1,1,6*0,3,-3,2*0,-2,2,5*0,1,-2,1,0,-2,4,-2,0,1,-2,1,9*0,-1,2,&
-1,0,1,-2,1,10*0,1,-1,2*0,-1,1,6*0,-1,1,2*0,2,-2,2*0,-1,1/

x(1:4)=y Pack a temporary vector x.
x(5:8)=y1*d1
x(9:12)=y2*d2
x(13:16)=y12*d1*d2
x=matmul(wt,x) Matrix multiply by the stored table.
c=reshape(x,(/4,4/),order=(/2,1/)) Unpack the result into the output table.
END SUBROUTINE bcucof
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f90
x=matmul(wt,x) ... c=reshape(x,(/4,4/),order=(/2,1/)) It is a power-
ful technique to combine the matmul intrinsic with reshape’s of the
input or output. The idea is to use matmul whenever the calculation

can be cast into the form of a linear mapping between input and output objects.
Here the order=(/2,1/) parameter specifies that we want the packing to be by
rows, not by Fortran’s default of columns. (In this two-dimensional case, it’s the
equivalent of applying transpose.)

SUBROUTINE bcuint(y,y1,y2,y12,x1l,x1u,x2l,x2u,x1,x2,ansy,ansy1,ansy2)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : bcucof
IMPLICIT NONE
REAL(SP), DIMENSION(4), INTENT(IN) :: y,y1,y2,y12
REAL(SP), INTENT(IN) :: x1l,x1u,x2l,x2u,x1,x2
REAL(SP), INTENT(OUT) :: ansy,ansy1,ansy2

Bicubic interpolation within a grid square. Input quantities are y,y1,y2,y12 (as described
in bcucof); x1l and x1u, the lower and upper coordinates of the grid square in the 1-
direction; x2l and x2u likewise for the 2-direction; and x1,x2, the coordinates of the
desired point for the interpolation. The interpolated function value is returned as ansy,
and the interpolated gradient values as ansy1 and ansy2. This routine calls bcucof.

INTEGER(I4B) :: i
REAL(SP) :: t,u
REAL(SP), DIMENSION(4,4) :: c
call bcucof(y,y1,y2,y12,x1u-x1l,x2u-x2l,c) Get the c’s.
if (x1u == x1l .or. x2u == x2l) call &

nrerror(’bcuint: problem with input values - boundary pair equal?’)
t=(x1-x1l)/(x1u-x1l) Equation (3.6.4).
u=(x2-x2l)/(x2u-x2l)
ansy=0.0
ansy2=0.0
ansy1=0.0
do i=4,1,-1 Equation (3.6.6).

ansy=t*ansy+((c(i,4)*u+c(i,3))*u+c(i,2))*u+c(i,1)
ansy2=t*ansy2+(3.0_sp*c(i,4)*u+2.0_sp*c(i,3))*u+c(i,2)
ansy1=u*ansy1+(3.0_sp*c(4,i)*t+2.0_sp*c(3,i))*t+c(2,i)

end do
ansy1=ansy1/(x1u-x1l)
ansy2=ansy2/(x2u-x2l)
END SUBROUTINE bcuint

� � �

SUBROUTINE splie2(x1a,x2a,ya,y2a)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : spline
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: ya
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: y2a

Given an M × N tabulated function ya, and N tabulated independent variables x2a, this
routine constructs one-dimensional natural cubic splines of the rows of ya and returns the
second derivatives in the M × N array y2a. (The array x1a is included in the argument
list merely for consistency with routine splin2.)

INTEGER(I4B) :: j,m,ndum
m=assert_eq(size(x1a),size(ya,1),size(y2a,1),’splie2: m’)
ndum=assert_eq(size(x2a),size(ya,2),size(y2a,2),’splie2: ndum’)
do j=1,m

call spline(x2a,ya(j,:),1.0e30_sp,1.0e30_sp,y2a(j,:))
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Values 1 × 1030 signal a natural spline.
end do
END SUBROUTINE splie2

FUNCTION splin2(x1a,x2a,ya,y2a,x1,x2)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : spline,splint
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: ya,y2a
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP) :: splin2

Given x1a, x2a, ya as described in splie2 and y2a as produced by that routine; and given
a desired interpolating point x1,x2; this routine returns an interpolated function value by
bicubic spline interpolation.

INTEGER(I4B) :: j,m,ndum
REAL(SP), DIMENSION(size(x1a)) :: yytmp,y2tmp2
m=assert_eq(size(x1a),size(ya,1),size(y2a,1),’splin2: m’)
ndum=assert_eq(size(x2a),size(ya,2),size(y2a,2),’splin2: ndum’)
do j=1,m

yytmp(j)=splint(x2a,ya(j,:),y2a(j,:),x2)
Perform m evaluations of the row splines constructed by splie2, using the one-dimensional
spline evaluator splint.

end do
call spline(x1a,yytmp,1.0e30_sp,1.0e30_sp,y2tmp2)

Construct the one-dimensional column spline and evaluate it.
splin2=splint(x1a,yytmp,y2tmp2,x1)
END FUNCTION splin2
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Chapter B4. Integration of Functions

SUBROUTINE trapzd(func,a,b,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
This routine computes the nth stage of refinement of an extended trapezoidal rule. func is
input as the name of the function to be integrated between limits a and b, also input. When

called with n=1, the routine returns as s the crudest estimate of
∫ b
a f(x)dx. Subsequent

calls with n=2,3,... (in that sequential order) will improve the accuracy of s by adding 2n-2

additional interior points. s should not be modified between sequential calls.
REAL(SP) :: del,fsum
INTEGER(I4B) :: it
if (n == 1) then

s=0.5_sp*(b-a)*sum(func( (/ a,b /) ))
else

it=2**(n-2)
del=(b-a)/it This is the spacing of the points to be added.
fsum=sum(func(arth(a+0.5_sp*del,del,it)))
s=0.5_sp*(s+del*fsum) This replaces s by its refined value.

end if
END SUBROUTINE trapzd

f90
While most of the quadrature routines in this chapter are coded as
functions,trapzd is a subroutine because the arguments that returns the
function value must also be supplied as an input parameter. We could

change the subroutine into a function by declarings to be a local variable with the
SAVE attribute. However, this would prevent us from being able to use the routine
recursively to do multidimensional quadrature (seequad3d on p. 1065). Whens
is left as an argument, a fresh copy is created on each recursive call. As aSAVE’d
variable, by contrast, its value would get overwritten on each call, and the code
would not be properly “re-entrant.”

s=0.5_sp*(b-a)*sum(func( (/ a,b /) )) Note how we use the(/.../) con-
struct to supply a set of scalar arguments to a vector function.

� � �

1052
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FUNCTION qtrap(func,a,b)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : trapzd
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qtrap
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: JMAX=20
REAL(SP), PARAMETER :: EPS=1.0e-6_sp, UNLIKELY=-1.0e30_sp

Returns the integral of the function func from a to b. The parameter EPS should be set to
the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by the trapezoidal rule.

REAL(SP) :: olds
INTEGER(I4B) :: j
olds=UNLIKELY Any number that is unlikely to be the average of the

function at its endpoints will do here.do j=1,JMAX
call trapzd(func,a,b,qtrap,j)
if (j > 5) then Avoid spurious early convergence.

if (abs(qtrap-olds) < EPS*abs(olds) .or. &
(qtrap == 0.0 .and. olds == 0.0)) RETURN

end if
olds=qtrap

end do
call nrerror(’qtrap: too many steps’)
END FUNCTION qtrap

� � �

FUNCTION qsimp(func,a,b)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : trapzd
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qsimp
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: JMAX=20
REAL(SP), PARAMETER :: EPS=1.0e-6_sp, UNLIKELY=-1.0e30_sp

Returns the integral of the function func from a to b. The parameter EPS should be set to
the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by Simpson’s rule.

INTEGER(I4B) :: j
REAL(SP) :: os,ost,st
ost=UNLIKELY
os= UNLIKELY
do j=1,JMAX

call trapzd(func,a,b,st,j)
qsimp=(4.0_sp*st-ost)/3.0_sp Compare equation (4.2.4).
if (j > 5) then Avoid spurious early convergence.

if (abs(qsimp-os) < EPS*abs(os) .or. &
(qsimp == 0.0 .and. os == 0.0)) RETURN

end if
os=qsimp
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ost=st
end do
call nrerror(’qsimp: too many steps’)
END FUNCTION qsimp

� � �

FUNCTION qromb(func,a,b)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : polint,trapzd
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qromb
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: JMAX=20,JMAXP=JMAX+1,K=5,KM=K-1
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Returns the integral of the function func from a to b. Integration is performed by Romberg’s
method of order 2K, where, e.g., K=2 is Simpson’s rule.
Parameters: EPS is the fractional accuracy desired, as determined by the extrapolation er-
ror estimate; JMAX limits the total number of steps; K is the number of points used in the
extrapolation.

REAL(SP), DIMENSION(JMAXP) :: h,s These store the successive trapezoidal ap-
proximations and their relative stepsizes.REAL(SP) :: dqromb

INTEGER(I4B) :: j
h(1)=1.0
do j=1,JMAX

call trapzd(func,a,b,s(j),j)
if (j >= K) then

call polint(h(j-KM:j),s(j-KM:j),0.0_sp,qromb,dqromb)
if (abs(dqromb) <= EPS*abs(qromb)) RETURN

end if
s(j+1)=s(j)
h(j+1)=0.25_sp*h(j) This is a key step: The factor is 0.25 even

though the stepsize is decreased by only
0.5. This makes the extrapolation a poly-
nomial in h2 as allowed by equation (4.2.1),
not just a polynomial in h.

end do
call nrerror(’qromb: too many steps’)
END FUNCTION qromb

� � �

SUBROUTINE midpnt(func,a,b,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
This routine computes the nth stage of refinement of an extended midpoint rule. func is
input as the name of the function to be integrated between limits a and b, also input. When
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called with n=1, the routine returns as s the crudest estimate of
∫ b
a f(x)dx. Subsequent

calls with n=2,3,... (in that sequential order) will improve the accuracy of s by adding

(2/3)× 3n-1 additional interior points. s should not be modified between sequential calls.
REAL(SP) :: del
INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
if (n == 1) then

s=(b-a)*sum(func( (/0.5_sp*(a+b)/) ))
else

it=3**(n-2)
del=(b-a)/(3.0_sp*it) The added points alternate in spacing between

del and 2*del.x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del,it)
x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
s=s/3.0_sp+del*sum(func(x)) The new sum is combined with the old integral

to give a refined integral.end if
END SUBROUTINE midpnt

f90
midpnt is a subroutine and not a function for the same reasons astrapzd.
This is also true for the othermid... routines below.

s=(b-a)*sum(func( (/0.5_sp*(a+b)/) )) Here we use(/.../) to pass a single
scalar argument to a vector function.

� � �

FUNCTION qromo(func,a,b,choose)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : polint
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qromo
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

SUBROUTINE choose(funk,aa,bb,s,n)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
END SUBROUTINE choose

END INTERFACE
INTEGER(I4B), PARAMETER :: JMAX=14,JMAXP=JMAX+1,K=5,KM=K-1
REAL(SP), PARAMETER :: EPS=1.0e-6

Romberg integration on an open interval. Returns the integral of the function func from a
to b, using any specified integrating subroutine choose and Romberg’s method. Normally
choose will be an open formula, not evaluating the function at the endpoints. It is assumed
that choose triples the number of steps on each call, and that its error series contains only
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even powers of the number of steps. The routines midpnt, midinf, midsql, midsqu,
and midexp are possible choices for choose. The parameters have the same meaning as
in qromb.

REAL(SP), DIMENSION(JMAXP) :: h,s
REAL(SP) :: dqromo
INTEGER(I4B) :: j
h(1)=1.0
do j=1,JMAX

call choose(func,a,b,s(j),j)
if (j >= K) then

call polint(h(j-KM:j),s(j-KM:j),0.0_sp,qromo,dqromo)
if (abs(dqromo) <= EPS*abs(qromo)) RETURN

end if
s(j+1)=s(j)
h(j+1)=h(j)/9.0_sp This is where the assumption of step tripling and an even

error series is used.end do
call nrerror(’qromo: too many steps’)
END FUNCTION qromo

� � �

SUBROUTINE midinf(funk,aa,bb,s,n)
USE nrtype; USE nrutil, ONLY : arth,assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
This routine is an exact replacement for midpnt, i.e., returns as s the nth stage of refinement
of the integral of funk from aa to bb, except that the function is evaluated at evenly spaced
points in 1/x rather than in x. This allows the upper limit bb to be as large and positive
as the computer allows, or the lower limit aa to be as large and negative, but not both.
aa and bb must have the same sign.

REAL(SP) :: a,b,del
INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
call assert(aa*bb > 0.0, ’midinf args’)
b=1.0_sp/aa These two statements change the limits of integration ac-

cordingly.a=1.0_sp/bb
if (n == 1) then From this point on, the routine is exactly identical to midpnt.

s=(b-a)*sum(func( (/0.5_sp*(a+b)/) ))
else

it=3**(n-2)
del=(b-a)/(3.0_sp*it)
x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del,it)
x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
s=s/3.0_sp+del*sum(func(x))

end if
CONTAINS

FUNCTION func(x) This internal function effects the change of variable.
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
func=funk(1.0_sp/x)/x**2
END FUNCTION func

END SUBROUTINE midinf



Chapter B4. Integration of Functions 1057

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
FUNCTION func(x) The change of variable could have been effected by a
statement function inmidinf itself. However, the statement function is
a Fortran 77 feature that is deprecated in Fortran 90 because it does not

allow the benefits of having an explicit interface, i.e., a complete set of specification
statements. Statement functions can always be coded as internal subprograms instead.

SUBROUTINE midsql(funk,aa,bb,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
This routine is an exact replacement for midpnt, i.e., returns as s the nth stage of refinement
of the integral of funk from aa to bb, except that it allows for an inverse square-root
singularity in the integrand at the lower limit aa.

REAL(SP) :: a,b,del
INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
b=sqrt(bb-aa) These two statements change the limits of integration ac-

cordingly.a=0.0
if (n == 1) then From this point on, the routine is exactly identical to midpnt.

s=(b-a)*sum(func( (/0.5_sp*(a+b)/) ))
else

it=3**(n-2)
del=(b-a)/(3.0_sp*it)
x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del,it)
x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
s=s/3.0_sp+del*sum(func(x))

end if
CONTAINS

FUNCTION func(x) This internal function effects the change of variable.
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
func=2.0_sp*x*funk(aa+x**2)
END FUNCTION func

END SUBROUTINE midsql

SUBROUTINE midsqu(funk,aa,bb,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
This routine is an exact replacement for midpnt, i.e., returns as s the nth stage of refinement
of the integral of funk from aa to bb, except that it allows for an inverse square-root
singularity in the integrand at the upper limit bb.

REAL(SP) :: a,b,del
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INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
b=sqrt(bb-aa) These two statements change the limits of integration ac-

cordingly.a=0.0
if (n == 1) then From this point on, the routine is exactly identical to midpnt.

s=(b-a)*sum(func( (/0.5_sp*(a+b)/) ))
else

it=3**(n-2)
del=(b-a)/(3.0_sp*it)
x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del,it)
x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
s=s/3.0_sp+del*sum(func(x))

end if
CONTAINS

FUNCTION func(x) This internal function effects the change of variable.
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
func=2.0_sp*x*funk(bb-x**2)
END FUNCTION func

END SUBROUTINE midsqu

SUBROUTINE midexp(funk,aa,bb,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
This routine is an exact replacement for midpnt, i.e., returns as s the nth stage of refinement
of the integral of funk from aa to bb, except that bb is assumed to be infinite (value passed
not actually used). It is assumed that the function funk decreases exponentially rapidly at
infinity.

REAL(SP) :: a,b,del
INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
b=exp(-aa) These two statements change the limits of integration ac-

cordingly.a=0.0
if (n == 1) then From this point on, the routine is exactly identical to midpnt.

s=(b-a)*sum(func( (/0.5_sp*(a+b)/) ))
else

it=3**(n-2)
del=(b-a)/(3.0_sp*it)
x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del,it)
x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
s=s/3.0_sp+del*sum(func(x))

end if
CONTAINS

FUNCTION func(x) This internal function effects the change of variable.
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
func=funk(-log(x))/x
END FUNCTION func

END SUBROUTINE midexp

� � �
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SUBROUTINE gauleg(x1,x2,x,w)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-14_dp

Given the lower and upper limits of integration x1 and x2, this routine returns arrays x and w
of length N containing the abscissas and weights of the Gauss-LegendreN -point quadrature
formula. The parameter EPS is the relative precision. Note that internal computations are
done in double precision.

INTEGER(I4B) :: its,j,m,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(DP) :: xl,xm
REAL(DP), DIMENSION((size(x)+1)/2) :: p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION((size(x)+1)/2) :: unfinished
n=assert_eq(size(x),size(w),’gauleg’)
m=(n+1)/2 The roots are symmetric in the interval,

so we only have to find half of them.xm=0.5_dp*(x2+x1)
xl=0.5_dp*(x2-x1)
z=cos(PI_D*(arth(1,1,m)-0.25_dp)/(n+0.5_dp)) Initial approximations to the roots.
unfinished=.true.
do its=1,MAXIT Newton’s method carried out simultane-

ously on the roots.where (unfinished)
p1=1.0
p2=0.0

end where
do j=1,n Loop up the recurrence relation to get

the Legendre polynomials evaluated
at z.

where (unfinished)
p3=p2
p2=p1
p1=((2.0_dp*j-1.0_dp)*z*p2-(j-1.0_dp)*p3)/j

end where
end do
p1 now contains the desired Legendre polynomials. We next compute pp, the derivatives,
by a standard relation involving also p2, the polynomials of one lower order.

where (unfinished)
pp=n*(z*p1-p2)/(z*z-1.0_dp)
z1=z
z=z1-p1/pp Newton’s method.
unfinished=(abs(z-z1) > EPS)

end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gauleg’)
x(1:m)=xm-xl*z Scale the root to the desired interval,
x(n:n-m+1:-1)=xm+xl*z and put in its symmetric counterpart.
w(1:m)=2.0_dp*xl/((1.0_dp-z**2)*pp**2) Compute the weight
w(n:n-m+1:-1)=w(1:m) and its symmetric counterpart.
END SUBROUTINE gauleg

f90
Often we have an iterative procedure that has to be applied until all
components of a vector have satisfied a convergence criterion. Some
components of the vector might converge sooner than others, and it is

inefficient on a small-scale parallel (SSP) machine to continue iterating on those
components. The general structure we use for such an iteration is exemplified by
the following lines fromgauleg:

LOGICAL(LGT), DIMENSION((size(x)+1)/2) :: unfinished
...

unfinished=.true.
do its=1,MAXIT
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where (unfinished)
...

unfinished=(abs(z-z1) > EPS)
end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gauleg’)

We use the logical maskunfinished to control which vector components are
processed inside thewhere. The mask gets updated on each iteration by testing
whether any further vector components have converged. When all have converged,
we exit the iteration loop. Finally, we check the value ofits to see whether
the maximum allowed number of iterations was exceeded before all components
converged.

The logical expression controlling thewhere block (in this caseunfinished)
gets evaluated completely on entry into thewhere, and it is then perfectly fine
to modify it inside the block. The modification affects only thenext execution
of the where.

On a strictlyserial machine, there is of course some penalty associated with the
above scheme: after a vector component converges, its corresponding component
in unfinished is redundantly tested on each further iteration, until the slowest-
converging component is done. If the number of iterations required does not
vary too greatly from component to component, this is a minor, often negligible,
penalty. However, one should be on the alert against algorithms whose worst-case
convergence could differ from typical convergence by orders of magnitude. For
these, one would need to implement a more complicated packing-unpacking scheme.
(See discussion in Chapter B6, especially introduction, p. 1083, and notes for
factrl, p. 1087.)

SUBROUTINE gaulag(x,w,alf)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), INTENT(IN) :: alf
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-13_dp

Given alf, the parameter α of the Laguerre polynomials, this routine returns arrays x and w
of length N containing the abscissas and weights of the N -point Gauss-Laguerre quadrature
formula. The abscissas are returned in ascending order. The parameter EPS is the relative
precision. Note that internal computations are done in double precision.

INTEGER(I4B) :: its,j,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(SP) :: anu
REAL(SP), PARAMETER :: C1=9.084064e-01_sp,C2=5.214976e-02_sp,&

C3=2.579930e-03_sp,C4=3.986126e-03_sp
REAL(SP), DIMENSION(size(x)) :: rhs,r2,r3,theta
REAL(DP), DIMENSION(size(x)) :: p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION(size(x)) :: unfinished
n=assert_eq(size(x),size(w),’gaulag’)
anu=4.0_sp*n+2.0_sp*alf+2.0_sp Initial approximations to the roots go into z.
rhs=arth(4*n-1,-4,n)*PI/anu
r3=rhs**(1.0_sp/3.0_sp)
r2=r3**2
theta=r3*(C1+r2*(C2+r2*(C3+r2*C4)))
z=anu*cos(theta)**2
unfinished=.true.
do its=1,MAXIT Newton’s method carried out simultaneously on

the roots.where (unfinished)
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p1=1.0
p2=0.0

end where
do j=1,n Loop up the recurrence relation to get the La-

guerre polynomials evaluated at z.where (unfinished)
p3=p2
p2=p1
p1=((2.0_dp*j-1.0_dp+alf-z)*p2-(j-1.0_dp+alf)*p3)/j

end where
end do
p1 now contains the desired Laguerre polynomials. We next compute pp, the derivatives,
by a standard relation involving also p2, the polynomials of one lower order.

where (unfinished)
pp=(n*p1-(n+alf)*p2)/z
z1=z
z=z1-p1/pp Newton’s formula.
unfinished=(abs(z-z1) > EPS*z)

end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gaulag’)
x=z Store the root and the weight.
w=-exp(gammln(alf+n)-gammln(real(n,sp)))/(pp*n*p2)
END SUBROUTINE gaulag

The key difficulty in parallelizing this routine starting from the Fortran 77
version is that the initial guesses for the roots of the Laguerre polynomials
were given in terms of previously determined roots. This prevents one

from finding all the roots simultaneously. The solution is to come up with a new
approximation to the roots that is a simple explicit formula, like the formula we
used for the Legendre roots ingauleg.

We start with the approximation toLα
n(x) given in equation (10.15.8) of[1]. We

keep only the first term and ask when it is zero. This gives the following prescription
for the kth rootxk of Lα

n(x): Solve forθ the equation

2θ− sin 2θ =
4n− 4k + 3

4n+ 2α + 2
π (B4.1)

Since1 ≤ k ≤ n andα > −1, we can always find a value such that0 < θ < π/2.
Then the approximation to the root is

xk = (4n + 2α+ 2) cos2 θ (B4.2)

This typically gives 3-digit accuracy, more than enough for the Newton iteration to
be able to refine the root. Unfortunately equation (B4.1) is not an explicit formula
for θ. (You may recognize it as being of the same form as Kepler’s equation in
mechanics.) If we call the right-hand side of (B4.1)y, then we can get an explicit
formula by working out the power series fory1/3 nearθ = 0 (using a computer
algebra program). Next invert the series to giveθ as a function ofy1/3. Finally,
economize the series (see§5.11). The result is the concise approximation

θ = 0.9084064y1/3 + 5.214976× 10−2y + 2.579930× 10−3y5/3

+ 3.986126× 10−3y7/3 (B4.3)
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SUBROUTINE gauher(x,w)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-13_dp,PIM4=0.7511255444649425_dp

This routine returns arrays x and w of length N containing the abscissas and weights of
the N -point Gauss-Hermite quadrature formula. The abscissas are returned in descending
order. Note that internal computations are done in double precision.
Parameters: EPS is the relative precision, PIM4 = 1/π1/4.

INTEGER(I4B) :: its,j,m,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(SP) :: anu
REAL(SP), PARAMETER :: C1=9.084064e-01_sp,C2=5.214976e-02_sp,&

C3=2.579930e-03_sp,C4=3.986126e-03_sp
REAL(SP), DIMENSION((size(x)+1)/2) :: rhs,r2,r3,theta
REAL(DP), DIMENSION((size(x)+1)/2) :: p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION((size(x)+1)/2) :: unfinished
n=assert_eq(size(x),size(w),’gauher’)
m=(n+1)/2 The roots are symmetric about the origin, so we have to

find only half of them.anu=2.0_sp*n+1.0_sp
rhs=arth(3,4,m)*PI/anu
r3=rhs**(1.0_sp/3.0_sp)
r2=r3**2
theta=r3*(C1+r2*(C2+r2*(C3+r2*C4)))
z=sqrt(anu)*cos(theta) Initial approximations to the roots.
unfinished=.true.
do its=1,MAXIT Newton’s method carried out simultaneously on the roots.

where (unfinished)
p1=PIM4
p2=0.0

end where
do j=1,n Loop up the recurrence relation to get the Hermite poly-

nomials evaluated at z.where (unfinished)
p3=p2
p2=p1
p1=z*sqrt(2.0_dp/j)*p2-sqrt(real(j-1,dp)/real(j,dp))*p3

end where
end do
p1 now contains the desired Hermite polynomials. We next compute pp, the derivatives,
by the relation (4.5.21) using p2, the polynomials of one lower order.

where (unfinished)
pp=sqrt(2.0_dp*n)*p2
z1=z
z=z1-p1/pp Newton’s formula.
unfinished=(abs(z-z1) > EPS)

end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gauher’)
x(1:m)=z Store the root
x(n:n-m+1:-1)=-z and its symmetric counterpart.
w(1:m)=2.0_dp/pp**2 Compute the weight
w(n:n-m+1:-1)=w(1:m) and its symmetric counterpart.
END SUBROUTINE gauher

Once again we need an explicit approximation for the polynomial roots,
this time forHn(x). We can use the same approximation scheme as
for Lα

n(x), since

H2m(x) ∝ L−1/2
m (x2), H2m+1(x) ∝ xL1/2

m (x2) (B4.4)
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Equations (B4.1) and (B4.2) become

2θ − sin 2θ =
4k − 1

2n + 1
π

xk =
√

2n + 1 cos θ
(B4.5)

Herek = 1, 2, . . . , m wherem = [(n + 1)/2], andk = 1 is the largest root. The
negative roots follow from symmetry. The root atx = 0 for odd n is included
in this approximation.

SUBROUTINE gaujac(x,w,alf,bet)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), INTENT(IN) :: alf,bet
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-14_dp

Given alf and bet, the parameters α and β of the Jacobi polynomials, this routine returns
arrays x and w of length N containing the abscissas and weights of the N -point Gauss-
Jacobi quadrature formula. The abscissas are returned in descending order. The parameter
EPS is the relative precision. Note that internal computations are done in double precision.

INTEGER(I4B) :: its,j,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(DP) :: alfbet,a,c,temp
REAL(DP), DIMENSION(size(x)) :: b,p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION(size(x)) :: unfinished
n=assert_eq(size(x),size(w),’gaujac’)
alfbet=alf+bet Initial approximations to the roots go into z.
z=cos(PI*(arth(1,1,n)-0.25_dp+0.5_dp*alf)/(n+0.5_dp*(alfbet+1.0_dp)))
unfinished=.true.
do its=1,MAXIT Newton’s method carried out simultaneously on the roots.

temp=2.0_dp+alfbet
where (unfinished) Start the recurrence with P0 and P1 to avoid a division

by zero when α + β = 0 or −1.p1=(alf-bet+temp*z)/2.0_dp
p2=1.0

end where
do j=2,n Loop up the recurrence relation to get the Jacobi poly-

nomials evaluated at z.a=2*j*(j+alfbet)*temp
temp=temp+2.0_dp
c=2.0_dp*(j-1.0_dp+alf)*(j-1.0_dp+bet)*temp
where (unfinished)

p3=p2
p2=p1
b=(temp-1.0_dp)*(alf*alf-bet*bet+temp*&

(temp-2.0_dp)*z)
p1=(b*p2-c*p3)/a

end where
end do
p1 now contains the desired Jacobi polynomials. We next compute pp, the derivatives,
by a standard relation involving also p2, the polynomials of one lower order.

where (unfinished)
pp=(n*(alf-bet-temp*z)*p1+2.0_dp*(n+alf)*&

(n+bet)*p2)/(temp*(1.0_dp-z*z))
z1=z
z=z1-p1/pp Newton’s formula.
unfinished=(abs(z-z1) > EPS)

end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gaujac’)
x=z Store the root and the weight.
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w=exp(gammln(alf+n)+gammln(bet+n)-gammln(n+1.0_sp)-&
gammln(n+alf+bet+1.0_sp))*temp*2.0_sp**alfbet/(pp*p2)

END SUBROUTINE gaujac

Now we need an explicit approximation for the roots of the Jacobi poly-
nomialsP (α,β)

n (x). We start with the asymptotic expansion (10.14.10)
of [1]. Setting this to zero gives the formula

x = cos

[
k − 1/4 + α/2

n + (α + β + 1)/2
π

]
(B4.6)

This is better than the formula (22.16.1) in[2], especially at small and moderaten.

� � �

SUBROUTINE gaucof(a,b,amu0,x,w)
USE nrtype; USE nrutil, ONLY : assert_eq,unit_matrix
USE nr, ONLY : eigsrt,tqli
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
REAL(SP), INTENT(IN) :: amu0
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w

Computes the abscissas and weights for a Gaussian quadrature formula from the Jacobi
matrix. On input, a and b of length N are the coefficients of the recurrence relation for the

set of monic orthogonal polynomials. The quantity µ0 ≡
∫ b
a W (x) dx is input as amu0. The

abscissas are returned in descending order in array x of length N , with the corresponding
weights in w, also of length N . The arrays a and b are modified. Execution can be speeded
up by modifying tqli and eigsrt to compute only the first component of each eigenvector.

REAL(SP), DIMENSION(size(a),size(a)) :: z
INTEGER(I4B) :: n
n=assert_eq(size(a),size(b),size(x),size(w),’gaucof’)
b(2:n)=sqrt(b(2:n)) Set up superdiagonal of Jacobi matrix.
call unit_matrix(z) Set up identity matrix for tqli to compute eigenvectors.
call tqli(a,b,z)
call eigsrt(a,z) Sort eigenvalues into descending order.
x=a
w=amu0*z(1,:)**2 Equation (4.5.12).
END SUBROUTINE gaucof

� � �

SUBROUTINE orthog(anu,alpha,beta,a,b)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: anu,alpha,beta
REAL(SP), DIMENSION(:), INTENT(OUT) :: a,b

Computes the coefficients aj and bj , j = 0, . . .N−1, of the recurrence relation for monic or-
thogonal polynomials with weight function W (x) by Wheeler’s algorithm. On input, alpha
and beta contain the 2N − 1 coefficients αj and βj , j = 0, . . . 2N − 2, of the recurrence
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relation for the chosen basis of orthogonal polynomials. The 2N modified moments νj are
input in anu for j = 0, . . .2N − 1. The first N coefficients are returned in a and b.

INTEGER(I4B) :: k,n,ndum
REAL(SP), DIMENSION(2*size(a)+1,2*size(a)+1) :: sig
n=assert_eq(size(a),size(b),’orthog: n’)
ndum=assert_eq(2*n,size(alpha)+1,size(anu),size(beta)+1,’orthog: ndum’)
sig(1,3:2*n)=0.0 Initialization, Equation (4.5.33).
sig(2,2:2*n+1)=anu(1:2*n)
a(1)=alpha(1)+anu(2)/anu(1)
b(1)=0.0
do k=3,n+1 Equation (4.5.34).

sig(k,k:2*n-k+3)=sig(k-1,k+1:2*n-k+4)+(alpha(k-1:2*n-k+2) &
-a(k-2))*sig(k-1,k:2*n-k+3)-b(k-2)*sig(k-2,k:2*n-k+3) &
+beta(k-1:2*n-k+2)*sig(k-1,k-1:2*n-k+2)

a(k-1)=alpha(k-1)+sig(k,k+1)/sig(k,k)-sig(k-1,k)/sig(k-1,k-1)
b(k-1)=sig(k,k)/sig(k-1,k-1)

end do
END SUBROUTINE orthog

� � �

f90
As discussed in Volume 1, multidimensionalquadrature can be performed
by calling a one-dimensional quadrature routine along each dimension.
If the same routine is used for all such calls, then the calls are re-

cursive. The filequad3d.f90 contains two modules,quad3d qgaus mod and
quad3d qromb mod. In the first, the basic one-dimensional quadrature routine is a
10-pointGaussian quadrature routine calledqgausand three-dimensional quadrature
is performed by callingquad3d qgaus. In the second, the basic one-dimensional
routine isqromb of §4.3 and the three-dimensional routine isquad3d qromb. The
Gaussian quadrature is simpler but its accuracy is not controllable. The Romberg
integration lets you specify an accuracy, but is apt to be very slow if you try for too
much accuracy. The only difference between the stand-alone version oftrapzd and
the version included here is that we have to add the keywordRECURSIVE. The only
changes from the stand-alone version ofqromb are: We have to addRECURSIVE; we
removetrapzd from the list of routines inUSE nr; we increaseEPS to 3 × 10−6.
Even this value could be too ambitious for difficult functions. You may want to
set JMAX to a smaller value than 20 to avoid burning up a lot of computer time.
Some people advocate using a smallerEPS on the inner quadrature (overz in our
routine) than on the outer quadratures (overx or y). That strategy would require
separate copies ofqromb.

MODULE quad3d_qgaus_mod
USE nrtype
PRIVATE Hide all names from the outside,
PUBLIC quad3d_qgaus except quad3d itself.
REAL(SP) :: xsav,ysav
INTERFACE User-supplied functions.

FUNCTION func(x,y,z) The three-dimensional function to be integrated.
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP), DIMENSION(:), INTENT(IN) :: z
REAL(SP), DIMENSION(size(z)) :: func
END FUNCTION func

FUNCTION y1(x)
USE nrtype
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REAL(SP), INTENT(IN) :: x
REAL(SP) :: y1
END FUNCTION y1

FUNCTION y2(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: y2
END FUNCTION y2

FUNCTION z1(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: z1
END FUNCTION z1

FUNCTION z2(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: z2
END FUNCTION z2

END INTERFACE
The routine quad3d qgaus returns as ss the integral of a user-supplied function func
over a three-dimensional region specified by the limits x1, x2, and by the user-supplied
functions y1, y2, z1, and z2, as defined in (4.6.2). Integration is performed by calling
qgaus recursively.

CONTAINS

FUNCTION h(x) This is H of eq. (4.6.5).
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: h
INTEGER(I4B) :: i
do i=1,size(x)

xsav=x(i)
h(i)=qgaus(g,y1(xsav),y2(xsav))

end do
END FUNCTION h

FUNCTION g(y) This is G of eq. (4.6.4).
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(size(y)) :: g
INTEGER(I4B) :: j
do j=1,size(y)

ysav=y(j)
g(j)=qgaus(f,z1(xsav,ysav),z2(xsav,ysav))

end do
END FUNCTION g

FUNCTION f(z) The integrand f(x, y, z) evaluated at fixed x and y.
REAL(SP), DIMENSION(:), INTENT(IN) :: z
REAL(SP), DIMENSION(size(z)) :: f
f=func(xsav,ysav,z)
END FUNCTION f

RECURSIVE FUNCTION qgaus(func,a,b)
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qgaus
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
REAL(SP) :: xm,xr
REAL(SP), DIMENSION(5) :: dx, w = (/ 0.2955242247_sp,0.2692667193_sp,&

0.2190863625_sp,0.1494513491_sp,0.0666713443_sp /),&
x = (/ 0.1488743389_sp,0.4333953941_sp,0.6794095682_sp,&
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0.8650633666_sp,0.9739065285_sp /)
xm=0.5_sp*(b+a)
xr=0.5_sp*(b-a)
dx(:)=xr*x(:)
qgaus=xr*sum(w(:)*(func(xm+dx)+func(xm-dx)))
END FUNCTION qgaus

SUBROUTINE quad3d_qgaus(x1,x2,ss)
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), INTENT(OUT) :: ss
ss=qgaus(h,x1,x2)
END SUBROUTINE quad3d_qgaus
END MODULE quad3d_qgaus_mod

f90
PRIVATE...PUBLIC quad3d qgaus By default, all module entities are ac-
cessible by a routine that uses the module (unless we restrict theUSE

statement withONLY). In this module, the user needs access only to the
routinequad3d qgaus; the variablesxsav, ysav and the proceduresf, g, h, and
qgaus are purely internal. It is good programming practice to prevent duplicate name
conflicts or data overwriting by limiting access to only the desired entities. Here the
PRIVATE statement with no variable names resets the default fromPUBLIC. Then we
include in thePUBLIC statement only the function name we want to be accessible.

REAL(SP) :: xsav,ysav In Fortran 90, we generally avoid declaring global
variables inCOMMON blocks. Instead, we give them complete specifications in a
module. A deficiency of Fortran 90 is that it does not allow pointers to functions. So
here we have to use the fixed-name functionfunc for the function to be integrated
over. If we could have a pointer to a function as a global variable, then we would
just set the pointer to point to the user function (of any name) in the calling program.
Similarly the functionsy1, y2, z1, andz2 could also have any name.

CONTAINS Here follow the internal subprogramsf, g, h, qgaus, and
quad3d qgaus. Note that such internal subprograms are all “visible” to each other,
i.e., their interfaces are mutually explicit, and do not requireINTERFACE statements.

RECURSIVE SUBROUTINE qgaus(func,a,b,ss) The RECURSIVE keyword is re-
quired for the compiler to process correctly any procedure that is invoked again
in its body before the return from the first call has been completed. While some
compilers may let you get away without explicitly informing them that a routine
is recursive, don’t count on it!

MODULE quad3d_qromb_mod
Alternative to quad3d qgaus mod that uses qromb to perform each one-dimensional in-
tegration.

USE nrtype
PRIVATE
PUBLIC quad3d_qromb
REAL(SP) :: xsav,ysav
INTERFACE

FUNCTION func(x,y,z)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP), DIMENSION(:), INTENT(IN) :: z
REAL(SP), DIMENSION(size(z)) :: func
END FUNCTION func

FUNCTION y1(x)
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USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: y1
END FUNCTION y1

FUNCTION y2(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: y2
END FUNCTION y2

FUNCTION z1(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: z1
END FUNCTION z1

FUNCTION z2(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: z2
END FUNCTION z2

END INTERFACE
CONTAINS

FUNCTION h(x)
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: h
INTEGER(I4B) :: i
do i=1,size(x)

xsav=x(i)
h(i)=qromb(g,y1(xsav),y2(xsav))

end do
END FUNCTION h

FUNCTION g(y)
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(size(y)) :: g
INTEGER(I4B) :: j
do j=1,size(y)

ysav=y(j)
g(j)=qromb(f,z1(xsav,ysav),z2(xsav,ysav))

end do
END FUNCTION g

FUNCTION f(z)
REAL(SP), DIMENSION(:), INTENT(IN) :: z
REAL(SP), DIMENSION(size(z)) :: f
f=func(xsav,ysav,z)
END FUNCTION f

RECURSIVE FUNCTION qromb(func,a,b)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : polint
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qromb
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: JMAX=20,JMAXP=JMAX+1,K=5,KM=K-1
REAL(SP), PARAMETER :: EPS=3.0e-6_sp
REAL(SP), DIMENSION(JMAXP) :: h,s
REAL(SP) :: dqromb
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INTEGER(I4B) :: j
h(1)=1.0
do j=1,JMAX

call trapzd(func,a,b,s(j),j)
if (j >= K) then

call polint(h(j-KM:j),s(j-KM:j),0.0_sp,qromb,dqromb)
if (abs(dqromb) <= EPS*abs(qromb)) RETURN

end if
s(j+1)=s(j)
h(j+1)=0.25_sp*h(j)

end do
call nrerror(’qromb: too many steps’)
END FUNCTION qromb

RECURSIVE SUBROUTINE trapzd(func,a,b,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
REAL(SP) :: del,fsum
INTEGER(I4B) :: it
if (n == 1) then

s=0.5_sp*(b-a)*sum(func( (/ a,b /) ))
else

it=2**(n-2)
del=(b-a)/it
fsum=sum(func(arth(a+0.5_sp*del,del,it)))
s=0.5_sp*(s+del*fsum)

end if
END SUBROUTINE trapzd

SUBROUTINE quad3d_qromb(x1,x2,ss)
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), INTENT(OUT) :: ss
ss=qromb(h,x1,x2)
END SUBROUTINE quad3d_qromb
END MODULE quad3d_qromb_mod

MODULE quad3d qromb_mod The only difference between this module and the
previous one is that all calls toqgaus are replaced by calls toqromb and that the
routineqgaus is replaced byqromb andtrapzd.

CITED REFERENCES AND FURTHER READING:

Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G. 1953, Higher Transcendental
Functions, Volume II (New York: McGraw-Hill). [1]

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York). [2]
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Chapter B5. Evaluation of Functions

SUBROUTINE eulsum(sum,term,jterm)
USE nrtype; USE nrutil, ONLY : poly_term,reallocate
IMPLICIT NONE
REAL(SP), INTENT(INOUT) :: sum
REAL(SP), INTENT(IN) :: term
INTEGER(I4B), INTENT(IN) :: jterm

Incorporates into sum the jterm’th term, with value term, of an alternating series. sum
is input as the previous partial sum, and is output as the new partial sum. The first call
to this routine, with the first term in the series, should be with jterm=1. On the second
call, term should be set to the second term of the series, with sign opposite to that of the
first call, and jterm should be 2. And so on.

REAL(SP), DIMENSION(:), POINTER, SAVE :: wksp
INTEGER(I4B), SAVE :: nterm Number of saved differences in wksp.
LOGICAL(LGT), SAVE :: init=.true.
if (init) then Initialize.

init=.false.
nullify(wksp)

end if
if (jterm == 1) then

nterm=1
wksp=>reallocate(wksp,100)
wksp(1)=term
sum=0.5_sp*term Return first estimate.

else
if (nterm+1 > size(wksp)) wksp=>reallocate(wksp,2*size(wksp))
wksp(2:nterm+1)=0.5_sp*wksp(1:nterm) Update saved quantities by van Wijn-

gaarden’s algorithm.wksp(1)=term
wksp(1:nterm+1)=poly_term(wksp(1:nterm+1),0.5_sp)
if (abs(wksp(nterm+1)) <= abs(wksp(nterm))) then Favorable to increase p,

sum=sum+0.5_sp*wksp(nterm+1)
nterm=nterm+1 and the table becomes longer.

else Favorable to increase n,
sum=sum+wksp(nterm+1) the table doesn’t become longer.

end if
end if
END SUBROUTINE eulsum

f90
This routine uses the function reallocate in nrutil to define a
temporary workspace and then, if necessary, enlarge the workspace
without destroying the earlier contents. The pointer wksp is declared

with the SAVE attribute. Since Fortran 90 pointers are born “in limbo,” we
cannot immediately test whether they are associated or not. Hence the code
if (init)...nullify(wksp). Then the line wksp=>reallocate(wksp,100) allocates an
array of length 100 and points wksp to it. On subsequent calls to eulsum, if nterm
ever gets bigger than the size of wksp, the call to reallocate doubles the size of
wksp and copies the old contents into the new storage.

You could achieve the same effect as the code if (init)...nullify(wksp)...

wksp=>reallocate(wksp,100) with a simple allocate(wksp,100). You would then use

1070
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reallocate only for increasing the storage if necessary. Don’t! The advantage
of the above scheme becomes clear if you consider what happens if eulsum is
invoked twice by the calling program to evaluate two different sums. On the second
invocation, when jterm = 1 again, you would be allocating an already allocated
pointer. This does not generate an error — it simply leaves the original target
inaccessible. Using reallocate instead not only allocates a new array of length
100, but also detects that wksp had already been associated. It dutifully (and
wastefully) copies the first 100 elements of the old wksp into the new storage, and,
more importantly, deallocates the old wksp, reclaiming its storage. While only two
invocations of eulsum without intervening deallocation of memory would not cause
a problem, many such invocations might well. We believe that, as a general rule,
the potential for catastrophe from reckless use of allocate is great enough that you
should always deallocate whenever storage is no longer required.

The unnecessary copying of 100 elements when eulsum is invoked a second
time could be avoided by making init an argument. It hardly seems worth it to us.

For Fortran 90 neophytes, note that unlike in C you have to do nothing special to
get the contents of the storage a pointer is addressing. The compiler figures out from
the context whether you mean the contents, such as wksp(1:nterm), or the address,
such as both occurrences of wksp in wksp=>reallocate(wksp,100).

wksp(1:nterm+1)=poly_term(wksp(1:nterm+1),0.5_sp) The poly term func-
tion in nrutil tabulates the partial sums of a polynomial, or, equivalently, performs
the synthetic division of a polynomial by a monomial.

Small-scale parallelism in eulsum is achieved straightforwardly by the
use of vector constructions and poly term (which parallelizes recur-
sively). The routine is not written to take advantage of data parallelism

in the (infrequent) case of wanting to sum many different series simultaneously; nor,
since wksp is a SAVEd variable, can it be used in many simultaneous instances on a
MIMD machine. (You can easily recode these generalizations if you need them.)

� � �

SUBROUTINE ddpoly(c,x,pd)
USE nrtype; USE nrutil, ONLY : arth,cumprod,poly_term
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(:), INTENT(OUT) :: pd

Given the coefficients of a polynomial of degree Nc − 1 as an array c(1:Nc) with c(1)
being the constant term, and given a value x, this routine returns the polynomial evaluated
at x as pd(1) and Nd − 1 derivatives as pd(2:Nd).

INTEGER(I4B) :: i,nc,nd
REAL(SP), DIMENSION(size(pd)) :: fac
REAL(SP), DIMENSION(size(c)) :: d
nc=size(c)
nd=size(pd)
d(nc:1:-1)=poly_term(c(nc:1:-1),x)
do i=2,min(nd,nc)

d(nc:i:-1)=poly_term(d(nc:i:-1),x)
end do
pd=d(1:nd)
fac=cumprod(arth(1.0_sp,1.0_sp,nd)) After the first derivative, factorial constants

come in.pd(3:nd)=fac(2:nd-1)*pd(3:nd)
END SUBROUTINE ddpoly
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f90
d(nc:1:-1)=poly_term(c(nc:1:-1),x) The poly term function in
nrutil tabulates the partial sums of a polynomial, or, equivalently,
performs synthetic division. See §22.3 for a discussion of why ddpoly

is coded this way.

fac=cumprod(arth(1.0_sp,1.0_sp,nd)) Here the function arth from nrutil

generates the sequence 1, 2, 3. . . . The function cumprod then tabulates the cumu-
lative products, thus making a table of factorials.

Notice that ddpoly doesn’t need an argument to pass Nd, the number of output
terms desired by the user: It gets that information from the length of the array
pd that the user provides for it to fill. It is a minor curiosity that pd, declared as
INTENT(OUT), can thus be used, on the sly, to pass some INTENT(IN) information.
(A Fortran 90 brain teaser could be: A subroutinewith onlyINTENT(OUT) arguments
can be called to print any specified integer. How is this done?)

SUBROUTINE poldiv(u,v,q,r)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: u,v
REAL(SP), DIMENSION(:), INTENT(OUT) :: q,r

Given the N coefficients of a polynomial in u, and the Nv coefficients of another polynomial
in v, divide the polynomial u by the polynomial v (“u”/“v”) giving a quotient polynomial
whose coefficients are returned in q, and a remainder polynomial whose coefficients are
returned in r. The arrays q and r are of length N , but only the first N −Nv + 1 elements
of q and the first Nv − 1 elements of r are used. The remaining elements are returned
as zero.

INTEGER(I4B) :: i,n,nv
n=assert_eq(size(u),size(q),size(r),’poldiv’)
nv=size(v)
r(:)=u(:)
q(:)=0.0
do i=n-nv,0,-1

q(i+1)=r(nv+i)/v(nv)
r(i+1:nv+i-1)=r(i+1:nv+i-1)-q(i+1)*v(1:nv-1)

end do
r(nv:n)=0.0
END SUBROUTINE poldiv

� � �

FUNCTION ratval_s(x,cof,mm,kk)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(DP), INTENT(IN) :: x Note precision! Change to REAL(SP) if desired.
INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(mm+kk+1), INTENT(IN) :: cof
REAL(DP) :: ratval_s

Given mm, kk, and cof(1:mm+kk+1), evaluate and return the rational function (cof(1)+

cof(2)x+ · · · + cof(mm+1)xmm)/(1 + cof(mm+2)x+ · · · + cof(mm+kk+1)xkk).
ratval_s=poly(x,cof(1:mm+1))/(1.0_dp+x*poly(x,cof(mm+2:mm+kk+1)))
END FUNCTION ratval_s

f90
This simple routine uses the function poly from nrutil to evaluate the
numerator and denominator polynomials. Single- and double-precision
versions, ratval sandratval v, are overloaded onto the nameratval

when the module nr is used.
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FUNCTION ratval_v(x,cof,mm,kk)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(mm+kk+1), INTENT(IN) :: cof
REAL(DP), DIMENSION(size(x)) :: ratval_v
ratval_v=poly(x,cof(1:mm+1))/(1.0_dp+x*poly(x,cof(mm+2:mm+kk+1)))
END FUNCTION ratval_v

� � �

The routines recur1 and recur2 are new in this volume, and do not have
Fortran 77 counterparts. First- and second-order linear recurrences are implemented
as trivial do-loops on strictly serial machines. On parallel machines, however,
they pose different, and quite interesting, programming challenges. Since many
calculations can be decomposed into recurrences, it is useful to have general,
parallelizable routines available. The algorithms behind recur1 and recur2 are
discussed in §22.2.

RECURSIVE FUNCTION recur1(a,b) RESULT(u)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b
REAL(SP), DIMENSION(size(a)) :: u
INTEGER(I4B), PARAMETER :: NPAR_RECUR1=8

Given vectors a of size n and b of size n − 1, returns a vector u that satisfies the first
order linear recurrence u1 = a1, uj = aj + bj−1uj−1, for j = 2, . . . , n. Parallelization is
via a recursive evaluation.

INTEGER(I4B) :: n,j
n=assert_eq(size(a),size(b)+1,’recur1’)
u(1)=a(1)
if (n < NPAR_RECUR1) then Do short vectors as a loop.

do j=2,n
u(j)=a(j)+b(j-1)*u(j-1)

end do
else

Otherwise, combine coefficients and recurse on the even components, then evaluate all
the odd components in parallel.

u(2:n:2)=recur1(a(2:n:2)+a(1:n-1:2)*b(1:n-1:2), &
b(3:n-1:2)*b(2:n-2:2))

u(3:n:2)=a(3:n:2)+b(2:n-1:2)*u(2:n-1:2)
end if
END FUNCTION recur1

f90
RECURSIVE FUNCTION recur1(a,b) RESULT(u) When a recursive function
invokes itself only indirectly through a sequence of function calls, then
the function name can be used for the result just as in a nonrecursive

function. When the function invokes itself directly, however, as in recur1, then
another name must be used for the result. If you are hazy on the syntax for RESULT,
see the discussion of recursion in §21.5.

� � �
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FUNCTION recur2(a,b,c)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,c
REAL(SP), DIMENSION(size(a)) :: recur2

Given vectors a of size n and b and c of size n−2, returns a vector u that satisfies the second
order linear recurrence u1 = a1, u2 = a2, uj = aj+bj−2uj−1+cj−2uj−2, for j = 3, . . . , n.
Parallelization is via conversion to a first order recurrence for a two-dimensional vector.

INTEGER(I4B) :: n
REAL(SP), DIMENSION(size(a)-1) :: a1,a2,u1,u2
REAL(SP), DIMENSION(size(a)-2) :: b11,b12,b21,b22
n=assert_eq(size(a),size(b)+2,size(c)+2,’recur2’)
a1(1)=a(1) Set up vector a.
a2(1)=a(2)
a1(2:n-1)=0.0
a2(2:n-1)=a(3:n)
b11(1:n-2)=0.0 Set up matrix b.
b12(1:n-2)=1.0
b21(1:n-2)=c(1:n-2)
b22(1:n-2)=b(1:n-2)
call recur1_v(a1,a2,b11,b12,b21,b22,u1,u2)
recur2(1:n-1)=u1(1:n-1)
recur2(n)=u2(n-1)
CONTAINS

RECURSIVE SUBROUTINE recur1_v(a1,a2,b11,b12,b21,b22,u1,u2)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a1,a2,b11,b12,b21,b22
REAL(SP), DIMENSION(:), INTENT(OUT) :: u1,u2
INTEGER(I4B), PARAMETER :: NPAR_RECUR2=8

Used by recur2 to evaluate first order vector recurrence. Routine is a two-dimensional
vector version of recur1, with matrix multiplication replacing scalar multiplication.

INTEGER(I4B) :: n,j,nn,nn1
REAL(SP), DIMENSION(size(a1)/2) :: aa1,aa2
REAL(SP), DIMENSION(size(a1)/2-1) :: bb11,bb12,bb21,bb22
n=assert_eq((/size(a1),size(a2),size(b11)+1,size(b12)+1,size(b21)+1,&

size(b22)+1,size(u1),size(u2)/),’recur1_v’)
u1(1)=a1(1)
u2(1)=a2(1)
if (n < NPAR_RECUR2) then Do short vectors as a loop.

do j=2,n
u1(j)=a1(j)+b11(j-1)*u1(j-1)+b12(j-1)*u2(j-1)
u2(j)=a2(j)+b21(j-1)*u1(j-1)+b22(j-1)*u2(j-1)

end do
else

Otherwise, combine coefficients and recurse on the even components, then evaluate all
the odd components in parallel.

nn=n/2
nn1=nn-1
aa1(1:nn)=a1(2:n:2)+b11(1:n-1:2)*a1(1:n-1:2)+&

b12(1:n-1:2)*a2(1:n-1:2)
aa2(1:nn)=a2(2:n:2)+b21(1:n-1:2)*a1(1:n-1:2)+&

b22(1:n-1:2)*a2(1:n-1:2)
bb11(1:nn1)=b11(3:n-1:2)*b11(2:n-2:2)+&

b12(3:n-1:2)*b21(2:n-2:2)
bb12(1:nn1)=b11(3:n-1:2)*b12(2:n-2:2)+&

b12(3:n-1:2)*b22(2:n-2:2)
bb21(1:nn1)=b21(3:n-1:2)*b11(2:n-2:2)+&

b22(3:n-1:2)*b21(2:n-2:2)
bb22(1:nn1)=b21(3:n-1:2)*b12(2:n-2:2)+&

b22(3:n-1:2)*b22(2:n-2:2)
call recur1_v(aa1,aa2,bb11,bb12,bb21,bb22,u1(2:n:2),u2(2:n:2))
u1(3:n:2)=a1(3:n:2)+b11(2:n-1:2)*u1(2:n-1:2)+&
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b12(2:n-1:2)*u2(2:n-1:2)
u2(3:n:2)=a2(3:n:2)+b21(2:n-1:2)*u1(2:n-1:2)+&

b22(2:n-1:2)*u2(2:n-1:2)
end if
END SUBROUTINE recur1_v
END FUNCTION recur2

� � �

FUNCTION dfridr(func,x,h,err)
USE nrtype; USE nrutil, ONLY : assert,geop,iminloc
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,h
REAL(SP), INTENT(OUT) :: err
REAL(SP) :: dfridr
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B),PARAMETER :: NTAB=10
REAL(SP), PARAMETER :: CON=1.4_sp,CON2=CON*CON,BIG=huge(x),SAFE=2.0

Returns the derivative of a function func at a point x by Ridders’ method of polynomial
extrapolation. The value h is input as an estimated initial stepsize; it need not be small,
but rather should be an increment in x over which func changes substantially. An estimate
of the error in the derivative is returned as err.
Parameters: Stepsize is decreased by CON at each iteration. Max size of tableau is set by
NTAB. Return when error is SAFE worse than the best so far.

INTEGER(I4B) :: ierrmin,i,j
REAL(SP) :: hh
REAL(SP), DIMENSION(NTAB-1) :: errt,fac
REAL(SP), DIMENSION(NTAB,NTAB) :: a
call assert(h /= 0.0, ’dfridr arg’)
hh=h
a(1,1)=(func(x+hh)-func(x-hh))/(2.0_sp*hh)
err=BIG
fac(1:NTAB-1)=geop(CON2,CON2,NTAB-1)
do i=2,NTAB Successive columns in the Neville tableau will go to smaller

stepsizes and higher orders of extrapolation.hh=hh/CON
a(1,i)=(func(x+hh)-func(x-hh))/(2.0_sp*hh) Try new, smaller stepsize.
do j=2,i

Compute extrapolations of various orders, requiring no new function evaluations.
a(j,i)=(a(j-1,i)*fac(j-1)-a(j-1,i-1))/(fac(j-1)-1.0_sp)

end do
errt(1:i-1)=max(abs(a(2:i,i)-a(1:i-1,i)),abs(a(2:i,i)-a(1:i-1,i-1)))

The error strategy is to compare each new extrapolation to one order lower, both at the
present stepsize and the previous one.

ierrmin=iminloc(errt(1:i-1))
if (errt(ierrmin) <= err) then If error is decreased, save the improved an-

swer.err=errt(ierrmin)
dfridr=a(1+ierrmin,i)

end if
if (abs(a(i,i)-a(i-1,i-1)) >= SAFE*err) RETURN

If higher order is worse by a significant factor SAFE, then quit early.
end do
END FUNCTION dfridr
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f90
ierrmin=iminloc(errt(1:i-1)) The function iminloc in nrutil is use-
ful when you need to know the index of the smallest element in an
array.

� � �

FUNCTION chebft(a,b,n,func)
USE nrtype; USE nrutil, ONLY : arth,outerprod
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: chebft
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
Chebyshev fit: Given a function func, lower and upper limits of the interval [a,b], and
a maximum degree n, this routine computes the n coefficients ck such that func(x) ≈
[
∑n

k=1 ckTk−1(y)] − c1/2, where y and x are related by (5.8.10). This routine is to be
used with moderately large n (e.g., 30 or 50), the array of c’s subsequently to be truncated
at the smaller value m such that cm+1 and subsequent elements are negligible.

REAL(DP) :: bma,bpa
REAL(DP), DIMENSION(n) :: theta
bma=0.5_dp*(b-a)
bpa=0.5_dp*(b+a)
theta(:)=PI_D*arth(0.5_dp,1.0_dp,n)/n
chebft(:)=matmul(cos(outerprod(arth(0.0_dp,1.0_dp,n),theta)), &

func(real(cos(theta)*bma+bpa,sp)))*2.0_dp/n
We evaluate the function at the n points required by (5.8.7). We accumulate the sum
in double precision for safety.

END FUNCTION chebft

f90
chebft(:)=matmul(...) Here again Fortran 90 produces a very concise
parallelizable formulation that requires some effort to decode. Equation
(5.8.7) is a product of the matrix of cosines, where the rows are indexed

by j and the columns by k, with the vector of function values indexed by k. We
use the outerprod function in nrutil to form the matrix of arguments for the
cosine, and rely on the element-by-element application of cos to produce the matrix
of cosines. matmul then takes care of the matrix product. A subtlety is that, while
the calculation is being done in double precision to minimize roundoff, the function
is assumed to be supplied in single precision. Thus real(...,sp) is used to convert
the double precision argument to single precision.

FUNCTION chebev_s(a,b,c,x)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b,x
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP) :: chebev_s

Chebyshev evaluation: All arguments are input. c is an array of length M of Chebyshev
coefficients, the first M elements of c output from chebft (which must have been called
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with the same a and b). The Chebyshev polynomial
∑M

k=1 ckTk−1(y) − c1/2 is evaluated
at a point y = [x− (b+ a)/2]/[(b−a)/2], and the result is returned as the function value.

INTEGER(I4B) :: j,m
REAL(SP) :: d,dd,sv,y,y2
if ((x-a)*(x-b) > 0.0) call nrerror(’x not in range in chebev_s’)
m=size(c)
d=0.0
dd=0.0
y=(2.0_sp*x-a-b)/(b-a) Change of variable.
y2=2.0_sp*y
do j=m,2,-1 Clenshaw’s recurrence.

sv=d
d=y2*d-dd+c(j)
dd=sv

end do
chebev_s=y*d-dd+0.5_sp*c(1) Last step is different.
END FUNCTION chebev_s

FUNCTION chebev_v(a,b,c,x)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: c,x
REAL(SP), DIMENSION(size(x)) :: chebev_v
INTEGER(I4B) :: j,m
REAL(SP), DIMENSION(size(x)) :: d,dd,sv,y,y2
if (any((x-a)*(x-b) > 0.0)) call nrerror(’x not in range in chebev_v’)
m=size(c)
d=0.0
dd=0.0
y=(2.0_sp*x-a-b)/(b-a)
y2=2.0_sp*y
do j=m,2,-1

sv=d
d=y2*d-dd+c(j)
dd=sv

end do
chebev_v=y*d-dd+0.5_sp*c(1)
END FUNCTION chebev_v

f90
The name chebev is overloaded with scalar and vector versions.
chebev v is essentially identical to chebev s except for the decla-
rations of the variables. Fortran 90 does the appropriate scalar or vector

arithmetic in the body of the routine, depending on the type of the variables.

� � �

FUNCTION chder(a,b,c)
USE nrtype; USE nrutil, ONLY : arth,cumsum
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(size(c)) :: chder

This routine returns an array of length N containing the Chebyshev coefficients of the
derivative of the function whose coefficients are in the array c. Input are a,b,c, as output
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from routine chebft §5.8. The desired degree of approximation N is equal to the length
of c supplied.

INTEGER(I4B) :: n
REAL(SP) :: con
REAL(SP), DIMENSION(size(c)) :: temp
n=size(c)
temp(1)=0.0
temp(2:n)=2.0_sp*arth(n-1,-1,n-1)*c(n:2:-1)
chder(n:1:-2)=cumsum(temp(1:n:2)) Equation (5.9.2).
chder(n-1:1:-2)=cumsum(temp(2:n:2))
con=2.0_sp/(b-a)
chder=chder*con Normalize to the interval b-a.
END FUNCTION chder

FUNCTION chint(a,b,c)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(size(c)) :: chint

This routine returns an array of length N containing the Chebyshev coefficients of the
integral of the function whose coefficients are in the array c. Input are a,b,c, as output
from routine chebft §5.8. The desired degree of approximation N is equal to the length
of c supplied. The constant of integration is set so that the integral vanishes at a.

INTEGER(I4B) :: n
REAL(SP) :: con
n=size(c)
con=0.25_sp*(b-a) Factor that normalizes to the interval b-a.
chint(2:n-1)=con*(c(1:n-2)-c(3:n))/arth(1,1,n-2) Equation (5.9.1).
chint(n)=con*c(n-1)/(n-1) Special case of (5.9.1) for n.
chint(1)=2.0_sp*(sum(chint(2:n:2))-sum(chint(3:n:2))) Set the constant of inte-

gration.END FUNCTION chint

f90
If you look at equation (5.9.1) for the Chebyshev coefficients of the
integral of a function, you will see c i−1 and ci+1 and be tempted to use
eoshift. We think it is almost always better to use array sections instead,

as in the code above, especially if your code will ever run on a serial machine.

� � �

FUNCTION chebpc(c)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(size(c)) :: chebpc

Chebyshev polynomial coefficients. Given a coefficient array c of length N , this routine

returns a coefficient array d of length N such that
∑N

k=1 dky
k−1 =

∑N
k=1 ckTk−1(y) −

c1/2. The method is Clenshaw’s recurrence (5.8.11), but now applied algebraically rather
than arithmetically.

INTEGER(I4B) :: j,n
REAL(SP), DIMENSION(size(c)) :: dd,sv
n=size(c)
chebpc=0.0
dd=0.0
chebpc(1)=c(n)
do j=n-1,2,-1

sv(2:n-j+1)=chebpc(2:n-j+1)
chebpc(2:n-j+1)=2.0_sp*chebpc(1:n-j)-dd(2:n-j+1)
dd(2:n-j+1)=sv(2:n-j+1)
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sv(1)=chebpc(1)
chebpc(1)=-dd(1)+c(j)
dd(1)=sv(1)

end do
chebpc(2:n)=chebpc(1:n-1)-dd(2:n)
chebpc(1)=-dd(1)+0.5_sp*c(1)
END FUNCTION chebpc

� � �

SUBROUTINE pcshft(a,b,d)
USE nrtype; USE nrutil, ONLY : geop
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d

Polynomial coefficient shift. Given a coefficient array d of length N , this routine generates

a coefficient array g of the same length such that
∑N

k=1 dky
k−1 =

∑N
k=1 gkx

k−1, where
x and y are related by (5.8.10), i.e., the interval −1 < y < 1 is mapped to the interval
a < x < b. The array g is returned in d.

INTEGER(I4B) :: j,n
REAL(SP), DIMENSION(size(d)) :: dd
REAL(SP) :: x
n=size(d)
dd=d*geop(1.0_sp,2.0_sp/(b-a),n)
x=-0.5_sp*(a+b)
d(1)=dd(n)
d(2:n)=0.0
do j=n-1,1,-1 We accomplish the shift by synthetic division, that miracle of

high-school algebra.d(2:n+1-j)=d(2:n+1-j)*x+d(1:n-j)
d(1)=d(1)*x+dd(j)

end do
END SUBROUTINE pcshft

There is a subtle, but major, distinction between the synthetic division
algorithm used in the Fortran 77 version of pcshft and that used above.
In the Fortran 77 version, the synthetic division (translated to Fortran

90 notation) is

d(1:n)=dd(1:n)
do j=1,n-1

do k=n-1,j,-1
d(k)=x*d(k+1)+d(k)

end do
end do

while, in Fortran 90, it is

d(1)=dd(n)
d(2:n)=0.0
do j=n-1,1,-1

d(2:n+1-j)=d(2:n+1-j)*x+d(1:n-j)
d(1)=d(1)*x+dd(j)

end do

As explained in §22.3, these are algebraically — but not algorithmically — equivalent.
The inner loop in the Fortran 77 version does not parallelize, because each k value
uses the result of the previous one. In fact, the k loop is a synthetic division, which
can be parallelized recursively (as in the nrutil routine poly term), but not simply
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vectorized. In the Fortran 90 version, since not one but n-1 successive synthetic
divisions are to be performed (by the outer loop), it is possible to reorganize the
calculation to allow vectorization.

� � �

FUNCTION pccheb(d)
USE nrtype; USE nrutil, ONLY : arth,cumprod,geop
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP), DIMENSION(size(d)) :: pccheb

Inverse of routine chebpc: given an array of polynomial coefficients d, returns an equivalent
array of Chebyshev coefficients of the same length.

INTEGER(I4B) :: k,n
REAL(SP), DIMENSION(size(d)) :: denom,numer,pow
n=size(d)
pccheb(1)=2.0_sp*d(1)
pow=geop(1.0_sp,2.0_sp,n) Powers of 2.
numer(1)=1.0 Combinatorial coefficients computed as numer/denom.
denom(1)=1.0
denom(2:(n+3)/2)=cumprod(arth(1.0_sp,1.0_sp,(n+1)/2))
pccheb(2:n)=0.0
do k=2,n Loop over orders of x in the polynomial.

numer(2:(k+3)/2)=cumprod(arth(k-1.0_sp,-1.0_sp,(k+1)/2))
pccheb(k:1:-2)=pccheb(k:1:-2)+&

d(k)/pow(k-1)*numer(1:(k+1)/2)/denom(1:(k+1)/2)
end do
END FUNCTION pccheb

� � �

SUBROUTINE pade(cof,resid)
USE nrtype
USE nr, ONLY : lubksb,ludcmp,mprove
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(INOUT) :: cof DP for consistency with ratval.
REAL(SP), INTENT(OUT) :: resid

Given cof(1:2N + 1), the leading terms in the power series expansion of a function, solve
the linear Padé equations to return the coefficients of a diagonal rational function approxi-
mation to the same function, namely (cof(1)+ cof(2)x + · · · + cof(N + 1)xN )/(1 +
cof(N + 2)x + · · · + cof(2N + 1)xN ). The value resid is the norm of the residual
vector; a small value indicates a well-converged solution.

INTEGER(I4B) :: k,n
INTEGER(I4B), DIMENSION((size(cof)-1)/2) :: indx
REAL(SP), PARAMETER :: BIG=1.0e30_sp A big number.
REAL(SP) :: d,rr,rrold
REAL(SP), DIMENSION((size(cof)-1)/2) :: x,y,z
REAL(SP), DIMENSION((size(cof)-1)/2,(size(cof)-1)/2) :: q,qlu
n=(size(cof)-1)/2
x=cof(n+2:2*n+1) Set up matrix for solving.
y=x
do k=1,n

q(:,k)=cof(n+2-k:2*n+1-k)
end do
qlu=q
call ludcmp(qlu,indx,d) Solve by LU decomposition and backsubsti-

tution.call lubksb(qlu,indx,x)
rr=BIG
do Important to use iterative improvement, since

the Padé equations tend to be ill-conditioned.rrold=rr
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z=x
call mprove(q,qlu,indx,y,x)
rr=sum((z-x)**2) Calculate residual.
if (rr >= rrold) exit If it is no longer improving, call it quits.

end do
resid=sqrt(rrold)
do k=1,n Calculate the remaining coefficients.

y(k)=cof(k+1)-dot_product(z(1:k),cof(k:1:-1))
end do
cof(2:n+1)=y Copy answers to output.
cof(n+2:2*n+1)=-z
END SUBROUTINE pade

� � �

SUBROUTINE ratlsq(func,a,b,mm,kk,cof,dev)
USE nrtype; USE nrutil, ONLY : arth,geop
USE nr, ONLY : ratval,svbksb,svdcmp
IMPLICIT NONE
REAL(DP), INTENT(IN) :: a,b
INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(:), INTENT(OUT) :: cof
REAL(DP), INTENT(OUT) :: dev
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: NPFAC=8,MAXIT=5
REAL(DP), PARAMETER :: BIG=1.0e30_dp

Returns in cof(1:mm+kk+1) the coefficients of a rational function approximation to the
function func in the interval (a,b). Input quantities mm and kk specify the order of the
numerator and denominator, respectively. The maximum absolute deviation of the approx-
imation (insofar as is known) is returned as dev. Note that double-precision versions of
svdcmp and svbksb are called.

INTEGER(I4B) :: it,ncof,npt,npth
REAL(DP) :: devmax,e,theta
REAL(DP), DIMENSION((mm+kk+1)*NPFAC) :: bb,ee,fs,wt,xs
REAL(DP), DIMENSION(mm+kk+1) :: coff,w
REAL(DP), DIMENSION(mm+kk+1,mm+kk+1) :: v
REAL(DP), DIMENSION((mm+kk+1)*NPFAC,mm+kk+1) :: u,temp
ncof=mm+kk+1
npt=NPFAC*ncof Number of points where function is evaluated,

i.e., fineness of the mesh.npth=npt/2
dev=BIG
theta=PIO2_D/(npt-1)
xs(1:npth-1)=a+(b-a)*sin(theta*arth(0,1,npth-1))**2

Now fill arrays with mesh abscissas and function values. At each end, use formula that mini-
mizes roundoff sensitivity in xs.

xs(npth:npt)=b-(b-a)*sin(theta*arth(npt-npth,-1,npt-npth+1))**2
fs=func(xs)
wt=1.0 In later iterations we will adjust these weights to

combat the largest deviations.ee=1.0
e=0.0
do it=1,MAXIT Loop over iterations.

bb=wt*(fs+sign(e,ee))
Key idea here: Fit to fn(x) + e where the deviation is positive, to fn(x) − e where it is
negative. Then e is supposed to become an approximation to the equal-ripple deviation.

temp=geop(spread(1.0_dp,1,npt),xs,ncof)
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Note that vector form of geop (returning matrix) is being used.
u(:,1:mm+1)=temp(:,1:mm+1)*spread(wt,2,mm+1)

Set up the “design matrix” for the least squares fit.
u(:,mm+2:ncof)=-temp(:,2:ncof-mm)*spread(bb,2,ncof-mm-1)
call svdcmp(u,w,v)

Singular Value Decomposition. In especially singular or difficult cases, one might here
edit the singular values w(1:ncof), replacing small values by zero.

call svbksb(u,w,v,bb,coff)
ee=ratval(xs,coff,mm,kk)-fs Tabulate the deviations and revise the weights.
wt=abs(ee) Use weighting to emphasize most deviant points.
devmax=maxval(wt)
e=sum(wt)/npt Update e to be the mean absolute deviation.
if (devmax <= dev) then Save only the best coefficient set found.

cof=coff
dev=devmax

end if
write(*,10) it,devmax

end do
10 format (’ ratlsq iteration=’,i2,’ max error=’,1p,e10.3)

END SUBROUTINE ratlsq

f90
temp=geop(spread(1.0_dp,1,npt),xs,ncof) The design matrix uij is de-
fined for i = 1, . . . , npts by

uij =

{
wix

j−1
i , j = 1, . . . , m+ 1

−bix
j−m−2
i , j = m+ 2, . . . , n

(B5.12)

The first case in equation (B5.12) is computed in parallel by constructing the matrix
temp equal to




1 x1 x2
1 · · ·

1 x2 x2
2 · · ·

1 x3 x2
3 · · ·

...
...

...
. . .




and then multiplying by the matrix spread(wt,2,mm+1), which is just



w1 w1 w1 · · ·
w2 w2 w2 · · ·
w3 w3 w3 · · ·
...

...
...

. . .




(Remember that multiplication using * means element-by-element multiplication,
not matrix multiplication.) A similar construction is used for the second part of
the design matrix.
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Chapter B6. Special Functions

f90
A Fortran 90 intrinsic function such as sin(x) is both generic and
elemental. Generic means that the argument x can be any of multiple
intrinsic data types and kind values (in the case of sin, any real or

complex kind). Elemental means that x need not be a scalar, but can be an array of
any rank and shape, in which case the calculation of sin is performed independently
for each element.

Ideally, when we implement more complicated special functions in Fortran 90,
as we do in this chapter, we would make them, too, both generic and elemental.
Unfortunately, the language standard does not completely allow this. User-defined
elemental functions are prohibited in Fortran 90, though they will be allowed in
Fortran 95. And, there is no fully automatic way of providing for a single routine
to allow arguments of multiple data types or kinds — nothing like C++’s “class
templates,” for example.

However, don’t give up hope! Fortran 90 does provide a powerful mechanism
for overloading, which can be used (perhaps not always with a maximum of
convenience) to simulate both generic and elemental function features. In most
cases, when we implement a special function with a scalar argument, gammln(x)
say, we will also implement a corresponding vector-valued function of vector
argument that evaluates the special function for each component of the vector
argument. We will then overload the scalar and vector version of the function onto
the same function name. For example, within the nr module are the lines

INTERFACE gammln
FUNCTION gammln_s(xx)
USE nrtype
REAL(SP), INTENT(IN) :: xx
REAL(SP) :: gammln_s
END FUNCTION gammln_s

FUNCTION gammln_v(xx)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), DIMENSION(size(xx)) :: gammln_v
END FUNCTION gammln_v

END INTERFACE

which can be included by a statement like “USE nr, ONLY: gammln,” and then allow
you to write gammln(x)without caring (or even thinking about) whether x is a scalar
or a vector. If you want arguments of even higher rank (matrices, and so forth), you
can provide these yourself, based on our models, and overload them, too.

That takes care of “elemental”; what about “generic”? Here, too, overloading
provides an acceptable, if not perfect, solution. Where double-precision versions of
special functions are needed, you can in many cases easily construct them from our
provided routines by changing the variable kinds (and any necessary convergence

1083
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parameters), and then additionally overload them onto the same generic function
names. (In general, in the interest of brevity, we will not ourselves do this for the
functions in this chapter.)

At first meeting, Fortran 90’s overloading capability may seem trivial, or
merely cosmetic, to the Fortran 77 programmer; but one soon comes to rely on
it as an important conceptual simplification. Programming at a “higher level of
abstraction” is usually more productive than spending time “bogged down in the
mud.” Furthermore, the use of overloading is generally fail-safe: If you invoke a
generic name with arguments of shapes or types for which a specific routine has not
been defined, the compiler tells you about it.

We won’t reprint the module nr’s interface blocks for all the routines in this
chapter. When you see routines named something s and something v, below,
you can safely assume that the generic name something is defined in the module
nr and overloaded with the two specific routine names. A full alphabetical listing of
all the interface blocks in nr is given in Appendix C2.

Given our heavy investment, in this chapter, in overloadable vector-
valued special function routines, it is worth discussing whether this effort
is simply a stopgap measure for Fortran 90, soon to be made obsolete

by Fortran 95’s provision of user-definable ELEMENTAL procedures. The answer is
“not necessarily,” and takes us into some speculation about the future of SIMD,
versus MIMD, computing.

Elemental procedures, while applying the same executable code to each element,
do not insist that it be feasible to perform all the parallel calculations in lockstep. That
is, elemental procedures can have tests and branches (if-then-else constructions)
that result in different elements being calculated by totally different pieces of code,
in a fashion that can only be determined at run time. For true 100% MIMD (multiple
instruction, multiple data) machines, this is not a problem: individual processors do
the individual element calculations asynchronously.

However, virtually none of today’s (and likely tomorrow’s) largest-scale parallel
supercomputers are 100% MIMD in this way. While modern parallel supercomputers
increasingly have MIMD features, they continue to reward the use of SIMD (single
instruction, multiple data) code with greater computational speed, often because of
hardware pipelining or vector processing features within the individual processors.
The use of Fortran 90 (or, for that matter Fortran 95) in a data-parallel or SIMD mode
is thus by no means superfluous, or obviated by Fortran 95’sELEMENTALconstruction.

The problem we face is that parallel calculation of special function values often
doesn’t fit well into the SIMD mold: Since the calculation of the value of a special
function typically requires the convergence of an iterative process, as well as possible
branches for different values of arguments, it cannot in general be done efficiently
with “lockstep” SIMD programming.

Luckily, in particular cases, including most (but not all) of the functions in this
chapter, one can in fact make reasonably good parallel implementations with the
SIMD tools provided by the language. We will in fact see a number of different
tricks for accomplishing this in the code that follows.

We are interested in demonstrating SIMD techniques, but we are not completely
impractical. None of the data-parallel implementations given below are too inefficient
on a scalar machine, and some may in fact be faster than Fortran 95’s ELEMENTAL
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alternative, or than do-loops over calls to the scalar version of the function. On a
scalar machine, how can this be? We have already, above, hinted at the answer: (i)
most modern scalar processors can overlap instructions to some degree, and data-
parallel coding often provides compilers with the ability to accomplish this more
efficiently; and (ii) data-parallel code can sometimes give better cache utilization.

� � �

FUNCTION gammln_s(xx)
USE nrtype; USE nrutil, ONLY : arth,assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: xx
REAL(SP) :: gammln_s

Returns the value ln[Γ(xx)] for xx > 0.
REAL(DP) :: tmp,x

Internal arithmetic will be done in double precision, a nicety that you can omit if five-figure
accuracy is good enough.

REAL(DP) :: stp = 2.5066282746310005_dp
REAL(DP), DIMENSION(6) :: coef = (/76.18009172947146_dp,&

-86.50532032941677_dp,24.01409824083091_dp,&
-1.231739572450155_dp,0.1208650973866179e-2_dp,&
-0.5395239384953e-5_dp/)

call assert(xx > 0.0, ’gammln_s arg’)
x=xx
tmp=x+5.5_dp
tmp=(x+0.5_dp)*log(tmp)-tmp
gammln_s=tmp+log(stp*(1.000000000190015_dp+&

sum(coef(:)/arth(x+1.0_dp,1.0_dp,size(coef))))/x)
END FUNCTION gammln_s

FUNCTION gammln_v(xx)
USE nrtype; USE nrutil, ONLY: assert
IMPLICIT NONE
INTEGER(I4B) :: i
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), DIMENSION(size(xx)) :: gammln_v
REAL(DP), DIMENSION(size(xx)) :: ser,tmp,x,y
REAL(DP) :: stp = 2.5066282746310005_dp
REAL(DP), DIMENSION(6) :: coef = (/76.18009172947146_dp,&

-86.50532032941677_dp,24.01409824083091_dp,&
-1.231739572450155_dp,0.1208650973866179e-2_dp,&
-0.5395239384953e-5_dp/)

if (size(xx) == 0) RETURN
call assert(all(xx > 0.0), ’gammln_v arg’)
x=xx
tmp=x+5.5_dp
tmp=(x+0.5_dp)*log(tmp)-tmp
ser=1.000000000190015_dp
y=x
do i=1,size(coef)

y=y+1.0_dp
ser=ser+coef(i)/y

end do
gammln_v=tmp+log(stp*ser/x)
END FUNCTION gammln_v
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f90
call assert(xx > 0.0, ’gammln_s arg’) We use the nrutil routine
assert for functions that have restrictions on the allowed range of
arguments. One could instead have used an if statement with a call

to nrerror; but we think that the uniformity of using assert, and the fact
that its logical arguments read the “desired” way, not the “erroneous” way, make
for a clearer programming style. In the vector version, the assert line is:
call assert(all(xx > 0.0), ’gammln_v arg’)

Notice that the scalar and vector versions achieve parallelism in quite
different ways, something that we will see many times in this chapter.
In the scalar case, parallelism (at least small-scale) is achieved through

constructions like

sum(coef(:)/arth(x+1.0_dp,1.0_dp,size(coef)))

Here vector utilities construct the series x + 1, x + 2, . . . and then sum a series
with these terms in the denominators and a vector of coefficients in the numerators.
(This code may seem terse to Fortran 90 novices, but once you get used to it, it
is quite clear to read.)

In the vector version, by contrast, parallelism is achieved across the components
of the vector argument, and the above series is evaluated sequentially as a do-loop.
Obviously the assumption is that the length of the vector argument is much longer
than the very modest number (here, 6) of terms in the sum.

� � �

FUNCTION factrl_s(n)
USE nrtype; USE nrutil, ONLY : arth,assert,cumprod
USE nr, ONLY : gammln
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP) :: factrl_s

Returns the value n! as a floating-point number.
INTEGER(I4B), SAVE :: ntop=0
INTEGER(I4B), PARAMETER :: NMAX=32
REAL(SP), DIMENSION(NMAX), SAVE :: a Table of stored values.
call assert(n >= 0, ’factrl_s arg’)
if (n < ntop) then Already in table.

factrl_s=a(n+1)
else if (n < NMAX) then Fill in table up to NMAX.

ntop=NMAX
a(1)=1.0
a(2:NMAX)=cumprod(arth(1.0_sp,1.0_sp,NMAX-1))
factrl_s=a(n+1)

else Larger value than size of table is required.
Actually, this big a value is going to over-
flow on many computers, but no harm in
trying.

factrl_s=exp(gammln(n+1.0_sp))
end if
END FUNCTION factrl_s

f90
cumprod(arth(1.0_sp,1.0_sp,NMAX-1)) By now you should recognize this
as an idiom for generating a vector of consecutive factorials. The
routines cumprod and arth, both in nrutil, are both capable of being

parallelized, e.g., by recursion, so this idiom is potentially faster than an in-line
do-loop.
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FUNCTION factrl_v(n)
USE nrtype; USE nrutil, ONLY : arth,assert,cumprod
USE nr, ONLY : gammln
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n
REAL(SP), DIMENSION(size(n)) :: factrl_v
LOGICAL(LGT), DIMENSION(size(n)) :: mask
INTEGER(I4B), SAVE :: ntop=0
INTEGER(I4B), PARAMETER :: NMAX=32
REAL(SP), DIMENSION(NMAX), SAVE :: a
call assert(all(n >= 0), ’factrl_v arg’)
if (ntop == 0) then

ntop=NMAX
a(1)=1.0
a(2:NMAX)=cumprod(arth(1.0_sp,1.0_sp,NMAX-1))

end if
mask = (n >= NMAX)
factrl_v=unpack(exp(gammln(pack(n,mask)+1.0_sp)),mask,0.0_sp)
where (.not. mask) factrl_v=a(n+1)
END FUNCTION factrl_v

unpack(exp(gammln(pack(n,mask)+1.0_sp)),mask,0.0_sp) Here we meet
the first of several solutions to a common problem: How shall we get
answers, from an external vector-valued function, for just a subset of

vector arguments, those defined by a mask? Here we use what we call the “pack-
unpack” solution: Pack up all the arguments using the mask, send them to the
function, and unpack the answers that come back. This packing and unpacking is
not without cost (highly dependent on machine architecture, to be sure), but we hope
to “earn it back” in the parallelism of the external function.

where (.not. mask) factrl_v=a(n+1) In some cases we might take care of the
.not.mask case directly within the unpack construction, using its third (“FIELD=”)
argument to provide the not-unpacked values. However, there is no guarantee that
the compiler won’t evaluate all components of the “FIELD=” array, if it finds it
efficient to do so. Here, since the index of a(n+1) would be out of range, we can’t
do it this way. Thus the separate where statement.

� � �

FUNCTION bico_s(n,k)
USE nrtype
USE nr, ONLY : factln
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n,k
REAL(SP) :: bico_s

Returns the binomial coefficient
(n
k

)
as a floating-point number.

bico_s=nint(exp(factln(n)-factln(k)-factln(n-k)))
The nearest-integer function cleans up roundoff error for smaller values of n and k.

END FUNCTION bico_s
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FUNCTION bico_v(n,k)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : factln
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n,k
REAL(SP), DIMENSION(size(n)) :: bico_v
INTEGER(I4B) :: ndum
ndum=assert_eq(size(n),size(k),’bico_v’)
bico_v=nint(exp(factln(n)-factln(k)-factln(n-k)))
END FUNCTION bico_v

� � �

FUNCTION factln_s(n)
USE nrtype; USE nrutil, ONLY : arth,assert
USE nr, ONLY : gammln
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP) :: factln_s

Returns ln(n!).
INTEGER(I4B), PARAMETER :: TMAX=100
REAL(SP), DIMENSION(TMAX), SAVE :: a
LOGICAL(LGT), SAVE :: init=.true.
if (init) then Initialize the table.

a(1:TMAX)=gammln(arth(1.0_sp,1.0_sp,TMAX))
init=.false.

end if
call assert(n >= 0, ’factln_s arg’)
if (n < TMAX) then In range of the table.

factln_s=a(n+1)
else Out of range of the table.

factln_s=gammln(n+1.0_sp)
end if
END FUNCTION factln_s

FUNCTION factln_v(n)
USE nrtype; USE nrutil, ONLY : arth,assert
USE nr, ONLY : gammln
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n
REAL(SP), DIMENSION(size(n)) :: factln_v
LOGICAL(LGT), DIMENSION(size(n)) :: mask
INTEGER(I4B), PARAMETER :: TMAX=100
REAL(SP), DIMENSION(TMAX), SAVE :: a
LOGICAL(LGT), SAVE :: init=.true.
if (init) then

a(1:TMAX)=gammln(arth(1.0_sp,1.0_sp,TMAX))
init=.false.

end if
call assert(all(n >= 0), ’factln_v arg’)
mask = (n >= TMAX)
factln_v=unpack(gammln(pack(n,mask)+1.0_sp),mask,0.0_sp)
where (.not. mask) factln_v=a(n+1)
END FUNCTION factln_v
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f90
gammln(arth(1.0_sp,1.0_sp,TMAX)) Another example of the program-
ming convenience of combining a function returning a vector (here,
arth) with a special function whose generic name (here, gammln) has

an overloaded vector version.

� � �

FUNCTION beta_s(z,w)
USE nrtype
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), INTENT(IN) :: z,w
REAL(SP) :: beta_s

Returns the value of the beta function B(z,w).
beta_s=exp(gammln(z)+gammln(w)-gammln(z+w))
END FUNCTION beta_s

FUNCTION beta_v(z,w)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: z,w
REAL(SP), DIMENSION(size(z)) :: beta_v
INTEGER(I4B) :: ndum
ndum=assert_eq(size(z),size(w),’beta_v’)
beta_v=exp(gammln(z)+gammln(w)-gammln(z+w))
END FUNCTION beta_v

� � �

FUNCTION gammp_s(a,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : gcf,gser
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,x
REAL(SP) :: gammp_s

Returns the incomplete gamma function P (a, x).
call assert( x >= 0.0, a > 0.0, ’gammp_s args’)
if (x<a+1.0_sp) then Use the series representation.

gammp_s=gser(a,x)
else Use the continued fraction representation

gammp_s=1.0_sp-gcf(a,x) and take its complement.
end if
END FUNCTION gammp_s

FUNCTION gammp_v(a,x)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : gcf,gser
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(size(x)) :: gammp_v
LOGICAL(LGT), DIMENSION(size(x)) :: mask
INTEGER(I4B) :: ndum
ndum=assert_eq(size(a),size(x),’gammp_v’)
call assert( all(x >= 0.0), all(a > 0.0), ’gammp_v args’)
mask = (x<a+1.0_sp)
gammp_v=merge(gser(a,merge(x,0.0_sp,mask)), &

1.0_sp-gcf(a,merge(x,0.0_sp,.not. mask)),mask)
END FUNCTION gammp_v
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f90
call assert( x >= 0.0, a > 0.0, ’gammp_s args’) The generic routine
assert in nrutil is overloaded with variants for more than one logical
assertion, so you can make more than one assertion about argument ranges.

gammp_v=merge(gser(a,merge(x,0.0_sp,mask)), &

1.0_sp-gcf(a,merge(x,0.0_sp,.not. mask)),mask) Here we meet
the second solution to the problem of getting masked values from an
external vector function. (For the first solution, see note to factrl,

above.) We call this one “merge with dummy values”: Inappropriate values of the
argument x (as determined by mask) are set to zero before gser, and later gcf, are
called, and the supernumerary answers returned are discarded by a final merge. The
assumption here is that the dummy value sent to the function (here, zero) is a special
value that computes extremely fast, so that the overhead of computing and returning
the supernumerary function values is outweighed by the parallelism achieved on the
nontrivial components of x. Look at gser v and gcf v below to judge whether
this assumption is realistic in this case.

FUNCTION gammq_s(a,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : gcf,gser
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,x
REAL(SP) :: gammq_s

Returns the incomplete gamma function Q(a, x) ≡ 1 − P (a, x).
call assert( x >= 0.0, a > 0.0, ’gammq_s args’)
if (x<a+1.0_sp) then Use the series representation

gammq_s=1.0_sp-gser(a,x) and take its complement.
else Use the continued fraction representation.

gammq_s=gcf(a,x)
end if
END FUNCTION gammq_s

FUNCTION gammq_v(a,x)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : gcf,gser
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(size(a)) :: gammq_v
LOGICAL(LGT), DIMENSION(size(x)) :: mask
INTEGER(I4B) :: ndum
ndum=assert_eq(size(a),size(x),’gammq_v’)
call assert( all(x >= 0.0), all(a > 0.0), ’gammq_v args’)
mask = (x<a+1.0_sp)
gammq_v=merge(1.0_sp-gser(a,merge(x,0.0_sp,mask)), &

gcf(a,merge(x,0.0_sp,.not. mask)),mask)
END FUNCTION gammq_v

FUNCTION gser_s(a,x,gln)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,x
REAL(SP), OPTIONAL, INTENT(OUT) :: gln
REAL(SP) :: gser_s
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: EPS=epsilon(x)
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Returns the incomplete gamma function P (a, x) evaluated by its series representation as
gamser. Also optionally returns lnΓ(a) as gln.

INTEGER(I4B) :: n
REAL(SP) :: ap,del,summ
if (x == 0.0) then

gser_s=0.0
RETURN

end if
ap=a
summ=1.0_sp/a
del=summ
do n=1,ITMAX

ap=ap+1.0_sp
del=del*x/ap
summ=summ+del
if (abs(del) < abs(summ)*EPS) exit

end do
if (n > ITMAX) call nrerror(’a too large, ITMAX too small in gser_s’)
if (present(gln)) then

gln=gammln(a)
gser_s=summ*exp(-x+a*log(x)-gln)

else
gser_s=summ*exp(-x+a*log(x)-gammln(a))

end if
END FUNCTION gser_s

FUNCTION gser_v(a,x,gln)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(:), OPTIONAL, INTENT(OUT) :: gln
REAL(SP), DIMENSION(size(a)) :: gser_v
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: EPS=epsilon(x)
INTEGER(I4B) :: n
REAL(SP), DIMENSION(size(a)) :: ap,del,summ
LOGICAL(LGT), DIMENSION(size(a)) :: converged,zero
n=assert_eq(size(a),size(x),’gser_v’)
zero=(x == 0.0)
where (zero) gser_v=0.0
ap=a
summ=1.0_sp/a
del=summ
converged=zero
do n=1,ITMAX

where (.not. converged)
ap=ap+1.0_sp
del=del*x/ap
summ=summ+del
converged = (abs(del) < abs(summ)*EPS)

end where
if (all(converged)) exit

end do
if (n > ITMAX) call nrerror(’a too large, ITMAX too small in gser_v’)
if (present(gln)) then

if (size(gln) < size(a)) call &
nrerror(’gser: Not enough space for gln’)

gln=gammln(a)
where (.not. zero) gser_v=summ*exp(-x+a*log(x)-gln)

else
where (.not. zero) gser_v=summ*exp(-x+a*log(x)-gammln(a))
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end if
END FUNCTION gser_v

f90
REAL(SP), OPTIONAL, INTENT(OUT) :: gln Normally, an OPTIONAL argu-
ment will be INTENT(IN) and be used to provide a less-often-used
extra input argument to a function. Here, the OPTIONAL argument is

INTENT(OUT), used to provide a useful value that is a byproduct of the main
calculation.

Also note that although x ≥ 0 is required, we omit our usual call assert

check for this, because gser is supposed to be called only by gammp or gammq —
and these routines supply the argument checking themselves.

do n=1,ITMAX...end do...if (n > ITMAX)... This is typical code in Fortran
90 for a loop with a maximum number of iterations, relying on Fortran 90’s guarantee
that the index of the do-loop will be available after normal completion of the loop
with a predictable value, greater by one than the upper limit of the loop. If the
exit statement within the loop is ever taken, the if statement is guaranteed to fail;
if the loop goes all the way through ITMAX cycles, the if statement is guaranteed
to succeed.

zero=(x == 0.0)...where (zero) gser_v=0.0...converged=zero This
is the code that provides for very low overhead calculation of zero
arguments, as is assumed by the merge-with-dummy-values strategy in

gammp and gammq. Zero arguments are “pre-converged” and are never the holdouts
in the convergence test.

FUNCTION gcf_s(a,x,gln)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,x
REAL(SP), OPTIONAL, INTENT(OUT) :: gln
REAL(SP) :: gcf_s
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: EPS=epsilon(x),FPMIN=tiny(x)/EPS

Returns the incomplete gamma function Q(a, x) evaluated by its continued fraction repre-
sentation as gammcf. Also optionally returns lnΓ(a) as gln.
Parameters: ITMAX is the maximum allowed number of iterations; EPS is the relative accu-
racy; FPMIN is a number near the smallest representable floating-point number.

INTEGER(I4B) :: i
REAL(SP) :: an,b,c,d,del,h
if (x == 0.0) then

gcf_s=1.0
RETURN

end if
b=x+1.0_sp-a Set up for evaluating continued fraction by mod-

ified Lentz’s method (§5.2) with b0 = 0.c=1.0_sp/FPMIN
d=1.0_sp/b
h=d
do i=1,ITMAX Iterate to convergence.

an=-i*(i-a)
b=b+2.0_sp
d=an*d+b
if (abs(d) < FPMIN) d=FPMIN
c=b+an/c
if (abs(c) < FPMIN) c=FPMIN
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d=1.0_sp/d
del=d*c
h=h*del
if (abs(del-1.0_sp) <= EPS) exit

end do
if (i > ITMAX) call nrerror(’a too large, ITMAX too small in gcf_s’)
if (present(gln)) then

gln=gammln(a)
gcf_s=exp(-x+a*log(x)-gln)*h Put factors in front.

else
gcf_s=exp(-x+a*log(x)-gammln(a))*h

end if
END FUNCTION gcf_s

FUNCTION gcf_v(a,x,gln)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(:), OPTIONAL, INTENT(OUT) :: gln
REAL(SP), DIMENSION(size(a)) :: gcf_v
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: EPS=epsilon(x),FPMIN=tiny(x)/EPS
INTEGER(I4B) :: i
REAL(SP), DIMENSION(size(a)) :: an,b,c,d,del,h
LOGICAL(LGT), DIMENSION(size(a)) :: converged,zero
i=assert_eq(size(a),size(x),’gcf_v’)
zero=(x == 0.0)
where (zero)

gcf_v=1.0
elsewhere

b=x+1.0_sp-a
c=1.0_sp/FPMIN
d=1.0_sp/b
h=d

end where
converged=zero
do i=1,ITMAX

where (.not. converged)
an=-i*(i-a)
b=b+2.0_sp
d=an*d+b
d=merge(FPMIN,d, abs(d)<FPMIN )
c=b+an/c
c=merge(FPMIN,c, abs(c)<FPMIN )
d=1.0_sp/d
del=d*c
h=h*del
converged = (abs(del-1.0_sp)<=EPS)

end where
if (all(converged)) exit

end do
if (i > ITMAX) call nrerror(’a too large, ITMAX too small in gcf_v’)
if (present(gln)) then

if (size(gln) < size(a)) call &
nrerror(’gser: Not enough space for gln’)

gln=gammln(a)
where (.not. zero) gcf_v=exp(-x+a*log(x)-gln)*h

else
where (.not. zero) gcf_v=exp(-x+a*log(x)-gammln(a))*h

end if
END FUNCTION gcf_v
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zero=(x == 0.0)...where (zero) gcf_v=1.0...converged=zero See note on
gser. Here, too, we pre-converge the special value of zero.

� � �

FUNCTION erf_s(x)
USE nrtype
USE nr, ONLY : gammp
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erf_s

Returns the error function erf(x).
erf_s=gammp(0.5_sp,x**2)
if (x < 0.0) erf_s=-erf_s
END FUNCTION erf_s

FUNCTION erf_v(x)
USE nrtype
USE nr, ONLY : gammp
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erf_v
erf_v=gammp(spread(0.5_sp,1,size(x)),x**2)
where (x < 0.0) erf_v=-erf_v
END FUNCTION erf_v

f90
erf_v=gammp(spread(0.5_sp,1,size(x)),x**2) Yes, we do have an over-
loaded vector version of gammp, but it is vectorized on both its arguments.
Thus, in a case where we want to vectorize on only one argument, we

need a spread construction. In many contexts, Fortran 90 automatically makes
scalars conformable with arrays (i.e., it automatically spreads them to the shape of
the array); but the language does not do so when trying to match a generic function
or subroutine call to a specific overloaded name. Perhaps this is wise; it is safer to
prevent “accidental” invocations of vector-specific functions. Or, perhaps it is an
area where the language could be improved.

FUNCTION erfc_s(x)
USE nrtype
USE nr, ONLY : gammp,gammq
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erfc_s

Returns the complementary error function erfc(x).
erfc_s=merge(1.0_sp+gammp(0.5_sp,x**2),gammq(0.5_sp,x**2), x < 0.0)
END FUNCTION erfc_s

f90
erfc_s=merge(1.0_sp+gammp(0.5_sp,x**2),gammq(0.5_sp,x**2), x < 0.0)

An example of our use of merge as an idiom for a conditional expression.
Once you get used to these, you’ll find them just as clear as the multiline

if...then...else alternative.
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FUNCTION erfc_v(x)
USE nrtype
USE nr, ONLY : gammp,gammq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erfc_v
LOGICAL(LGT), DIMENSION(size(x)) :: mask
mask = (x < 0.0)
erfc_v=merge(1.0_sp+gammp(spread(0.5_sp,1,size(x)), &

merge(x,0.0_sp,mask)**2),gammq(spread(0.5_sp,1,size(x)), &
merge(x,0.0_sp,.not. mask)**2),mask)

END FUNCTION erfc_v

f90
erfc_v=merge(1.0_sp+...) Another example of the “merge with dummy
values” idiom described on p. 1090. Here positive values of x in the call
to gammp, and negative values in the call to gammq, are first set to the

dummy value zero. The value zero is a special argument that computes very fast.
The unwanted dummy function values are then discarded by the final outer merge.

� � �

FUNCTION erfcc_s(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erfcc_s

Returns the complementary error function erfc(x) with fractional error everywhere less than
1.2 × 10−7.

REAL(SP) :: t,z
REAL(SP), DIMENSION(10) :: coef = (/-1.26551223_sp,1.00002368_sp,&

0.37409196_sp,0.09678418_sp,-0.18628806_sp,0.27886807_sp,&
-1.13520398_sp,1.48851587_sp,-0.82215223_sp,0.17087277_sp/)

z=abs(x)
t=1.0_sp/(1.0_sp+0.5_sp*z)
erfcc_s=t*exp(-z*z+poly(t,coef))
if (x < 0.0) erfcc_s=2.0_sp-erfcc_s
END FUNCTION erfcc_s

FUNCTION erfcc_v(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erfcc_v,t,z
REAL(SP), DIMENSION(10) :: coef = (/-1.26551223_sp,1.00002368_sp,&

0.37409196_sp,0.09678418_sp,-0.18628806_sp,0.27886807_sp,&
-1.13520398_sp,1.48851587_sp,-0.82215223_sp,0.17087277_sp/)

z=abs(x)
t=1.0_sp/(1.0_sp+0.5_sp*z)
erfcc_v=t*exp(-z*z+poly(t,coef))
where (x < 0.0) erfcc_v=2.0_sp-erfcc_v
END FUNCTION erfcc_v
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f90
erfcc_v=t*exp(-z*z+poly(t,coef)) The vector code is identical to the
scalar, because the nrutil routine poly has overloaded cases for the
evaluation of a polynomial at a single value of the independent variable,

and at multiple values. One could also overload a version with a matrix of
coefficients whose columns could be used for the simultaneous evaluation of
different polynomials at different values of independent variable. The point is that
as long as there are differences in the shapes of at least one argument, the intended
version of poly can be discerned by the compiler.

� � �

FUNCTION expint(n,x)
USE nrtype; USE nrutil, ONLY : arth,assert,nrerror
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: expint
INTEGER(I4B), PARAMETER :: MAXIT=100
REAL(SP), PARAMETER :: EPS=epsilon(x),BIG=huge(x)*EPS

Evaluates the exponential integral En(x).
Parameters: MAXIT is the maximum allowed number of iterations; EPS is the desired relative
error, not smaller than the machine precision; BIG is a number near the largest representable
floating-point number; EULER (in nrtype) is Euler’s constant γ.

INTEGER(I4B) :: i,nm1
REAL(SP) :: a,b,c,d,del,fact,h
call assert(n >= 0, x >= 0.0, (x > 0.0 .or. n > 1), &

’expint args’)
if (n == 0) then Special case.

expint=exp(-x)/x
RETURN

end if
nm1=n-1
if (x == 0.0) then Another special case.

expint=1.0_sp/nm1
else if (x > 1.0) then Lentz’s algorithm (§5.2).

b=x+n
c=BIG
d=1.0_sp/b
h=d
do i=1,MAXIT

a=-i*(nm1+i)
b=b+2.0_sp
d=1.0_sp/(a*d+b) Denominators cannot be zero.
c=b+a/c
del=c*d
h=h*del
if (abs(del-1.0_sp) <= EPS) exit

end do
if (i > MAXIT) call nrerror(’expint: continued fraction failed’)
expint=h*exp(-x)

else Evaluate series.
if (nm1 /= 0) then Set first term.

expint=1.0_sp/nm1
else

expint=-log(x)-EULER
end if
fact=1.0
do i=1,MAXIT

fact=-fact*x/i
if (i /= nm1) then

del=-fact/(i-nm1)
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else ψ(n) appears here.
del=fact*(-log(x)-EULER+sum(1.0_sp/arth(1,1,nm1)))

end if
expint=expint+del
if (abs(del) < abs(expint)*EPS) exit

end do
if (i > MAXIT) call nrerror(’expint: series failed’)

end if
END FUNCTION expint

expint does not readily parallelize, and we thus don’t provide a vector
version. For syntactic convenience you could make a vector version with
a do-loop over calls to this scalar version; or, in Fortran 95, you can of

course make the function ELEMENTAL.

� � �

FUNCTION ei(x)
USE nrtype; USE nrutil, ONLY : assert,nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: ei
INTEGER(I4B), PARAMETER :: MAXIT=100
REAL(SP), PARAMETER :: EPS=epsilon(x),FPMIN=tiny(x)/EPS

Computes the exponential integral Ei(x) for x > 0.
Parameters: MAXIT is the maximum number of iterations allowed; EPS is the relative error,
or absolute error near the zero of Ei at x = 0.3725; FPMIN is a number near the smallest
representable floating-point number; EULER (in nrtype) is Euler’s constant γ.

INTEGER(I4B) :: k
REAL(SP) :: fact,prev,sm,term
call assert(x > 0.0, ’ei arg’)
if (x < FPMIN) then Special case: avoid failure of convergence test

because of underflow.ei=log(x)+EULER
else if (x <= -log(EPS)) then Use power series.

sm=0.0
fact=1.0
do k=1,MAXIT

fact=fact*x/k
term=fact/k
sm=sm+term
if (term < EPS*sm) exit

end do
if (k > MAXIT) call nrerror(’series failed in ei’)
ei=sm+log(x)+EULER

else Use asymptotic series.
sm=0.0 Start with second term.
term=1.0
do k=1,MAXIT

prev=term
term=term*k/x
if (term < EPS) exit Since final sum is greater than one, term itself

approximates the relative error.if (term < prev) then
sm=sm+term Still converging: add new term.

else Diverging: subtract previous term and exit.
sm=sm-prev
exit

end if
end do
if (k > MAXIT) call nrerror(’asymptotic failed in ei’)
ei=exp(x)*(1.0_sp+sm)/x

end if
END FUNCTION ei
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ei does not readily parallelize, and we thus don’t provide a vector
version. For syntactic convenience you could make a vector version with
a do-loop over calls to this scalar version; or, in Fortran 95, you can of

course make the function ELEMENTAL.

� � �

FUNCTION betai_s(a,b,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : betacf,gammln
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b,x
REAL(SP) :: betai_s

Returns the incomplete beta function Ix(a,b).
REAL(SP) :: bt
call assert(x >= 0.0, x <= 1.0, ’betai_s arg’)
if (x == 0.0 .or. x == 1.0) then

bt=0.0
else Factors in front of the continued frac-

tion.bt=exp(gammln(a+b)-gammln(a)-gammln(b)&
+a*log(x)+b*log(1.0_sp-x))

end if
if (x < (a+1.0_sp)/(a+b+2.0_sp)) then Use continued fraction directly.

betai_s=bt*betacf(a,b,x)/a
else Use continued fraction after making the

symmetry transformation.betai_s=1.0_sp-bt*betacf(b,a,1.0_sp-x)/b
end if
END FUNCTION betai_s

FUNCTION betai_v(a,b,x)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : betacf,gammln
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,x
REAL(SP), DIMENSION(size(a)) :: betai_v
REAL(SP), DIMENSION(size(a)) :: bt
LOGICAL(LGT), DIMENSION(size(a)) :: mask
INTEGER(I4B) :: ndum
ndum=assert_eq(size(a),size(b),size(x),’betai_v’)
call assert(all(x >= 0.0), all(x <= 1.0), ’betai_v arg’)
where (x == 0.0 .or. x == 1.0)

bt=0.0
elsewhere

bt=exp(gammln(a+b)-gammln(a)-gammln(b)&
+a*log(x)+b*log(1.0_sp-x))

end where
mask=(x < (a+1.0_sp)/(a+b+2.0_sp))
betai_v=bt*betacf(merge(a,b,mask),merge(b,a,mask),&

merge(x,1.0_sp-x,mask))/merge(a,b,mask)
where (.not. mask) betai_v=1.0_sp-betai_v
END FUNCTION betai_v
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f90
Compare the scalar

if (x < (a+1.0_sp)/(a+b+2.0_sp)) then
betai_s=bt*betacf(a,b,x)/a

else
betai_s=1.0_sp-bt*betacf(b,a,1.0_sp-x)/b

end if

with the vector
mask=(x < (a+1.0_sp)/(a+b+2.0_sp))
betai_v=bt*betacf(merge(a,b,mask),merge(b,a,mask),&

merge(x,1.0_sp-x,mask))/merge(a,b,mask)
where (.not. mask) betai_v=1.0_sp-betai_v

Here merge is used (several times) to evaluate all the required components in a
single call to the vectorized betacf, notwithstanding that some components require
one pattern of arguments, some a different pattern.

FUNCTION betacf_s(a,b,x)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b,x
REAL(SP) :: betacf_s
INTEGER(I4B), PARAMETER :: MAXIT=100
REAL(SP), PARAMETER :: EPS=epsilon(x), FPMIN=tiny(x)/EPS

Used by betai: Evaluates continued fraction for incomplete beta function by modified
Lentz’s method (§5.2).

REAL(SP) :: aa,c,d,del,h,qab,qam,qap
INTEGER(I4B) :: m,m2
qab=a+b These q’s will be used in factors that occur

in the coefficients (6.4.6).qap=a+1.0_sp
qam=a-1.0_sp
c=1.0 First step of Lentz’s method.
d=1.0_sp-qab*x/qap
if (abs(d) < FPMIN) d=FPMIN
d=1.0_sp/d
h=d
do m=1,MAXIT

m2=2*m
aa=m*(b-m)*x/((qam+m2)*(a+m2))
d=1.0_sp+aa*d One step (the even one) of the recurrence.
if (abs(d) < FPMIN) d=FPMIN
c=1.0_sp+aa/c
if (abs(c) < FPMIN) c=FPMIN
d=1.0_sp/d
h=h*d*c
aa=-(a+m)*(qab+m)*x/((a+m2)*(qap+m2))
d=1.0_sp+aa*d Next step of the recurrence (the odd one).
if (abs(d) < FPMIN) d=FPMIN
c=1.0_sp+aa/c
if (abs(c) < FPMIN) c=FPMIN
d=1.0_sp/d
del=d*c
h=h*del
if (abs(del-1.0_sp) <= EPS) exit Are we done?

end do
if (m > MAXIT)&

call nrerror(’a or b too big, or MAXIT too small in betacf_s’)
betacf_s=h
END FUNCTION betacf_s
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FUNCTION betacf_v(a,b,x)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,x
REAL(SP), DIMENSION(size(x)) :: betacf_v
INTEGER(I4B), PARAMETER :: MAXIT=100
REAL(SP), PARAMETER :: EPS=epsilon(x), FPMIN=tiny(x)/EPS
REAL(SP), DIMENSION(size(x)) :: aa,c,d,del,h,qab,qam,qap
LOGICAL(LGT), DIMENSION(size(x)) :: converged
INTEGER(I4B) :: m
INTEGER(I4B), DIMENSION(size(x)) :: m2
m=assert_eq(size(a),size(b),size(x),’betacf_v’)
qab=a+b
qap=a+1.0_sp
qam=a-1.0_sp
c=1.0
d=1.0_sp-qab*x/qap
where (abs(d) < FPMIN) d=FPMIN
d=1.0_sp/d
h=d
converged=.false.
do m=1,MAXIT

where (.not. converged)
m2=2*m
aa=m*(b-m)*x/((qam+m2)*(a+m2))
d=1.0_sp+aa*d
d=merge(FPMIN,d, abs(d)<FPMIN )
c=1.0_sp+aa/c
c=merge(FPMIN,c, abs(c)<FPMIN )
d=1.0_sp/d
h=h*d*c
aa=-(a+m)*(qab+m)*x/((a+m2)*(qap+m2))
d=1.0_sp+aa*d
d=merge(FPMIN,d, abs(d)<FPMIN )
c=1.0_sp+aa/c
c=merge(FPMIN,c, abs(c)<FPMIN )
d=1.0_sp/d
del=d*c
h=h*del
converged = (abs(del-1.0_sp) <= EPS)

end where
if (all(converged)) exit

end do
if (m > MAXIT)&

call nrerror(’a or b too big, or MAXIT too small in betacf_v’)
betacf_v=h
END FUNCTION betacf_v

f90
d=merge(FPMIN,d, abs(d)<FPMIN ) The scalar version does this with an
if. Why does it become a merge here in the vector version, rather than a
where? Because we are already inside a “where (.not.converged)” block,

and Fortran 90 doesn’t allow nested where’s! (Fortran 95 will allow nested where’s.)

� � �
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FUNCTION bessj0_s(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj0_s

Returns the Bessel function J0(x) for any real x.
REAL(SP) :: ax,xx,z
REAL(DP) :: y We’ll accumulate polynomials in double precision.
REAL(DP), DIMENSION(5) :: p = (/1.0_dp,-0.1098628627e-2_dp,&

0.2734510407e-4_dp,-0.2073370639e-5_dp,0.2093887211e-6_dp/)
REAL(DP), DIMENSION(5) :: q = (/-0.1562499995e-1_dp,&

0.1430488765e-3_dp,-0.6911147651e-5_dp,0.7621095161e-6_dp,&
-0.934945152e-7_dp/)

REAL(DP), DIMENSION(6) :: r = (/57568490574.0_dp,-13362590354.0_dp,&
651619640.7_dp,-11214424.18_dp,77392.33017_dp,&
-184.9052456_dp/)

REAL(DP), DIMENSION(6) :: s = (/57568490411.0_dp,1029532985.0_dp,&
9494680.718_dp,59272.64853_dp,267.8532712_dp,1.0_dp/)

if (abs(x) < 8.0) then Direct rational function fit.
y=x**2
bessj0_s=poly(y,r)/poly(y,s)

else Fitting function (6.5.9).
ax=abs(x)
z=8.0_sp/ax
y=z**2
xx=ax-0.785398164_sp
bessj0_s=sqrt(0.636619772_sp/ax)*(cos(xx)*&

poly(y,p)-z*sin(xx)*poly(y,q))
end if
END FUNCTION bessj0_s

FUNCTION bessj0_v(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessj0_v
REAL(SP), DIMENSION(size(x)) :: ax,xx,z
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(5) :: p = (/1.0_dp,-0.1098628627e-2_dp,&

0.2734510407e-4_dp,-0.2073370639e-5_dp,0.2093887211e-6_dp/)
REAL(DP), DIMENSION(5) :: q = (/-0.1562499995e-1_dp,&

0.1430488765e-3_dp,-0.6911147651e-5_dp,0.7621095161e-6_dp,&
-0.934945152e-7_dp/)

REAL(DP), DIMENSION(6) :: r = (/57568490574.0_dp,-13362590354.0_dp,&
651619640.7_dp,-11214424.18_dp,77392.33017_dp,&
-184.9052456_dp/)

REAL(DP), DIMENSION(6) :: s = (/57568490411.0_dp,1029532985.0_dp,&
9494680.718_dp,59272.64853_dp,267.8532712_dp,1.0_dp/)

mask = (abs(x) < 8.0)
where (mask)

y=x**2
bessj0_v=poly(y,r,mask)/poly(y,s,mask)

elsewhere
ax=abs(x)
z=8.0_sp/ax
y=z**2
xx=ax-0.785398164_sp
bessj0_v=sqrt(0.636619772_sp/ax)*(cos(xx)*&

poly(y,p,.not. mask)-z*sin(xx)*poly(y,q,.not. mask))
end where
END FUNCTION bessj0_v
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where (mask)...bessj0_v=poly(y,r,mask)/poly(y,s,mask) Here we meet
the third solution to the problem of getting masked values from an
external vector function. (For the other two solutions, see notes to

factrl, p. 1087, and gammp, p. 1090.) Here we simply evade all responsibility and
pass the mask into every routine that is supposed to be masked. Let it be somebody
else’s problem! That works here because your hardworking authors have overloaded
the nrutil routine poly with a masked vector version. More typically, of course,
it becomes your problem, and you have to remember to write masked versions of all
the vector routines that you call in this way. (We’ll meet examples of this later.)

� � �

FUNCTION bessy0_s(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessj0
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessy0_s

Returns the Bessel function Y0(x) for positive x.
REAL(SP) :: xx,z
REAL(DP) :: y We’ll accumulate polynomials in double precision.
REAL(DP), DIMENSION(5) :: p = (/1.0_dp,-0.1098628627e-2_dp,&

0.2734510407e-4_dp,-0.2073370639e-5_dp,0.2093887211e-6_dp/)
REAL(DP), DIMENSION(5) :: q = (/-0.1562499995e-1_dp,&

0.1430488765e-3_dp,-0.6911147651e-5_dp,0.7621095161e-6_dp,&
-0.934945152e-7_dp/)

REAL(DP), DIMENSION(6) :: r = (/-2957821389.0_dp,7062834065.0_dp,&
-512359803.6_dp,10879881.29_dp,-86327.92757_dp,&
228.4622733_dp/)

REAL(DP), DIMENSION(6) :: s = (/40076544269.0_dp,745249964.8_dp,&
7189466.438_dp,47447.26470_dp,226.1030244_dp,1.0_dp/)

call assert(x > 0.0, ’bessy0_s arg’)
if (abs(x) < 8.0) then Rational function approximation of (6.5.8).

y=x**2
bessy0_s=(poly(y,r)/poly(y,s))+&

0.636619772_sp*bessj0(x)*log(x)
else Fitting function (6.5.10).

z=8.0_sp/x
y=z**2
xx=x-0.785398164_sp
bessy0_s=sqrt(0.636619772_sp/x)*(sin(xx)*&

poly(y,p)+z*cos(xx)*poly(y,q))
end if
END FUNCTION bessy0_s

FUNCTION bessy0_v(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessj0
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessy0_v
REAL(SP), DIMENSION(size(x)) :: xx,z
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(5) :: p = (/1.0_dp,-0.1098628627e-2_dp,&

0.2734510407e-4_dp,-0.2073370639e-5_dp,0.2093887211e-6_dp/)
REAL(DP), DIMENSION(5) :: q = (/-0.1562499995e-1_dp,&

0.1430488765e-3_dp,-0.6911147651e-5_dp,0.7621095161e-6_dp,&
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-0.934945152e-7_dp/)
REAL(DP), DIMENSION(6) :: r = (/-2957821389.0_dp,7062834065.0_dp,&

-512359803.6_dp,10879881.29_dp,-86327.92757_dp,&
228.4622733_dp/)

REAL(DP), DIMENSION(6) :: s = (/40076544269.0_dp,745249964.8_dp,&
7189466.438_dp,47447.26470_dp,226.1030244_dp,1.0_dp/)

call assert(all(x > 0.0), ’bessy0_v arg’)
mask = (abs(x) < 8.0)
where (mask)

y=x**2
bessy0_v=(poly(y,r,mask)/poly(y,s,mask))+&

0.636619772_sp*bessj0(x)*log(x)
elsewhere

z=8.0_sp/x
y=z**2
xx=x-0.785398164_sp
bessy0_v=sqrt(0.636619772_sp/x)*(sin(xx)*&

poly(y,p,.not. mask)+z*cos(xx)*poly(y,q,.not. mask))
end where
END FUNCTION bessy0_v

� � �

FUNCTION bessj1_s(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj1_s

Returns the Bessel function J1(x) for any real x.
REAL(SP) :: ax,xx,z
REAL(DP) :: y We’ll accumulate polynomials in double precision.
REAL(DP), DIMENSION(6) :: r = (/72362614232.0_dp,&

-7895059235.0_dp,242396853.1_dp,-2972611.439_dp,&
15704.48260_dp,-30.16036606_dp/)

REAL(DP), DIMENSION(6) :: s = (/144725228442.0_dp,2300535178.0_dp,&
18583304.74_dp,99447.43394_dp,376.9991397_dp,1.0_dp/)

REAL(DP), DIMENSION(5) :: p = (/1.0_dp,0.183105e-2_dp,&
-0.3516396496e-4_dp,0.2457520174e-5_dp,-0.240337019e-6_dp/)

REAL(DP), DIMENSION(5) :: q = (/0.04687499995_dp,&
-0.2002690873e-3_dp,0.8449199096e-5_dp,-0.88228987e-6_dp,&
0.105787412e-6_dp/)

if (abs(x) < 8.0) then Direct rational approximation.
y=x**2
bessj1_s=x*(poly(y,r)/poly(y,s))

else Fitting function (6.5.9).
ax=abs(x)
z=8.0_sp/ax
y=z**2
xx=ax-2.356194491_sp
bessj1_s=sqrt(0.636619772_sp/ax)*(cos(xx)*&

poly(y,p)-z*sin(xx)*poly(y,q))*sign(1.0_sp,x)
end if
END FUNCTION bessj1_s
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FUNCTION bessj1_v(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessj1_v
REAL(SP), DIMENSION(size(x)) :: ax,xx,z
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(6) :: r = (/72362614232.0_dp,&

-7895059235.0_dp,242396853.1_dp,-2972611.439_dp,&
15704.48260_dp,-30.16036606_dp/)

REAL(DP), DIMENSION(6) :: s = (/144725228442.0_dp,2300535178.0_dp,&
18583304.74_dp,99447.43394_dp,376.9991397_dp,1.0_dp/)

REAL(DP), DIMENSION(5) :: p = (/1.0_dp,0.183105e-2_dp,&
-0.3516396496e-4_dp,0.2457520174e-5_dp,-0.240337019e-6_dp/)

REAL(DP), DIMENSION(5) :: q = (/0.04687499995_dp,&
-0.2002690873e-3_dp,0.8449199096e-5_dp,-0.88228987e-6_dp,&
0.105787412e-6_dp/)

mask = (abs(x) < 8.0)
where (mask)

y=x**2
bessj1_v=x*(poly(y,r,mask)/poly(y,s,mask))

elsewhere
ax=abs(x)
z=8.0_sp/ax
y=z**2
xx=ax-2.356194491_sp
bessj1_v=sqrt(0.636619772_sp/ax)*(cos(xx)*&

poly(y,p,.not. mask)-z*sin(xx)*poly(y,q,.not. mask))*&
sign(1.0_sp,x)

end where
END FUNCTION bessj1_v

� � �

FUNCTION bessy1_s(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessj1
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessy1_s

Returns the Bessel function Y1(x) for positive x.
REAL(SP) :: xx,z
REAL(DP) :: y We’ll accumulate polynomials in double precision.
REAL(DP), DIMENSION(5) :: p = (/1.0_dp,0.183105e-2_dp,&

-0.3516396496e-4_dp,0.2457520174e-5_dp,-0.240337019e-6_dp/)
REAL(DP), DIMENSION(5) :: q = (/0.04687499995_dp,&

-0.2002690873e-3_dp,0.8449199096e-5_dp,-0.88228987e-6_dp,&
0.105787412e-6_dp/)

REAL(DP), DIMENSION(6) :: r = (/-0.4900604943e13_dp,&
0.1275274390e13_dp,-0.5153438139e11_dp,0.7349264551e9_dp,&
-0.4237922726e7_dp,0.8511937935e4_dp/)

REAL(DP), DIMENSION(7) :: s = (/0.2499580570e14_dp,&
0.4244419664e12_dp,0.3733650367e10_dp,0.2245904002e8_dp,&
0.1020426050e6_dp,0.3549632885e3_dp,1.0_dp/)

call assert(x > 0.0, ’bessy1_s arg’)
if (abs(x) < 8.0) then Rational function approximation of (6.5.8).

y=x**2
bessy1_s=x*(poly(y,r)/poly(y,s))+&

0.636619772_sp*(bessj1(x)*log(x)-1.0_sp/x)
else Fitting function (6.5.10).
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z=8.0_sp/x
y=z**2
xx=x-2.356194491_sp
bessy1_s=sqrt(0.636619772_sp/x)*(sin(xx)*&

poly(y,p)+z*cos(xx)*poly(y,q))
end if
END FUNCTION bessy1_s

FUNCTION bessy1_v(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessj1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessy1_v
REAL(SP), DIMENSION(size(x)) :: xx,z
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(5) :: p = (/1.0_dp,0.183105e-2_dp,&

-0.3516396496e-4_dp,0.2457520174e-5_dp,-0.240337019e-6_dp/)
REAL(DP), DIMENSION(5) :: q = (/0.04687499995_dp,&

-0.2002690873e-3_dp,0.8449199096e-5_dp,-0.88228987e-6_dp,&
0.105787412e-6_dp/)

REAL(DP), DIMENSION(6) :: r = (/-0.4900604943e13_dp,&
0.1275274390e13_dp,-0.5153438139e11_dp,0.7349264551e9_dp,&
-0.4237922726e7_dp,0.8511937935e4_dp/)

REAL(DP), DIMENSION(7) :: s = (/0.2499580570e14_dp,&
0.4244419664e12_dp,0.3733650367e10_dp,0.2245904002e8_dp,&
0.1020426050e6_dp,0.3549632885e3_dp,1.0_dp/)

call assert(all(x > 0.0), ’bessy1_v arg’)
mask = (abs(x) < 8.0)
where (mask)

y=x**2
bessy1_v=x*(poly(y,r,mask)/poly(y,s,mask))+&

0.636619772_sp*(bessj1(x)*log(x)-1.0_sp/x)
elsewhere

z=8.0_sp/x
y=z**2
xx=x-2.356194491_sp
bessy1_v=sqrt(0.636619772_sp/x)*(sin(xx)*&

poly(y,p,.not. mask)+z*cos(xx)*poly(y,q,.not. mask))
end where
END FUNCTION bessy1_v

� � �

FUNCTION bessy_s(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessy0,bessy1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessy_s

Returns the Bessel function Yn(x) for positive x and n ≥ 2.
INTEGER(I4B) :: j
REAL(SP) :: by,bym,byp,tox
call assert(n >= 2, x > 0.0, ’bessy_s args’)
tox=2.0_sp/x
by=bessy1(x) Starting values for the recurrence.
bym=bessy0(x)
do j=1,n-1 Recurrence (6.5.7).
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byp=j*tox*by-bym
bym=by
by=byp

end do
bessy_s=by
END FUNCTION bessy_s

FUNCTION bessy_v(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessy0,bessy1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessy_v
INTEGER(I4B) :: j
REAL(SP), DIMENSION(size(x)) :: by,bym,byp,tox
call assert(n >= 2, all(x > 0.0), ’bessy_v args’)
tox=2.0_sp/x
by=bessy1(x)
bym=bessy0(x)
do j=1,n-1

byp=j*tox*by-bym
bym=by
by=byp

end do
bessy_v=by
END FUNCTION bessy_v

f90
Notice that the vector routine is exactly the same as the scalar routine,
but operates only on vectors, and that nothing in the routine is specific to
any level of precision or kind type of real variable. Cases like this make

us wish that Fortran 90 provided for “template” types that could automatically take
the type and shape of the actual arguments. (Such facilities are available in other,
more object-oriented languages such as C++.)

� � �

FUNCTION bessj_s(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessj0,bessj1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj_s
INTEGER(I4B), PARAMETER :: IACC=40,IEXP=maxexponent(x)/2

Returns the Bessel function Jn(x) for any real x and n ≥ 2. Make the parameter IACC
larger to increase accuracy.

INTEGER(I4B) :: j,jsum,m
REAL(SP) :: ax,bj,bjm,bjp,summ,tox
call assert(n >= 2, ’bessj_s args’)
ax=abs(x)
if (ax*ax <= 8.0_sp*tiny(x)) then Underflow limit.

bessj_s=0.0
else if (ax > real(n,sp)) then Upwards recurrence from J0 and J1.

tox=2.0_sp/ax
bjm=bessj0(ax)
bj=bessj1(ax)
do j=1,n-1
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bjp=j*tox*bj-bjm
bjm=bj
bj=bjp

end do
bessj_s=bj

else Downwards recurrence from an even m
here computed.tox=2.0_sp/ax

m=2*((n+int(sqrt(real(IACC*n,sp))))/2)
bessj_s=0.0
jsum=0 jsumwill alternate between 0 and 1; when

it is 1, we accumulate in sum the
even terms in (5.5.16).

summ=0.0
bjp=0.0
bj=1.0
do j=m,1,-1 The downward recurrence.

bjm=j*tox*bj-bjp
bjp=bj
bj=bjm
if (exponent(bj) > IEXP) then Renormalize to prevent overflows.

bj=scale(bj,-IEXP)
bjp=scale(bjp,-IEXP)
bessj_s=scale(bessj_s,-IEXP)
summ=scale(summ,-IEXP)

end if
if (jsum /= 0) summ=summ+bj Accumulate the sum.
jsum=1-jsum Change 0 to 1 or vice versa.
if (j == n) bessj_s=bjp Save the unnormalized answer.

end do
summ=2.0_sp*summ-bj Compute (5.5.16)
bessj_s=bessj_s/summ and use it to normalize the answer.

end if
if (x < 0.0 .and. mod(n,2) == 1) bessj_s=-bessj_s
END FUNCTION bessj_s

The bessj routine does not conveniently parallelize with Fortran 90’s
language constructions, but Bessel functions are of sufficient importance
that we feel the need for a parallel version nevertheless. The basic

method adopted below is to encapsulate as contained vector functions two separate
algorithms, one for the case x ≤ n, the other for x > n. Both of these have masks
as input arguments; within each routine, however, they immediately revert to the
pack-unpack method. The choice to pack in the subsidiary routines, rather than in the
main routine, is arbitrary; the main routine is supposed to be a little clearer this way.

f90
if (exponent(bj) > IEXP) then... In the Fortran 77 version of this
routine, we scaled the variables by 10−10 whenever bj was bigger than
1010. On a machine with a large exponent range, we could improve

efficiency by scaling less often. In order to remain portable, however, we used
the conservative value of 1010. An elegant way of handling renormalization is
provided by the Fortran 90 intrinsic functions that manipulate real numbers. We test
with if (exponent(bj) > IEXP) and then if necessary renormalize with bj=scale(bj,-

IEXP) and similarly for the other variables. Our conservative choice is to set
IEXP=maxexponent(x)/2. Note that an added benefit of scaling this way is that only
the exponent of each variable is modified; no roundoff error is introduced as it can
be if we do a floating-point division instead.
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FUNCTION bessj_v(n,xx)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessj0,bessj1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), DIMENSION(size(xx)) :: bessj_v
INTEGER(I4B), PARAMETER :: IACC=40,IEXP=maxexponent(xx)/2
REAL(SP), DIMENSION(size(xx)) :: ax
LOGICAL(LGT), DIMENSION(size(xx)) :: mask,mask0
REAL(SP), DIMENSION(:), ALLOCATABLE :: x,bj,bjm,bjp,summ,tox,bessjle
LOGICAL(LGT), DIMENSION(:), ALLOCATABLE :: renorm
INTEGER(I4B) :: j,jsum,m,npak
call assert(n >= 2, ’bessj_v args’)
ax=abs(xx)
mask = (ax <= real(n,sp))
mask0 = (ax*ax <= 8.0_sp*tiny(xx))
bessj_v=bessjle_v(n,ax,logical(mask .and. .not.mask0, kind=lgt))
bessj_v=merge(bessjgt_v(n,ax,.not. mask),bessj_v,.not. mask)
where (mask0) bessj_v=0.0
where (xx < 0.0 .and. mod(n,2) == 1) bessj_v=-bessj_v
CONTAINS

FUNCTION bessjgt_v(n,xx,mask)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
LOGICAL(LGT), DIMENSION(size(xx)), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(xx)) :: bessjgt_v
npak=count(mask)
if (npak == 0) RETURN
allocate(x(npak),bj(npak),bjm(npak),bjp(npak),tox(npak))
x=pack(xx,mask)
tox=2.0_sp/x
bjm=bessj0(x)
bj=bessj1(x)
do j=1,n-1

bjp=j*tox*bj-bjm
bjm=bj
bj=bjp

end do
bessjgt_v=unpack(bj,mask,0.0_sp)
deallocate(x,bj,bjm,bjp,tox)
END FUNCTION bessjgt_v

FUNCTION bessjle_v(n,xx,mask)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
LOGICAL(LGT), DIMENSION(size(xx)), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(xx)) :: bessjle_v
npak=count(mask)
if (npak == 0) RETURN
allocate(x(npak),bj(npak),bjm(npak),bjp(npak),summ(npak), &

bessjle(npak),tox(npak),renorm(npak))
x=pack(xx,mask)
tox=2.0_sp/x
m=2*((n+int(sqrt(real(IACC*n,sp))))/2)
bessjle=0.0
jsum=0
summ=0.0
bjp=0.0
bj=1.0
do j=m,1,-1

bjm=j*tox*bj-bjp
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bjp=bj
bj=bjm
renorm = (exponent(bj)>IEXP)
bj=merge(scale(bj,-IEXP),bj,renorm)
bjp=merge(scale(bjp,-IEXP),bjp,renorm)
bessjle=merge(scale(bessjle,-IEXP),bessjle,renorm)
summ=merge(scale(summ,-IEXP),summ,renorm)
if (jsum /= 0) summ=summ+bj
jsum=1-jsum
if (j == n) bessjle=bjp

end do
summ=2.0_sp*summ-bj
bessjle=bessjle/summ
bessjle_v=unpack(bessjle,mask,0.0_sp)
deallocate(x,bj,bjm,bjp,summ,bessjle,tox,renorm)
END FUNCTION bessjle_v
END FUNCTION bessj_v

f90
bessj_v=... bessj_v=merge(bessjgt_v(...),bessj_v,...) The vector
bessj v is set once (with a mask) and then merged with itself, along
with the vector result of the bessjgt v call. Thus are the two evaluation

methods combined. (A third case, where an argument is zero, is then handled by
an immediately following where.)

� � �

FUNCTION bessi0_s(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi0_s

Returns the modified Bessel function I0(x) for any real x.
REAL(SP) :: ax
REAL(DP), DIMENSION(7) :: p = (/1.0_dp,3.5156229_dp,&

3.0899424_dp,1.2067492_dp,0.2659732_dp,0.360768e-1_dp,&
0.45813e-2_dp/) Accumulate polynomials in double precision.

REAL(DP), DIMENSION(9) :: q = (/0.39894228_dp,0.1328592e-1_dp,&
0.225319e-2_dp,-0.157565e-2_dp,0.916281e-2_dp,&
-0.2057706e-1_dp,0.2635537e-1_dp,-0.1647633e-1_dp,&
0.392377e-2_dp/)

ax=abs(x)
if (ax < 3.75) then Polynomial fit.

bessi0_s=poly(real((x/3.75_sp)**2,dp),p)
else

bessi0_s=(exp(ax)/sqrt(ax))*poly(real(3.75_sp/ax,dp),q)
end if
END FUNCTION bessi0_s

FUNCTION bessi0_v(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi0_v
REAL(SP), DIMENSION(size(x)) :: ax
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(7) :: p = (/1.0_dp,3.5156229_dp,&

3.0899424_dp,1.2067492_dp,0.2659732_dp,0.360768e-1_dp,&
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0.45813e-2_dp/)
REAL(DP), DIMENSION(9) :: q = (/0.39894228_dp,0.1328592e-1_dp,&

0.225319e-2_dp,-0.157565e-2_dp,0.916281e-2_dp,&
-0.2057706e-1_dp,0.2635537e-1_dp,-0.1647633e-1_dp,&
0.392377e-2_dp/)

ax=abs(x)
mask = (ax < 3.75)
where (mask)

bessi0_v=poly(real((x/3.75_sp)**2,dp),p,mask)
elsewhere

y=3.75_sp/ax
bessi0_v=(exp(ax)/sqrt(ax))*poly(real(y,dp),q,.not. mask)

end where
END FUNCTION bessi0_v

� � �

FUNCTION bessk0_s(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessi0
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessk0_s

Returns the modified Bessel function K0(x) for positive real x.
REAL(DP) :: y Accumulate polynomials in double precision.
REAL(DP), DIMENSION(7) :: p = (/-0.57721566_dp,0.42278420_dp,&

0.23069756_dp,0.3488590e-1_dp,0.262698e-2_dp,0.10750e-3_dp,&
0.74e-5_dp/)

REAL(DP), DIMENSION(7) :: q = (/1.25331414_dp,-0.7832358e-1_dp,&
0.2189568e-1_dp,-0.1062446e-1_dp,0.587872e-2_dp,&
-0.251540e-2_dp,0.53208e-3_dp/)

call assert(x > 0.0, ’bessk0_s arg’)
if (x <= 2.0) then Polynomial fit.

y=x*x/4.0_sp
bessk0_s=(-log(x/2.0_sp)*bessi0(x))+poly(y,p)

else
y=(2.0_sp/x)
bessk0_s=(exp(-x)/sqrt(x))*poly(y,q)

end if
END FUNCTION bessk0_s

FUNCTION bessk0_v(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessi0
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessk0_v
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(7) :: p = (/-0.57721566_dp,0.42278420_dp,&

0.23069756_dp,0.3488590e-1_dp,0.262698e-2_dp,0.10750e-3_dp,&
0.74e-5_dp/)

REAL(DP), DIMENSION(7) :: q = (/1.25331414_dp,-0.7832358e-1_dp,&
0.2189568e-1_dp,-0.1062446e-1_dp,0.587872e-2_dp,&
-0.251540e-2_dp,0.53208e-3_dp/)

call assert(all(x > 0.0), ’bessk0_v arg’)
mask = (x <= 2.0)
where (mask)

y=x*x/4.0_sp
bessk0_v=(-log(x/2.0_sp)*bessi0(x))+poly(y,p,mask)
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elsewhere
y=(2.0_sp/x)
bessk0_v=(exp(-x)/sqrt(x))*poly(y,q,.not. mask)

end where
END FUNCTION bessk0_v

� � �

FUNCTION bessi1_s(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi1_s

Returns the modified Bessel function I1(x) for any real x.
REAL(SP) :: ax
REAL(DP), DIMENSION(7) :: p = (/0.5_dp,0.87890594_dp,&

0.51498869_dp,0.15084934_dp,0.2658733e-1_dp,&
0.301532e-2_dp,0.32411e-3_dp/)
Accumulate polynomials in double precision.

REAL(DP), DIMENSION(9) :: q = (/0.39894228_dp,-0.3988024e-1_dp,&
-0.362018e-2_dp,0.163801e-2_dp,-0.1031555e-1_dp,&
0.2282967e-1_dp,-0.2895312e-1_dp,0.1787654e-1_dp,&
-0.420059e-2_dp/)

ax=abs(x)
if (ax < 3.75) then Polynomial fit.

bessi1_s=ax*poly(real((x/3.75_sp)**2,dp),p)
else

bessi1_s=(exp(ax)/sqrt(ax))*poly(real(3.75_sp/ax,dp),q)
end if
if (x < 0.0) bessi1_s=-bessi1_s
END FUNCTION bessi1_s

FUNCTION bessi1_v(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi1_v
REAL(SP), DIMENSION(size(x)) :: ax
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(7) :: p = (/0.5_dp,0.87890594_dp,&

0.51498869_dp,0.15084934_dp,0.2658733e-1_dp,&
0.301532e-2_dp,0.32411e-3_dp/)

REAL(DP), DIMENSION(9) :: q = (/0.39894228_dp,-0.3988024e-1_dp,&
-0.362018e-2_dp,0.163801e-2_dp,-0.1031555e-1_dp,&
0.2282967e-1_dp,-0.2895312e-1_dp,0.1787654e-1_dp,&
-0.420059e-2_dp/)

ax=abs(x)
mask = (ax < 3.75)
where (mask)

bessi1_v=ax*poly(real((x/3.75_sp)**2,dp),p,mask)
elsewhere

y=3.75_sp/ax
bessi1_v=(exp(ax)/sqrt(ax))*poly(real(y,dp),q,.not. mask)

end where
where (x < 0.0) bessi1_v=-bessi1_v
END FUNCTION bessi1_v
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FUNCTION bessk1_s(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessi1
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessk1_s

Returns the modified Bessel function K1(x) for positive real x.
REAL(DP) :: y Accumulate polynomials in double precision.
REAL(DP), DIMENSION(7) :: p = (/1.0_dp,0.15443144_dp,&

-0.67278579_dp,-0.18156897_dp,-0.1919402e-1_dp,&
-0.110404e-2_dp,-0.4686e-4_dp/)

REAL(DP), DIMENSION(7) :: q = (/1.25331414_dp,0.23498619_dp,&
-0.3655620e-1_dp,0.1504268e-1_dp,-0.780353e-2_dp,&
0.325614e-2_dp,-0.68245e-3_dp/)

call assert(x > 0.0, ’bessk1_s arg’)
if (x <= 2.0) then Polynomial fit.

y=x*x/4.0_sp
bessk1_s=(log(x/2.0_sp)*bessi1(x))+(1.0_sp/x)*poly(y,p)

else
y=2.0_sp/x
bessk1_s=(exp(-x)/sqrt(x))*poly(y,q)

end if
END FUNCTION bessk1_s

FUNCTION bessk1_v(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessi1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessk1_v
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(7) :: p = (/1.0_dp,0.15443144_dp,&

-0.67278579_dp,-0.18156897_dp,-0.1919402e-1_dp,&
-0.110404e-2_dp,-0.4686e-4_dp/)

REAL(DP), DIMENSION(7) :: q = (/1.25331414_dp,0.23498619_dp,&
-0.3655620e-1_dp,0.1504268e-1_dp,-0.780353e-2_dp,&
0.325614e-2_dp,-0.68245e-3_dp/)

call assert(all(x > 0.0), ’bessk1_v arg’)
mask = (x <= 2.0)
where (mask)

y=x*x/4.0_sp
bessk1_v=(log(x/2.0_sp)*bessi1(x))+(1.0_sp/x)*poly(y,p,mask)

elsewhere
y=2.0_sp/x
bessk1_v=(exp(-x)/sqrt(x))*poly(y,q,.not. mask)

end where
END FUNCTION bessk1_v

� � �
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FUNCTION bessk_s(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessk0,bessk1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessk_s

Returns the modified Bessel function Kn(x) for positive x and n ≥ 2.
INTEGER(I4B) :: j
REAL(SP) :: bk,bkm,bkp,tox
call assert(n >= 2, x > 0.0, ’bessk_s args’)
tox=2.0_sp/x
bkm=bessk0(x) Upward recurrence for all x...
bk=bessk1(x)
do j=1,n-1 ...and here it is.

bkp=bkm+j*tox*bk
bkm=bk
bk=bkp

end do
bessk_s=bk
END FUNCTION bessk_s

FUNCTION bessk_v(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessk0,bessk1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessk_v
INTEGER(I4B) :: j
REAL(SP), DIMENSION(size(x)) :: bk,bkm,bkp,tox
call assert(n >= 2, all(x > 0.0), ’bessk_v args’)
tox=2.0_sp/x
bkm=bessk0(x)
bk=bessk1(x)
do j=1,n-1

bkp=bkm+j*tox*bk
bkm=bk
bk=bkp

end do
bessk_v=bk
END FUNCTION bessk_v

f90
The scalar and vector versions of bessk are identical, and have no
precision-specific constants, another example of where we would like to
define a generic “template” function if the language had this facility.

� � �
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FUNCTION bessi_s(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessi0
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi_s
INTEGER(I4B), PARAMETER :: IACC=40,IEXP=maxexponent(x)/2

Returns the modified Bessel function In(x) for any real x and n ≥ 2. Make the parameter
IACC larger to increase accuracy.

INTEGER(I4B) :: j,m
REAL(SP) :: bi,bim,bip,tox
call assert(n >= 2, ’bessi_s args’)
bessi_s=0.0
if (x*x <= 8.0_sp*tiny(x)) RETURN Underflow limit.
tox=2.0_sp/abs(x)
bip=0.0
bi=1.0
m=2*((n+int(sqrt(real(IACC*n,sp))))) Downward recurrence from even m.
do j=m,1,-1

bim=bip+j*tox*bi The downward recurrence.
bip=bi
bi=bim
if (exponent(bi) > IEXP) then Renormalize to prevent overflows.

bessi_s=scale(bessi_s,-IEXP)
bi=scale(bi,-IEXP)
bip=scale(bip,-IEXP)

end if
if (j == n) bessi_s=bip

end do
bessi_s=bessi_s*bessi0(x)/bi Normalize with bessi0.
if (x < 0.0 .and. mod(n,2) == 1) bessi_s=-bessi_s
END FUNCTION bessi_s

f90
if (exponent(bi) > IEXP) then See discussion of scaling for bessj on
p. 1107.

FUNCTION bessi_v(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessi0
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi_v
INTEGER(I4B), PARAMETER :: IACC=40,IEXP=maxexponent(x)/2
INTEGER(I4B) :: j,m
REAL(SP), DIMENSION(size(x)) :: bi,bim,bip,tox
LOGICAL(LGT), DIMENSION(size(x)) :: mask
call assert(n >= 2, ’bessi_v args’)
bessi_v=0.0
mask = (x <= 8.0_sp*tiny(x))
tox=2.0_sp/merge(2.0_sp,abs(x),mask)
bip=0.0
bi=1.0_sp
m=2*((n+int(sqrt(real(IACC*n,sp)))))
do j=m,1,-1

bim=bip+j*tox*bi
bip=bi
bi=bim
where (exponent(bi) > IEXP)

bessi_v=scale(bessi_v,-IEXP)



Chapter B6. Special Functions 1115

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

bi=scale(bi,-IEXP)
bip=scale(bip,-IEXP)

end where
if (j == n) bessi_v=bip

end do
bessi_v=bessi_v*bessi0(x)/bi
where (mask) bessi_v=0.0_sp
where (x < 0.0 .and. mod(n,2) == 1) bessi_v=-bessi_v
END FUNCTION bessi_v

mask = (x == 0.0)
tox=2.0_sp/merge(2.0_sp,abs(x),mask)

For the special case x = 0, the value of the returned function should be zero;
however, the evaluation of tox will give a divide check. We substitute an innocuous
value for the zero cases, then fix up their answers at the end.

� � �

SUBROUTINE bessjy_s(x,xnu,rj,ry,rjp,ryp)
USE nrtype; USE nrutil, ONLY : assert,nrerror
USE nr, ONLY : beschb
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,xnu
REAL(SP), INTENT(OUT) :: rj,ry,rjp,ryp
INTEGER(I4B), PARAMETER :: MAXIT=10000
REAL(DP), PARAMETER :: XMIN=2.0_dp,EPS=1.0e-10_dp,FPMIN=1.0e-30_dp

Returns the Bessel functions rj = Jν , ry = Yν and their derivatives rjp = J ′
ν , ryp = Y ′

ν ,
for positive x and for xnu = ν ≥ 0. The relative accuracy is within one or two significant
digits of EPS, except near a zero of one of the functions, where EPS controls its absolute
accuracy. FPMIN is a number close to the machine’s smallest floating-point number. All
internal arithmetic is in double precision. To convert the entire routine to double precision,
change the SP declaration above and decrease EPS to 10−16. Also convert the subroutine
beschb.

INTEGER(I4B) :: i,isign,l,nl
REAL(DP) :: a,b,c,d,del,del1,e,f,fact,fact2,fact3,ff,gam,gam1,gam2,&

gammi,gampl,h,p,pimu,pimu2,q,r,rjl,rjl1,rjmu,rjp1,rjpl,rjtemp,&
ry1,rymu,rymup,rytemp,sum,sum1,w,x2,xi,xi2,xmu,xmu2

COMPLEX(DPC) :: aa,bb,cc,dd,dl,pq
call assert(x > 0.0, xnu >= 0.0, ’bessjy args’)
nl=merge(int(xnu+0.5_dp), max(0,int(xnu-x+1.5_dp)), x < XMIN)
nl is the number of downward recurrences of the J’s and upward recurrences of Y ’s. xmu
lies between −1/2 and 1/2 for x < XMIN, while it is chosen so that x is greater than the
turning point for x ≥ XMIN.

xmu=xnu-nl
xmu2=xmu*xmu
xi=1.0_dp/x
xi2=2.0_dp*xi
w=xi2/PI_D The Wronskian.
isign=1 Evaluate CF1 by modified Lentz’s method

(§5.2). isign keeps track of sign changes
in the denominator.

h=xnu*xi
if (h < FPMIN) h=FPMIN
b=xi2*xnu
d=0.0
c=h
do i=1,MAXIT

b=b+xi2
d=b-d
if (abs(d) < FPMIN) d=FPMIN
c=b-1.0_dp/c
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if (abs(c) < FPMIN) c=FPMIN
d=1.0_dp/d
del=c*d
h=del*h
if (d < 0.0) isign=-isign
if (abs(del-1.0_dp) < EPS) exit

end do
if (i > MAXIT) call nrerror(’x too large in bessjy; try asymptotic expansion’)
rjl=isign*FPMIN Initialize Jν and J ′

ν for downward recurrence.
rjpl=h*rjl
rjl1=rjl Store values for later rescaling.
rjp1=rjpl
fact=xnu*xi
do l=nl,1,-1

rjtemp=fact*rjl+rjpl
fact=fact-xi
rjpl=fact*rjtemp-rjl
rjl=rjtemp

end do
if (rjl == 0.0) rjl=EPS
f=rjpl/rjl Now have unnormalized Jµ and J ′

µ.
if (x < XMIN) then Use series.

x2=0.5_dp*x
pimu=PI_D*xmu
if (abs(pimu) < EPS) then

fact=1.0
else

fact=pimu/sin(pimu)
end if
d=-log(x2)
e=xmu*d
if (abs(e) < EPS) then

fact2=1.0
else

fact2=sinh(e)/e
end if
call beschb(xmu,gam1,gam2,gampl,gammi) Chebyshev evaluation of Γ1 and Γ2.
ff=2.0_dp/PI_D*fact*(gam1*cosh(e)+gam2*fact2*d) f0.
e=exp(e)
p=e/(gampl*PI_D) p0.
q=1.0_dp/(e*PI_D*gammi) q0.
pimu2=0.5_dp*pimu
if (abs(pimu2) < EPS) then

fact3=1.0
else

fact3=sin(pimu2)/pimu2
end if
r=PI_D*pimu2*fact3*fact3
c=1.0
d=-x2*x2
sum=ff+r*q
sum1=p
do i=1,MAXIT

ff=(i*ff+p+q)/(i*i-xmu2)
c=c*d/i
p=p/(i-xmu)
q=q/(i+xmu)
del=c*(ff+r*q)
sum=sum+del
del1=c*p-i*del
sum1=sum1+del1
if (abs(del) < (1.0_dp+abs(sum))*EPS) exit

end do
if (i > MAXIT) call nrerror(’bessy series failed to converge’)
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rymu=-sum
ry1=-sum1*xi2
rymup=xmu*xi*rymu-ry1
rjmu=w/(rymup-f*rymu) Equation (6.7.13).

else Evaluate CF2 by modified Lentz’s method
(§5.2).a=0.25_dp-xmu2

pq=cmplx(-0.5_dp*xi,1.0_dp,kind=dpc)
aa=cmplx(0.0_dp,xi*a,kind=dpc)
bb=cmplx(2.0_dp*x,2.0_dp,kind=dpc)
cc=bb+aa/pq
dd=1.0_dp/bb
pq=cc*dd*pq
do i=2,MAXIT

a=a+2*(i-1)
bb=bb+cmplx(0.0_dp,2.0_dp,kind=dpc)
dd=a*dd+bb
if (absc(dd) < FPMIN) dd=FPMIN
cc=bb+a/cc
if (absc(cc) < FPMIN) cc=FPMIN
dd=1.0_dp/dd
dl=cc*dd
pq=pq*dl
if (absc(dl-1.0_dp) < EPS) exit

end do
if (i > MAXIT) call nrerror(’cf2 failed in bessjy’)
p=real(pq)
q=aimag(pq)
gam=(p-f)/q Equations (6.7.6) – (6.7.10).
rjmu=sqrt(w/((p-f)*gam+q))
rjmu=sign(rjmu,rjl)
rymu=rjmu*gam
rymup=rymu*(p+q/gam)
ry1=xmu*xi*rymu-rymup

end if
fact=rjmu/rjl
rj=rjl1*fact Scale original Jν and J ′

ν .
rjp=rjp1*fact
do i=1,nl Upward recurrence of Yν .

rytemp=(xmu+i)*xi2*ry1-rymu
rymu=ry1
ry1=rytemp

end do
ry=rymu
ryp=xnu*xi*rymu-ry1
CONTAINS

FUNCTION absc(z)
IMPLICIT NONE
COMPLEX(DPC), INTENT(IN) :: z
REAL(DP) :: absc
absc=abs(real(z))+abs(aimag(z))
END FUNCTION absc
END SUBROUTINE bessjy_s

Yes there is a vector version bessjy v. Its general scheme is to have a
bunch of contained functions for various cases, and then combine their
outputs (somewhat like bessj v, above, but much more complicated).

A listing runs to about four printed pages, and we judge it to be of not much interest,
so we will not include it here. (It is included on the machine-readable media.)

� � �
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SUBROUTINE beschb_s(x,gam1,gam2,gampl,gammi)
USE nrtype
USE nr, ONLY : chebev
IMPLICIT NONE
REAL(DP), INTENT(IN) :: x
REAL(DP), INTENT(OUT) :: gam1,gam2,gampl,gammi
INTEGER(I4B), PARAMETER :: NUSE1=5,NUSE2=5

Evaluates Γ1 and Γ2 by Chebyshev expansion for |x| ≤ 1/2. Also returns 1/Γ(1 + x) and
1/Γ(1 − x). If converting to double precision, set NUSE1 = 7, NUSE2 = 8.

REAL(SP) :: xx
REAL(SP), DIMENSION(7) :: c1=(/-1.142022680371168_sp,&

6.5165112670737e-3_sp,3.087090173086e-4_sp,-3.4706269649e-6_sp,&
6.9437664e-9_sp,3.67795e-11_sp,-1.356e-13_sp/)

REAL(SP), DIMENSION(8) :: c2=(/1.843740587300905_sp,&
-7.68528408447867e-2_sp,1.2719271366546e-3_sp,&
-4.9717367042e-6_sp, -3.31261198e-8_sp,2.423096e-10_sp,&
-1.702e-13_sp,-1.49e-15_sp/)

xx=8.0_dp*x*x-1.0_dp Multiply x by 2 to make range be −1 to 1, and then apply
transformation for evaluating even Cheby-
shev series.

gam1=chebev(-1.0_sp,1.0_sp,c1(1:NUSE1),xx)
gam2=chebev(-1.0_sp,1.0_sp,c2(1:NUSE2),xx)
gampl=gam2-x*gam1
gammi=gam2+x*gam1
END SUBROUTINE beschb_s

SUBROUTINE beschb_v(x,gam1,gam2,gampl,gammi)
USE nrtype
USE nr, ONLY : chebev
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(:), INTENT(OUT) :: gam1,gam2,gampl,gammi
INTEGER(I4B), PARAMETER :: NUSE1=5,NUSE2=5
REAL(SP), DIMENSION(size(x)) :: xx
REAL(SP), DIMENSION(7) :: c1=(/-1.142022680371168_sp,&

6.5165112670737e-3_sp,3.087090173086e-4_sp,-3.4706269649e-6_sp,&
6.9437664e-9_sp,3.67795e-11_sp,-1.356e-13_sp/)

REAL(SP), DIMENSION(8) :: c2=(/1.843740587300905_sp,&
-7.68528408447867e-2_sp,1.2719271366546e-3_sp,&
-4.9717367042e-6_sp, -3.31261198e-8_sp,2.423096e-10_sp,&
-1.702e-13_sp,-1.49e-15_sp/)

xx=8.0_dp*x*x-1.0_dp
gam1=chebev(-1.0_sp,1.0_sp,c1(1:NUSE1),xx)
gam2=chebev(-1.0_sp,1.0_sp,c2(1:NUSE2),xx)
gampl=gam2-x*gam1
gammi=gam2+x*gam1
END SUBROUTINE beschb_v

� � �

SUBROUTINE bessik(x,xnu,ri,rk,rip,rkp)
USE nrtype; USE nrutil, ONLY : assert,nrerror
USE nr, ONLY : beschb
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,xnu
REAL(SP), INTENT(OUT) :: ri,rk,rip,rkp
INTEGER(I4B), PARAMETER :: MAXIT=10000
REAL(SP), PARAMETER :: XMIN=2.0
REAL(DP), PARAMETER :: EPS=1.0e-10_dp,FPMIN=1.0e-30_dp

Returns the modified Bessel functions ri = Iν , rk = Kν and their derivatives rip = I ′ν ,
rkp = K′

ν , for positive x and for xnu = ν ≥ 0. The relative accuracy is within one or
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two significant digits of EPS. FPMIN is a number close to the machine’s smallest floating-
point number. All internal arithmetic is in double precision. To convert the entire routine
to double precision, change the REAL declaration above and decrease EPS to 10−16. Also
convert the subroutine beschb.

INTEGER(I4B) :: i,l,nl
REAL(DP) :: a,a1,b,c,d,del,del1,delh,dels,e,f,fact,fact2,ff,&

gam1,gam2,gammi,gampl,h,p,pimu,q,q1,q2,qnew,&
ril,ril1,rimu,rip1,ripl,ritemp,rk1,rkmu,rkmup,rktemp,&
s,sum,sum1,x2,xi,xi2,xmu,xmu2

call assert(x > 0.0, xnu >= 0.0, ’bessik args’)
nl=int(xnu+0.5_dp) nl is the number of downward recurrences

of the I’s and upward recurrences
of K’s. xmu lies between −1/2 and
1/2.

xmu=xnu-nl
xmu2=xmu*xmu
xi=1.0_dp/x
xi2=2.0_dp*xi
h=xnu*xi Evaluate CF1 by modified Lentz’s method

(§5.2).if (h < FPMIN) h=FPMIN
b=xi2*xnu
d=0.0
c=h
do i=1,MAXIT

b=b+xi2
d=1.0_dp/(b+d) Denominators cannot be zero here, so no

need for special precautions.c=b+1.0_dp/c
del=c*d
h=del*h
if (abs(del-1.0_dp) < EPS) exit

end do
if (i > MAXIT) call nrerror(’x too large in bessik; try asymptotic expansion’)
ril=FPMIN Initialize Iν and I′ν for downward recur-

rence.ripl=h*ril
ril1=ril Store values for later rescaling.
rip1=ripl
fact=xnu*xi
do l=nl,1,-1

ritemp=fact*ril+ripl
fact=fact-xi
ripl=fact*ritemp+ril
ril=ritemp

end do
f=ripl/ril Now have unnormalized Iµ and I′µ.
if (x < XMIN) then Use series.

x2=0.5_dp*x
pimu=PI_D*xmu
if (abs(pimu) < EPS) then

fact=1.0
else

fact=pimu/sin(pimu)
end if
d=-log(x2)
e=xmu*d
if (abs(e) < EPS) then

fact2=1.0
else

fact2=sinh(e)/e
end if
call beschb(xmu,gam1,gam2,gampl,gammi) Chebyshev evaluation of Γ1 and Γ2.
ff=fact*(gam1*cosh(e)+gam2*fact2*d) f0.
sum=ff
e=exp(e)
p=0.5_dp*e/gampl p0.
q=0.5_dp/(e*gammi) q0.
c=1.0
d=x2*x2
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sum1=p
do i=1,MAXIT

ff=(i*ff+p+q)/(i*i-xmu2)
c=c*d/i
p=p/(i-xmu)
q=q/(i+xmu)
del=c*ff
sum=sum+del
del1=c*(p-i*ff)
sum1=sum1+del1
if (abs(del) < abs(sum)*EPS) exit

end do
if (i > MAXIT) call nrerror(’bessk series failed to converge’)
rkmu=sum
rk1=sum1*xi2

else Evaluate CF2 by Steed’s algorithm (§5.2),
which is OK because there can be no
zero denominators.

b=2.0_dp*(1.0_dp+x)
d=1.0_dp/b
delh=d
h=delh
q1=0.0 Initializations for recurrence (6.7.35).
q2=1.0
a1=0.25_dp-xmu2
c=a1
q=c First term in equation (6.7.34).
a=-a1
s=1.0_dp+q*delh
do i=2,MAXIT

a=a-2*(i-1)
c=-a*c/i
qnew=(q1-b*q2)/a
q1=q2
q2=qnew
q=q+c*qnew
b=b+2.0_dp
d=1.0_dp/(b+a*d)
delh=(b*d-1.0_dp)*delh
h=h+delh
dels=q*delh
s=s+dels
if (abs(dels/s) < EPS) exit Need only test convergence of sum, since

CF2 itself converges more quickly.end do
if (i > MAXIT) call nrerror(’bessik: failure to converge in cf2’)
h=a1*h
rkmu=sqrt(PI_D/(2.0_dp*x))*exp(-x)/s Omit the factor exp(−x) to scale all the

returned functions by exp(x) for x ≥
XMIN.

rk1=rkmu*(xmu+x+0.5_dp-h)*xi
end if
rkmup=xmu*xi*rkmu-rk1
rimu=xi/(f*rkmu-rkmup) Get Iµ from Wronskian.
ri=(rimu*ril1)/ril Scale original Iν and I′ν .
rip=(rimu*rip1)/ril
do i=1,nl Upward recurrence of Kν .

rktemp=(xmu+i)*xi2*rk1+rkmu
rkmu=rk1
rk1=rktemp

end do
rk=rkmu
rkp=xnu*xi*rkmu-rk1
END SUBROUTINE bessik
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bessik does not readily parallelize, and we thus don’t provide a vector
version. Since airy, immediately following, requires bessik, we don’t
have a vector version of it, either.

� � �

SUBROUTINE airy(x,ai,bi,aip,bip)
USE nrtype
USE nr, ONLY : bessik,bessjy
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: ai,bi,aip,bip

Returns Airy functions Ai(x), Bi(x), and their derivatives Ai′(x), Bi′(x).
REAL(SP) :: absx,ri,rip,rj,rjp,rk,rkp,rootx,ry,ryp,z
REAL(SP), PARAMETER :: THIRD=1.0_sp/3.0_sp,TWOTHR=2.0_sp/3.0_sp, &

ONOVRT=0.5773502691896258_sp
absx=abs(x)
rootx=sqrt(absx)
z=TWOTHR*absx*rootx
if (x > 0.0) then

call bessik(z,THIRD,ri,rk,rip,rkp)
ai=rootx*ONOVRT*rk/PI
bi=rootx*(rk/PI+2.0_sp*ONOVRT*ri)
call bessik(z,TWOTHR,ri,rk,rip,rkp)
aip=-x*ONOVRT*rk/PI
bip=x*(rk/PI+2.0_sp*ONOVRT*ri)

else if (x < 0.0) then
call bessjy(z,THIRD,rj,ry,rjp,ryp)
ai=0.5_sp*rootx*(rj-ONOVRT*ry)
bi=-0.5_sp*rootx*(ry+ONOVRT*rj)
call bessjy(z,TWOTHR,rj,ry,rjp,ryp)
aip=0.5_sp*absx*(ONOVRT*ry+rj)
bip=0.5_sp*absx*(ONOVRT*rj-ry)

else Case x = 0.
ai=0.3550280538878172_sp
bi=ai/ONOVRT
aip=-0.2588194037928068_sp
bip=-aip/ONOVRT

end if
END SUBROUTINE airy

� � �

SUBROUTINE sphbes_s(n,x,sj,sy,sjp,syp)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessjy
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: sj,sy,sjp,syp

Returns spherical Bessel functions jn(x), yn(x), and their derivatives j′n(x), y′n(x) for
integer n ≥ 0 and x > 0.

REAL(SP), PARAMETER :: RTPIO2=1.253314137315500_sp
REAL(SP) :: factor,order,rj,rjp,ry,ryp
call assert(n >= 0, x > 0.0, ’sphbes_s args’)
order=n+0.5_sp
call bessjy(x,order,rj,ry,rjp,ryp)
factor=RTPIO2/sqrt(x)
sj=factor*rj
sy=factor*ry
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sjp=factor*rjp-sj/(2.0_sp*x)
syp=factor*ryp-sy/(2.0_sp*x)
END SUBROUTINE sphbes_s

SUBROUTINE sphbes_v(n,x,sj,sy,sjp,syp)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessjy
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: sj,sy,sjp,syp
REAL(SP), PARAMETER :: RTPIO2=1.253314137315500_sp
REAL(SP) :: order
REAL(SP), DIMENSION(size(x)) :: factor,rj,rjp,ry,ryp
call assert(n >= 0, all(x > 0.0), ’sphbes_v args’)
order=n+0.5_sp
call bessjy(x,order,rj,ry,rjp,ryp)
factor=RTPIO2/sqrt(x)
sj=factor*rj
sy=factor*ry
sjp=factor*rjp-sj/(2.0_sp*x)
syp=factor*ryp-sy/(2.0_sp*x)
END SUBROUTINE sphbes_v

Note that sphbes vuses (throughoverloading)bessjy v. The listingof
that routine was omitted above, but it is on the machine-readable media.

� � �

FUNCTION plgndr_s(l,m,x)
USE nrtype; USE nrutil, ONLY : arth,assert
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: l,m
REAL(SP), INTENT(IN) :: x
REAL(SP) :: plgndr_s

Computes the associated Legendre polynomial Pm
l (x). Here m and l are integers satisfying

0 ≤ m ≤ l, while x lies in the range −1 ≤ x ≤ 1.
INTEGER(I4B) :: ll
REAL(SP) :: pll,pmm,pmmp1,somx2
call assert(m >= 0, m <= l, abs(x) <= 1.0, ’plgndr_s args’)
pmm=1.0 Compute Pm

m .
if (m > 0) then

somx2=sqrt((1.0_sp-x)*(1.0_sp+x))
pmm=product(arth(1.0_sp,2.0_sp,m))*somx2**m
if (mod(m,2) == 1) pmm=-pmm

end if
if (l == m) then

plgndr_s=pmm
else

pmmp1=x*(2*m+1)*pmm Compute Pm
m+1.

if (l == m+1) then
plgndr_s=pmmp1

else Compute Pm
l , l > m + 1.

do ll=m+2,l
pll=(x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m)
pmm=pmmp1
pmmp1=pll

end do
plgndr_s=pll
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end if
end if
END FUNCTION plgndr_s

f90
product(arth(1.0_sp,2.0_sp,m))

That is, (2m − 1)!!

FUNCTION plgndr_v(l,m,x)
USE nrtype; USE nrutil, ONLY : arth,assert
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: l,m
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: plgndr_v
INTEGER(I4B) :: ll
REAL(SP), DIMENSION(size(x)) :: pll,pmm,pmmp1,somx2
call assert(m >= 0, m <= l, all(abs(x) <= 1.0), ’plgndr_v args’)
pmm=1.0
if (m > 0) then

somx2=sqrt((1.0_sp-x)*(1.0_sp+x))
pmm=product(arth(1.0_sp,2.0_sp,m))*somx2**m
if (mod(m,2) == 1) pmm=-pmm

end if
if (l == m) then

plgndr_v=pmm
else

pmmp1=x*(2*m+1)*pmm
if (l == m+1) then

plgndr_v=pmmp1
else

do ll=m+2,l
pll=(x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m)
pmm=pmmp1
pmmp1=pll

end do
plgndr_v=pll

end if
end if
END FUNCTION plgndr_v

All those if’s (not where’s) may strike you as odd in a vector routine,
but it is vectorized only on x, the dependent variable, not on the scalar
indices l and m. Much harder to write a routine that is parallel for a

vector of arbitrary triplets (l, m, x). Try it!

� � �

SUBROUTINE frenel(x,s,c)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: s,c
INTEGER(I4B), PARAMETER :: MAXIT=100
REAL(SP), PARAMETER :: EPS=epsilon(x),FPMIN=tiny(x),BIG=huge(x)*EPS,&

XMIN=1.5
Computes the Fresnel integrals S(x) and C(x) for all real x.
Parameters: MAXIT is the maximum number of iterations allowed; EPS is the relative error;
FPMIN is a number near the smallest representable floating-point number; BIG is a number
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near the machine overflow limit; XMIN is the dividing line between using the series and
continued fraction.

INTEGER(I4B) :: k,n
REAL(SP) :: a,ax,fact,pix2,sign,sum,sumc,sums,term,test
COMPLEX(SPC) :: b,cc,d,h,del,cs
LOGICAL(LGT) :: odd
ax=abs(x)
if (ax < sqrt(FPMIN)) then Special case: avoid failure of convergence test be-

cause of underflow.s=0.0
c=ax

else if (ax <= XMIN) then Evaluate both series simultaneously.
sum=0.0
sums=0.0
sumc=ax
sign=1.0
fact=PIO2*ax*ax
odd=.true.
term=ax
n=3
do k=1,MAXIT

term=term*fact/k
sum=sum+sign*term/n
test=abs(sum)*EPS
if (odd) then

sign=-sign
sums=sum
sum=sumc

else
sumc=sum
sum=sums

end if
if (term < test) exit
odd=.not. odd
n=n+2

end do
if (k > MAXIT) call nrerror(’frenel: series failed’)
s=sums
c=sumc

else Evaluate continued fraction by modified Lentz’s method
(§5.2).pix2=PI*ax*ax

b=cmplx(1.0_sp,-pix2,kind=spc)
cc=BIG
d=1.0_sp/b
h=d
n=-1
do k=2,MAXIT

n=n+2
a=-n*(n+1)
b=b+4.0_sp
d=1.0_sp/(a*d+b) Denominators cannot be zero.
cc=b+a/cc
del=cc*d
h=h*del
if (absc(del-1.0_sp) <= EPS) exit

end do
if (k > MAXIT) call nrerror(’cf failed in frenel’)
h=h*cmplx(ax,-ax,kind=spc)
cs=cmplx(0.5_sp,0.5_sp,kind=spc)*(1.0_sp-&

cmplx(cos(0.5_sp*pix2),sin(0.5_sp*pix2),kind=spc)*h)
c=real(cs)
s=aimag(cs)

end if
if (x < 0.0) then Use antisymmetry.

c=-c
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s=-s
end if
CONTAINS

FUNCTION absc(z)
IMPLICIT NONE
COMPLEX(SPC), INTENT(IN) :: z
REAL(SP) :: absc
absc=abs(real(z))+abs(aimag(z))
END FUNCTION absc
END SUBROUTINE frenel

f90
b=cmplx(1.0_sp,-pix2,kind=spc) It’s a good idea always to include the
kind= parameter when you use the cmplx intrinsic. The reason is that,
perhaps counterintuitively, the result of cmplx is not determined by the

kind of its arguments, but is rather the “default complex kind.” Since that default
may not be what you think it is (or what spc is defined to be), the desired kind
should be specified explicitly.

c=real(cs) And why not specify a kind= parameter here, where it is also
optionally allowed? Our answer is that the real intrinsic actually merges two
different usages. When its argument is complex, it is the counterpart of aimag

and returns a value whose kind is determined by the kind of its argument. In
fact aimag doesn’t even allow an optional kind parameter, so we never put one in
the corresponding use of real. The other usage of real is for “casting,” that is,
converting one real type to another (e.g., double precision to single precision, or vice
versa). Here we always include a kind parameter, since otherwise the result is the
default real kind, with the same dangers mentioned in the previous paragraph.

� � �

SUBROUTINE cisi(x,ci,si)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: ci,si
INTEGER(I4B), PARAMETER :: MAXIT=100
REAL(SP), PARAMETER :: EPS=epsilon(x),FPMIN=4.0_sp*tiny(x),&

BIG=huge(x)*EPS,TMIN=2.0
Computes the cosine and sine integrals Ci(x) and Si(x). Ci(0) is returned as a large negative
number and no error message is generated. For x < 0 the routine returns Ci(−x) and you
must supply the −iπ yourself.
Parameters: MAXIT is the maximum number of iterations allowed; EPS is the relative error,
or absolute error near a zero of Ci(x); FPMIN is a number near the smallest representable
floating-point number; BIG is a number near the machine overflow limit; TMIN is the dividing
line between using the series and continued fraction; EULER = γ (in nrtype).

INTEGER(I4B) :: i,k
REAL(SP) :: a,err,fact,sign,sum,sumc,sums,t,term
COMPLEX(SPC) :: h,b,c,d,del
LOGICAL(LGT) :: odd
t=abs(x)
if (t == 0.0) then Special case.

si=0.0
ci=-BIG
RETURN

end if Evaluate continued fraction by modified Lentz’s
method (§5.2).if (t > TMIN) then

b=cmplx(1.0_sp,t,kind=spc)
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c=BIG
d=1.0_sp/b
h=d
do i=2,MAXIT

a=-(i-1)**2
b=b+2.0_sp
d=1.0_sp/(a*d+b) Denominators cannot be zero.
c=b+a/c
del=c*d
h=h*del
if (absc(del-1.0_sp) <= EPS) exit

end do
if (i > MAXIT) call nrerror(’continued fraction failed in cisi’)
h=cmplx(cos(t),-sin(t),kind=spc)*h
ci=-real(h)
si=PIO2+aimag(h)

else Evaluate both series simultaneously.
if (t < sqrt(FPMIN)) then Special case: avoid failure of convergence test

because of underflow.sumc=0.0
sums=t

else
sum=0.0
sums=0.0
sumc=0.0
sign=1.0
fact=1.0
odd=.true.
do k=1,MAXIT

fact=fact*t/k
term=fact/k
sum=sum+sign*term
err=term/abs(sum)
if (odd) then

sign=-sign
sums=sum
sum=sumc

else
sumc=sum
sum=sums

end if
if (err < EPS) exit
odd=.not. odd

end do
if (k > MAXIT) call nrerror(’MAXIT exceeded in cisi’)

end if
si=sums
ci=sumc+log(t)+EULER

end if
if (x < 0.0) si=-si
CONTAINS

FUNCTION absc(z)
IMPLICIT NONE
COMPLEX(SPC), INTENT(IN) :: z
REAL(SP) :: absc
absc=abs(real(z))+abs(aimag(z))
END FUNCTION absc
END SUBROUTINE cisi

� � �
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FUNCTION dawson_s(x)
USE nrtype; USE nrutil, ONLY : arth,geop
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: dawson_s

Returns Dawson’s integral F (x) = exp(−x2)
∫ x
0 exp(t2)dt for any real x.

INTEGER(I4B), PARAMETER :: NMAX=6
REAL(SP), PARAMETER :: H=0.4_sp,A1=2.0_sp/3.0_sp,A2=0.4_sp,&

A3=2.0_sp/7.0_sp
INTEGER(I4B) :: i,n0
REAL(SP) :: ec,x2,xp,xx
REAL(SP), DIMENSION(NMAX) :: d1,d2,e1
REAL(SP), DIMENSION(NMAX), SAVE :: c=(/ (0.0_sp,i=1,NMAX) /)
if (c(1) == 0.0) c(1:NMAX)=exp(-(arth(1,2,NMAX)*H)**2)
Initialize c on first call.

if (abs(x) < 0.2_sp) then Use series expansion.
x2=x**2
dawson_s=x*(1.0_sp-A1*x2*(1.0_sp-A2*x2*(1.0_sp-A3*x2)))

else Use sampling theorem representation.
xx=abs(x)
n0=2*nint(0.5_sp*xx/H)
xp=xx-real(n0,sp)*H
ec=exp(2.0_sp*xp*H)
d1=arth(n0+1,2,NMAX)
d2=arth(n0-1,-2,NMAX)
e1=geop(ec,ec**2,NMAX)
dawson_s=0.5641895835477563_sp*sign(exp(-xp**2),x)*& Constant is 1/

√
π.

sum(c*(e1/d1+1.0_sp/(d2*e1)))
end if
END FUNCTION dawson_s

f90
REAL(SP), DIMENSION(NMAX), SAVE :: c=(/ (0.0_sp,i=1,NMAX) /) This
is one way to give initial values to an array. Actually, we’re somewhat
nervous about using the “implied do-loop” form of the array constructor,

as above, because our parallel compilers might not always be smart enough to
execute the constructor in parallel. In this case, with NMAX=6, the damage potential
is quite minimal. An alternative way to initialize the array would be with a data
statement, “DATA c /NMAX*0.0_sp/”; however, this is not considered good Fortran 90
style, and there is no reason to think that it would be faster.

c(1:NMAX)=exp(-(arth(1,2,NMAX)*H)**2) Another example where the arth

function of nrutil comes in handy. Otherwise, this would be

do i=1,NMAX
c(i)=exp(-((2.0_sp*i-1.0_sp)*H)**2)

end do

arth(n0+1,2,NMAX)...arth(n0-1,-2,NMAX)...geop(ec,ec**2,NMAX) These are not
just notationallyconvenient for generating the sequences (n 0+1, n0+3, n0+5, . . .),
(n0 − 1, n0 − 3, n0 − 5, . . .), and (ec, ec3, ec5, . . .). They also may allow parallel-
ization with parallel versions of arth and geop, such as those in nrutil.

FUNCTION dawson_v(x)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: dawson_v
INTEGER(I4B), PARAMETER :: NMAX=6
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REAL(SP), PARAMETER :: H=0.4_sp,A1=2.0_sp/3.0_sp,A2=0.4_sp,&
A3=2.0_sp/7.0_sp

INTEGER(I4B) :: i,n
REAL(SP), DIMENSION(size(x)) :: x2
REAL(SP), DIMENSION(NMAX), SAVE :: c=(/ (0.0_sp,i=1,NMAX) /)
LOGICAL(LGT), DIMENSION(size(x)) :: mask
if (c(1) == 0.0) c(1:NMAX)=exp(-(arth(1,2,NMAX)*H)**2)
mask = (abs(x) >= 0.2_sp)
dawson_v=dawsonseries_v(x,mask)
where (.not. mask)

x2=x**2
dawson_v=x*(1.0_sp-A1*x2*(1.0_sp-A2*x2*(1.0_sp-A3*x2)))

end where
CONTAINS

FUNCTION dawsonseries_v(xin,mask)
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xin
LOGICAL(LGT), DIMENSION(size(xin)), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(xin)) :: dawsonseries_v
INTEGER(I4B), DIMENSION(:), ALLOCATABLE :: n0
REAL(SP), DIMENSION(:), ALLOCATABLE :: d1,d2,e1,e2,sm,xp,xx,x
n=count(mask)
if (n == 0) RETURN
allocate(n0(n),d1(n),d2(n),e1(n),e2(n),sm(n),xp(n),xx(n),x(n))
x=pack(xin,mask)
xx=abs(x)
n0=2*nint(0.5_sp*xx/H)
xp=xx-real(n0,sp)*H
e1=exp(2.0_sp*xp*H)
e2=e1**2
d1=n0+1.0_sp
d2=d1-2.0_sp
sm=0.0
do i=1,NMAX

sm=sm+c(i)*(e1/d1+1.0_sp/(d2*e1))
d1=d1+2.0_sp
d2=d2-2.0_sp
e1=e2*e1

end do
sm=0.5641895835477563_sp*sign(exp(-xp**2),x)*sm
dawsonseries_v=unpack(sm,mask,0.0_sp)
deallocate(n0,d1,d2,e1,e2,sm,xp,xx)
END FUNCTION dawsonseries_v
END FUNCTION dawson_v

dawson_v=dawsonseries_v(x,mask) Pass-the-buck method for getting
masked values, see note to bessj0 v above, p. 1102. Within the
contained dawsonseries, we use the pack-unpack method. Note that,

unlike in dawson s, the sums are done by do-loops, because the parallelization is
already over the components of the vector argument.

� � �

FUNCTION rf_s(x,y,z)
USE nrtype; USE nrutil, ONLY : assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y,z
REAL(SP) :: rf_s
REAL(SP), PARAMETER :: ERRTOL=0.08_sp,TINY=1.5e-38_sp,BIG=3.0e37_sp,&

THIRD=1.0_sp/3.0_sp,&
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C1=1.0_sp/24.0_sp,C2=0.1_sp,C3=3.0_sp/44.0_sp,C4=1.0_sp/14.0_sp
Computes Carlson’s elliptic integral of the first kind, RF (x, y, z). x, y, and z must be
nonnegative, and at most one can be zero. TINY must be at least 5 times the machine
underflow limit, BIG at most one-fifth the machine overflow limit.

REAL(SP) :: alamb,ave,delx,dely,delz,e2,e3,sqrtx,sqrty,sqrtz,xt,yt,zt
call assert(min(x,y,z) >= 0.0, min(x+y,x+z,y+z) >= TINY, &

max(x,y,z) <= BIG, ’rf_s args’)
xt=x
yt=y
zt=z
do

sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
zt=0.25_sp*(zt+alamb)
ave=THIRD*(xt+yt+zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
if (max(abs(delx),abs(dely),abs(delz)) <= ERRTOL) exit

end do
e2=delx*dely-delz**2
e3=delx*dely*delz
rf_s=(1.0_sp+(C1*e2-C2-C3*e3)*e2+C4*e3)/sqrt(ave)
END FUNCTION rf_s

FUNCTION rf_v(x,y,z)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,z
REAL(SP), DIMENSION(size(x)) :: rf_v
REAL(SP), PARAMETER :: ERRTOL=0.08_sp,TINY=1.5e-38_sp,BIG=3.0e37_sp,&

THIRD=1.0_sp/3.0_sp,&
C1=1.0_sp/24.0_sp,C2=0.1_sp,C3=3.0_sp/44.0_sp,C4=1.0_sp/14.0_sp

REAL(SP), DIMENSION(size(x)) :: alamb,ave,delx,dely,delz,e2,e3,&
sqrtx,sqrty,sqrtz,xt,yt,zt

LOGICAL(LGT), DIMENSION(size(x)) :: converged
INTEGER(I4B) :: ndum
ndum=assert_eq(size(x),size(y),size(z),’rf_v’)
call assert(all(min(x,y,z) >= 0.0), all(min(x+y,x+z,y+z) >= TINY), &

all(max(x,y,z) <= BIG), ’rf_v args’)
xt=x
yt=y
zt=z
converged=.false.
do

where (.not. converged)
sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
zt=0.25_sp*(zt+alamb)
ave=THIRD*(xt+yt+zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
converged = (max(abs(delx),abs(dely),abs(delz)) <= ERRTOL)



1130 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end where
if (all(converged)) exit

end do
e2=delx*dely-delz**2
e3=delx*dely*delz
rf_v=(1.0_sp+(C1*e2-C2-C3*e3)*e2+C4*e3)/sqrt(ave)
END FUNCTION rf_v

FUNCTION rd_s(x,y,z)
USE nrtype; USE nrutil, ONLY : assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y,z
REAL(SP) :: rd_s
REAL(SP), PARAMETER :: ERRTOL=0.05_sp,TINY=1.0e-25_sp,BIG=4.5e21_sp,&

C1=3.0_sp/14.0_sp,C2=1.0_sp/6.0_sp,C3=9.0_sp/22.0_sp,&
C4=3.0_sp/26.0_sp,C5=0.25_sp*C3,C6=1.5_sp*C4
Computes Carlson’s elliptic integral of the second kind, RD(x, y, z). x and y must be
nonnegative, and at most one can be zero. z must be positive. TINYmust be at least twice
the negative 2/3 power of the machine overflow limit. BIG must be at most 0.1× ERRTOL
times the negative 2/3 power of the machine underflow limit.

REAL(SP) :: alamb,ave,delx,dely,delz,ea,eb,ec,ed,&
ee,fac,sqrtx,sqrty,sqrtz,sum,xt,yt,zt

call assert(min(x,y) >= 0.0, min(x+y,z) >= TINY, max(x,y,z) <= BIG, &
’rd_s args’)

xt=x
yt=y
zt=z
sum=0.0
fac=1.0
do

sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
sum=sum+fac/(sqrtz*(zt+alamb))
fac=0.25_sp*fac
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
zt=0.25_sp*(zt+alamb)
ave=0.2_sp*(xt+yt+3.0_sp*zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
if (max(abs(delx),abs(dely),abs(delz)) <= ERRTOL) exit

end do
ea=delx*dely
eb=delz*delz
ec=ea-eb
ed=ea-6.0_sp*eb
ee=ed+ec+ec
rd_s=3.0_sp*sum+fac*(1.0_sp+ed*(-C1+C5*ed-C6*delz*ee)&

+delz*(C2*ee+delz*(-C3*ec+delz*C4*ea)))/(ave*sqrt(ave))
END FUNCTION rd_s
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FUNCTION rd_v(x,y,z)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,z
REAL(SP), DIMENSION(size(x)) :: rd_v
REAL(SP), PARAMETER :: ERRTOL=0.05_sp,TINY=1.0e-25_sp,BIG=4.5e21_sp,&

C1=3.0_sp/14.0_sp,C2=1.0_sp/6.0_sp,C3=9.0_sp/22.0_sp,&
C4=3.0_sp/26.0_sp,C5=0.25_sp*C3,C6=1.5_sp*C4

REAL(SP), DIMENSION(size(x)) :: alamb,ave,delx,dely,delz,ea,eb,ec,ed,&
ee,fac,sqrtx,sqrty,sqrtz,sum,xt,yt,zt

LOGICAL(LGT), DIMENSION(size(x)) :: converged
INTEGER(I4B) :: ndum
ndum=assert_eq(size(x),size(y),size(z),’rd_v’)
call assert(all(min(x,y) >= 0.0), all(min(x+y,z) >= TINY), &

all(max(x,y,z) <= BIG), ’rd_v args’)
xt=x
yt=y
zt=z
sum=0.0
fac=1.0
converged=.false.
do

where (.not. converged)
sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
sum=sum+fac/(sqrtz*(zt+alamb))
fac=0.25_sp*fac
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
zt=0.25_sp*(zt+alamb)
ave=0.2_sp*(xt+yt+3.0_sp*zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
converged = (all(max(abs(delx),abs(dely),abs(delz)) <= ERRTOL))

end where
if (all(converged)) exit

end do
ea=delx*dely
eb=delz*delz
ec=ea-eb
ed=ea-6.0_sp*eb
ee=ed+ec+ec
rd_v=3.0_sp*sum+fac*(1.0_sp+ed*(-C1+C5*ed-C6*delz*ee)&

+delz*(C2*ee+delz*(-C3*ec+delz*C4*ea)))/(ave*sqrt(ave))
END FUNCTION rd_v

FUNCTION rj_s(x,y,z,p)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : rc,rf
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y,z,p
REAL(SP) :: rj_s
REAL(SP), PARAMETER :: ERRTOL=0.05_sp,TINY=2.5e-13_sp,BIG=9.0e11_sp,&

C1=3.0_sp/14.0_sp,C2=1.0_sp/3.0_sp,C3=3.0_sp/22.0_sp,&
C4=3.0_sp/26.0_sp,C5=0.75_sp*C3,C6=1.5_sp*C4,C7=0.5_sp*C2,&
C8=C3+C3
Computes Carlson’s elliptic integral of the third kind, RJ(x, y, z, p). x, y, and z must be
nonnegative, and at most one can be zero. p must be nonzero. If p < 0, the Cauchy
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principal value is returned. TINY must be at least twice the cube root of the machine
underflow limit, BIG at most one-fifth the cube root of the machine overflow limit.

REAL(SP) :: a,alamb,alpha,ave,b,bet,delp,delx,&
dely,delz,ea,eb,ec,ed,ee,fac,pt,rho,sqrtx,sqrty,sqrtz,&
sm,tau,xt,yt,zt

call assert(min(x,y,z) >= 0.0, min(x+y,x+z,y+z,abs(p)) >= TINY, &
max(x,y,z,abs(p)) <= BIG, ’rj_s args’)

sm=0.0
fac=1.0
if (p > 0.0) then

xt=x
yt=y
zt=z
pt=p

else
xt=min(x,y,z)
zt=max(x,y,z)
yt=x+y+z-xt-zt
a=1.0_sp/(yt-p)
b=a*(zt-yt)*(yt-xt)
pt=yt+b
rho=xt*zt/yt
tau=p*pt/yt

end if
do

sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
alpha=(pt*(sqrtx+sqrty+sqrtz)+sqrtx*sqrty*sqrtz)**2
bet=pt*(pt+alamb)**2
sm=sm+fac*rc(alpha,bet)
fac=0.25_sp*fac
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
zt=0.25_sp*(zt+alamb)
pt=0.25_sp*(pt+alamb)
ave=0.2_sp*(xt+yt+zt+pt+pt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
delp=(ave-pt)/ave
if (max(abs(delx),abs(dely),abs(delz),abs(delp)) <= ERRTOL) exit

end do
ea=delx*(dely+delz)+dely*delz
eb=delx*dely*delz
ec=delp**2
ed=ea-3.0_sp*ec
ee=eb+2.0_sp*delp*(ea-ec)
rj_s=3.0_sp*sm+fac*(1.0_sp+ed*(-C1+C5*ed-C6*ee)+eb*(C7+delp*(-C8&

+delp*C4))+delp*ea*(C2-delp*C3)-C2*delp*ec)/(ave*sqrt(ave))
if (p <= 0.0) rj_s=a*(b*rj_s+3.0_sp*(rc(rho,tau)-rf(xt,yt,zt)))
END FUNCTION rj_s

FUNCTION rj_v(x,y,z,p)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : rc,rf
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,z,p
REAL(SP), DIMENSION(size(x)) :: rj_v
REAL(SP), PARAMETER :: ERRTOL=0.05_sp,TINY=2.5e-13_sp,BIG=9.0e11_sp,&

C1=3.0_sp/14.0_sp,C2=1.0_sp/3.0_sp,C3=3.0_sp/22.0_sp,&
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C4=3.0_sp/26.0_sp,C5=0.75_sp*C3,C6=1.5_sp*C4,C7=0.5_sp*C2,&
C8=C3+C3

REAL(SP), DIMENSION(size(x)) :: a,alamb,alpha,ave,b,bet,delp,delx,&
dely,delz,ea,eb,ec,ed,ee,fac,pt,rho,sqrtx,sqrty,sqrtz,&
sm,tau,xt,yt,zt

LOGICAL(LGT), DIMENSION(size(x)) :: mask
INTEGER(I4B) :: ndum
ndum=assert_eq(size(x),size(y),size(z),size(p),’rj_v’)
call assert(all(min(x,y,z) >= 0.0), all(min(x+y,x+z,y+z,abs(p)) >= TINY), &

all(max(x,y,z,abs(p)) <= BIG), ’rj_v args’)
sm=0.0
fac=1.0
where (p > 0.0)

xt=x
yt=y
zt=z
pt=p

elsewhere
xt=min(x,y,z)
zt=max(x,y,z)
yt=x+y+z-xt-zt
a=1.0_sp/(yt-p)
b=a*(zt-yt)*(yt-xt)
pt=yt+b
rho=xt*zt/yt
tau=p*pt/yt

end where
mask=.false.
do

where (.not. mask)
sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
alpha=(pt*(sqrtx+sqrty+sqrtz)+sqrtx*sqrty*sqrtz)**2
bet=pt*(pt+alamb)**2
sm=sm+fac*rc(alpha,bet)
fac=0.25_sp*fac
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
zt=0.25_sp*(zt+alamb)
pt=0.25_sp*(pt+alamb)
ave=0.2_sp*(xt+yt+zt+pt+pt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
delp=(ave-pt)/ave
mask = (max(abs(delx),abs(dely),abs(delz),abs(delp)) <= ERRTOL)

end where
if (all(mask)) exit

end do
ea=delx*(dely+delz)+dely*delz
eb=delx*dely*delz
ec=delp**2
ed=ea-3.0_sp*ec
ee=eb+2.0_sp*delp*(ea-ec)
rj_v=3.0_sp*sm+fac*(1.0_sp+ed*(-C1+C5*ed-C6*ee)+eb*(C7+delp*(-C8&

+delp*C4))+delp*ea*(C2-delp*C3)-C2*delp*ec)/(ave*sqrt(ave))
mask = (p <= 0.0)
where (mask) rj_v=a*(b*rj_v+&

unpack(3.0_sp*(rc(pack(rho,mask),pack(tau,mask))-&
rf(pack(xt,mask),pack(yt,mask),pack(zt,mask))),mask,0.0_sp))

END FUNCTION rj_v
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f90
unpack(3.0_sp*(rc(pack(rho,mask),pack(tau,mask))...),mask,0.0_sp)

If you’re willing to put up with fairly unreadable code, you can use the
pack-unpack trick (for getting a masked subset of components out of a

vector function) right in-line, as here. Of course the “outer level” that is seen by the
enclosing where construction has to contain only objects that have the same shape
as the mask that goes with the where. Because it is so hard to read, we don’t like to
do this very often. An alternative would be to use CONTAINS to incorporate short,
masked “wrapper functions” for the functions used in this way.

FUNCTION rc_s(x,y)
USE nrtype; USE nrutil, ONLY : assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: rc_s
REAL(SP), PARAMETER :: ERRTOL=0.04_sp,TINY=1.69e-38_sp,&

SQRTNY=1.3e-19_sp,BIG=3.0e37_sp,TNBG=TINY*BIG,&
COMP1=2.236_sp/SQRTNY,COMP2=TNBG*TNBG/25.0_sp,&
THIRD=1.0_sp/3.0_sp,&
C1=0.3_sp,C2=1.0_sp/7.0_sp,C3=0.375_sp,C4=9.0_sp/22.0_sp
Computes Carlson’s degenerate elliptic integral, RC(x, y). x must be nonnegative and y
must be nonzero. If y < 0, the Cauchy principal value is returned. TINY must be at least
5 times the machine underflow limit, BIG at most one-fifth the machine maximum overflow
limit.

REAL(SP) :: alamb,ave,s,w,xt,yt
call assert( (/x >= 0.0,y /= 0.0,x+abs(y) >= TINY,x+abs(y) <= BIG, &

y >= -COMP1 .or. x <= 0.0 .or. x >= COMP2/),’rc_s’)
if (y > 0.0) then

xt=x
yt=y
w=1.0

else
xt=x-y
yt=-y
w=sqrt(x)/sqrt(xt)

end if
do

alamb=2.0_sp*sqrt(xt)*sqrt(yt)+yt
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
ave=THIRD*(xt+yt+yt)
s=(yt-ave)/ave
if (abs(s) <= ERRTOL) exit

end do
rc_s=w*(1.0_sp+s*s*(C1+s*(C2+s*(C3+s*C4))))/sqrt(ave)
END FUNCTION rc_s

FUNCTION rc_v(x,y)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), DIMENSION(size(x)) :: rc_v
REAL(SP), PARAMETER :: ERRTOL=0.04_sp,TINY=1.69e-38_sp,&

SQRTNY=1.3e-19_sp,BIG=3.0e37_sp,TNBG=TINY*BIG,&
COMP1=2.236_sp/SQRTNY,COMP2=TNBG*TNBG/25.0_sp,&
THIRD=1.0_sp/3.0_sp,&
C1=0.3_sp,C2=1.0_sp/7.0_sp,C3=0.375_sp,C4=9.0_sp/22.0_sp

REAL(SP), DIMENSION(size(x)) :: alamb,ave,s,w,xt,yt
LOGICAL(LGT), DIMENSION(size(x)) :: converged
INTEGER(I4B) :: ndum
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ndum=assert_eq(size(x),size(y),’rc_v’)
call assert( (/all(x >= 0.0),all(y /= 0.0),all(x+abs(y) >= TINY), &

all(x+abs(y) <= BIG),all(y >= -COMP1 .or. x <= 0.0 &
.or. x >= COMP2) /),’rc_v’)

where (y > 0.0)
xt=x
yt=y
w=1.0

elsewhere
xt=x-y
yt=-y
w=sqrt(x)/sqrt(xt)

end where
converged=.false.
do

where (.not. converged)
alamb=2.0_sp*sqrt(xt)*sqrt(yt)+yt
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
ave=THIRD*(xt+yt+yt)
s=(yt-ave)/ave
converged = (abs(s) <= ERRTOL)

end where
if (all(converged)) exit

end do
rc_v=w*(1.0_sp+s*s*(C1+s*(C2+s*(C3+s*C4))))/sqrt(ave)
END FUNCTION rc_v

� � �

FUNCTION ellf_s(phi,ak)
USE nrtype
USE nr, ONLY : rf
IMPLICIT NONE
REAL(SP), INTENT(IN) :: phi,ak
REAL(SP) :: ellf_s

Legendre elliptic integral of the 1st kind F (φ, k), evaluated using Carlson’s function RF .
The argument ranges are 0 ≤ φ ≤ π/2, 0 ≤ k sinφ ≤ 1.

REAL(SP) :: s
s=sin(phi)
ellf_s=s*rf(cos(phi)**2,(1.0_sp-s*ak)*(1.0_sp+s*ak),1.0_sp)
END FUNCTION ellf_s

FUNCTION ellf_v(phi,ak)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : rf
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: phi,ak
REAL(SP), DIMENSION(size(phi)) :: ellf_v
REAL(SP), DIMENSION(size(phi)) :: s
INTEGER(I4B) :: ndum
ndum=assert_eq(size(phi),size(ak),’ellf_v’)
s=sin(phi)
ellf_v=s*rf(cos(phi)**2,(1.0_sp-s*ak)*(1.0_sp+s*ak),&

spread(1.0_sp,1,size(phi)))
END FUNCTION ellf_v
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FUNCTION elle_s(phi,ak)
USE nrtype
USE nr, ONLY : rd,rf
IMPLICIT NONE
REAL(SP), INTENT(IN) :: phi,ak
REAL(SP) :: elle_s

Legendre elliptic integral of the 2nd kind E(φ, k), evaluated using Carlson’s functions RD
and RF . The argument ranges are 0 ≤ φ ≤ π/2, 0 ≤ k sinφ ≤ 1.

REAL(SP) :: cc,q,s
s=sin(phi)
cc=cos(phi)**2
q=(1.0_sp-s*ak)*(1.0_sp+s*ak)
elle_s=s*(rf(cc,q,1.0_sp)-((s*ak)**2)*rd(cc,q,1.0_sp)/3.0_sp)
END FUNCTION elle_s

FUNCTION elle_v(phi,ak)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : rd,rf
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: phi,ak
REAL(SP), DIMENSION(size(phi)) :: elle_v
REAL(SP), DIMENSION(size(phi)) :: cc,q,s
INTEGER(I4B) :: ndum
ndum=assert_eq(size(phi),size(ak),’elle_v’)
s=sin(phi)
cc=cos(phi)**2
q=(1.0_sp-s*ak)*(1.0_sp+s*ak)
elle_v=s*(rf(cc,q,spread(1.0_sp,1,size(phi)))-((s*ak)**2)*&

rd(cc,q,spread(1.0_sp,1,size(phi)))/3.0_sp)
END FUNCTION elle_v

f90 rd(cc,q,spread(1.0_sp,1,size(phi))) See note toerf v, p. 1094 above.

FUNCTION ellpi_s(phi,en,ak)
USE nrtype
USE nr, ONLY : rf,rj
IMPLICIT NONE
REAL(SP), INTENT(IN) :: phi,en,ak
REAL(SP) :: ellpi_s

Legendre elliptic integral of the 3rd kind Π(φ, n, k), evaluated using Carlson’s functions RJ

and RF . (Note that the sign convention on n is opposite that of Abramowitz and Stegun.)
The ranges of φ and k are 0 ≤ φ ≤ π/2, 0 ≤ k sinφ ≤ 1.

REAL(SP) :: cc,enss,q,s
s=sin(phi)
enss=en*s*s
cc=cos(phi)**2
q=(1.0_sp-s*ak)*(1.0_sp+s*ak)
ellpi_s=s*(rf(cc,q,1.0_sp)-enss*rj(cc,q,1.0_sp,1.0_sp+enss)/3.0_sp)
END FUNCTION ellpi_s
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FUNCTION ellpi_v(phi,en,ak)
USE nrtype
USE nr, ONLY : rf,rj
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: phi,en,ak
REAL(SP), DIMENSION(size(phi)) :: ellpi_v
REAL(SP), DIMENSION(size(phi)) :: cc,enss,q,s
s=sin(phi)
enss=en*s*s
cc=cos(phi)**2
q=(1.0_sp-s*ak)*(1.0_sp+s*ak)
ellpi_v=s*(rf(cc,q,spread(1.0_sp,1,size(phi)))-enss*&

rj(cc,q,spread(1.0_sp,1,size(phi)),1.0_sp+enss)/3.0_sp)
END FUNCTION ellpi_v

� � �

SUBROUTINE sncndn(uu,emmc,sn,cn,dn)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: uu,emmc
REAL(SP), INTENT(OUT) :: sn,cn,dn

Returns the Jacobian elliptic functions sn(u, kc), cn(u, kc), and dn(u, kc). Here uu = u,
while emmc = k2

c .
REAL(SP), PARAMETER :: CA=0.0003_sp The accuracy is the square of CA.
INTEGER(I4B), PARAMETER :: MAXIT=13
INTEGER(I4B) :: i,ii,l
REAL(SP) :: a,b,c,d,emc,u
REAL(SP), DIMENSION(MAXIT) :: em,en
LOGICAL(LGT) :: bo
emc=emmc
u=uu
if (emc /= 0.0) then

bo=(emc < 0.0)
if (bo) then

d=1.0_sp-emc
emc=-emc/d
d=sqrt(d)
u=d*u

end if
a=1.0
dn=1.0
do i=1,MAXIT

l=i
em(i)=a
emc=sqrt(emc)
en(i)=emc
c=0.5_sp*(a+emc)
if (abs(a-emc) <= CA*a) exit
emc=a*emc
a=c

end do
if (i > MAXIT) call nrerror(’sncndn: convergence failed’)
u=c*u
sn=sin(u)
cn=cos(u)
if (sn /= 0.0) then

a=cn/sn
c=a*c
do ii=l,1,-1

b=em(ii)
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a=c*a
c=dn*c
dn=(en(ii)+a)/(b+a)
a=c/b

end do
a=1.0_sp/sqrt(c**2+1.0_sp)
sn=sign(a,sn)
cn=c*sn

end if
if (bo) then

a=dn
dn=cn
cn=a
sn=sn/d

end if
else

cn=1.0_sp/cosh(u)
dn=cn
sn=tanh(u)

end if
END SUBROUTINE sncndn

� � �

MODULE hypgeo_info
USE nrtype
COMPLEX(SPC) :: hypgeo_aa,hypgeo_bb,hypgeo_cc,hypgeo_dz,hypgeo_z0
END MODULE hypgeo_info

FUNCTION hypgeo(a,b,c,z)
USE nrtype
USE hypgeo_info
USE nr, ONLY : bsstep,hypdrv,hypser,odeint
IMPLICIT NONE
COMPLEX(SPC), INTENT(IN) :: a,b,c,z
COMPLEX(SPC) :: hypgeo
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Complex hypergeometric function 2F1 for complex a, b, c, and z, by direct integration of
the hypergeometric equation in the complex plane. The branch cut is taken to lie along the
real axis, Re z > 1.
Parameter: EPS is an accuracy parameter.

COMPLEX(SPC), DIMENSION(2) :: y
REAL(SP), DIMENSION(4) :: ry
if (real(z)**2+aimag(z)**2 <= 0.25) then Use series...

call hypser(a,b,c,z,hypgeo,y(2))
RETURN

else if (real(z) < 0.0) then ...or pick a starting point for the path
integration.hypgeo_z0=cmplx(-0.5_sp,0.0_sp,kind=spc)

else if (real(z) <= 1.0) then
hypgeo_z0=cmplx(0.5_sp,0.0_sp,kind=spc)

else
hypgeo_z0=cmplx(0.0_sp,sign(0.5_sp,aimag(z)),kind=spc)

end if
hypgeo_aa=a Load the module variables, used to pass

parameters “over the head” of odeint
to hypdrv.

hypgeo_bb=b
hypgeo_cc=c
hypgeo_dz=z-hypgeo_z0
call hypser(hypgeo_aa,hypgeo_bb,hypgeo_cc,hypgeo_z0,y(1),y(2))
Get starting function and derivative.

ry(1:4:2)=real(y)
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ry(2:4:2)=aimag(y)
call odeint(ry,0.0_sp,1.0_sp,EPS,0.1_sp,0.0001_sp,hypdrv,bsstep)
The arguments to odeint are the vector of independent variables, the starting and ending
values of the dependent variable, the accuracy parameter, an initial guess for stepsize, a
minimum stepsize, and the names of the derivative routine and the (here Bulirsch-Stoer)
stepping routine.

y=cmplx(ry(1:4:2),ry(2:4:2),kind=spc)
hypgeo=y(1)
END FUNCTION hypgeo

SUBROUTINE hypser(a,b,c,z,series,deriv)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
COMPLEX(SPC), INTENT(IN) :: a,b,c,z
COMPLEX(SPC), INTENT(OUT) :: series,deriv

Returns the hypergeometric series 2F1 and its derivative, iterating to machine accuracy.
For cabs(z) ≤ 1/2 convergence is quite rapid.

INTEGER(I4B) :: n
INTEGER(I4B), PARAMETER :: MAXIT=1000
COMPLEX(SPC) :: aa,bb,cc,fac,temp
deriv=cmplx(0.0_sp,0.0_sp,kind=spc)
fac=cmplx(1.0_sp,0.0_sp,kind=spc)
temp=fac
aa=a
bb=b
cc=c
do n=1,MAXIT

fac=((aa*bb)/cc)*fac
deriv=deriv+fac
fac=fac*z/n
series=temp+fac
if (series == temp) RETURN
temp=series
aa=aa+1.0
bb=bb+1.0
cc=cc+1.0

end do
call nrerror(’hypser: convergence failure’)
END SUBROUTINE hypser

SUBROUTINE hypdrv(s,ry,rdyds)
USE nrtype
USE hypgeo_info
IMPLICIT NONE
REAL(SP), INTENT(IN) :: s
REAL(SP), DIMENSION(:), INTENT(IN) :: ry
REAL(SP), DIMENSION(:), INTENT(OUT) :: rdyds

Derivative subroutine for the hypergeometric equation; see text equation (5.14.4).
COMPLEX(SPC), DIMENSION(2) :: y,dyds
COMPLEX(SPC) :: z
y=cmplx(ry(1:4:2),ry(2:4:2),kind=spc)
z=hypgeo_z0+s*hypgeo_dz
dyds(1)=y(2)*hypgeo_dz
dyds(2)=((hypgeo_aa*hypgeo_bb)*y(1)-(hypgeo_cc-&

((hypgeo_aa+hypgeo_bb)+1.0_sp)*z)*y(2))*hypgeo_dz/(z*(1.0_sp-z))
rdyds(1:4:2)=real(dyds)
rdyds(2:4:2)=aimag(dyds)
END SUBROUTINE hypdrv
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f90
Notice that the real array (of length 4) ry is immediately mapped into a
complex array of length 2, and that the process is reversed at the end of
the routine with rdyds. In Fortran 77 no such mapping is necessary: the

calling program sends real arguments, and the Fortran 77 hypdrv simply interprets
what is sent as complex. Fortran 90’s stronger typing does not encourage (and,
practically, does not allow) this convenience; but it is a small price to pay for the
vastly increased error-checking capabilities of a strongly typed language.
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Chapter B7. Random Numbers
One might think that good random number generators, including those in

Volume 1, should last forever. The world of computing changes very rapidly,
however:

• When Volume 1 was published, it was unusual, except on the fastest
supercomputers, to “exhaust” a 32-bit random number generator, that is,
to call for all232 sequential random values in its periodic sequence. Now,
this is feasible, and not uncommon, on fast desktop workstations. A
useful generator today must have a minimum of 64 bits of state space,
and generally somewhat more.

• Before Fortran 90, the Fortran language had no standardized calling
sequence for random numbers. Now, although there is still no standard
algorithm defined by the language (rightly, we think), there is at least a
standard calling sequence, exemplified in the intrinsicsrandom number

and random seed.
• The rise of parallel computing places new algorithmic demands on ran-

dom generators. The classic algorithms, which compute each random
value from the previous one, evidently need generalization to a parallel
environment.

• New algorithms and techniques have been discovered, in some cases
significantly faster than their predecessors.

These are the reasons that we have decided to implement, in Fortran 90,
different uniform random number generators from those in Volume 1’s Fortran
77 implementations. We hasten to add that there is nothing wrong with any of
the generators in Volume 1. That volume’sran0 and ran1 routines are, to our
knowledge, completely adequate as 32-bit generators;ran2 has a 64-bit state space,
and our previous offer of$1000 forany demonstrated failure in the algorithm has
never yet been claimed (see[1]).

Before we launch into the discussion of parallelizable generators with Fortran
90 calling conventions, we want to attend to the continuing needs of longtime
“x=ran(idum)” users with purely serial machines. If you are a satisfied user of
Volume 1’sran0, ran1, or ran2 Fortran 77 versions, you are in this group. The
followingroutine,ran, preserves those routines’ calling conventions, is considerably
faster thanran2, and does not suffer from the oldran0 or ran1’s 32-bit period
exhaustion limitation. It is completely portable to all Fortran 90 environments. We
recommendran as the plug-compatible replacement for the oldran0, ran1, and
ran2, and we happily offer exactly the same$1000 reward terms as were (and are
still) offered on the oldran2.

1141
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FUNCTION ran(idum)
IMPLICIT NONE
INTEGER, PARAMETER :: K4B=selected_int_kind(9)
INTEGER(K4B), INTENT(INOUT) :: idum
REAL :: ran

“Minimal” random number generator of Park and Miller combined with a Marsaglia shift
sequence. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint
values). This fully portable, scalar generator has the “traditional” (not Fortran 90) calling
sequence with a random deviate as the returned function value: call with idum a negative
integer to initialize; thereafter, do not alter idum except to reinitialize. The period of this
generator is about 3.1 × 1018.

INTEGER(K4B), PARAMETER :: IA=16807,IM=2147483647,IQ=127773,IR=2836
REAL, SAVE :: am
INTEGER(K4B), SAVE :: ix=-1,iy=-1,k
if (idum <= 0 .or. iy < 0) then Initialize.

am=nearest(1.0,-1.0)/IM
iy=ior(ieor(888889999,abs(idum)),1)
ix=ieor(777755555,abs(idum))
idum=abs(idum)+1 Set idum positive.

end if
ix=ieor(ix,ishft(ix,13)) Marsaglia shift sequence with period 232 − 1.
ix=ieor(ix,ishft(ix,-17))
ix=ieor(ix,ishft(ix,5))
k=iy/IQ Park-Miller sequence by Schrage’s method,

period 231 − 2.iy=IA*(iy-k*IQ)-IR*k
if (iy < 0) iy=iy+IM
ran=am*ior(iand(IM,ieor(ix,iy)),1) Combine the two generators with masking to

ensure nonzero value.END FUNCTION ran

This is a good place to discuss a new bit of algorithmics that has crept intoran,
above, and even more strongly affects all of our new random number generators,
below. Consider:

ix=ieor(ix,ishft(ix,13))
ix=ieor(ix,ishft(ix,-17))
ix=ieor(ix,ishft(ix,5))

These lines update a 32-bit integerix, which cycles pseudo-randomly through a full
period of232 − 1 values (excluding zero) before repeating. Generators of this type
have been extensively explored by Marsaglia (see[2]), who has kindlycommunicated
some additional results to us in advance of publication. For convenience, we will
refer to generators of this sort as “Marsaglia shift registers.”

Useful properties of Marsaglia shift registers are (i) they are very fast on most
machines, since they use only fast logical operations, and (ii) the bit-mixing that they
induce is quite different in character from that induced by arithmetic operations such
as are used in linear congruential generators (see Volume 1) or lagged Fibonacci
generators (see below). Thus, the combination of a Marsaglia shift register with
another, algorithmically quite different generator is a powerful way to suppress any
residual correlations or other weaknesses in the other generator. Indeed, Marsaglia
finds (and we concur) that the above generator (with constants13,−17, 5, as shown)
is by itself about as good as any 32-bit random generator.

Here is a very brief outline of the theory behind these generators: Consider the
32 bits of the integer as components in a vector of length 32, in a linear space where
addition and multiplication are done modulo 2. Noting that exclusive-or (ieor) is
the same as addition, each of the three lines in the updating can be written as the
action of a32 × 32 matrix on a vector, where the matrix is all zeros except for
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ones on the diagonal, and on exactly one super- or subdiagonal (corresponding to
positive or negative second arguments inishft). Denote this matrix asSk, where
k is the shift argument. Then, one full step of updating (three lines of code, above)
corresponds to multiplication by the matrixT ≡ S k3Sk2Sk1 .

One next needs to find triples of integers(k1, k2, k3), for example(13,−17, 5),
that give the fullM ≡ 232 − 1 period. Necessary and sufficient conditions are
that TM = 1 (the identity matrix), and thatTN �= 1 for these five values ofN :
N = 3 × 5 × 17 × 257, N = 3 × 5 × 17 × 65537, N = 3 × 5 × 257 × 65537,
N = 3× 17× 257× 65537,N = 5× 17× 257× 65537. (Note that each of the five
prime factors ofM is omitted one at a time to get the five values ofN .) The required
large powers ofT are readily computed by successive squarings, requiring only on
the order of323 logM operations. With this machinery, one can find full-period
triples (k1, k2, k3) by exhaustive search, at reasonable cost.

Not all such triples are equally good as generators of random integers, however.
Marsaglia subjects candidate values to a battery of tests for randomness, and we
have ourselves applied various tests. This stage of winnowing is as much art as
science, because all 32-bit generators can be made to exhibit signs of failure due to
period exhaustion (if for no other reason). “Good” triples, in order of our preference,
are(13,−17, 5), (5,−13, 6), (5,−9, 7), (13,−17, 15), (16,−7, 11). When a full-
period triple is good, its reverse is also full-period, and also generally good. A
good quadruple due to Marsaglia (generalizing the above in the obvious way) is
(−4, 8,−1, 5). We would not recommend relying on any single Marsaglia shift
generator (nor on any other simple generator)by itself. Two or more generators, of
quite different types, should be combined[1].

� � �

Let us now discuss explicitly the needs ofparallel random number gener-
ators. The general scheme, from the user’s perspective, is that of Fortran
90’s intrinsicrandom number: A statement likecall ran1(harvest)

(whereran1 will be one of our portable replacements for the compiler-dependent
random number) should fill the real arrayharvestwith pseudo-random real values
in the range(0, 1). Of course, we want the underlying machinery to be completely
parallel, that is, no do-loops of orderN ≡ size(harvest).

A first design decision is whether to replicate the state-space across the parallel
dimensionN , i.e., whether to reserve storage for essentiallyN scalar generators.
Although there are various schemes that avoid doing this (e.g., mapping a single,
smaller, state space intoN different output values on each call), we think that it is a
memory cost well worth paying in return for achieving a less exotic (and thus better
tested) algorithm. However, this choice dictates that we must keep the state space
per component quite small. We have settled on five or fewer 32-bit words of state
space per component as a reasonable limit. Some otherwise interesting and well
tested methods (such as Knuth’s subtractive generator, implemented in Volume 1 as
ran3) are ruled out by this constraint.

A second design decision is how to initialize the parallel state space, so that
different parallel components produce different sequences, and so that there is an
acceptable degree of randomnessacross the parallel dimension, as well asbetween
successive calls of the generator. Each component starts its life with one and
only one unique identifier, its component indexn in the range1 . . .N . One is
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tempted simply to hash the valuesn into the corresponding components of initial
state space. “Random” hashing is a bad idea, however, because differentn’s will
produce identical 32-bit hash results by chance whenN is no larger than∼ 216. We
therefore prefer to use a kind of reversible pseudo-encryption (similar to the routine
psdes in Volume 1 and below) which guarantees causally that differentn’s produce
different state space initializations.

f90
The machinery for allocating, deallocating, and initializing the state
space, including provision of a user interface for getting or putting the
contents of the state space (as in the intrinsicrandom seed) is fairly

complicated. Rather than duplicate it in each different random generator that we
provide, we have consolidated it in a single module,ran state, whose contents
we will now discuss. Such a discussion is necessarily technical, if not arcane; on
first reading, you may wish to skip ahead to the actual new routinesran0, ran1,
andran2. If you do so, you will need to know only thatran state provides each
vector random routine with five 32-bit vectors of state information, denotediran,
jran, kran, mran, nran. (The overloaded scalar generators have five corresponding
32-bit scalars, denotediran0, etc.)

MODULE ran_state
This module supports the random number routines ran0, ran1, ran2, and ran3. It pro-
vides each generator with five integers (for vector versions, five vectors of integers), for
use as internal state space. The first three integers (iran, jran, kran) are maintained
as nonnegative values, while the last two (mran, nran) have 32-bit nonzero values. Also
provided by this module is support for initializing or reinitializing the state space to a desired
standard sequence number, hashing the initial values to random values, and allocating and
deallocating the internal workspace.

USE nrtype
IMPLICIT NONE
INTEGER, PARAMETER :: K4B=selected_int_kind(9)
Independent of the usual integer kind I4B, we need a kind value for (ideally) 32-bit integers.

INTEGER(K4B), PARAMETER :: hg=huge(1_K4B), hgm=-hg, hgng=hgm-1
INTEGER(K4B), SAVE :: lenran=0, seq=0
INTEGER(K4B), SAVE :: iran0,jran0,kran0,nran0,mran0,rans
INTEGER(K4B), DIMENSION(:,:), POINTER, SAVE :: ranseeds
INTEGER(K4B), DIMENSION(:), POINTER, SAVE :: iran,jran,kran, &

nran,mran,ranv
REAL(SP), SAVE :: amm
INTERFACE ran_hash Scalar and vector versions of the hashing procedure.

MODULE PROCEDURE ran_hash_s, ran_hash_v
END INTERFACE
CONTAINS

(We here intersperse discussion with the listing of the module.) The module
definesK4B as an integerKIND that is intended to be 32 bits. If your machine doesn’t
have 32-bit integers (hard to believe!) this will be caught later, and an error message
generated. The definition of the parametershg, hgm, andhgng makes an assumption
about 32-bit integers that goes beyond the strict Fortran 90 integer model, that the
magnitude of the most negative representable integer is greater by one than that of
the most positive representable integer. This is a property of thetwo’s complement
arithmetic that is used on virtually all modern machines (see, e.g.,[3]).

The global variablesrans (for scalar) andranv (for vector) are used by all
of our routines to store theinteger value associated with the most recently returned
call. You can access these (with a “USE ran state” statement) if you want integer,
rather than real, random deviates.
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The first routine,ran init, is called by routines later in the chapter to initialize
their state space. It isnot intended to be called from a user’s program.

SUBROUTINE ran_init(length)
USE nrtype; USE nrutil, ONLY : arth,nrerror,reallocate
IMPLICIT NONE
INTEGER(K4B), INTENT(IN) :: length

Initialize or reinitialize the random generator state space to vectors of size length. The
saved variable seq is hashed (via calls to the module routine ran hash) to create unique
starting seeds, different for each vector component.

INTEGER(K4B) :: new,j,hgt
if (length < lenran) RETURN Simply return if enough space is already al-

located.hgt=hg
The following lines check that kind value K4B is in fact a 32-bit integer with the usual properties
that we expect it to have (under negation and wrap-around addition). If all of these tests are
satisfied, then the routines that use this module are portable, even though they go beyond
Fortran 90’s integer model.

if (hg /= 2147483647) call nrerror(’ran_init: arith assump 1 fails’)
if (hgng >= 0) call nrerror(’ran_init: arith assump 2 fails’)
if (hgt+1 /= hgng) call nrerror(’ran_init: arith assump 3 fails’)
if (not(hg) >= 0) call nrerror(’ran_init: arith assump 4 fails’)
if (not(hgng) < 0) call nrerror(’ran_init: arith assump 5 fails’)
if (hg+hgng >= 0) call nrerror(’ran_init: arith assump 6 fails’)
if (not(-1_k4b) < 0) call nrerror(’ran_init: arith assump 7 fails’)
if (not(0_k4b) >= 0) call nrerror(’ran_init: arith assump 8 fails’)
if (not(1_k4b) >= 0) call nrerror(’ran_init: arith assump 9 fails’)
if (lenran > 0) then Reallocate space, or ...

ranseeds=>reallocate(ranseeds,length,5)
ranv=>reallocate(ranv,length-1)
new=lenran+1

else allocate space.
allocate(ranseeds(length,5))
allocate(ranv(length-1))
new=1 Index of first location not yet initialized.
amm=nearest(1.0_sp,-1.0_sp)/hgng
Use of nearest is to ensure that returned random deviates are strictly less than 1.0.

if (amm*hgng >= 1.0 .or. amm*hgng <= 0.0) &
call nrerror(’ran_init: arth assump 10 fails’)

end if
Set starting values, unique by seq and vector component.

ranseeds(new:,1)=seq
ranseeds(new:,2:5)=spread(arth(new,1,size(ranseeds(new:,1))),2,4)
do j=1,4 Hash them.

call ran_hash(ranseeds(new:,j),ranseeds(new:,j+1))
end do
where (ranseeds(new:,1:3) < 0) & Enforce nonnegativity.

ranseeds(new:,1:3)=not(ranseeds(new:,1:3))
where (ranseeds(new:,4:5) == 0) ranseeds(new:,4:5)=1 Enforce nonzero.
if (new == 1) then Set scalar seeds.

iran0=ranseeds(1,1)
jran0=ranseeds(1,2)
kran0=ranseeds(1,3)
mran0=ranseeds(1,4)
nran0=ranseeds(1,5)
rans=nran0

end if
if (length > 1) then Point to vector seeds.

iran => ranseeds(2:,1)
jran => ranseeds(2:,2)
kran => ranseeds(2:,3)
mran => ranseeds(2:,4)
nran => ranseeds(2:,5)
ranv = nran
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end if
lenran=length
END SUBROUTINE ran_init

f90
hgt=hg ... if (hgt+1 /= hgng) Bit of dirty laundry here! We are testing
whether the most positive integerhg wraps around to the most negative
integerhgng when 1 is added to it. We can’t just writehg+1, since some

compilers will evaluate this at compile time and return an overflow error message.
If your compiler sees through the charade of the temporary variablehgt, you’ll
have to find another way to trick it.

amm=nearest(1.0_sp,-1.0_sp)/hgng... Logically, amm should be a parameter;
but the nearest intrinsic is trouble-prone in the initialization expression for a
parameter (named constant), so we compute this at run time. We then check thatamm,
when multiplied by the largest possible negative integer, does not equal or exceed
unity. (Our random deviates are guaranteed never to equal zero or unity exactly.)

You might wonder whyamm is negative, and why we multiply it by negative
integers to get positive random deviates. The answer, which will become manifest
in the random generators given below, is that we want to use the fastnot operation
on integers to convert them to nonzero values of all one sign. This is possible if the
conversion is to negative values, sincenot(i) is negative for all nonnegativei. If
the conversion were to positive values, we would have problems both with zero (its
sign bit is already positive) andhgng (sincenot(hgng) is generally zero).

iran0=ranseeds(1,1) ...
iran => ranseeds(2:,1)...

The initial state information is stored inranseeds, a two-dimensional array whose
column (second) index ranges from 1 to 5 over the state variables.ranseeds(1,:) is
reserved for scalar random generators, whileranseeds(2:,:) is for vector-parallel
generators. Theranseeds array is made available to vector generators through
the pointersiran, jran, kran, mran, andnran. The corresponding scalar values,
iran0,. . ., nran0 are simply global variables, not pointers, because the overhead of
addressing a scalar through a pointer is often too great. (We will have to copy these
scalar values back intoranseedswhen it, rarely, needs to be addressed as an array.)

call ran_hash(...) Unique, and random, initial state information is obtained
by putting a user-settable “sequence number” intoiran, a component number into
jran, and hashing this pair. Thenjran and kran are hashed,kran and mran

are hashed, and so forth.

SUBROUTINE ran_deallocate
User interface to release the workspace used by the random number routines.

if (lenran > 0) then
deallocate(ranseeds,ranv)
nullify(ranseeds,ranv,iran,jran,kran,mran,nran)
lenran = 0

end if
END SUBROUTINE ran_deallocate

The above routine is supplied as a user interface for deallocating all the state
space storage.
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SUBROUTINE ran_seed(sequence,size,put,get)
IMPLICIT NONE
INTEGER, OPTIONAL, INTENT(IN) :: sequence
INTEGER, OPTIONAL, INTENT(OUT) :: size
INTEGER, DIMENSION(:), OPTIONAL, INTENT(IN) :: put
INTEGER, DIMENSION(:), OPTIONAL, INTENT(OUT) :: get

User interface for seeding the random number routines. Syntax is exactly like Fortran 90’s
random seed routine, with one additional argument keyword: sequence, set to any inte-
ger value, causes an immediate new initialization, seeded by that integer.

if (present(size)) then
size=5*lenran

else if (present(put)) then
if (lenran == 0) RETURN
ranseeds=reshape(put,shape(ranseeds))
where (ranseeds(:,1:3) < 0) ranseeds(:,1:3)=not(ranseeds(:,1:3))
Enforce nonnegativity and nonzero conditions on any user-supplied seeds.

where (ranseeds(:,4:5) == 0) ranseeds(:,4:5)=1
iran0=ranseeds(1,1)
jran0=ranseeds(1,2)
kran0=ranseeds(1,3)
mran0=ranseeds(1,4)
nran0=ranseeds(1,5)

else if (present(get)) then
if (lenran == 0) RETURN
ranseeds(1,1:5)=(/ iran0,jran0,kran0,mran0,nran0 /)
get=reshape(ranseeds,shape(get))

else if (present(sequence)) then
call ran_deallocate
seq=sequence

end if
END SUBROUTINE ran_seed

f90 ranseeds=reshape(put,shape(ranseeds)) ...
get=reshape(ranseeds,shape(get))

Fortran 90’s convention is that random state space is a one-dimensional array, so we
map to this on both theget andput keywords.

iran0=...jran0=...kran0=...
ranseeds(1,1:5)=(/ iran0,jran0,kran0,mran0,nran0 /)

It’s much more convenient to set a vector from a bunch of scalars then the other
way around.

SUBROUTINE ran_hash_s(il,ir)
IMPLICIT NONE
INTEGER(K4B), INTENT(INOUT) :: il,ir

DES-like hashing of two 32-bit integers, using shifts, xor’s, and adds to make the internal
nonlinear function.

INTEGER(K4B) :: is,j
do j=1,4

is=ir
ir=ieor(ir,ishft(ir,5))+1422217823 The various constants are chosen to give

good bit mixing and should not be
changed.

ir=ieor(ir,ishft(ir,-16))+1842055030
ir=ieor(ir,ishft(ir,9))+80567781
ir=ieor(il,ir)
il=is

end do
END SUBROUTINE ran_hash_s



1148 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE ran_hash_v(il,ir)
IMPLICIT NONE
INTEGER(K4B), DIMENSION(:), INTENT(INOUT) :: il,ir

Vector version of ran hash s.
INTEGER(K4B), DIMENSION(size(il)) :: is
INTEGER(K4B) :: j
do j=1,4

is=ir
ir=ieor(ir,ishft(ir,5))+1422217823
ir=ieor(ir,ishft(ir,-16))+1842055030
ir=ieor(ir,ishft(ir,9))+80567781
ir=ieor(il,ir)
il=is

end do
END SUBROUTINE ran_hash_v

END MODULE ran_state

The lines

ir=ieor(ir,ishft(ir,5))+1422217823
ir=ieor(ir,ishft(ir,-16))+1842055030
ir=ieor(ir,ishft(ir,9))+80567781

are not a Marsaglia shift sequence, though they resemble one. Instead, they
implement a fast, nonlinear function onir that we use as the “S-box” in a DES-like
hashing algorithm. (See Volume 1,§7.5.) The triplet(5,−16, 9) is not chosen to
give a full period Marsaglia sequence — it doesn’t. Instead it is chosen as being
particularly good at separating in Hamming distance (i.e., number of nonidentical
bits) two initially close values ofir (e.g., differing by only one bit). The large
integer constants are chosen by a similar criterion. Note that the wrap-around
of addition without generating an overflow error condition, which was tested in
ran init, is relied upon here.

� � �

SUBROUTINE ran0_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,iran0,jran0,kran0,nran0,rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Lagged Fibonacci generator combined with a Marsaglia shift sequence. Returns as harvest
a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values). This gen-
erator has the same calling and initialization conventions as Fortran 90’s random number
routine. Use ran seed to initialize or reinitialize to a particular sequence. The period of
this generator is about 2.0 × 1028, and it fully vectorizes. Validity of the integer model
assumed by this generator is tested at initialization.

if (lenran < 1) call ran_init(1) Initialization routine in ran state.
rans=iran0-kran0 Update Fibonacci generator, which

has period p2 +p+1, p = 231−
69.

if (rans < 0) rans=rans+2147483579_k4b
iran0=jran0
jran0=kran0
kran0=rans
nran0=ieor(nran0,ishft(nran0,13)) Update Marsaglia shift sequence with

period 232 − 1.nran0=ieor(nran0,ishft(nran0,-17))
nran0=ieor(nran0,ishft(nran0,5))
rans=ieor(nran0,rans) Combine the generators.
harvest=amm*merge(rans,not(rans), rans<0 ) Make the result positive definite (note

that amm is negative).END SUBROUTINE ran0_s
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SUBROUTINE ran0_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,iran,jran,kran,nran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
ranv(1:n)=iran(1:n)-kran(1:n)
where (ranv(1:n) < 0) ranv(1:n)=ranv(1:n)+2147483579_k4b
iran(1:n)=jran(1:n)
jran(1:n)=kran(1:n)
kran(1:n)=ranv(1:n)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
ranv(1:n)=ieor(nran(1:n),ranv(1:n))
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0 )
END SUBROUTINE ran0_v

This is the simplest, and fastest, of the generators provided. It combines a
subtractive Fibonacci generator (Number 6 in ref.[1], and one of the generators
in Marsaglia and Zaman’smzran) with a Marsaglia shift sequence. On typical
machines it is only 20% or so faster thanran1, however; so we recommend the
latter preferentially. While we know of no weakness inran0, we are not offering
a prize for finding a weakness.ran0 does have the feature, useful if you have
a machine with nonstandard arithmetic, that it does not go beyond Fortran 90’s
assumed integer model.

Note thatran0 s andran0 v are overloaded by the modulenr onto the single
nameran0 (and similarly for the routines below).

� � �

SUBROUTINE ran1_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &

iran0,jran0,kran0,nran0,mran0,rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Lagged Fibonacci generator combined with two Marsaglia shift sequences. On output, re-
turns as harvest a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint
values). This generator has the same calling and initialization conventions as Fortran 90’s
random number routine. Use ran seed to initialize or reinitialize to a particular sequence.
The period of this generator is about 8.5×1037, and it fully vectorizes. Validity of the integer
model assumed by this generator is tested at initialization.

if (lenran < 1) call ran_init(1) Initialization routine in ran state.
rans=iran0-kran0 Update Fibonacci generator, which

has period p2 +p+1, p = 231−
69.

if (rans < 0) rans=rans+2147483579_k4b
iran0=jran0
jran0=kran0
kran0=rans
nran0=ieor(nran0,ishft(nran0,13)) Update Marsaglia shift sequence.
nran0=ieor(nran0,ishft(nran0,-17))
nran0=ieor(nran0,ishft(nran0,5))
Once only per cycle, advance sequence by 1, shortening its period to 232 − 2.

if (nran0 == 1) nran0=270369_k4b
mran0=ieor(mran0,ishft(mran0,5)) Update Marsaglia shift sequence with

period 232 − 1.mran0=ieor(mran0,ishft(mran0,-13))
mran0=ieor(mran0,ishft(mran0,6))
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rans=ieor(nran0,rans)+mran0
Combine the generators. The above statement has wrap-around addition.

harvest=amm*merge(rans,not(rans), rans<0 ) Make the result positive definite (note
that amm is negative).END SUBROUTINE ran1_s

SUBROUTINE ran1_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &

iran,jran,kran,nran,mran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
ranv(1:n)=iran(1:n)-kran(1:n)
where (ranv(1:n) < 0) ranv(1:n)=ranv(1:n)+2147483579_k4b
iran(1:n)=jran(1:n)
jran(1:n)=kran(1:n)
kran(1:n)=ranv(1:n)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
where (nran(1:n) == 1) nran(1:n)=270369_k4b
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),5))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),-13))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),6))
ranv(1:n)=ieor(nran(1:n),ranv(1:n))+mran(1:n)
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0 )
END SUBROUTINE ran1_v

The routineran1 combinesthree fast generators: the two used inran0, plus
an additional (different) Marsaglia shift sequence. The last generator is combined
via an addition that can wrap-around.

We think that, within the limits of its floating-point precision,ran1 provides
perfect random numbers. We will pay$1000 to the first reader who convinces us
otherwise (by exhibitinga statistical test thatran1 fails in a nontrivial way, excluding
the ordinary limitations of a floating-point representation).

� � �

SUBROUTINE ran2_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &

iran0,jran0,kran0,nran0,mran0,rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Lagged Fibonacci generator combined with a Marsaglia shift sequence and a linear con-
gruential generator. Returns as harvest a uniform random deviate between 0.0 and 1.0
(exclusive of the endpoint values). This generator has the same calling and initialization
conventions as Fortran 90’s random number routine. Use ran seed to initialize or reini-
tialize to a particular sequence. The period of this generator is about 8.5×1037, and it fully
vectorizes. Validity of the integer model assumed by this generator is tested at initialization.

if (lenran < 1) call ran_init(1) Initialization routine in ran state.
rans=iran0-kran0 Update Fibonacci generator, which

has period p2 +p+1, p = 231−
69.

if (rans < 0) rans=rans+2147483579_k4b
iran0=jran0
jran0=kran0
kran0=rans
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nran0=ieor(nran0,ishft(nran0,13)) Update Marsaglia shift sequence with
period 232 − 1.nran0=ieor(nran0,ishft(nran0,-17))

nran0=ieor(nran0,ishft(nran0,5))
rans=iand(mran0,65535)
Update the sequence m← 69069m+ 820265819 mod 232 using shifts instead of multiplies.
Wrap-around addition (tested at initialization) is used.

mran0=ishft(3533*ishft(mran0,-16)+rans,16)+ &
3533*rans+820265819_k4b

rans=ieor(nran0,kran0)+mran0 Combine the generators.
harvest=amm*merge(rans,not(rans), rans<0 ) Make the result positive definite (note

that amm is negative).END SUBROUTINE ran2_s

SUBROUTINE ran2_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &

iran,jran,kran,nran,mran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
ranv(1:n)=iran(1:n)-kran(1:n)
where (ranv(1:n) < 0) ranv(1:n)=ranv(1:n)+2147483579_k4b
iran(1:n)=jran(1:n)
jran(1:n)=kran(1:n)
kran(1:n)=ranv(1:n)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
ranv(1:n)=iand(mran(1:n),65535)
mran(1:n)=ishft(3533*ishft(mran(1:n),-16)+ranv(1:n),16)+ &

3533*ranv(1:n)+820265819_k4b
ranv(1:n)=ieor(nran(1:n),kran(1:n))+mran(1:n)
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0 )
END SUBROUTINE ran2_v

ran2, for use by readers whose caution is extreme, also combines three
generators. The difference fromran1 is that each generator is based on a completely
different method from the other two. The third generator, in this case, is a linear
congruential generator, modulo232. This generator relies extensively on wrap-
around addition (which is automatically tested at initialization). On machines with
fast arithmetic,ran2 is on the order of only 20% slower thanran1. We offer a
$1000 bounty onran2, with the same terms as forran1, above.

� � �

SUBROUTINE expdev_s(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Returns in harvest an exponentially distributed, positive, random deviate of unit mean,
using ran1 as the source of uniform deviates.

REAL(SP) :: dum
call ran1(dum)
harvest=-log(dum) We use the fact that ran1 never returns exactly 0 or 1.
END SUBROUTINE expdev_s
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SUBROUTINE expdev_v(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
REAL(SP), DIMENSION(size(harvest)) :: dum
call ran1(dum)
harvest=-log(dum)
END SUBROUTINE expdev_v

f90
call ran1(dum) The only noteworthy thing about this line is its simplic-
ity: Once all the machinery is in place, the random number generators
are self-initializing (to the sequence defined byseq = 0), and (via

overloading) usable with both scalar and vector arguments.

� � �

SUBROUTINE gasdev_s(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Returns in harvest a normally distributed deviate with zero mean and unit variance, using
ran1 as the source of uniform deviates.

REAL(SP) :: rsq,v1,v2
REAL(SP), SAVE :: g
LOGICAL, SAVE :: gaus_stored=.false.
if (gaus_stored) then We have an extra deviate handy,

harvest=g so return it,
gaus_stored=.false. and unset the flag.

else We don’t have an extra deviate handy, so
do

call ran1(v1) pick two uniform numbers in the square ex-
tending from -1 to +1 in each direction,call ran1(v2)

v1=2.0_sp*v1-1.0_sp
v2=2.0_sp*v2-1.0_sp
rsq=v1**2+v2**2 see if they are in the unit circle,
if (rsq > 0.0 .and. rsq < 1.0) exit

end do otherwise try again.
rsq=sqrt(-2.0_sp*log(rsq)/rsq) Now make the Box-Muller transformation to

get two normal deviates. Return one and
save the other for next time.

harvest=v1*rsq
g=v2*rsq
gaus_stored=.true. Set flag.

end if
END SUBROUTINE gasdev_s

SUBROUTINE gasdev_v(harvest)
USE nrtype; USE nrutil, ONLY : array_copy
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
REAL(SP), DIMENSION(size(harvest)) :: rsq,v1,v2
REAL(SP), ALLOCATABLE, DIMENSION(:), SAVE :: g
INTEGER(I4B) :: n,ng,nn,m
INTEGER(I4B), SAVE :: last_allocated=0
LOGICAL, SAVE :: gaus_stored=.false.
LOGICAL, DIMENSION(size(harvest)) :: mask
n=size(harvest)
if (n /= last_allocated) then
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if (last_allocated /= 0) deallocate(g)
allocate(g(n))
last_allocated=n
gaus_stored=.false.

end if
if (gaus_stored) then

harvest=g
gaus_stored=.false.

else
ng=1
do

if (ng > n) exit
call ran1(v1(ng:n))
call ran1(v2(ng:n))
v1(ng:n)=2.0_sp*v1(ng:n)-1.0_sp
v2(ng:n)=2.0_sp*v2(ng:n)-1.0_sp
rsq(ng:n)=v1(ng:n)**2+v2(ng:n)**2
mask(ng:n)=(rsq(ng:n)>0.0 .and. rsq(ng:n)<1.0)
call array_copy(pack(v1(ng:n),mask(ng:n)),v1(ng:),nn,m)
v2(ng:ng+nn-1)=pack(v2(ng:n),mask(ng:n))
rsq(ng:ng+nn-1)=pack(rsq(ng:n),mask(ng:n))
ng=ng+nn

end do
rsq=sqrt(-2.0_sp*log(rsq)/rsq)
harvest=v1*rsq
g=v2*rsq
gaus_stored=.true.

end if
END SUBROUTINE gasdev_v

if (n /= last_allocated) ... We make the assumption that, in most
cases, the size ofharvest will not change between successive calls.
Therefore, if itdoes change, we don’t try to save the previously generated

deviates that, half the time, will be around. If your use has rapidly varying sizes
(or, even worse, calls alternating between two different sizes), you should remedy
this inefficiency in the obvious way.

call array_copy(pack(v1(ng:n),mask(ng:n)),v1(ng:),nn,m) This is a variant
of the pack-unpack method (see note tofactrl, p. 1087). Different here is that we
don’t care which random deviates end up in which component. Thus, we can simply
keep packing successful returns intov1 andv2 until they are full.

f90
Note also the use ofarray copy, since we don’t know in advance the
length of the array returned bypack.

� � �

FUNCTION gamdev(ia)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : ran1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: ia
REAL(SP) :: gamdev

Returns a deviate distributed as a gamma distribution of integer order ia, i.e., a waiting
time to the iath event in a Poisson process of unit mean, using ran1 as the source of
uniform deviates.

REAL(SP) :: am,e,h,s,x,y,v(2),arr(5)
call assert(ia >= 1, ’gamdev arg’)
if (ia < 6) then Use direct method, adding waiting times.
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call ran1(arr(1:ia))
x=-log(product(arr(1:ia)))

else Use rejection method.
do

call ran1(v)
v(2)=2.0_sp*v(2)-1.0_sp These three lines generate the tangent of a

random angle, i.e., are equivalent to
y = tan(πran(idum)).

if (dot_product(v,v) > 1.0) cycle
y=v(2)/v(1)
am=ia-1
s=sqrt(2.0_sp*am+1.0_sp)
x=s*y+am We decide whether to reject x:
if (x <= 0.0) cycle Reject in region of zero probability.
e=(1.0_sp+y**2)*exp(am*log(x/am)-s*y) Ratio of probability function to

comparison function.call ran1(h)
if (h <= e) exit Reject on basis of a second uniform deviate.

end do
end if
gamdev=x
END FUNCTION gamdev

f90
x=-log(product(arr(1:ia))) Why take thelog of the product instead of
the sum of thelogs? Becauselog is assumed to be slower than multiply.

We don’t have vector versions of the less commonly used deviate
generators,gamdev, poidev, andbnldev.

� � �

FUNCTION poidev(xm)
USE nrtype
USE nr, ONLY : gammln,ran1
IMPLICIT NONE
REAL(SP), INTENT(IN) :: xm
REAL(SP) :: poidev

Returns as a floating-point number an integer value that is a random deviate drawn from a
Poisson distribution of mean xm, using ran1 as a source of uniform random deviates.

REAL(SP) :: em,harvest,t,y
REAL(SP), SAVE :: alxm,g,oldm=-1.0_sp,sq
oldm is a flag for whether xm has changed since last call.

if (xm < 12.0) then Use direct method.
if (xm /= oldm) then

oldm=xm
g=exp(-xm) If xm is new, compute the exponential.

end if
em=-1
t=1.0
do

em=em+1.0_sp Instead of adding exponential deviates it is
equivalent to multiply uniform deviates.
We never actually have to take the log;
merely compare to the pre-computed ex-
ponential.

call ran1(harvest)
t=t*harvest
if (t <= g) exit

end do
else Use rejection method.

if (xm /= oldm) then If xm has changed since the last call, then pre-
compute some functions that occur be-
low.

oldm=xm
sq=sqrt(2.0_sp*xm)
alxm=log(xm)
g=xm*alxm-gammln(xm+1.0_sp) The function gammln is the natural log of the

gamma function, as given in §6.1.end if
do
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do
call ran1(harvest) y is a deviate from a Lorentzian comparison

function.y=tan(PI*harvest)
em=sq*y+xm em is y, shifted and scaled.
if (em >= 0.0) exit Reject if in regime of zero probability.

end do
em=int(em) The trick for integer-valued distributions.
t=0.9_sp*(1.0_sp+y**2)*exp(em*alxm-gammln(em+1.0_sp)-g)
The ratio of the desired distribution to the comparison function; we accept or reject
by comparing it to another uniform deviate. The factor 0.9 is chosen so that t never
exceeds 1.

call ran1(harvest)
if (harvest <= t) exit

end do
end if
poidev=em
END FUNCTION poidev

� � �

FUNCTION bnldev(pp,n)
USE nrtype
USE nr, ONLY : gammln,ran1
IMPLICIT NONE
REAL(SP), INTENT(IN) :: pp
INTEGER(I4B), INTENT(IN) :: n
REAL(SP) :: bnldev

Returns as a floating-point number an integer value that is a random deviate drawn from a
binomial distribution of n trials each of probability pp, using ran1 as a source of uniform
random deviates.

INTEGER(I4B) :: j
INTEGER(I4B), SAVE :: nold=-1
REAL(SP) :: am,em,g,h,p,sq,t,y,arr(24)
REAL(SP), SAVE :: pc,plog,pclog,en,oldg,pold=-1.0 Arguments from previous calls.
p=merge(pp,1.0_sp-pp, pp <= 0.5_sp )
The binomial distribution is invariant under changing pp to 1.-pp, if we also change the
answer to n minus itself; we’ll remember to do this below.

am=n*p This is the mean of the deviate to be produced.
if (n < 25) then Use the direct method while n is not too large.

This can require up to 25 calls to ran1.call ran1(arr(1:n))
bnldev=count(arr(1:n)<p)

else if (am < 1.0) then If fewer than one event is expected out of 25
or more trials, then the distribution is quite
accurately Poisson. Use direct Poisson method.

g=exp(-am)
t=1.0
do j=0,n

call ran1(h)
t=t*h
if (t < g) exit

end do
bnldev=merge(j,n, j <= n)

else Use the rejection method.
if (n /= nold) then If n has changed, then compute useful quanti-

ties.en=n
oldg=gammln(en+1.0_sp)
nold=n

end if
if (p /= pold) then If p has changed, then compute useful quanti-

ties.pc=1.0_sp-p
plog=log(p)
pclog=log(pc)
pold=p
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end if
sq=sqrt(2.0_sp*am*pc) The following code should by now seem familiar:

rejection method with a Lorentzian compar-
ison function.

do
call ran1(h)
y=tan(PI*h)
em=sq*y+am
if (em < 0.0 .or. em >= en+1.0_sp) cycle Reject.
em=int(em) Trick for integer-valued distribution.
t=1.2_sp*sq*(1.0_sp+y**2)*exp(oldg-gammln(em+1.0_sp)-&

gammln(en-em+1.0_sp)+em*plog+(en-em)*pclog)
call ran1(h)
if (h <= t) exit Reject. This happens about 1.5 times per devi-

ate, on average.end do
bnldev=em

end if
if (p /= pp) bnldev=n-bnldev Remember to undo the symmetry transforma-

tion.END FUNCTION bnldev

� � �

f90
The routinespsdes and psdes safe both performexactly the same
hashing as was done by the Fortran 77 routinepsdes. The difference
is thatpsdes makes assumptions about arithmetic that go beyond the

strict Fortran 90 model, whilepsdes safe makes no such assumptions. The
disadvantage ofpsdes safe is that it is significantly slower, performing most of its
arithmetic in double-precision reals that are then converted to integers with Fortran
90’s modulo intrinsic.

In fact the nonsafe version,psdes, works fine on almost all machines and
compilers that we have tried. There is a reason for this: Our assumed integer model
is the same as theC languageunsigned int, and virtually all modern computers
and compilers have a lot ofC hidden inside. Ifpsdes andpsdes safe produce
identical output on your system for any hundred or so different input values, you can
be quite confident about using the faster version exclusively.

At the other end of things, note that in the very unlikely case that your system
fails on theran hash routine in theran statemodule (you will have learned this
from error messages generated byran init), you can substitutepsdes safe for
ran hash: They are plug-compatible.

SUBROUTINE psdes_s(lword,rword)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4

“Pseudo-DES” hashing of the 64-bit word (lword,irword). Both 32-bit arguments are
returned hashed on all bits. Note that this version of the routine assumes properties of
integer arithmetic that go beyond the Fortran 90 model, though they are compatible with
unsigned integers in C.

INTEGER(I4B), DIMENSION(4), SAVE :: C1,C2
DATA C1 /Z’BAA96887’,Z’1E17D32C’,Z’03BCDC3C’,Z’0F33D1B2’/
DATA C2 /Z’4B0F3B58’,Z’E874F0C3’,Z’6955C5A6’,Z’55A7CA46’/
INTEGER(I4B) :: i,ia,ib,iswap,itmph,itmpl
do i=1,NITER Perform niter iterations of DES logic, using a simpler

(noncryptographic) nonlinear function instead of DES’s.iswap=rword
ia=ieor(rword,C1(i)) The bit-rich constants C1 and (below) C2 guarantee lots

of nonlinear mixing.itmpl=iand(ia,65535)
itmph=iand(ishft(ia,-16),65535)
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ib=itmpl**2+not(itmph**2)
ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
rword=ieor(lword,ieor(C2(i),ia)+itmpl*itmph)
lword=iswap

end do
END SUBROUTINE psdes_s

SUBROUTINE psdes_v(lword,rword)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
INTEGER(I4B), DIMENSION(4), SAVE :: C1,C2
DATA C1 /Z’BAA96887’,Z’1E17D32C’,Z’03BCDC3C’,Z’0F33D1B2’/
DATA C2 /Z’4B0F3B58’,Z’E874F0C3’,Z’6955C5A6’,Z’55A7CA46’/
INTEGER(I4B), DIMENSION(size(lword)) :: ia,ib,iswap,itmph,itmpl
INTEGER(I4B) :: i
i=assert_eq(size(lword),size(rword),’psdes_v’)
do i=1,NITER

iswap=rword
ia=ieor(rword,C1(i))
itmpl=iand(ia,65535)
itmph=iand(ishft(ia,-16),65535)
ib=itmpl**2+not(itmph**2)
ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
rword=ieor(lword,ieor(C2(i),ia)+itmpl*itmph)
lword=iswap

end do
END SUBROUTINE psdes_v

SUBROUTINE psdes_safe_s(lword,rword)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4

“Pseudo-DES” hashing of the 64-bit word (lword,irword). Both 32-bit arguments are
returned hashed on all bits. This is a slower version of the routine that makes no assumptions
outside of the Fortran 90 integer model.

INTEGER(I4B), DIMENSION(4), SAVE :: C1,C2
DATA C1 /Z’BAA96887’,Z’1E17D32C’,Z’03BCDC3C’,Z’0F33D1B2’/
DATA C2 /Z’4B0F3B58’,Z’E874F0C3’,Z’6955C5A6’,Z’55A7CA46’/
INTEGER(I4B) :: i,ia,ib,iswap
REAL(DP) :: alo,ahi
do i=1,NITER

iswap=rword
ia=ieor(rword,C1(i))
alo=real(iand(ia,65535),dp)
ahi=real(iand(ishft(ia,-16),65535),dp)
ib=modint(alo*alo+real(not(modint(ahi*ahi)),dp))
ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
rword=ieor(lword,modint(real(ieor(C2(i),ia),dp)+alo*ahi))
lword=iswap

end do
CONTAINS

FUNCTION modint(x)
REAL(DP), INTENT(IN) :: x
INTEGER(I4B) :: modint
REAL(DP) :: a
REAL(DP), PARAMETER :: big=huge(modint), base=big+big+2.0_dp
a=modulo(x,base)
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if (a > big) a=a-base
modint=nint(a,kind=i4b)
END FUNCTION modint
END SUBROUTINE psdes_safe_s

SUBROUTINE psdes_safe_v(lword,rword)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
INTEGER(I4B), SAVE :: C1(4),C2(4)
DATA C1 /Z’BAA96887’,Z’1E17D32C’,Z’03BCDC3C’,Z’0F33D1B2’/
DATA C2 /Z’4B0F3B58’,Z’E874F0C3’,Z’6955C5A6’,Z’55A7CA46’/
INTEGER(I4B), DIMENSION(size(lword)) :: ia,ib,iswap
REAL(DP), DIMENSION(size(lword)) :: alo,ahi
INTEGER(I4B) :: i
i=assert_eq(size(lword),size(rword),’psdes_safe_v’)
do i=1,NITER

iswap=rword
ia=ieor(rword,C1(i))
alo=real(iand(ia,65535),dp)
ahi=real(iand(ishft(ia,-16),65535),dp)
ib=modint(alo*alo+real(not(modint(ahi*ahi)),dp))
ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
rword=ieor(lword,modint(real(ieor(C2(i),ia),dp)+alo*ahi))
lword=iswap

end do
CONTAINS

FUNCTION modint(x)
REAL(DP), DIMENSION(:), INTENT(IN) :: x
INTEGER(I4B), DIMENSION(size(x)) :: modint
REAL(DP), DIMENSION(size(x)) :: a
REAL(DP), PARAMETER :: big=huge(modint), base=big+big+2.0_dp
a=modulo(x,base)
where (a > big) a=a-base
modint=nint(a,kind=i4b)
END FUNCTION modint
END SUBROUTINE psdes_safe_v

f90
FUNCTION modint(x) This embedded routine takes a double-precisionreal
argument, and returns it as an integer mod232 (correctly wrapping it to
negative to take into account that Fortran 90 has no unsigned integers).

� � �

SUBROUTINE ran3_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,ran_hash,mran0,nran0,rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Random number generation by DES-like hashing of two 32-bit words, using the algorithm
ran hash. Returns as harvest a uniform random deviate between 0.0 and 1.0 (exclusive
of the endpoint values).

INTEGER(K4B) :: temp
if (lenran < 1) call ran_init(1) Initialize.
nran0=ieor(nran0,ishft(nran0,13)) Two Marsaglia shift sequences are

maintained as input to the hash-
ing. The period of the combined
generator is about 1.8× 1019.

nran0=ieor(nran0,ishft(nran0,-17))
nran0=ieor(nran0,ishft(nran0,5))
if (nran0 == 1) nran0=270369_k4b
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rans=nran0
mran0=ieor(mran0,ishft(mran0,5))
mran0=ieor(mran0,ishft(mran0,-13))
mran0=ieor(mran0,ishft(mran0,6))
temp=mran0
call ran_hash(temp,rans) Hash.
harvest=amm*merge(rans,not(rans), rans<0 ) Make the result positive definite (note

that amm is negative).END SUBROUTINE ran3_s

SUBROUTINE ran3_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,ran_hash,mran,nran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B), DIMENSION(size(harvest)) :: temp
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
where (nran(1:n) == 1) nran(1:n)=270369_k4b
ranv(1:n)=nran(1:n)
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),5))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),-13))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),6))
temp=mran(1:n)
call ran_hash(temp,ranv(1:n))
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0 )
END SUBROUTINE ran3_v

As given,ran3 uses theran hash function in the moduleran state as its
DES surrogate. That function is sufficiently fast to makeran3 only about a factor
of 2 slower than our baseline recommended generatorran1. The slower routine
psdes and (even slower)psdes safe are plug-compatible withran hash, and
could be substituted for it in this routine.

� � �

FUNCTION irbit1(iseed)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: iseed
INTEGER(I4B) :: irbit1

Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

if (btest(iseed,17) .neqv. btest(iseed,4) .neqv. btest(iseed,1) &
.neqv. btest(iseed,0)) then
iseed=ibset(ishft(iseed,1),0) Leftshift the seed and put a 1 in its bit 1.
irbit1=1

else But if the XOR calculation gave a 0,
iseed=ishft(iseed,1) then put that in bit 1 instead.
irbit1=0

end if
END FUNCTION irbit1
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FUNCTION irbit2(iseed)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: iseed
INTEGER(I4B) :: irbit2

Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

INTEGER(I4B), PARAMETER :: IB1=1,IB2=2,IB5=16,MASK=IB1+IB2+IB5
if (btest(iseed,17)) then Change all masked bits, shift, and put 1 into bit 1.

iseed=ibset(ishft(ieor(iseed,MASK),1),0)
irbit2=1

else Shift and put 0 into bit 1.
iseed=ibclr(ishft(iseed,1),0)
irbit2=0

end if
END FUNCTION irbit2

� � �

SUBROUTINE sobseq(x,init)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
INTEGER(I4B), OPTIONAL, INTENT(IN) :: init
INTEGER(I4B), PARAMETER :: MAXBIT=30,MAXDIM=6

When the optional integer init is present, internally initializes a set of MAXBIT direction
numbers for each of MAXDIM different Sobol’ sequences. Otherwise returns as the vector x
of length N the next values from N of these sequences. (N must not be changed between
initializations.)

REAL(SP), SAVE :: fac
INTEGER(I4B) :: i,im,ipp,j,k,l
INTEGER(I4B), DIMENSION(:,:), ALLOCATABLE:: iu
INTEGER(I4B), SAVE :: in
INTEGER(I4B), DIMENSION(MAXDIM), SAVE :: ip,ix,mdeg
INTEGER(I4B), DIMENSION(MAXDIM*MAXBIT), SAVE :: iv
DATA ip /0,1,1,2,1,4/, mdeg /1,2,3,3,4,4/, ix /6*0/
DATA iv /6*1,3,1,3,3,1,1,5,7,7,3,3,5,15,11,5,15,13,9,156*0/
if (present(init)) then Initialize, don’t return a vector.

ix=0
in=0
if (iv(1) /= 1) RETURN
fac=1.0_sp/2.0_sp**MAXBIT
allocate(iu(MAXDIM,MAXBIT))
iu=reshape(iv,shape(iu)) To allow both 1D and 2D addressing.
do k=1,MAXDIM

do j=1,mdeg(k) Stored values require only normalization.
iu(k,j)=iu(k,j)*2**(MAXBIT-j)

end do
do j=mdeg(k)+1,MAXBIT Use the recurrence to get other values.

ipp=ip(k)
i=iu(k,j-mdeg(k))
i=ieor(i,i/2**mdeg(k))
do l=mdeg(k)-1,1,-1

if (btest(ipp,0)) i=ieor(i,iu(k,j-l))
ipp=ipp/2

end do
iu(k,j)=i

end do
end do
iv=reshape(iu,shape(iv))
deallocate(iu)
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else Calculate the next vector in the sequence.
im=in
do j=1,MAXBIT Find the rightmost zero bit.

if (.not. btest(im,0)) exit
im=im/2

end do
if (j > MAXBIT) call nrerror(’MAXBIT too small in sobseq’)
im=(j-1)*MAXDIM
j=min(size(x),MAXDIM)
ix(1:j)=ieor(ix(1:j),iv(1+im:j+im))
XOR the appropriate direction number into each component of the vector and convert
to a floating number.

x(1:j)=ix(1:j)*fac
in=in+1 Increment the counter.

end if
END SUBROUTINE sobseq

f90
if (present(init)) then ... allocate(iu(...)) ... iu=reshape(...)

Wanting to avoid the deprecatedEQUIVALENCE statement, we must
reshapeiv into a two-dimensional array, then un-reshape it after we

are done. This is done only once, at initialization time, so there is no serious
inefficiency introduced.

� � �

SUBROUTINE vegas(region,func,init,ncall,itmx,nprn,tgral,sd,chi2a)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: region
INTEGER(I4B), INTENT(IN) :: init,ncall,itmx,nprn
REAL(SP), INTENT(OUT) :: tgral,sd,chi2a
INTERFACE

FUNCTION func(pt,wgt)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: pt
REAL(SP), INTENT(IN) :: wgt
REAL(SP) :: func
END FUNCTION func

END INTERFACE
REAL(SP), PARAMETER :: ALPH=1.5_sp,TINY=1.0e-30_sp
INTEGER(I4B), PARAMETER :: MXDIM=10,NDMX=50

Performs Monte Carlo integration of a user-supplied d-dimensional function func over a
rectangular volume specified by region, a vector of length 2d consisting of d “lower left”
coordinates of the region followed by d “upper right” coordinates. The integration consists of
itmx iterations, each with approximately ncall calls to the function. After each iteration
the grid is refined; more than 5 or 10 iterations are rarely useful. The input flag init
signals whether this call is a new start, or a subsequent call for additional iterations (see
comments below). The input flag nprn (normally 0) controls the amount of diagnostic
output. Returned answers are tgral (the best estimate of the integral), sd (its standard
deviation), and chi2a (χ2 per degree of freedom, an indicator of whether consistent results
are being obtained). See text for further details.

INTEGER(I4B), SAVE :: i,it,j,k,mds,nd,ndim,ndo,ng,npg Bestmake everything static,
allowing restarts.INTEGER(I4B), DIMENSION(MXDIM), SAVE :: ia,kg

REAL(SP), SAVE :: calls,dv2g,dxg,f,f2,f2b,fb,rc,ti,tsi,wgt,xjac,xn,xnd,xo,harvest
REAL(SP), DIMENSION(NDMX,MXDIM), SAVE :: d,di,xi
REAL(SP), DIMENSION(MXDIM), SAVE :: dt,dx,x
REAL(SP), DIMENSION(NDMX), SAVE :: r,xin
REAL(DP), SAVE :: schi,si,swgt
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ndim=size(region)/2
if (init <= 0) then Normal entry. Enter here on a cold start.

mds=1 Change to mds=0 to disable stratified sam-
pling, i.e., use importance sampling only.ndo=1

xi(1,:)=1.0
end if
if (init <= 1) then Enter here to inherit the grid from a previous

call, but not its answers.si=0.0
swgt=0.0
schi=0.0

end if
if (init <= 2) then Enter here to inherit the previous grid and its

answers.nd=NDMX
ng=1
if (mds /= 0) then Set up for stratification.

ng=(ncall/2.0_sp+0.25_sp)**(1.0_sp/ndim)
mds=1
if ((2*ng-NDMX) >= 0) then

mds=-1
npg=ng/NDMX+1
nd=ng/npg
ng=npg*nd

end if
end if
k=ng**ndim
npg=max(ncall/k,2)
calls=real(npg,sp)*real(k,sp)
dxg=1.0_sp/ng
dv2g=(calls*dxg**ndim)**2/npg/npg/(npg-1.0_sp)
xnd=nd
dxg=dxg*xnd
dx(1:ndim)=region(1+ndim:2*ndim)-region(1:ndim)
xjac=1.0_sp/calls*product(dx(1:ndim))
if (nd /= ndo) then Do binning if necessary.

r(1:max(nd,ndo))=1.0
do j=1,ndim

call rebin(ndo/xnd,nd,r,xin,xi(:,j))
end do
ndo=nd

end if
if (nprn >= 0) write(*,200) ndim,calls,it,itmx,nprn,&

ALPH,mds,nd,(j,region(j),j,region(j+ndim),j=1,ndim)
end if
do it=1,itmx Main iteration loop. Can enter here (init ≥

3) to do an additional itmx iterations
with all other parameters unchanged.

ti=0.0
tsi=0.0
kg(:)=1
d(1:nd,:)=0.0
di(1:nd,:)=0.0
iterate: do

fb=0.0
f2b=0.0
do k=1,npg

wgt=xjac
do j=1,ndim

call ran1(harvest)
xn=(kg(j)-harvest)*dxg+1.0_sp
ia(j)=max(min(int(xn),NDMX),1)
if (ia(j) > 1) then

xo=xi(ia(j),j)-xi(ia(j)-1,j)
rc=xi(ia(j)-1,j)+(xn-ia(j))*xo

else
xo=xi(ia(j),j)
rc=(xn-ia(j))*xo
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end if
x(j)=region(j)+rc*dx(j)
wgt=wgt*xo*xnd

end do
f=wgt*func(x(1:ndim),wgt)
f2=f*f
fb=fb+f
f2b=f2b+f2
do j=1,ndim

di(ia(j),j)=di(ia(j),j)+f
if (mds >= 0) d(ia(j),j)=d(ia(j),j)+f2

end do
end do
f2b=sqrt(f2b*npg)
f2b=(f2b-fb)*(f2b+fb)
if (f2b <= 0.0) f2b=TINY
ti=ti+fb
tsi=tsi+f2b
if (mds < 0) then Use stratified sampling.

do j=1,ndim
d(ia(j),j)=d(ia(j),j)+f2b

end do
end if
do k=ndim,1,-1

kg(k)=mod(kg(k),ng)+1
if (kg(k) /= 1) cycle iterate

end do
exit iterate

end do iterate
tsi=tsi*dv2g Compute final results for this iteration.
wgt=1.0_sp/tsi
si=si+real(wgt,dp)*real(ti,dp)
schi=schi+real(wgt,dp)*real(ti,dp)**2
swgt=swgt+real(wgt,dp)
tgral=si/swgt
chi2a=max((schi-si*tgral)/(it-0.99_dp),0.0_dp)
sd=sqrt(1.0_sp/swgt)
tsi=sqrt(tsi)
if (nprn >= 0) then

write(*,201) it,ti,tsi,tgral,sd,chi2a
if (nprn /= 0) then

do j=1,ndim
write(*,202) j,(xi(i,j),di(i,j),&

i=1+nprn/2,nd,nprn)
end do

end if
end if
do j=1,ndim Refine the grid. Consult references to under-

stand the subtlety of this procedure. The
refinement is damped, to avoid rapid,
destabilizing changes, and also compressed
in range by the exponent ALPH.

xo=d(1,j)
xn=d(2,j)
d(1,j)=(xo+xn)/2.0_sp
dt(j)=d(1,j)
do i=2,nd-1

rc=xo+xn
xo=xn
xn=d(i+1,j)
d(i,j)=(rc+xn)/3.0_sp
dt(j)=dt(j)+d(i,j)

end do
d(nd,j)=(xo+xn)/2.0_sp
dt(j)=dt(j)+d(nd,j)

end do
where (d(1:nd,:) < TINY) d(1:nd,:)=TINY
do j=1,ndim
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r(1:nd)=((1.0_sp-d(1:nd,j)/dt(j))/(log(dt(j))-log(d(1:nd,j))))**ALPH
rc=sum(r(1:nd))
call rebin(rc/xnd,nd,r,xin,xi(:,j))

end do
end do

200 format(/’ input parameters for vegas: ndim=’,i3,’ ncall=’,f8.0&
/28x,’ it=’,i5,’ itmx=’,i5&
/28x,’ nprn=’,i3,’ alph=’,f5.2/28x,’ mds=’,i3,’ nd=’,i4&
/(30x,’xl(’,i2,’)= ’,g11.4,’ xu(’,i2,’)= ’,g11.4))

201 format(/’ iteration no.’,I3,’: ’,’integral =’,g14.7,’ +/- ’,g9.2,&
/’ all iterations: integral =’,g14.7,’ +/- ’,g9.2,&
’ chi**2/it’’n =’,g9.2)

202 format(/’ data for axis ’,I2/’ X delta i ’,&
’ x delta i ’,’ x delta i ’,&
/(1x,f7.5,1x,g11.4,5x,f7.5,1x,g11.4,5x,f7.5,1x,g11.4))

CONTAINS

SUBROUTINE rebin(rc,nd,r,xin,xi)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: rc
INTEGER(I4B), INTENT(IN) :: nd
REAL(SP), DIMENSION(:), INTENT(IN) :: r
REAL(SP), DIMENSION(:), INTENT(OUT) :: xin
REAL(SP), DIMENSION(:), INTENT(INOUT) :: xi

Utility routine used by vegas, to rebin a vector of densities xi into new bins defined by
a vector r.

INTEGER(I4B) :: i,k
REAL(SP) :: dr,xn,xo
k=0
xo=0.0
dr=0.0
do i=1,nd-1

do
if (rc <= dr) exit
k=k+1
dr=dr+r(k)

end do
if (k > 1) xo=xi(k-1)
xn=xi(k)
dr=dr-rc
xin(i)=xn-(xn-xo)*dr/r(k)

end do
xi(1:nd-1)=xin(1:nd-1)
xi(nd)=1.0
END SUBROUTINE rebin
END SUBROUTINE vegas

� � �

RECURSIVE SUBROUTINE miser(func,regn,ndim,npts,dith,ave,var)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP) :: func
REAL(SP), DIMENSION(:), INTENT(IN) :: x
END FUNCTION func

END INTERFACE
REAL(SP), DIMENSION(:), INTENT(IN) :: regn
INTEGER(I4B), INTENT(IN) :: ndim,npts
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REAL(SP), INTENT(IN) :: dith
REAL(SP), INTENT(OUT) :: ave,var
REAL(SP), PARAMETER :: PFAC=0.1_sp,TINY=1.0e-30_sp,BIG=1.0e30_sp
INTEGER(I4B), PARAMETER :: MNPT=15,MNBS=60

Monte Carlo samples a user-supplied ndim-dimensional function func in a rectangular
volume specified by region, a 2×ndim vector consisting of ndim “lower-left” coordinates
of the region followed by ndim “upper-right” coordinates. The function is sampled a total
of npts times, at locations determined by the method of recursive stratified sampling. The
mean value of the function in the region is returned as ave; an estimate of the statistical
uncertainty of ave (square of standard deviation) is returned as var. The input parameter
dith should normally be set to zero, but can be set to (e.g.) 0.1 if func’s active region
falls on the boundary of a power-of-2 subdivision of region.
Parameters: PFAC is the fraction of remaining function evaluations used at each stage to
explore the variance of func. At least MNPT function evaluations are performed in any
terminal subregion; a subregion is further bisected only if at least MNBS function evaluations
are available.

REAL(SP), DIMENSION(:), ALLOCATABLE :: regn_temp
INTEGER(I4B) :: j,jb,n,ndum,npre,nptl,nptr
INTEGER(I4B), SAVE :: iran=0
REAL(SP) :: avel,varl,fracl,fval,rgl,rgm,rgr,&

s,sigl,siglb,sigr,sigrb,sm,sm2,sumb,sumr
REAL(SP), DIMENSION(:), ALLOCATABLE :: fmaxl,fmaxr,fminl,fminr,pt,rmid
ndum=assert_eq(size(regn),2*ndim,’miser’)
allocate(pt(ndim))
if (npts < MNBS) then Too few points to bisect; do straight Monte

Carlo.sm=0.0
sm2=0.0
do n=1,npts

call ranpt(pt,regn)
fval=func(pt)
sm=sm+fval
sm2=sm2+fval**2

end do
ave=sm/npts
var=max(TINY,(sm2-sm**2/npts)/npts**2)

else Do the preliminary (uniform) sampling.
npre=max(int(npts*PFAC),MNPT)
allocate(rmid(ndim),fmaxl(ndim),fmaxr(ndim),fminl(ndim),fminr(ndim))
fminl(:)=BIG Initialize the left and right bounds for each

dimension.fminr(:)=BIG
fmaxl(:)=-BIG
fmaxr(:)=-BIG
do j=1,ndim

iran=mod(iran*2661+36979,175000)
s=sign(dith,real(iran-87500,sp))
rmid(j)=(0.5_sp+s)*regn(j)+(0.5_sp-s)*regn(ndim+j)

end do
do n=1,npre Loop over the points in the sample.

call ranpt(pt,regn)
fval=func(pt)
where (pt <= rmid) Find the left and right bounds for each di-

mension.fminl=min(fminl,fval)
fmaxl=max(fmaxl,fval)

elsewhere
fminr=min(fminr,fval)
fmaxr=max(fmaxr,fval)

end where
end do
sumb=BIG Choose which dimension jb to bisect.
jb=0
siglb=1.0
sigrb=1.0
do j=1,ndim

if (fmaxl(j) > fminl(j) .and. fmaxr(j) > fminr(j)) then
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sigl=max(TINY,(fmaxl(j)-fminl(j))**(2.0_sp/3.0_sp))
sigr=max(TINY,(fmaxr(j)-fminr(j))**(2.0_sp/3.0_sp))
sumr=sigl+sigr Equation (7.8.24); see text.
if (sumr <= sumb) then

sumb=sumr
jb=j
siglb=sigl
sigrb=sigr

end if
end if

end do
deallocate(fminr,fminl,fmaxr,fmaxl)
if (jb == 0) jb=1+(ndim*iran)/175000 MNPT may be too small.
rgl=regn(jb) Apportion the remaining points between left

and right.rgm=rmid(jb)
rgr=regn(ndim+jb)
fracl=abs((rgm-rgl)/(rgr-rgl))
nptl=(MNPT+(npts-npre-2*MNPT)*fracl*siglb/ & Equation (7.8.23).

(fracl*siglb+(1.0_sp-fracl)*sigrb))
nptr=npts-npre-nptl
allocate(regn_temp(2*ndim))
regn_temp(:)=regn(:)
regn_temp(ndim+jb)=rmid(jb) Set region to left.
call miser(func,regn_temp,ndim,nptl,dith,avel,varl)
Dispatch recursive call; will return back here eventually.

regn_temp(jb)=rmid(jb)
regn_temp(ndim+jb)=regn(ndim+jb) Set region to right.
call miser(func,regn_temp,ndim,nptr,dith,ave,var)
Dispatch recursive call; will return back here eventually.

deallocate(regn_temp)
ave=fracl*avel+(1-fracl)*ave Combine left and right regions by equation

(7.8.11) (1st line).var=fracl*fracl*varl+(1-fracl)*(1-fracl)*var
deallocate(rmid)

end if
deallocate(pt)
CONTAINS

SUBROUTINE ranpt(pt,region)
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: pt
REAL(SP), DIMENSION(:), INTENT(IN) :: region

Returns a uniformly random point pt in a rectangular region of dimension d. Used by
miser; calls ran1 for uniform deviates.

INTEGER(I4B) :: n
call ran1(pt)
n=size(pt)
pt(1:n)=region(1:n)+(region(n+1:2*n)-region(1:n))*pt(1:n)
END SUBROUTINE ranpt
END SUBROUTINE miser

f90
The Fortran 90 version of this routine is much more straightforward than
the Fortran 77 version, because Fortran 90 allows recursion. (In fact,
this routine is modeled on theC version ofmiser, which was recursive

from the start.)

CITED REFERENCES AND FURTHER READING:

Marsaglia, G., and Zaman, A. 1994, Computers in Physics, vol. 8, pp. 117–121. [1]

Marsaglia, G. 1985, Linear Algebra and Its Applications, vol. 67, pp. 147-156. [2]

Harbison, S.P., and Steele, G.L. 1991, C: A Reference Manual, Third Edition, §5.1.1. [3]
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Chapter B8. Sorting

Caution! If you are expecting to sort efficiently on a parallel machine,
whether its parallelism is small-scale or massive, you almost certainly
want to use library routines that are specific to your hardware.

We include in this chapter translations into Fortran 90 of the general purpose
serial sorting routines that are in Volume 1, augmented by several new routines
that give pedagogical demonstrations of how parallel sorts can be achieved with
Fortran 90 parallel constructions and intrinsics. However, we intend the above
word “pedagogical” to be taken seriously: these new, supposedly parallel, routines
are not likely to be competitive with machine-specific library routines. Neither do
they compete successfully on serial machines with the all-serial routines provided
(namely sort, sort2, sort3, indexx, and select).

� � �

SUBROUTINE sort_pick(arr)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr

Sorts an array arr into ascending numerical order, by straight insertion. arr is replaced
on output by its sorted rearrangement.

INTEGER(I4B) :: i,j,n
REAL(SP) :: a
n=size(arr)
do j=2,n Pick out each element in turn.

a=arr(j)
do i=j-1,1,-1 Look for the place to insert it.

if (arr(i) <= a) exit
arr(i+1)=arr(i)

end do
arr(i+1)=a Insert it.

end do
END SUBROUTINE sort_pick

Not only is sort pick (renamed from Volume 1’s piksrt) not parallelizable,
but also, even worse, it is an N 2 routine. It is meant to be invoked only for the
most trivial sorting jobs, say, N < 20.

� � �

1167
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SUBROUTINE sort_shell(arr)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr

Sorts an array arr into ascending numerical order by Shell’s method (diminishing increment
sort). arr is replaced on output by its sorted rearrangement.

INTEGER(I4B) :: i,j,inc,n
REAL(SP) :: v
n=size(arr)
inc=1
do Determine the starting increment.

inc=3*inc+1
if (inc > n) exit

end do
do Loop over the partial sorts.

inc=inc/3
do i=inc+1,n Outer loop of straight insertion.

v=arr(i)
j=i
do Inner loop of straight insertion.

if (arr(j-inc) <= v) exit
arr(j)=arr(j-inc)
j=j-inc
if (j <= inc) exit

end do
arr(j)=v

end do
if (inc <= 1) exit

end do
END SUBROUTINE sort_shell

The routine sort shell is renamed from Volume 1’s shell. Shell’s Method,
a diminishing increment sort, is not directly parallelizable. However, one can write a
fully parallel routine (though not an especially fast one — see remarks at beginning
of this chapter) in much the same spirit:

SUBROUTINE sort_byreshape(arr)
USE nrtype; USE nrutil, ONLY : swap
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr

Sort an array arr by bubble sorting a succession of reshapings into array slices. The method
is similar to Shell sort, but allows parallelization within the vectorized masked swap calls.

REAL(SP), DIMENSION(:,:), ALLOCATABLE :: tab
REAL(SP), PARAMETER :: big=huge(arr)
INTEGER(I4B) :: inc,n,m
n=size(arr)
inc=1
do Find the largest increment that fits.

inc=2*inc+1
if (inc > n) exit

end do
do Loop over the different shapes for the reshaped

array.inc=inc/2
m=(n+inc-1)/inc
allocate(tab(inc,m)) Allocate space and reshape the array. big en-

sures that fill elements stay at the
end.

tab=reshape(arr, (/inc,m/) , (/big/) )
do

Bubble sort all the rows in parallel.
call swap(tab(:,1:m-1:2),tab(:,2:m:2), &

tab(:,1:m-1:2)>tab(:,2:m:2))
call swap(tab(:,2:m-1:2),tab(:,3:m:2), &

tab(:,2:m-1:2)>tab(:,3:m:2))
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if (all(tab(:,1:m-1) <= tab(:,2:m))) exit
end do
arr=reshape(tab,shape(arr)) Put the array back together for the next shape.
deallocate(tab)
if (inc <= 1) exit

end do
END SUBROUTINE sort_byreshape

The basic idea is to reshape the given one-dimensional array into a
succession of two-dimensional arrays, starting with “tall and narrow”
(many rows, few columns), and ending up with “short and wide” (many

columns, few rows). At each stage we sort all the rows in parallel by a bubble sort,
giving something close to Shell’s diminishing increments.

� � �

We now arrive at those routines, based on the Quicksort algorithm, that we
actually intend for use with general N on serial machines:

SUBROUTINE sort(arr)
USE nrtype; USE nrutil, ONLY : swap,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
INTEGER(I4B), PARAMETER :: NN=15, NSTACK=50

Sorts an array arr into ascending numerical order using the Quicksort algorithm. arr is
replaced on output by its sorted rearrangement.
Parameters: NN is the size of subarrays sorted by straight insertion and NSTACK is the
required auxiliary storage.

REAL(SP) :: a
INTEGER(I4B) :: n,k,i,j,jstack,l,r
INTEGER(I4B), DIMENSION(NSTACK) :: istack
n=size(arr)
jstack=0
l=1
r=n
do

if (r-l < NN) then Insertion sort when subarray small enough.
do j=l+1,r

a=arr(j)
do i=j-1,l,-1

if (arr(i) <= a) exit
arr(i+1)=arr(i)

end do
arr(i+1)=a

end do
if (jstack == 0) RETURN
r=istack(jstack) Pop stack and begin a new round of partition-

ing.l=istack(jstack-1)
jstack=jstack-2

else Choose median of left, center, and right elements
as partitioning element a. Also rearrange so
that a(l) ≤ a(l+1) ≤ a(r).

k=(l+r)/2
call swap(arr(k),arr(l+1))
call swap(arr(l),arr(r),arr(l)>arr(r))
call swap(arr(l+1),arr(r),arr(l+1)>arr(r))
call swap(arr(l),arr(l+1),arr(l)>arr(l+1))
i=l+1 Initialize pointers for partitioning.
j=r
a=arr(l+1) Partitioning element.
do Here is the meat.

do Scan up to find element >= a.
i=i+1
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if (arr(i) >= a) exit
end do
do Scan down to find element <= a.

j=j-1
if (arr(j) <= a) exit

end do
if (j < i) exit Pointers crossed. Exit with partitioning complete.
call swap(arr(i),arr(j)) Exchange elements.

end do
arr(l+1)=arr(j) Insert partitioning element.
arr(j)=a
jstack=jstack+2
Push pointers to larger subarray on stack; process smaller subarray immediately.

if (jstack > NSTACK) call nrerror(’sort: NSTACK too small’)
if (r-i+1 >= j-l) then

istack(jstack)=r
istack(jstack-1)=i
r=j-1

else
istack(jstack)=j-1
istack(jstack-1)=l
l=i

end if
end if

end do
END SUBROUTINE sort

f90
call swap(...) ... call swap(...) One might think twice about putting
all these external function calls (to nrutil routines) in the inner loop
of something as streamlined as a sort routine, but here they are executed

only once for each partitioning.

call swap(arr(i),arr(j)) This call is in a loop, but not the innermost loop.
Most modern machines are very fast at the “context changes” implied by subroutine
calls and returns; but in a time-critical context you might code this swap in-line and
see if there is any timing difference.
SUBROUTINE sort2(arr,slave)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : indexx
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr,slave

Sorts an array arr into ascending order using Quicksort, while making the corresponding
rearrangement of the same-size array slave. The sorting and rearrangement are performed
by means of an index array.

INTEGER(I4B) :: ndum
INTEGER(I4B), DIMENSION(size(arr)) :: index
ndum=assert_eq(size(arr),size(slave),’sort2’)
call indexx(arr,index) Make the index array.
arr=arr(index) Sort arr.
slave=slave(index) Rearrange slave.
END SUBROUTINE sort2

� � �

A close surrogate for the Quicksort partition-exchange algorithm can
be coded, parallelizable, by using Fortran 90’s pack intrinsic. On
real compilers, unfortunately, the resulting code is not very efficient as

compared with (on serial machines) the tightness of sort’s inner loop, above, or
(on parallel machines) supplied library sort routines. We illustrate the principle
nevertheless in the following routine.
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RECURSIVE SUBROUTINE sort_bypack(arr)
USE nrtype; USE nrutil, ONLY : array_copy,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr

Sort an array arr by recursively applying the Fortran 90 pack intrinsic. The method is
similar to Quicksort, but this variant allows parallelization by the Fortran 90 compiler.

REAL(SP) :: a
INTEGER(I4B) :: n,k,nl,nerr
INTEGER(I4B), SAVE :: level=0
LOGICAL, DIMENSION(:), ALLOCATABLE, SAVE :: mask
REAL(SP), DIMENSION(:), ALLOCATABLE, SAVE :: temp
n=size(arr)
if (n <= 1) RETURN
k=(1+n)/2
call swap(arr(1),arr(k),arr(1)>arr(k)) Pivot element is median of first, middle,

and last.call swap(arr(k),arr(n),arr(k)>arr(n))
call swap(arr(1),arr(k),arr(1)>arr(k))
if (n <= 3) RETURN
level=level+1 Keep track of recursion level to avoid al-

location overhead.if (level == 1) allocate(mask(n),temp(n))
a=arr(k)
mask(1:n) = (arr <= a) Which elements move to left?
mask(k) = .false.
call array_copy(pack(arr,mask(1:n)),temp,nl,nerr) Move them.
mask(k) = .true.
temp(nl+2:n)=pack(arr,.not. mask(1:n)) Move others to right.
temp(nl+1)=a
arr=temp(1:n)
call sort_bypack(arr(1:nl)) And recurse.
call sort_bypack(arr(nl+2:n))
if (level == 1) deallocate(mask,temp)
level=level-1
END SUBROUTINE sort_bypack

� � �

The following routine, sort heap, is renamed from Volume 1’s hpsort.

SUBROUTINE sort_heap(arr)
USE nrtype
USE nrutil, ONLY : swap
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr

Sorts an array arr into ascending numerical order using the Heapsort algorithm. arr is
replaced on output by its sorted rearrangement.

INTEGER(I4B) :: i,n
n=size(arr)
do i=n/2,1,-1

The index i, which here determines the “left” range of the sift-down, i.e., the element to
be sifted down, is decremented from n/2 down to 1 during the “hiring” (heap creation)
phase.

call sift_down(i,n)
end do
do i=n,2,-1

Here the “right” range of the sift-down is decremented from n-1 down to 1 during the
“retirement-and-promotion” (heap selection) phase.

call swap(arr(1),arr(i)) Clear a space at the end of the array, and
retire the top of the heap into it.call sift_down(1,i-1)

end do
CONTAINS

SUBROUTINE sift_down(l,r)
INTEGER(I4B), INTENT(IN) :: l,r
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Carry out the sift-down on element arr(l) to maintain the heap structure.
INTEGER(I4B) :: j,jold
REAL(SP) :: a
a=arr(l)
jold=l
j=l+l
do “Do while j <= r:”

if (j > r) exit
if (j < r) then

if (arr(j) < arr(j+1)) j=j+1 Compare to the better underling.
end if
if (a >= arr(j)) exit Found a’s level. Terminate the sift-down. Oth-

erwise, demote a and continue.arr(jold)=arr(j)
jold=j
j=j+j

end do
arr(jold)=a Put a into its slot.
END SUBROUTINE sift_down
END SUBROUTINE sort_heap

� � �

Another opportunity provided by Fortran 90 for a fully parallelizable sort, at
least pedagogically, is to use the language’s allowed access to the actual floating-
point representation and to code a radix sort [1] on its bits. This is not efficient,
but it illustrates some Fortran 90 language features perhaps worthy of study for
other applications.

SUBROUTINE sort_radix(arr)
USE nrtype; USE nrutil, ONLY : array_copy,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr

Sort an array arr by radix sort on its bits.
INTEGER(I4B), DIMENSION(size(arr)) :: narr,temp
LOGICAL, DIMENSION(size(arr)) :: msk
INTEGER(I4B) :: k,negm,ib,ia,n,nl,nerr
Because we are going to transfer reals to integers, we must check that the number of bits
is the same in each:

ib=bit_size(narr)
ia=ceiling(log(real(maxexponent(arr)-minexponent(arr),sp))/log(2.0_sp)) &

+ digits(arr)
if (ib /= ia) call nrerror(’sort_radix: bit sizes not compatible’)
negm=not(ishftc(1,-1)) Mask for all bits except sign bit.
n=size(arr)
narr=transfer(arr,narr,n)
where (btest(narr,ib-1)) narr=ieor(narr,negm) Flip all bits on neg. numbers.
do k=0,ib-2

Work from low- to high-order bits, and partition the array according to the value of the
bit.

msk=btest(narr,k)
call array_copy(pack(narr,.not. msk),temp,nl,nerr)
temp(nl+1:n)=pack(narr,msk)
narr=temp

end do
msk=btest(narr,ib-1) The sign bit gets separate treat-

ment, since here 1 comes be-
fore 0.

call array_copy(pack(narr,msk),temp,nl,nerr)
temp(nl+1:n)=pack(narr,.not. msk)
narr=temp
where (btest(narr,ib-1)) narr=ieor(narr,negm) Unflip all bits on neg. numbers.
arr=transfer(narr,arr,n)
END SUBROUTINE sort_radix

� � �



Chapter B8. Sorting 1173

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
We overload the generic name indexxwith two specific implementations,
one for SP floating values, the other for I4B integers. (You can of course
add more overloadings if you need them.)

SUBROUTINE indexx_sp(arr,index)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: index
INTEGER(I4B), PARAMETER :: NN=15, NSTACK=50

Indexes an array arr, i.e., outputs the array index of length N such that arr(index(j))
is in ascending order for j = 1,2, . . . ,N . The input quantity arr is not changed.

REAL(SP) :: a
INTEGER(I4B) :: n,k,i,j,indext,jstack,l,r
INTEGER(I4B), DIMENSION(NSTACK) :: istack
n=assert_eq(size(index),size(arr),’indexx_sp’)
index=arth(1,1,n)
jstack=0
l=1
r=n
do

if (r-l < NN) then
do j=l+1,r

indext=index(j)
a=arr(indext)
do i=j-1,l,-1

if (arr(index(i)) <= a) exit
index(i+1)=index(i)

end do
index(i+1)=indext

end do
if (jstack == 0) RETURN
r=istack(jstack)
l=istack(jstack-1)
jstack=jstack-2

else
k=(l+r)/2
call swap(index(k),index(l+1))
call icomp_xchg(index(l),index(r))
call icomp_xchg(index(l+1),index(r))
call icomp_xchg(index(l),index(l+1))
i=l+1
j=r
indext=index(l+1)
a=arr(indext)
do

do
i=i+1
if (arr(index(i)) >= a) exit

end do
do

j=j-1
if (arr(index(j)) <= a) exit

end do
if (j < i) exit
call swap(index(i),index(j))

end do
index(l+1)=index(j)
index(j)=indext
jstack=jstack+2
if (jstack > NSTACK) call nrerror(’indexx: NSTACK too small’)
if (r-i+1 >= j-l) then

istack(jstack)=r
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istack(jstack-1)=i
r=j-1

else
istack(jstack)=j-1
istack(jstack-1)=l
l=i

end if
end if

end do
CONTAINS

SUBROUTINE icomp_xchg(i,j)
INTEGER(I4B), INTENT(INOUT) :: i,j
INTEGER(I4B) :: swp
if (arr(j) < arr(i)) then

swp=i
i=j
j=swp

end if
END SUBROUTINE icomp_xchg
END SUBROUTINE indexx_sp

SUBROUTINE indexx_i4b(iarr,index)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror,swap
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: iarr
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: index
INTEGER(I4B), PARAMETER :: NN=15, NSTACK=50
INTEGER(I4B) :: a
INTEGER(I4B) :: n,k,i,j,indext,jstack,l,r
INTEGER(I4B), DIMENSION(NSTACK) :: istack
n=assert_eq(size(index),size(iarr),’indexx_sp’)
index=arth(1,1,n)
jstack=0
l=1
r=n
do

if (r-l < NN) then
do j=l+1,r

indext=index(j)
a=iarr(indext)
do i=j-1,1,-1

if (iarr(index(i)) <= a) exit
index(i+1)=index(i)

end do
index(i+1)=indext

end do
if (jstack == 0) RETURN
r=istack(jstack)
l=istack(jstack-1)
jstack=jstack-2

else
k=(l+r)/2
call swap(index(k),index(l+1))
call icomp_xchg(index(l),index(r))
call icomp_xchg(index(l+1),index(r))
call icomp_xchg(index(l),index(l+1))
i=l+1
j=r
indext=index(l+1)
a=iarr(indext)
do

do



Chapter B8. Sorting 1175

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

i=i+1
if (iarr(index(i)) >= a) exit

end do
do

j=j-1
if (iarr(index(j)) <= a) exit

end do
if (j < i) exit
call swap(index(i),index(j))

end do
index(l+1)=index(j)
index(j)=indext
jstack=jstack+2
if (jstack > NSTACK) call nrerror(’indexx: NSTACK too small’)
if (r-i+1 >= j-l) then

istack(jstack)=r
istack(jstack-1)=i
r=j-1

else
istack(jstack)=j-1
istack(jstack-1)=l
l=i

end if
end if

end do
CONTAINS

SUBROUTINE icomp_xchg(i,j)
INTEGER(I4B), INTENT(INOUT) :: i,j
INTEGER(I4B) :: swp
if (iarr(j) < iarr(i)) then

swp=i
i=j
j=swp

end if
END SUBROUTINE icomp_xchg
END SUBROUTINE indexx_i4b

� � �

SUBROUTINE sort3(arr,slave1,slave2)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : indexx
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr,slave1,slave2

Sorts an array arr into ascending order using Quicksort, while making the corresponding
rearrangement of the same-size arrays slave1 and slave2. The sorting and rearrangement
are performed by means of an index array.

INTEGER(I4B) :: ndum
INTEGER(I4B), DIMENSION(size(arr)) :: index
ndum=assert_eq(size(arr),size(slave1),size(slave2),’sort3’)
call indexx(arr,index) Make the index array.
arr=arr(index) Sort arr.
slave1=slave1(index) Rearrange slave1,
slave2=slave2(index) and slave2.
END SUBROUTINE sort3

� � �
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FUNCTION rank(index)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: index
INTEGER(I4B), DIMENSION(size(index)) :: rank

Given index as output from the routine indexx, this routine returns a same-size array
rank, the corresponding table of ranks.

rank(index(:))=arth(1,1,size(index))
END FUNCTION rank

� � �

Just as in the case of sort, where an approximation of the underlying
Quicksort partition-exchange algorithm can be captured with the Fortran
90 pack intrinsic, the same can be done with indexx. As before,

although it is in principle parallelizable by the compiler, it is likely not competitive
with library routines.

RECURSIVE SUBROUTINE index_bypack(arr,index,partial)
USE nrtype; USE nrutil, ONLY : array_copy,arth,assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: index
INTEGER, OPTIONAL, INTENT(IN) :: partial

Indexes an array arr, i.e., outputs the array index of length N such that arr(index(j))
is in ascending order for j = 1,2, . . . ,N . The method is to apply recursively the Fortran
90 pack intrinsic. This is similar to Quicksort, but allows parallelization by the Fortran 90
compiler. partial is an optional argument that is used only internally on the recursive calls.

REAL(SP) :: a
INTEGER(I4B) :: n,k,nl,indext,nerr
INTEGER(I4B), SAVE :: level=0
LOGICAL, DIMENSION(:), ALLOCATABLE, SAVE :: mask
INTEGER(I4B), DIMENSION(:), ALLOCATABLE, SAVE :: temp
if (present(partial)) then

n=size(index)
else

n=assert_eq(size(index),size(arr),’indexx_bypack’)
index=arth(1,1,n)

end if
if (n <= 1) RETURN
k=(1+n)/2
call icomp_xchg(index(1),index(k)) Pivot element is median of first, mid-

dle, and last.call icomp_xchg(index(k),index(n))
call icomp_xchg(index(1),index(k))
if (n <= 3) RETURN
level=level+1 Keep track of recursion level to avoid

allocation overhead.if (level == 1) allocate(mask(n),temp(n))
indext=index(k)
a=arr(indext)
mask(1:n) = (arr(index) <= a) Which elements move to left?
mask(k) = .false.
call array_copy(pack(index,mask(1:n)),temp,nl,nerr) Move them.
mask(k) = .true.
temp(nl+2:n)=pack(index,.not. mask(1:n)) Move others to right.
temp(nl+1)=indext
index=temp(1:n)
call index_bypack(arr,index(1:nl),partial=1) And recurse.
call index_bypack(arr,index(nl+2:n),partial=1)
if (level == 1) deallocate(mask,temp)
level=level-1
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CONTAINS

SUBROUTINE icomp_xchg(i,j)
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: i,j
Swap or don’t swap integer arguments, depending on the ordering of their corresponding
elements in an array arr.

INTEGER(I4B) :: swp
if (arr(j) < arr(i)) then

swp=i
i=j
j=swp

end if
END SUBROUTINE icomp_xchg
END SUBROUTINE index_bypack

� � �

FUNCTION select(k,arr)
USE nrtype; USE nrutil, ONLY : assert,swap
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: k
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
REAL(SP) :: select

Returns the kth smallest value in the array arr. The input array will be rearranged to have
this value in location arr(k), with all smaller elements moved to arr(1:k-1) (in arbitrary
order) and all larger elements in arr(k+1:) (also in arbitrary order).

INTEGER(I4B) :: i,r,j,l,n
REAL(SP) :: a
n=size(arr)
call assert(k >= 1, k <= n, ’select args’)
l=1
r=n
do

if (r-l <= 1) then Active partition contains 1 or 2 elements.
if (r-l == 1) call swap(arr(l),arr(r),arr(l)>arr(r)) Active partition con-

tains 2 elements.select=arr(k)
RETURN

else Choose median of left, center, and right elements
as partitioning element a. Also rearrange so
that arr(l) ≤ arr(l+1) ≤ arr(r).

i=(l+r)/2
call swap(arr(i),arr(l+1))
call swap(arr(l),arr(r),arr(l)>arr(r))
call swap(arr(l+1),arr(r),arr(l+1)>arr(r))
call swap(arr(l),arr(l+1),arr(l)>arr(l+1))
i=l+1 Initialize pointers for partitioning.
j=r
a=arr(l+1) Partitioning element.
do Here is the meat.

do Scan up to find element > a.
i=i+1
if (arr(i) >= a) exit

end do
do Scan down to find element < a.

j=j-1
if (arr(j) <= a) exit

end do
if (j < i) exit Pointers crossed. Exit with partitioning complete.
call swap(arr(i),arr(j)) Exchange elements.

end do
arr(l+1)=arr(j) Insert partitioning element.
arr(j)=a
if (j >= k) r=j-1 Keep active the partition that contains the kth

element.
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if (j <= k) l=i
end if

end do
END FUNCTION select

� � �

The following routine, select inplace, is renamed from Volume 1’s selip.

FUNCTION select_inplace(k,arr)
USE nrtype
USE nr, ONLY : select
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: k
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
REAL(SP) :: select_inplace

Returns the kth smallest value in the array arr, without altering the input array. In Fortran
90’s assumed memory-rich environment, we just call select in scratch space.

REAL(SP), DIMENSION(size(arr)) :: tarr
tarr=arr
select_inplace=select(k,tarr)
END FUNCTION select_inplace

f90
Volume 1’s selip routine uses an entirely different algorithm, for the
purpose of avoiding any additional memory allocation beyond that of
the input array. Fortran 90 presumes a richer memory environment, so

select inplace simply does the obvious (destructive) selection in scratch space.
You can of course use the old selip if your in-core or in-cache memory is at
a premium.

FUNCTION select_bypack(k,arr)
USE nrtype; USE nrutil, ONLY : array_copy,assert,swap
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: k
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
REAL(SP) :: select_bypack

Returns the kth smallest value in the array arr. The input array will be rearranged to have
this value in location arr(k), with all smaller elements moved to arr(1:k-1) (in arbitrary
order) and all larger elements in arr(k+1:) (also in arbitrary order). This implementation
allows parallelization in the Fortran 90 pack intrinsic.

LOGICAL, DIMENSION(size(arr)) :: mask
REAL(SP), DIMENSION(size(arr)) :: temp
INTEGER(I4B) :: i,r,j,l,n,nl,nerr
REAL(SP) :: a
n=size(arr)
call assert(k >= 1, k <= n, ’select_bypack args’)
l=1 Initial left and right bounds.
r=n
do Keep partitioning until desired el-

ement is found.if (r-l <= 1) exit
i=(l+r)/2
call swap(arr(l),arr(i),arr(l)>arr(i)) Pivot element is median of first,

middle, and last.call swap(arr(i),arr(r),arr(i)>arr(r))
call swap(arr(l),arr(i),arr(l)>arr(i))
a=arr(i)
mask(l:r) = (arr(l:r) <= a) Which elements move to left?
mask(i) = .false.
call array_copy(pack(arr(l:r),mask(l:r)),temp(l:),nl,nerr) Move them.
j=l+nl
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mask(i) = .true.
temp(j+1:r)=pack(arr(l:r),.not. mask(l:r)) Move others to right.
temp(j)=a
arr(l:r)=temp(l:r)
if (k > j) then Reset bounds to whichever side

has the desired element.l=j+1
else if (k < j) then

r=j-1
else

l=j
r=j

end if
end do
if (r-l == 1) call swap(arr(l),arr(r),arr(l)>arr(r)) Case of only two left.
select_bypack=arr(k)
END FUNCTION select_bypack

The above routine select bypack is parallelizable, but as discussed
above (sort bypack, index bypack) it is generally not very efficient.

� � �

The following routine, select heap, is renamed from Volume 1’s hpsel.

SUBROUTINE select_heap(arr,heap)
USE nrtype; USE nrutil, ONLY : nrerror,swap
USE nr, ONLY : sort
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
REAL(SP), DIMENSION(:), INTENT(OUT) :: heap

Returns in heap, an array of length M , the largest M elements of the array arr of length
N , with heap(1) guaranteed to be the the M th largest element. The array arr is not
altered. For efficiency, this routine should be used only when M � N .

INTEGER(I4B) :: i,j,k,m,n
m=size(heap)
n=size(arr)
if (m > n/2 .or. m < 1) call nrerror(’probable misuse of select_heap’)
heap=arr(1:m)
call sort(heap) Create initial heap by overkill! We assume m � n.
do i=m+1,n For each remaining element...

if (arr(i) > heap(1)) then Put it on the heap?
heap(1)=arr(i)
j=1
do Sift down.

k=2*j
if (k > m) exit
if (k /= m) then

if (heap(k) > heap(k+1)) k=k+1
end if
if (heap(j) <= heap(k)) exit
call swap(heap(k),heap(j))
j=k

end do
end if

end do
END SUBROUTINE select_heap

� � �



1180 Chapter B8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION eclass(lista,listb,n)
USE nrtype; USE nrutil, ONLY : arth,assert_eq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: lista,listb
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), DIMENSION(n) :: eclass

Given M equivalences between pairs of n individual elements in the form of the input arrays
lista and listb of length M , this routine returns in an array of length n the number
of the equivalence class of each of the n elements, integers between 1 and n (not all such
integers used).

INTEGER :: j,k,l,m
m=assert_eq(size(lista),size(listb),’eclass’)
eclass(1:n)=arth(1,1,n) Initialize each element its own class.
do l=1,m For each piece of input information...

j=lista(l)
do Track first element up to its ancestor.

if (eclass(j) == j) exit
j=eclass(j)

end do
k=listb(l)
do Track second element up to its ancestor.

if (eclass(k) == k) exit
k=eclass(k)

end do
if (j /= k) eclass(j)=k If they are not already related, make them so.

end do
do j=1,n Final sweep up to highest ancestors.

do
if (eclass(j) == eclass(eclass(j))) exit
eclass(j)=eclass(eclass(j))

end do
end do
END FUNCTION eclass

FUNCTION eclazz(equiv,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
INTERFACE

FUNCTION equiv(i,j)
USE nrtype
IMPLICIT NONE
LOGICAL(LGT) :: equiv
INTEGER(I4B), INTENT(IN) :: i,j
END FUNCTION equiv

END INTERFACE
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), DIMENSION(n) :: eclazz

Given a user-supplied logical function equiv that tells whether a pair of elements, each
in the range 1...n, are related, return in an array of length n equivalence class numbers
for each element.

INTEGER :: i,j
eclazz(1:n)=arth(1,1,n)
do i=2,n Loop over first element of all pairs.

do j=1,i-1 Loop over second element of all pairs.
eclazz(j)=eclazz(eclazz(j)) Sweep it up this much.
if (equiv(i,j)) eclazz(eclazz(eclazz(j)))=i
Good exercise for the reader to figure out why this much ancestry is necessary!

end do
end do
do i=1,n Only this much sweeping is needed finally.

eclazz(i)=eclazz(eclazz(i))
end do
END FUNCTION eclazz
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CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.5. [1]
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Chapter B9. Root Finding and
Nonlinear Sets of Equations

SUBROUTINE scrsho(func)
USE nrtype
IMPLICIT NONE
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: ISCR=60,JSCR=21

For interactive “dumb terminal” use. Produce a crude graph of the function func over the
prompted-for interval x1,x2. Query for another plot until the user signals satisfaction.
Parameters: Number of horizontal and vertical positions in display.

INTEGER(I4B) :: i,j,jz
REAL(SP) :: dx,dyj,x,x1,x2,ybig,ysml
REAL(SP), DIMENSION(ISCR) :: y
CHARACTER(1), DIMENSION(ISCR,JSCR) :: scr
CHARACTER(1) :: blank=’ ’,zero=’-’,yy=’l’,xx=’-’,ff=’x’
do

write (*,*) ’ Enter x1,x2 (= to stop)’ Query for another plot; quit if x1=x2.
read (*,*) x1,x2
if (x1 == x2) RETURN
scr(1,1:JSCR)=yy Fill vertical sides with character ’l’.
scr(ISCR,1:JSCR)=yy
scr(2:ISCR-1,1)=xx Fill top, bottom with character ’-’.
scr(2:ISCR-1,JSCR)=xx
scr(2:ISCR-1,2:JSCR-1)=blank Fill interior with blanks.
dx=(x2-x1)/(ISCR-1)
x=x1
do i=1,ISCR Evaluate the function at equal intervals.

y(i)=func(x)
x=x+dx

end do
ysml=min(minval(y(:)),0.0_sp) Limits will include 0.
ybig=max(maxval(y(:)),0.0_sp)
if (ybig == ysml) ybig=ysml+1.0 Be sure to separate top and bottom.
dyj=(JSCR-1)/(ybig-ysml)
jz=1-ysml*dyj Note which row corresponds to 0.
scr(1:ISCR,jz)=zero
do i=1,ISCR Place an indicator at function height and 0.

j=1+(y(i)-ysml)*dyj
scr(i,j)=ff

end do
write (*,’(1x,1p,e10.3,1x,80a1)’) ybig,(scr(i,JSCR),i=1,ISCR)
do j=JSCR-1,2,-1 Display.

write (*,’(12x,80a1)’) (scr(i,j),i=1,ISCR)
end do
write (*,’(1x,1p,e10.3,1x,80a1)’) ysml,(scr(i,1),i=1,ISCR)

1182
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write (*,’(12x,1p,e10.3,40x,e10.3)’) x1,x2
end do
END SUBROUTINE scrsho

f90
CHARACTER(1), DIMENSION(ISCR,JSCR) :: scr In Fortran 90, the length
of variables of type character should be declared as CHARACTER(1) or
CHARACTER(len=1) (for a variable of length 1), rather than the older

form CHARACTER*1. While the older form is still legal syntax, the newer one is more
consistent with the syntax of other type declarations. (For variables of length 1, you
can actually omit the length specifier entirely, and just say CHARACTER.)

� � �

SUBROUTINE zbrac(func,x1,x2,succes)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(INOUT) :: x1,x2
LOGICAL(LGT), INTENT(OUT) :: succes
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: NTRY=50
REAL(SP), PARAMETER :: FACTOR=1.6_sp

Given a function func and an initial guessed range x1 to x2, the routine expands the range
geometrically until a root is bracketed by the returned values x1 and x2 (in which case
succes returns as .true.) or until the range becomes unacceptably large (in which case
succes returns as .false.).

INTEGER(I4B) :: j
REAL(SP) :: f1,f2
if (x1 == x2) call nrerror(’zbrac: you have to guess an initial range’)
f1=func(x1)
f2=func(x2)
succes=.true.
do j=1,NTRY

if ((f1 > 0.0 .and. f2 < 0.0) .or. &
(f1 < 0.0 .and. f2 > 0.0)) RETURN

if (abs(f1) < abs(f2)) then
x1=x1+FACTOR*(x1-x2)
f1=func(x1)

else
x2=x2+FACTOR*(x2-x1)
f2=func(x2)

end if
end do
succes=.false.
END SUBROUTINE zbrac

� � �
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SUBROUTINE zbrak(func,x1,x2,n,xb1,xb2,nb)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), INTENT(OUT) :: nb
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), POINTER :: xb1,xb2
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
Given a function func defined on the interval from x1-x2 subdivide the interval into n
equally spaced segments, and search for zero crossings of the function. nb is returned as
the number of bracketing pairs xb1(1:nb), xb2(1:nb) that are found. xb1 and xb2 are
pointers to arrays of length nb that are dynamically allocated by the routine.

INTEGER(I4B) :: i
REAL(SP) :: dx
REAL(SP), DIMENSION(0:n) :: f,x
LOGICAL(LGT), DIMENSION(1:n) :: mask
LOGICAL(LGT), SAVE :: init=.true.
if (init) then

init=.false.
nullify(xb1,xb2)

end if
if (associated(xb1)) deallocate(xb1)
if (associated(xb2)) deallocate(xb2)
dx=(x2-x1)/n Determine the spacing appropriate to the mesh.
x=x1+dx*arth(0,1,n+1)
do i=0,n Evaluate the function at the mesh points.

f(i)=func(x(i))
end do
mask=f(1:n)*f(0:n-1) <= 0.0 Record where the sign changes occur.
nb=count(mask) Number of sign changes.
allocate(xb1(nb),xb2(nb))
xb1(1:nb)=pack(x(0:n-1),mask) Store the bounds of each bracket.
xb2(1:nb)=pack(x(1:n),mask)
END SUBROUTINE zbrak

f90
This routine shows how to return arrays xb1 and xb2 whose size is not
known in advance. The coding is explained in the subsection on pointers
in §21.5.

� � �

FUNCTION rtbis(func,x1,x2,xacc)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtbis
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
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INTEGER(I4B), PARAMETER :: MAXIT=40
Using bisection, find the root of a function func known to lie between x1 and x2. The
root, returned as rtbis, will be refined until its accuracy is ±xacc.
Parameter: MAXIT is the maximum allowed number of bisections.

INTEGER(I4B) :: j
REAL(SP) :: dx,f,fmid,xmid
fmid=func(x2)
f=func(x1)
if (f*fmid >= 0.0) call nrerror(’rtbis: root must be bracketed’)
if (f < 0.0) then Orient the search so that f>0 lies at x+dx.

rtbis=x1
dx=x2-x1

else
rtbis=x2
dx=x1-x2

end if
do j=1,MAXIT Bisection loop.

dx=dx*0.5_sp
xmid=rtbis+dx
fmid=func(xmid)
if (fmid <= 0.0) rtbis=xmid
if (abs(dx) < xacc .or. fmid == 0.0) RETURN

end do
call nrerror(’rtbis: too many bisections’)
END FUNCTION rtbis

� � �

FUNCTION rtflsp(func,x1,x2,xacc)
USE nrtype; USE nrutil, ONLY : nrerror,swap
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtflsp
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: MAXIT=30

Using the false position method, find the root of a function func known to lie between x1
and x2. The root, returned as rtflsp, is refined until its accuracy is ±xacc.
Parameter: MAXIT is the maximum allowed number of iterations.

INTEGER(I4B) :: j
REAL(SP) :: del,dx,f,fh,fl,xh,xl
fl=func(x1)
fh=func(x2) Be sure the interval brackets a root.
if ((fl > 0.0 .and. fh > 0.0) .or. &

(fl < 0.0 .and. fh < 0.0)) call &
nrerror(’rtflsp: root must be bracketed between arguments’)

if (fl < 0.0) then Identify the limits so that xl corresponds to
the low side.xl=x1

xh=x2
else

xl=x2
xh=x1
call swap(fl,fh)

end if
dx=xh-xl
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do j=1,MAXIT False position loop.
rtflsp=xl+dx*fl/(fl-fh) Increment with respect to latest value.
f=func(rtflsp)
if (f < 0.0) then Replace appropriate limit.

del=xl-rtflsp
xl=rtflsp
fl=f

else
del=xh-rtflsp
xh=rtflsp
fh=f

end if
dx=xh-xl
if (abs(del) < xacc .or. f == 0.0) RETURN Convergence.

end do
call nrerror(’rtflsp exceed maximum iterations’)
END FUNCTION rtflsp

� � �

FUNCTION rtsec(func,x1,x2,xacc)
USE nrtype; USE nrutil, ONLY : nrerror,swap
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtsec
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: MAXIT=30

Using the secant method, find the root of a function func thought to lie between x1 and
x2. The root, returned as rtsec, is refined until its accuracy is ±xacc.
Parameter: MAXIT is the maximum allowed number of iterations.

INTEGER(I4B) :: j
REAL(SP) :: dx,f,fl,xl
fl=func(x1)
f=func(x2)
if (abs(fl) < abs(f)) then Pick the bound with the smaller function value

as the most recent guess.rtsec=x1
xl=x2
call swap(fl,f)

else
xl=x1
rtsec=x2

end if
do j=1,MAXIT Secant loop.

dx=(xl-rtsec)*f/(f-fl) Increment with respect to latest value.
xl=rtsec
fl=f
rtsec=rtsec+dx
f=func(rtsec)
if (abs(dx) < xacc .or. f == 0.0) RETURN Convergence.

end do
call nrerror(’rtsec: exceed maximum iterations’)
END FUNCTION rtsec

� � �
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FUNCTION zriddr(func,x1,x2,xacc)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: zriddr
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: MAXIT=60

Using Ridders’ method, return the root of a function func known to lie between x1 and
x2. The root, returned as zriddr, will be refined to an approximate accuracy xacc.

REAL(SP), PARAMETER :: UNUSED=-1.11e30_sp
INTEGER(I4B) :: j
REAL(SP) :: fh,fl,fm,fnew,s,xh,xl,xm,xnew
fl=func(x1)
fh=func(x2)
if ((fl > 0.0 .and. fh < 0.0) .or. (fl < 0.0 .and. fh > 0.0)) then

xl=x1
xh=x2
zriddr=UNUSED Any highly unlikely value, to simplify logic

below.do j=1,MAXIT
xm=0.5_sp*(xl+xh)
fm=func(xm) First of two function evaluations per it-

eration.s=sqrt(fm**2-fl*fh)
if (s == 0.0) RETURN
xnew=xm+(xm-xl)*(sign(1.0_sp,fl-fh)*fm/s) Updating formula.
if (abs(xnew-zriddr) <= xacc) RETURN
zriddr=xnew
fnew=func(zriddr) Second of two function evaluations per

iteration.if (fnew == 0.0) RETURN
if (sign(fm,fnew) /= fm) then Bookkeeping to keep the root bracketed

on next iteration.xl=xm
fl=fm
xh=zriddr
fh=fnew

else if (sign(fl,fnew) /= fl) then
xh=zriddr
fh=fnew

else if (sign(fh,fnew) /= fh) then
xl=zriddr
fl=fnew

else
call nrerror(’zriddr: never get here’)

end if
if (abs(xh-xl) <= xacc) RETURN

end do
call nrerror(’zriddr: exceeded maximum iterations’)

else if (fl == 0.0) then
zriddr=x1

else if (fh == 0.0) then
zriddr=x2

else
call nrerror(’zriddr: root must be bracketed’)

end if
END FUNCTION zriddr

� � �
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FUNCTION zbrent(func,x1,x2,tol)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,tol
REAL(SP) :: zbrent
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: EPS=epsilon(x1)

Using Brent’s method, find the root of a function func known to lie between x1 and x2.
The root, returned as zbrent, will be refined until its accuracy is tol.
Parameters: Maximum allowed number of iterations, and machine floating-point precision.

INTEGER(I4B) :: iter
REAL(SP) :: a,b,c,d,e,fa,fb,fc,p,q,r,s,tol1,xm
a=x1
b=x2
fa=func(a)
fb=func(b)
if ((fa > 0.0 .and. fb > 0.0) .or. (fa < 0.0 .and. fb < 0.0)) &

call nrerror(’root must be bracketed for zbrent’)
c=b
fc=fb
do iter=1,ITMAX

if ((fb > 0.0 .and. fc > 0.0) .or. (fb < 0.0 .and. fc < 0.0)) then
c=a Rename a, b, c and adjust bounding in-

terval d.fc=fa
d=b-a
e=d

end if
if (abs(fc) < abs(fb)) then

a=b
b=c
c=a
fa=fb
fb=fc
fc=fa

end if
tol1=2.0_sp*EPS*abs(b)+0.5_sp*tol Convergence check.
xm=0.5_sp*(c-b)
if (abs(xm) <= tol1 .or. fb == 0.0) then

zbrent=b
RETURN

end if
if (abs(e) >= tol1 .and. abs(fa) > abs(fb)) then

s=fb/fa Attempt inverse quadratic interpolation.
if (a == c) then

p=2.0_sp*xm*s
q=1.0_sp-s

else
q=fa/fc
r=fb/fc
p=s*(2.0_sp*xm*q*(q-r)-(b-a)*(r-1.0_sp))
q=(q-1.0_sp)*(r-1.0_sp)*(s-1.0_sp)

end if
if (p > 0.0) q=-q Check whether in bounds.
p=abs(p)
if (2.0_sp*p < min(3.0_sp*xm*q-abs(tol1*q),abs(e*q))) then

e=d Accept interpolation.
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d=p/q
else

d=xm Interpolation failed; use bisection.
e=d

end if
else Bounds decreasing too slowly; use bisec-

tion.d=xm
e=d

end if
a=b Move last best guess to a.
fa=fb
b=b+merge(d,sign(tol1,xm), abs(d) > tol1 ) Evaluate new trial root.
fb=func(b)

end do
call nrerror(’zbrent: exceeded maximum iterations’)
zbrent=b
END FUNCTION zbrent

f90
REAL(SP), PARAMETER :: EPS=epsilon(x1) The routinezbrentworks best
when EPS is exactly the machine precision. The Fortran 90 intrinsic func-
tion epsilon allows us to code this in a portable fashion.

FUNCTION rtnewt(funcd,x1,x2,xacc)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtnewt
INTERFACE

SUBROUTINE funcd(x,fval,fderiv)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: fval,fderiv
END SUBROUTINE funcd

END INTERFACE
INTEGER(I4B), PARAMETER :: MAXIT=20

Using the Newton-Raphson method, find the root of a function known to lie in the interval
[x1, x2]. The root rtnewtwill be refined until its accuracy is known within ±xacc. funcd
is a user-supplied subroutine that returns both the function value and the first derivative of
the function.
Parameter: MAXIT is the maximum number of iterations.

INTEGER(I4B) :: j
REAL(SP) :: df,dx,f
rtnewt=0.5_sp*(x1+x2) Initial guess.
do j=1,MAXIT

call funcd(rtnewt,f,df)
dx=f/df
rtnewt=rtnewt-dx
if ((x1-rtnewt)*(rtnewt-x2) < 0.0)&

call nrerror(’rtnewt: values jumped out of brackets’)
if (abs(dx) < xacc) RETURN Convergence.

end do
call nrerror(’rtnewt exceeded maximum iterations’)
END FUNCTION rtnewt

� � �
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FUNCTION rtsafe(funcd,x1,x2,xacc)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtsafe
INTERFACE

SUBROUTINE funcd(x,fval,fderiv)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: fval,fderiv
END SUBROUTINE funcd

END INTERFACE
INTEGER(I4B), PARAMETER :: MAXIT=100

Using a combination of Newton-Raphson and bisection, find the root of a function bracketed
between x1 and x2. The root, returned as the function value rtsafe, will be refined until
its accuracy is known within ±xacc. funcd is a user-supplied subroutine that returns both
the function value and the first derivative of the function.
Parameter: MAXIT is the maximum allowed number of iterations.

INTEGER(I4B) :: j
REAL(SP) :: df,dx,dxold,f,fh,fl,temp,xh,xl
call funcd(x1,fl,df)
call funcd(x2,fh,df)
if ((fl > 0.0 .and. fh > 0.0) .or. &

(fl < 0.0 .and. fh < 0.0)) &
call nrerror(’root must be bracketed in rtsafe’)

if (fl == 0.0) then
rtsafe=x1
RETURN

else if (fh == 0.0) then
rtsafe=x2
RETURN

else if (fl < 0.0) then Orient the search so that f(xl) < 0.
xl=x1
xh=x2

else
xh=x1
xl=x2

end if
rtsafe=0.5_sp*(x1+x2) Initialize the guess for root,
dxold=abs(x2-x1) the “stepsize before last,”
dx=dxold and the last step.
call funcd(rtsafe,f,df)
do j=1,MAXIT Loop over allowed iterations.

if (((rtsafe-xh)*df-f)*((rtsafe-xl)*df-f) > 0.0 .or. &
abs(2.0_sp*f) > abs(dxold*df) ) then
Bisect if Newton out of range, or not decreasing fast enough.

dxold=dx
dx=0.5_sp*(xh-xl)
rtsafe=xl+dx
if (xl == rtsafe) RETURN Change in root is negligible.

else Newton step acceptable. Take it.
dxold=dx
dx=f/df
temp=rtsafe
rtsafe=rtsafe-dx
if (temp == rtsafe) RETURN

end if
if (abs(dx) < xacc) RETURN Convergence criterion.
call funcd(rtsafe,f,df) One new function evaluation per iteration.
if (f < 0.0) then Maintain the bracket on the root.

xl=rtsafe
else

xh=rtsafe
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end if
end do
call nrerror(’rtsafe: exceeded maximum iterations’)
END FUNCTION rtsafe

� � �

SUBROUTINE laguer(a,x,its)
USE nrtype; USE nrutil, ONLY : nrerror,poly,poly_term
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: its
COMPLEX(SPC), INTENT(INOUT) :: x
COMPLEX(SPC), DIMENSION(:), INTENT(IN) :: a
REAL(SP), PARAMETER :: EPS=epsilon(1.0_sp)
INTEGER(I4B), PARAMETER :: MR=8,MT=10,MAXIT=MT*MR

Given an array of M + 1 complex coefficients a of the polynomial
∑M+1

i=1 a(i)xi−1, and
given a complex value x, this routine improves x by Laguerre’s method until it converges,
within the achievable roundoff limit, to a root of the given polynomial. The number of
iterations taken is returned as its.
Parameters: EPS is the estimated fractional roundoff error. We try to break (rare) limit
cycles with MR different fractional values, once every MT steps, for MAXIT total allowed
iterations.

INTEGER(I4B) :: iter,m
REAL(SP) :: abx,abp,abm,err
COMPLEX(SPC) :: dx,x1,f,g,h,sq,gp,gm,g2
COMPLEX(SPC), DIMENSION(size(a)) :: b,d
REAL(SP), DIMENSION(MR) :: frac = &

(/ 0.5_sp,0.25_sp,0.75_sp,0.13_sp,0.38_sp,0.62_sp,0.88_sp,1.0_sp /)
Fractions used to break a limit cycle.

m=size(a)-1
do iter=1,MAXIT Loop over iterations up to allowed maximum.

its=iter
abx=abs(x)
b(m+1:1:-1)=poly_term(a(m+1:1:-1),x) Efficient computation of the polynomial

and its first two derivatives.d(m:1:-1)=poly_term(b(m+1:2:-1),x)
f=poly(x,d(2:m))
err=EPS*poly(abx,abs(b(1:m+1))) Esimate of roundoff in evaluating polynomial.
if (abs(b(1)) <= err) RETURN We are on the root.
g=d(1)/b(1) The generic case: Use Laguerre’s formula.
g2=g*g
h=g2-2.0_sp*f/b(1)
sq=sqrt((m-1)*(m*h-g2))
gp=g+sq
gm=g-sq
abp=abs(gp)
abm=abs(gm)
if (abp < abm) gp=gm
if (max(abp,abm) > 0.0) then

dx=m/gp
else

dx=exp(cmplx(log(1.0_sp+abx),iter,kind=spc))
end if
x1=x-dx
if (x == x1) RETURN Converged.
if (mod(iter,MT) /= 0) then

x=x1
else Every so often we take a fractional step, to

break any limit cycle (itself a rare occur-
rence).

x=x-dx*frac(iter/MT)
end if

end do
call nrerror(’laguer: too many iterations’)
Very unusual — can occur only for complex roots. Try a different starting guess for the root.

END SUBROUTINE laguer
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f90
b(m+1:1:-1)=poly_term...f=poly(x,d(2:m)) The poly term function in
nrutil tabulates the partial sums of a polynomial, while poly evaluates
the polynomialat x. In this example, we use poly termon the coefficient

array in reverse order, so that the value of the polynomial ends up in b(1) and the
value of its first derivative in d(1).

dx=exp(cmplx(log(1.0_sp+abx),iter,kind=spc)) The intrinsic function cmplx
returns a quantity of type default complex unless the kind argument is present.
To facilitate converting our routines from single to double precision, we always
include the kind argument explicitly so that when you redefine spc in nrtype to be
double-precision complex the conversions are carried out correctly.

� � �

SUBROUTINE zroots(a,roots,polish)
USE nrtype; USE nrutil, ONLY : assert_eq,poly_term
USE nr, ONLY : laguer,indexx
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:), INTENT(IN) :: a
COMPLEX(SPC), DIMENSION(:), INTENT(OUT) :: roots
LOGICAL(LGT), INTENT(IN) :: polish
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Given the array of M + 1 complex coefficients a of the polynomial
∑M+1

i=1 a(i)xi−1, this
routine successively calls laguer and finds all M complex roots. The logical variable
polish should be input as .true. if polishing (also by Laguerre’s method) is desired,
.false. if the roots will be subsequently polished by other means.
Parameter: EPS is a small number.

INTEGER(I4B) :: j,its,m
INTEGER(I4B), DIMENSION(size(roots)) :: indx
COMPLEX(SPC) :: x
COMPLEX(SPC), DIMENSION(size(a)) :: ad
m=assert_eq(size(roots),size(a)-1,’zroots’)
ad(:)=a(:) Copy of coefficients for successive deflation.
do j=m,1,-1 Loop over each root to be found.

x=cmplx(0.0_sp,kind=spc)
Start at zero to favor convergence to smallest remaining root.

call laguer(ad(1:j+1),x,its) Find the root.
if (abs(aimag(x)) <= 2.0_sp*EPS**2*abs(real(x))) &

x=cmplx(real(x),kind=spc)
roots(j)=x
ad(j:1:-1)=poly_term(ad(j+1:2:-1),x) Forward deflation.

end do
if (polish) then

do j=1,m Polish the roots using the undeflated coeffi-
cients.call laguer(a(:),roots(j),its)

end do
end if
call indexx(real(roots),indx) Sort roots by their real parts.
roots=roots(indx)
END SUBROUTINE zroots

f90
x=cmplx(0.0_sp,kind=spc)...x=cmplx(real(x),kind=spc) See the discus-
sion of why we include kind=spc just above. Note that while real(x)
returns type default real if x is integer or real, it returns single or double

precision correctly if x is complex.

� � �
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SUBROUTINE zrhqr(a,rtr,rti)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : balanc,hqr,indexx
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: rtr,rti

Find all the roots of a polynomial with real coefficients,
∑M+1

i=1 a(i)xi−1, given the array
of M + 1 coefficients a. The method is to construct an upper Hessenberg matrix whose
eigenvalues are the desired roots, and then use the routines balanc and hqr. The real and
imaginary parts of the M roots are returned in rtr and rti, respectively.

INTEGER(I4B) :: k,m
INTEGER(I4B), DIMENSION(size(rtr)) :: indx
REAL(SP), DIMENSION(size(a)-1,size(a)-1) :: hess
m=assert_eq(size(rtr),size(rti),size(a)-1,’zrhqr’)
if (a(m+1) == 0.0) call &

nrerror(’zrhqr: Last value of array a must not be 0’)
hess(1,:)=-a(m:1:-1)/a(m+1) Construct the matrix.
hess(2:m,:)=0.0
do k=1,m-1

hess(k+1,k)=1.0
end do
call balanc(hess) Find its eigenvalues.
call hqr(hess,rtr,rti)
call indexx(rtr,indx) Sort roots by their real parts.
rtr=rtr(indx)
rti=rti(indx)
END SUBROUTINE zrhqr

� � �

SUBROUTINE qroot(p,b,c,eps)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : poldiv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP), INTENT(INOUT) :: b,c
REAL(SP), INTENT(IN) :: eps
INTEGER(I4B), PARAMETER :: ITMAX=20
REAL(SP), PARAMETER :: TINY=1.0e-6_sp

Given an array of N coefficients p of a polynomial of degree N − 1, and trial values for the
coefficients of a quadratic factor x2 + bx + c, improve the solution until the coefficients
b,c change by less than eps. The routine poldiv of §5.3 is used.
Parameters: ITMAX is the maximum number of iterations, TINY is a small number.

INTEGER(I4B) :: iter,n
REAL(SP) :: delb,delc,div,r,rb,rc,s,sb,sc
REAL(SP), DIMENSION(3) :: d
REAL(SP), DIMENSION(size(p)) :: q,qq,rem
n=size(p)
d(3)=1.0
do iter=1,ITMAX

d(2)=b
d(1)=c
call poldiv(p,d,q,rem)
s=rem(1) First division gives r,s.
r=rem(2)
call poldiv(q(1:n-1),d(:),qq(1:n-1),rem(1:n-1))
sc=-rem(1) Second division gives partial r,s with respect

to c.rc=-rem(2)
sb=-c*rc
rb=sc-b*rc
div=1.0_sp/(sb*rc-sc*rb) Solve 2x2 equation.
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delb=(r*sc-s*rc)*div
delc=(-r*sb+s*rb)*div
b=b+delb
c=c+delc
if ((abs(delb) <= eps*abs(b) .or. abs(b) < TINY) .and. &

(abs(delc) <= eps*abs(c) .or. abs(c) < TINY)) RETURN Coefficients converged.
end do
call nrerror(’qroot: too many iterations’)
END SUBROUTINE qroot

� � �

SUBROUTINE mnewt(ntrial,x,tolx,tolf,usrfun)
USE nrtype
USE nr, ONLY : lubksb,ludcmp
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: ntrial
REAL(SP), INTENT(IN) :: tolx,tolf
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
INTERFACE

SUBROUTINE usrfun(x,fvec,fjac)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: fvec
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: fjac
END SUBROUTINE usrfun

END INTERFACE
Given an initial guess x for a root in N dimensions, take ntrial Newton-Raphson steps to
improve the root. Stop if the root converges in either summed absolute variable increments
tolx or summed absolute function values tolf.

INTEGER(I4B) :: i
INTEGER(I4B), DIMENSION(size(x)) :: indx
REAL(SP) :: d
REAL(SP), DIMENSION(size(x)) :: fvec,p
REAL(SP), DIMENSION(size(x),size(x)) :: fjac
do i=1,ntrial

call usrfun(x,fvec,fjac)
User subroutine supplies function values at x in fvec and Jacobian matrix in fjac.

if (sum(abs(fvec)) <= tolf) RETURN Check function convergence.
p=-fvec Right-hand side of linear equations.
call ludcmp(fjac,indx,d) Solve linear equations using LU decom-

position.call lubksb(fjac,indx,p)
x=x+p Update solution.
if (sum(abs(p)) <= tolx) RETURN Check root convergence.

end do
END SUBROUTINE mnewt

� � �
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SUBROUTINE lnsrch(xold,fold,g,p,x,f,stpmax,check,func)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror,vabs
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xold,g
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
REAL(SP), INTENT(IN) :: fold,stpmax
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
REAL(SP), INTENT(OUT) :: f
LOGICAL(LGT), INTENT(OUT) :: check
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP) :: func
REAL(SP), DIMENSION(:), INTENT(IN) :: x
END FUNCTION func

END INTERFACE
REAL(SP), PARAMETER :: ALF=1.0e-4_sp,TOLX=epsilon(x)

Given an N -dimensional point xold, the value of the function and gradient there, fold
and g, and a direction p, finds a new point x along the direction p from xold where the
function func has decreased “sufficiently.” xold, g, p, and x are all arrays of length N .
The new function value is returned in f. stpmax is an input quantity that limits the length
of the steps so that you do not try to evaluate the function in regions where it is undefined
or subject to overflow. p is usually the Newton direction. The output quantity check is
false on a normal exit. It is true when x is too close to xold. In a minimization algorithm,
this usually signals convergence and can be ignored. However, in a zero-finding algorithm
the calling program should check whether the convergence is spurious.
Parameters: ALF ensures sufficient decrease in function value; TOLX is the convergence
criterion on ∆x.

INTEGER(I4B) :: ndum
REAL(SP) :: a,alam,alam2,alamin,b,disc,f2,pabs,rhs1,rhs2,slope,tmplam
ndum=assert_eq(size(g),size(p),size(x),size(xold),’lnsrch’)
check=.false.
pabs=vabs(p(:))
if (pabs > stpmax) p(:)=p(:)*stpmax/pabs Scale if attempted step is too big.
slope=dot_product(g,p)
if (slope >= 0.0) call nrerror(’roundoff problem in lnsrch’)
alamin=TOLX/maxval(abs(p(:))/max(abs(xold(:)),1.0_sp)) Compute λmin.
alam=1.0 Always try full Newton step first.
do Start of iteration loop.

x(:)=xold(:)+alam*p(:)
f=func(x)
if (alam < alamin) then Convergence on ∆x. For zero find-

ing, the calling program should
verify the convergence.

x(:)=xold(:)
check=.true.
RETURN

else if (f <= fold+ALF*alam*slope) then Sufficient function decrease.
RETURN

else Backtrack.
if (alam == 1.0) then First time.

tmplam=-slope/(2.0_sp*(f-fold-slope))
else Subsequent backtracks.

rhs1=f-fold-alam*slope
rhs2=f2-fold-alam2*slope
a=(rhs1/alam**2-rhs2/alam2**2)/(alam-alam2)
b=(-alam2*rhs1/alam**2+alam*rhs2/alam2**2)/&

(alam-alam2)
if (a == 0.0) then

tmplam=-slope/(2.0_sp*b)
else

disc=b*b-3.0_sp*a*slope
if (disc < 0.0) then

tmplam=0.5_sp*alam
else if (b <= 0.0) then
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tmplam=(-b+sqrt(disc))/(3.0_sp*a)
else

tmplam=-slope/(b+sqrt(disc))
end if

end if
if (tmplam > 0.5_sp*alam) tmplam=0.5_sp*alam λ ≤ 0.5λ1.

end if
end if
alam2=alam
f2=f
alam=max(tmplam,0.1_sp*alam) λ ≥ 0.1λ1.

end do Try again.
END SUBROUTINE lnsrch

SUBROUTINE newt(x,check)
USE nrtype; USE nrutil, ONLY : nrerror,vabs
USE nr, ONLY : fdjac,lnsrch,lubksb,ludcmp
USE fminln Communicates with fmin.
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
LOGICAL(LGT), INTENT(OUT) :: check
INTEGER(I4B), PARAMETER :: MAXITS=200
REAL(SP), PARAMETER :: TOLF=1.0e-4_sp,TOLMIN=1.0e-6_sp,TOLX=epsilon(x),&

STPMX=100.0
Given an initial guess x for a root in N dimensions, find the root by a globally convergent
Newton’s method. The length N vector of functions to be zeroed, called fvec in the rou-
tine below, is returned by a user-supplied routine that must be called funcv and have the
declaration FUNCTION funcv(x). The output quantity check is false on a normal return
and true if the routine has converged to a local minimum of the function fmin defined
below. In this case try restarting from a different initial guess.
Parameters: MAXITS is the maximum number of iterations; TOLF sets the convergence
criterion on function values; TOLMIN sets the criterion for deciding whether spurious con-
vergence to a minimum of fmin has occurred; TOLX is the convergence criterion on δx;
STPMX is the scaled maximum step length allowed in line searches.

INTEGER(I4B) :: its
INTEGER(I4B), DIMENSION(size(x)) :: indx
REAL(SP) :: d,f,fold,stpmax
REAL(SP), DIMENSION(size(x)) :: g,p,xold
REAL(SP), DIMENSION(size(x)), TARGET :: fvec
REAL(SP), DIMENSION(size(x),size(x)) :: fjac
fmin_fvecp=>fvec
f=fmin(x) fvec is also computed by this call.
if (maxval(abs(fvec(:))) < 0.01_sp*TOLF) then Test for initial guess being a root.

Use more stringent test than
simply TOLF.

check=.false.
RETURN

end if
stpmax=STPMX*max(vabs(x(:)),real(size(x),sp)) Calculate stpmax for line searches.
do its=1,MAXITS Start of iteration loop.

call fdjac(x,fvec,fjac)
If analytic Jacobian is available, you can replace the routine fdjac below with your own
routine.

g(:)=matmul(fvec(:),fjac(:,:)) Compute ∇f for the line search.
xold(:)=x(:) Store x,
fold=f and f .
p(:)=-fvec(:) Right-hand side for linear equations.
call ludcmp(fjac,indx,d) Solve linear equations by LU decomposition.
call lubksb(fjac,indx,p)
call lnsrch(xold,fold,g,p,x,f,stpmax,check,fmin)
lnsrch returns new x and f . It also calculates fvec at the new x when it calls fmin.

if (maxval(abs(fvec(:))) < TOLF) then Test for convergence on function val-
ues.check=.false.

RETURN
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end if
if (check) then Check for gradient of f zero, i.e., spurious

convergence.check=(maxval(abs(g(:))*max(abs(x(:)),1.0_sp) / &
max(f,0.5_sp*size(x))) < TOLMIN)

RETURN Test for convergence on δx.
end if
if (maxval(abs(x(:)-xold(:))/max(abs(x(:)),1.0_sp)) < TOLX) &

RETURN
end do
call nrerror(’MAXITS exceeded in newt’)
END SUBROUTINE newt

f90
USE fminln Here we have an example of how to pass an array fvec to
a function fmin without making it an argument of fmin. In the language
of §21.5, we are using Method 2: We define a pointer fmin fvecp in

the module fminln:

REAL(SP), DIMENSION(:), POINTER :: fmin_fvecp

fvec itself is declared as an automatic array of the appropriate size in newt:

REAL(SP), DIMENSION(size(x)), TARGET :: fvec

On entry into newt, the pointer is associated:

fmin_fvecp=>fvec

The pointer is then used in fmin as a synonym for fvec. If you are sufficiently
paranoid, you can test whether fmin fvecp has in fact been associated on entry into
fmin. Heeding our admonition always to deallocate memory when it no longer is
needed, you may ask where the deallocation takes place in this example. Answer:
On exit from newt, the automatic array fvec is automatically freed.

The Method 1 way of setting up this task is to declare an allocatable array
in the module:

REAL(SP), DIMENSION(:), ALLOCATABLE :: fvec

On entry into newt we allocate it appropriately:

allocate(fvec,size(x))

and it can now be used in both newt and fmin. Of course, we must remember to
deallocate explicitly fvec on exit from newt. If we forget, all kinds of bad things
would happen on a second call to newt. The status of fvec on the first return from
newt becomes undefined. The status cannot be tested with if(allocated(...)),
and fvec may not be referenced in any way. If we tried to guard against this by
adding the SAVE attribute to the declaration of fvec, then we would generate an
error from trying to allocate an already-allocated array.

SUBROUTINE fdjac(x,fvec,df)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: fvec
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: df
INTERFACE
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FUNCTION funcv(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funcv
END FUNCTION funcv

END INTERFACE
REAL(SP), PARAMETER :: EPS=1.0e-4_sp

Computes forward-difference approximation to Jacobian. On input, x is the point at which
the Jacobian is to be evaluated, and fvec is the vector of function values at the point,
both arrays of length N . df is the N × N output Jacobian. FUNCTION funcv(x) is a
fixed-name, user-supplied routine that returns the vector of functions at x.
Parameter: EPS is the approximate square root of the machine precision.

INTEGER(I4B) :: j,n
REAL(SP), DIMENSION(size(x)) :: xsav,xph,h
n=assert_eq(size(x),size(fvec),size(df,1),size(df,2),’fdjac’)
xsav=x
h=EPS*abs(xsav)
where (h == 0.0) h=EPS
xph=xsav+h Trick to reduce finite precision error.
h=xph-xsav
do j=1,n

x(j)=xph(j)
df(:,j)=(funcv(x)-fvec(:))/h(j) Forward difference formula.
x(j)=xsav(j)

end do
END SUBROUTINE fdjac

MODULE fminln
USE nrtype; USE nrutil, ONLY : nrerror
REAL(SP), DIMENSION(:), POINTER :: fmin_fvecp
CONTAINS

FUNCTION fmin(x)
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: fmin

Returns f = 1
2

F ·F at x. FUNCTION funcv(x) is a fixed-name, user-supplied routine that
returns the vector of functions at x. The pointer fmin vecp communicates the function
values back to newt.

INTERFACE
FUNCTION funcv(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funcv
END FUNCTION funcv

END INTERFACE
if (.not. associated(fmin_fvecp)) call &

nrerror(’fmin: problem with pointer for returned values’)
fmin_fvecp=funcv(x)
fmin=0.5_sp*dot_product(fmin_fvecp,fmin_fvecp)
END FUNCTION fmin
END MODULE fminln

� � �



Chapter B9. Root Finding and Nonlinear Sets of Equations 1199

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE broydn(x,check)
USE nrtype; USE nrutil, ONLY : get_diag,lower_triangle,nrerror,&

outerprod,put_diag,unit_matrix,vabs
USE nr, ONLY : fdjac,lnsrch,qrdcmp,qrupdt,rsolv
USE fminln Communicates with fmin.
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
LOGICAL(LGT), INTENT(OUT) :: check
INTEGER(I4B), PARAMETER :: MAXITS=200
REAL(SP), PARAMETER :: EPS=epsilon(x),TOLF=1.0e-4_sp,TOLMIN=1.0e-6_sp,&

TOLX=EPS,STPMX=100.0
Given an initial guess x for a root in N dimensions, find the root by Broyden’s method
embedded in a globally convergent strategy. The length N vector of functions to be ze-
roed, called fvec in the routine below, is returned by a user-supplied routine that must be
called funcv and have the declaration FUNCTION funcv(x). The subroutine fdjac and
the function fmin from newt are used. The output quantity check is false on a normal
return and true if the routine has converged to a local minimum of the function fmin or if
Broyden’s method can make no further progress. In this case try restarting from a different
initial guess.
Parameters: MAXITS is the maximum number of iterations; EPS is the machine precision;
TOLF sets the convergence criterion on function values; TOLMIN sets the criterion for de-
ciding whether spurious convergence to a minimum of fmin has occurred; TOLX is the
convergence criterion on δx; STPMX is the scaled maximum step length allowed in line
searches.

INTEGER(I4B) :: i,its,k,n
REAL(SP) :: f,fold,stpmax
REAL(SP), DIMENSION(size(x)), TARGET :: fvec
REAL(SP), DIMENSION(size(x)) :: c,d,fvcold,g,p,s,t,w,xold
REAL(SP), DIMENSION(size(x),size(x)) :: qt,r
LOGICAL :: restrt,sing
fmin_fvecp=>fvec
n=size(x)
f=fmin(x) fvec is also computed by this call.
if (maxval(abs(fvec(:))) < 0.01_sp*TOLF) then Test for initial guess being a root.

Use more stringent test than
simply TOLF.

check=.false.
RETURN

end if
stpmax=STPMX*max(vabs(x(:)),real(n,sp)) Calculate stpmax for line searches.
restrt=.true. Ensure initial Jacobian gets computed.
do its=1,MAXITS Start of iteration loop.

if (restrt) then
call fdjac(x,fvec,r) Initialize or reinitialize Jacobian in r.
call qrdcmp(r,c,d,sing) QR decomposition of Jacobian.
if (sing) call nrerror(’singular Jacobian in broydn’)

call unit_matrix(qt) Form QT explicitly.
do k=1,n-1

if (c(k) /= 0.0) then
qt(k:n,:)=qt(k:n,:)-outerprod(r(k:n,k),&

matmul(r(k:n,k),qt(k:n,:)))/c(k)
end if

end do
where (lower_triangle(n,n)) r(:,:)=0.0
call put_diag(d(:),r(:,:)) Form R explicitly.

else Carry out Broyden update.
s(:)=x(:)-xold(:) s = δx.
do i=1,n t = R · s.

t(i)=dot_product(r(i,i:n),s(i:n))
end do
w(:)=fvec(:)-fvcold(:)-matmul(t(:),qt(:,:)) w = δF − B · s.
where (abs(w(:)) < EPS*(abs(fvec(:))+abs(fvcold(:)))) &

w(:)=0.0 Don’t update with noisy components of
w.if (any(w(:) /= 0.0)) then

t(:)=matmul(qt(:,:),w(:)) t = QT · w.
s(:)=s(:)/dot_product(s,s) Store s/(s · s) in s.
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call qrupdt(r,qt,t,s) Update R and QT .
d(:)=get_diag(r(:,:)) Diagonal of R stored in d.
if (any(d(:) == 0.0)) &

call nrerror(’r singular in broydn’)
end if

end if
p(:)=-matmul(qt(:,:),fvec(:)) r.h.s. for linear equations is −QT · F.
do i=1,n Compute ∇f ≈ (Q · R)T · F for the line

search.g(i)=-dot_product(r(1:i,i),p(1:i))
end do
xold(:)=x(:) Store x, F, and f .
fvcold(:)=fvec(:)
fold=f
call rsolv(r,d,p) Solve linear equations.
call lnsrch(xold,fold,g,p,x,f,stpmax,check,fmin)
lnsrch returns new x and f . It also calculates fvec at the new x when it calls fmin.

if (maxval(abs(fvec(:))) < TOLF) then Test for convergence on function val-
ues.check=.false.

RETURN
end if
if (check) then True if line search failed to find a new

x.if (restrt .or. maxval(abs(g(:))*max(abs(x(:)), &
1.0_sp)/max(f,0.5_sp*n)) < TOLMIN) RETURN
If restrt is true we have failure: We have already tried reinitializing the Jaco-
bian. The other test is for gradient of f zero, i.e., spurious convergence.

restrt=.true. Try reinitializing the Jacobian.
else Successful step; will use Broyden update

for next step.restrt=.false.
if (maxval((abs(x(:)-xold(:)))/max(abs(x(:)), &

1.0_sp)) < TOLX) RETURN Test for convergence on δx.
end if

end do
call nrerror(’MAXITS exceeded in broydn’)
END SUBROUTINE broydn

f90 USE fminln See discussion for newt on p. 1197.

qt(k:n,:)=...outerprod...matmul Another example of the coding of equation
(22.1.6).

where (lower_triangle(n,n))... The lower triangle function in nrutil

returns a lower triangular logical mask. As used here, the mask is true everywhere
in the lower triangle of an n× n matrix, excluding the diagonal. An optional integer
argument extra allows additional diagonals to be set to true. With extra=1 the
lower triangle including the diagonal would be true.

call put_diag(d(:),r(:,:)) This subroutine in nrutil sets the diagonal
values of the matrix r to the values of the vector d. It is overloaded so that d could
be a scalar, in which case the scalar value would be broadcast onto the diagonal of r.
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Chapter B10. Minimization or
Maximization of Functions

SUBROUTINE mnbrak(ax,bx,cx,fa,fb,fc,func)
USE nrtype; USE nrutil, ONLY : swap
IMPLICIT NONE
REAL(SP), INTENT(INOUT) :: ax,bx
REAL(SP), INTENT(OUT) :: cx,fa,fb,fc
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
REAL(SP), PARAMETER :: GOLD=1.618034_sp,GLIMIT=100.0_sp,TINY=1.0e-20_sp

Given a function func, and given distinct initial points ax and bx, this routine searches
in the downhill direction (defined by the function as evaluated at the initial points) and
returns new points ax, bx, cx that bracket a minimum of the function. Also returned are
the function values at the three points, fa, fb, and fc.
Parameters: GOLD is the default ratio by which successive intervals are magnified; GLIMIT
is the maximum magnification allowed for a parabolic-fit step.

REAL(SP) :: fu,q,r,u,ulim
fa=func(ax)
fb=func(bx)
if (fb > fa) then Switch roles of a and b so that we

can go downhill in the direction
from a to b.

call swap(ax,bx)
call swap(fa,fb)

end if
cx=bx+GOLD*(bx-ax) First guess for c.
fc=func(cx)
do Do-while-loop: Keep returning here

until we bracket.if (fb < fc) RETURN
Compute u by parabolic extrapolation from a, b, c. TINY is used to prevent any possible
division by zero.

r=(bx-ax)*(fb-fc)
q=(bx-cx)*(fb-fa)
u=bx-((bx-cx)*q-(bx-ax)*r)/(2.0_sp*sign(max(abs(q-r),TINY),q-r))
ulim=bx+GLIMIT*(cx-bx)

We won’t go farther than this. Test various possibilities:
if ((bx-u)*(u-cx) > 0.0) then Parabolic u is between b and c: try

it.fu=func(u)
if (fu < fc) then Got a minimum between b and c.

ax=bx
fa=fb
bx=u
fb=fu
RETURN

else if (fu > fb) then Got a minimum between a and u.
cx=u
fc=fu
RETURN

1201
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end if
u=cx+GOLD*(cx-bx) Parabolic fit was no use. Use default

magnification.fu=func(u)
else if ((cx-u)*(u-ulim) > 0.0) then Parabolic fit is between c and its al-

lowed limit.fu=func(u)
if (fu < fc) then

bx=cx
cx=u
u=cx+GOLD*(cx-bx)
call shft(fb,fc,fu,func(u))

end if
else if ((u-ulim)*(ulim-cx) >= 0.0) then Limit parabolic u to maximum al-

lowed value.u=ulim
fu=func(u)

else Reject parabolic u, use default mag-
nification.u=cx+GOLD*(cx-bx)

fu=func(u)
end if
call shft(ax,bx,cx,u)
call shft(fa,fb,fc,fu) Eliminate oldest point and continue.

end do
CONTAINS

SUBROUTINE shft(a,b,c,d)
REAL(SP), INTENT(OUT) :: a
REAL(SP), INTENT(INOUT) :: b,c
REAL(SP), INTENT(IN) :: d
a=b
b=c
c=d
END SUBROUTINE shft
END SUBROUTINE mnbrak

f90
call shft... There are three places inmnbrak where we need to shift
four variables around. Rather than repeat code, we makeshft an internal
subroutine, coming after aCONTAINS statement. It is invisible to all

procedures exceptmnbrak.

� � �

FUNCTION golden(ax,bx,cx,func,tol,xmin)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: golden
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
REAL(SP), PARAMETER :: R=0.61803399_sp,C=1.0_sp-R

Given a function func, and given a bracketing triplet of abscissas ax, bx, cx (such that
bx is between ax and cx, and func(bx) is less than both func(ax) and func(cx)),
this routine performs a golden section search for the minimum, isolating it to a fractional
precision of about tol. The abscissa of the minimum is returned as xmin, and the minimum



Chapter B10. Minimization or Maximization of Functions 1203

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

function value is returned as golden, the returned function value.
Parameters: The golden ratios.

REAL(SP) :: f1,f2,x0,x1,x2,x3
x0=ax At any given time we will keep track of

four points, x0,x1,x2,x3.x3=cx
if (abs(cx-bx) > abs(bx-ax)) then Make x0 to x1 the smaller segment,

x1=bx
x2=bx+C*(cx-bx) and fill in the new point to be tried.

else
x2=bx
x1=bx-C*(bx-ax)

end if
f1=func(x1)
f2=func(x2)

The initial function evaluations. Note that we never need to evaluate the function at the
original endpoints.

do Do-while-loop: We keep returning here.
if (abs(x3-x0) <= tol*(abs(x1)+abs(x2))) exit
if (f2 < f1) then One possible outcome,

call shft3(x0,x1,x2,R*x2+C*x3) its housekeeping,
call shft2(f1,f2,func(x2)) and a new function evaluation.

else The other outcome,
call shft3(x3,x2,x1,R*x1+C*x0)
call shft2(f2,f1,func(x1)) and its new function evaluation.

end if
end do Back to see if we are done.
if (f1 < f2) then We are done. Output the best of the two

current values.golden=f1
xmin=x1

else
golden=f2
xmin=x2

end if
CONTAINS

SUBROUTINE shft2(a,b,c)
REAL(SP), INTENT(OUT) :: a
REAL(SP), INTENT(INOUT) :: b
REAL(SP), INTENT(IN) :: c
a=b
b=c
END SUBROUTINE shft2

SUBROUTINE shft3(a,b,c,d)
REAL(SP), INTENT(OUT) :: a
REAL(SP), INTENT(INOUT) :: b,c
REAL(SP), INTENT(IN) :: d
a=b
b=c
c=d
END SUBROUTINE shft3
END FUNCTION golden

f90
call shft3...call shft2... See discussion ofshft for mnbrak on
p. 1202.

� � �
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FUNCTION brent(ax,bx,cx,func,tol,xmin)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: brent
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: CGOLD=0.3819660_sp,ZEPS=1.0e-3_sp*epsilon(ax)

Given a function func, and given a bracketing triplet of abscissas ax, bx, cx (such that bx
is between ax and cx, and func(bx) is less than both func(ax) and func(cx)), this
routine isolates the minimum to a fractional precision of about tol using Brent’s method.
The abscissa of the minimum is returned as xmin, and the minimum function value is
returned as brent, the returned function value.
Parameters: Maximum allowed number of iterations; golden ratio; and a small number that
protects against trying to achieve fractional accuracy for a minimum that happens to be
exactly zero.

INTEGER(I4B) :: iter
REAL(SP) :: a,b,d,e,etemp,fu,fv,fw,fx,p,q,r,tol1,tol2,u,v,w,x,xm
a=min(ax,cx) a and b must be in ascending order, though

the input abscissas need not be.b=max(ax,cx)
v=bx Initializations...
w=v
x=v
e=0.0 This will be the distance moved on the step

before last.fx=func(x)
fv=fx
fw=fx
do iter=1,ITMAX Main program loop.

xm=0.5_sp*(a+b)
tol1=tol*abs(x)+ZEPS
tol2=2.0_sp*tol1
if (abs(x-xm) <= (tol2-0.5_sp*(b-a))) then Test for done here.

xmin=x Arrive here ready to exit with best values.
brent=fx
RETURN

end if
if (abs(e) > tol1) then Construct a trial parabolic fit.

r=(x-w)*(fx-fv)
q=(x-v)*(fx-fw)
p=(x-v)*q-(x-w)*r
q=2.0_sp*(q-r)
if (q > 0.0) p=-p
q=abs(q)
etemp=e
e=d
if (abs(p) >= abs(0.5_sp*q*etemp) .or. &

p <= q*(a-x) .or. p >= q*(b-x)) then
The above conditions determine the acceptability of the parabolic fit. Here it is
not o.k., so we take the golden section step into the larger of the two segments.

e=merge(a-x,b-x, x >= xm )
d=CGOLD*e

else Take the parabolic step.
d=p/q
u=x+d
if (u-a < tol2 .or. b-u < tol2) d=sign(tol1,xm-x)

end if
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else Take the golden section step into the larger
of the two segments.e=merge(a-x,b-x, x >= xm )

d=CGOLD*e
end if
u=merge(x+d,x+sign(tol1,d), abs(d) >= tol1 )

Arrive here with d computed either from parabolic fit, or else from golden section.
fu=func(u)

This is the one function evaluation per iteration.
if (fu <= fx) then Now we have to decide what to do with our

function evaluation. Housekeeping follows:if (u >= x) then
a=x

else
b=x

end if
call shft(v,w,x,u)
call shft(fv,fw,fx,fu)

else
if (u < x) then

a=u
else

b=u
end if
if (fu <= fw .or. w == x) then

v=w
fv=fw
w=u
fw=fu

else if (fu <= fv .or. v == x .or. v == w) then
v=u
fv=fu

end if
end if

end do Done with housekeeping. Back for another
iteration.call nrerror(’brent: exceed maximum iterations’)

CONTAINS

SUBROUTINE shft(a,b,c,d)
REAL(SP), INTENT(OUT) :: a
REAL(SP), INTENT(INOUT) :: b,c
REAL(SP), INTENT(IN) :: d
a=b
b=c
c=d
END SUBROUTINE shft
END FUNCTION brent

� � �

FUNCTION dbrent(ax,bx,cx,func,dfunc,tol,xmin)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: dbrent
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

FUNCTION dfunc(x)
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USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: dfunc
END FUNCTION dfunc

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: ZEPS=1.0e-3_sp*epsilon(ax)

Given a function func and its derivative function dfunc, and given a bracketing triplet of
abscissas ax, bx, cx [such that bx is between ax and cx, and func(bx) is less than both
func(ax) and func(cx)], this routine isolates the minimum to a fractional precision of
about tol using a modification of Brent’s method that uses derivatives. The abscissa of
the minimum is returned as xmin, and the minimum function value is returned as dbrent,
the returned function value.
Parameters: Maximum allowed number of iterations, and a small number that protects
against trying to achieve fractional accuracy for a minimum that happens to be exactly
zero.

INTEGER(I4B) :: iter
REAL(SP) :: a,b,d,d1,d2,du,dv,dw,dx,e,fu,fv,fw,fx,olde,tol1,tol2,&

u,u1,u2,v,w,x,xm
Comments following will point out only differences from the routine brent. Read that
routine first.

LOGICAL :: ok1,ok2 Will be used as flags for whether pro-
posed steps are acceptable or not.a=min(ax,cx)

b=max(ax,cx)
v=bx
w=v
x=v
e=0.0
fx=func(x)
fv=fx
fw=fx
dx=dfunc(x) All our housekeeping chores are dou-

bled by the necessity of moving
derivative values around as well
as function values.

dv=dx
dw=dx
do iter=1,ITMAX

xm=0.5_sp*(a+b)
tol1=tol*abs(x)+ZEPS
tol2=2.0_sp*tol1
if (abs(x-xm) <= (tol2-0.5_sp*(b-a))) exit
if (abs(e) > tol1) then

d1=2.0_sp*(b-a) Initialize these d’s to an out-of-bracket
value.d2=d1

if (dw /= dx) d1=(w-x)*dx/(dx-dw) Secant method with each point.
if (dv /= dx) d2=(v-x)*dx/(dx-dv)

Which of these two estimates of d shall we take? We will insist that they be within
the bracket, and on the side pointed to by the derivative at x:

u1=x+d1
u2=x+d2
ok1=((a-u1)*(u1-b) > 0.0) .and. (dx*d1 <= 0.0)
ok2=((a-u2)*(u2-b) > 0.0) .and. (dx*d2 <= 0.0)
olde=e Movement on the step before last.
e=d
if (ok1 .or. ok2) then Take only an acceptable d, and if

both are acceptable, then take
the smallest one.

if (ok1 .and. ok2) then
d=merge(d1,d2, abs(d1) < abs(d2))

else
d=merge(d1,d2,ok1)

end if
if (abs(d) <= abs(0.5_sp*olde)) then

u=x+d
if (u-a < tol2 .or. b-u < tol2) &

d=sign(tol1,xm-x)
else



Chapter B10. Minimization or Maximization of Functions 1207

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

e=merge(a,b, dx >= 0.0)-x
Decide which segment by the sign of the derivative.

d=0.5_sp*e Bisect, not golden section.
end if

else
e=merge(a,b, dx >= 0.0)-x
d=0.5_sp*e Bisect, not golden section.

end if
else

e=merge(a,b, dx >= 0.0)-x
d=0.5_sp*e Bisect, not golden section.

end if
if (abs(d) >= tol1) then

u=x+d
fu=func(u)

else
u=x+sign(tol1,d)
fu=func(u) If the minimum step in the downhill

direction takes us uphill, then we
are done.

if (fu > fx) exit
end if
du=dfunc(u) Now all the housekeeping, sigh.
if (fu <= fx) then

if (u >= x) then
a=x

else
b=x

end if
call mov3(v,fv,dv,w,fw,dw)
call mov3(w,fw,dw,x,fx,dx)
call mov3(x,fx,dx,u,fu,du)

else
if (u < x) then

a=u
else

b=u
end if
if (fu <= fw .or. w == x) then

call mov3(v,fv,dv,w,fw,dw)
call mov3(w,fw,dw,u,fu,du)

else if (fu <= fv .or. v == x .or. v == w) then
call mov3(v,fv,dv,u,fu,du)

end if
end if

end do
if (iter > ITMAX) call nrerror(’dbrent: exceeded maximum iterations’)
xmin=x
dbrent=fx
CONTAINS

SUBROUTINE mov3(a,b,c,d,e,f)
REAL(SP), INTENT(IN) :: d,e,f
REAL(SP), INTENT(OUT) :: a,b,c
a=d
b=e
c=f
END SUBROUTINE mov3
END FUNCTION dbrent

� � �
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SUBROUTINE amoeba(p,y,ftol,func,iter)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,iminloc,nrerror,swap
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=5000
REAL(SP), PARAMETER :: TINY=1.0e-10

Minimization of the function func in N dimensions by the downhill simplex method of
Nelder and Mead. The (N + 1) ×N matrix p is input. Its N + 1 rows are N -dimensional
vectors that are the vertices of the starting simplex. Also input is the vector y of length
N + 1, whose components must be preinitialized to the values of func evaluated at the
N + 1 vertices (rows) of p; and ftol the fractional convergence tolerance to be achieved
in the function value (n.b.!). On output, p and y will have been reset to N + 1 new points
all within ftol of a minimum function value, and iter gives the number of function
evaluations taken.
Parameters: The maximum allowed number of function evaluations, and a small number.

INTEGER(I4B) :: ihi,ndim Global variables.
REAL(SP), DIMENSION(size(p,2)) :: psum
call amoeba_private
CONTAINS

SUBROUTINE amoeba_private
IMPLICIT NONE
INTEGER(I4B) :: i,ilo,inhi
REAL(SP) :: rtol,ysave,ytry,ytmp
ndim=assert_eq(size(p,2),size(p,1)-1,size(y)-1,’amoeba’)
iter=0
psum(:)=sum(p(:,:),dim=1)
do Iteration loop.

ilo=iminloc(y(:)) Determine which point is the highest (worst),
next-highest, and lowest (best).ihi=imaxloc(y(:))

ytmp=y(ihi)
y(ihi)=y(ilo)
inhi=imaxloc(y(:))
y(ihi)=ytmp
rtol=2.0_sp*abs(y(ihi)-y(ilo))/(abs(y(ihi))+abs(y(ilo))+TINY)

Compute the fractional range from highest to lowest and return if satisfactory.
if (rtol < ftol) then If returning, put best point and value in slot

1.call swap(y(1),y(ilo))
call swap(p(1,:),p(ilo,:))
RETURN

end if
if (iter >= ITMAX) call nrerror(’ITMAX exceeded in amoeba’)

Begin a new iteration. First extrapolate by a factor −1 through the face of the simplex
across from the high point, i.e., reflect the simplex from the high point.

ytry=amotry(-1.0_sp)
iter=iter+1
if (ytry <= y(ilo)) then Gives a result better than the best point, so

try an additional extrapolation by a fac-
tor of 2.

ytry=amotry(2.0_sp)
iter=iter+1

else if (ytry >= y(inhi)) then The reflected point is worse than the sec-
ond highest, so look for an intermediate
lower point, i.e., do a one-dimensional
contraction.

ysave=y(ihi)
ytry=amotry(0.5_sp)
iter=iter+1
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if (ytry >= ysave) then
Can’t seem to get rid of that high point. Better contract around the lowest
(best) point.

p(:,:)=0.5_sp*(p(:,:)+spread(p(ilo,:),1,size(p,1)))
do i=1,ndim+1

if (i /= ilo) y(i)=func(p(i,:))
end do
iter=iter+ndim Keep track of function evaluations.
psum(:)=sum(p(:,:),dim=1)

end if
end if

end do Go back for the test of doneness and the next
iteration.END SUBROUTINE amoeba_private

FUNCTION amotry(fac)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: fac
REAL(SP) :: amotry

Extrapolates by a factor fac through the face of the simplex across from the high point,
tries it, and replaces the high point if the new point is better.

REAL(SP) :: fac1,fac2,ytry
REAL(SP), DIMENSION(size(p,2)) :: ptry
fac1=(1.0_sp-fac)/ndim
fac2=fac1-fac
ptry(:)=psum(:)*fac1-p(ihi,:)*fac2
ytry=func(ptry) Evaluate the function at the trial point.
if (ytry < y(ihi)) then If it’s better than the highest, then replace

the highest.y(ihi)=ytry
psum(:)=psum(:)-p(ihi,:)+ptry(:)
p(ihi,:)=ptry(:)

end if
amotry=ytry
END FUNCTION amotry
END SUBROUTINE amoeba

f90
The only action taken by the subroutineamoeba is to call the internal
subroutineamoeba private. Why this structure? The reason has to do
with meeting the twin goals of data hiding (especially for “safe” scope

of variables) and program readability. The situation is this: Logically,amoeba does
most of the calculating, but calls an internal subroutineamotry at several different
points, with several values of the parameterfac. However,fac is not the only
piece of data that must be shared withamotry; the latter also needs access to several
shared variables (ihi, ndim, psum) and arguments ofamoeba (p, y, func).

The obvious (but not best) way of coding this would be to put the computational
guts inamoeba, with amotry as the sole internal subprogram. Assuming thatfac

is passed as an argument toamotry (it being the parameter that is being rapidly
altered), one must decide whether to pass all the other quantities toamotry (i) as
additional arguments (as is done in the Fortran 77 version), or (ii) “automatically,”
i.e., doing nothing except using the fact that an internal subprogram has automatic
access to all of its host’s entities. Each of these choices has strong disadvantages.
Choice (i) is inefficient (all those arguments) and also obscures the fact thatfac is
the primary changing argument. Choice (ii) makes the program extremely difficult to
read, because it wouldn’t be obvious withoutcareful cross-comparison of the routines
which variables inamoeba are actually global variables that are used byamotry.

Choice (ii) is also “unsafe scoping” because it gives a nontrivially complicated
internal subprogram,amotry, access to all the variables in its host. A common
and difficult-to-find bug is the accidental alteration of a variable that one “thought”



1210 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

was local, but is actually shared. (Simple variables likei, j, andn are the most
common culprits.)

We are therefore led to reject both choice (i) and choice (ii) in favor of a structure
previously described in the subsection on Scope, Visibility, and Data Hiding in§21.5.
The guts ofamoeba are put inamoeba private, a sister routine to amotry. These
two siblings have mutually private name spaces. However, any variables that they
need to share (including the top-level arguments ofamoeba) are declared as variables
in the enclosingamoeba routine. The presence of these “global variables” serves as
a warning flag to the reader that data are shared between routines.

An alternative attractive way of coding the above situation would be to use
a module containingamoeba andamotry. Everything would be declared private
except the nameamoeba. The global variables would be at the top level, and
the arguments ofamoeba that need to be passed toamotry would be handled by
pointers among the global variables. Unfortunately, Fortran 90 does not support
pointers to functions. Sigh!

ilo=iminloc...ihi=imaxloc... See discussion of these functions on p. 1017.

call swap(y(1)...call swap(p(1,:)... Here theswap routine innrutil is
called once with a scalar argument and once with a vector argument. Insidenrutil

scalar and vector versions have been overloaded onto the single nameswap, hiding
all the implementation details from the calling routine.

� � �

SUBROUTINE powell(p,xi,ftol,iter,fret)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : linmin
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: xi
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), INTENT(OUT) :: fret
INTERFACE

FUNCTION func(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=200
REAL(SP), PARAMETER :: TINY=1.0e-25_sp

Minimization of a function func of N variables. (func is not an argument, it is a fixed
function name.) Input consists of an initial starting point p, a vector of length N ; an
initial N × N matrix xi whose columns contain the initial set of directions (usually the N
unit vectors); and ftol, the fractional tolerance in the function value such that failure to
decrease by more than this amount on one iteration signals doneness. On output, p is set
to the best point found, xi is the then-current direction set, fret is the returned function
value at p, and iter is the number of iterations taken. The routine linmin is used.
Parameters: Maximum allowed iterations, and a small number.

INTEGER(I4B) :: i,ibig,n
REAL(SP) :: del,fp,fptt,t
REAL(SP), DIMENSION(size(p)) :: pt,ptt,xit
n=assert_eq(size(p),size(xi,1),size(xi,2),’powell’)
fret=func(p)
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pt(:)=p(:) Save the initial point.
iter=0
do

iter=iter+1
fp=fret
ibig=0
del=0.0 Will be the biggest function decrease.
do i=1,n Loop over all directions in the set.

xit(:)=xi(:,i) Copy the direction,
fptt=fret
call linmin(p,xit,fret) minimize along it,
if (fptt-fret > del) then and record it if it is the largest decrease so

far.del=fptt-fret
ibig=i

end if
end do
if (2.0_sp*(fp-fret) <= ftol*(abs(fp)+abs(fret))+TINY) RETURN

Termination criterion.
if (iter == ITMAX) call &

nrerror(’powell exceeding maximum iterations’)
ptt(:)=2.0_sp*p(:)-pt(:) Construct the extrapolated point and the av-

erage direction moved. Save the old start-
ing point.

xit(:)=p(:)-pt(:)
pt(:)=p(:)
fptt=func(ptt) Function value at extrapolated point.
if (fptt >= fp) cycle One reason not to use new direction.
t=2.0_sp*(fp-2.0_sp*fret+fptt)*(fp-fret-del)**2-del*(fp-fptt)**2
if (t >= 0.0) cycle Other reason not to use new direction.
call linmin(p,xit,fret) Move to minimum of the new direction,
xi(:,ibig)=xi(:,n) and save the new direction.
xi(:,n)=xit(:)

end do Back for another iteration.
END SUBROUTINE powell

� � �

MODULE f1dim_mod Used for communication from linmin to f1dim.
USE nrtype
INTEGER(I4B) :: ncom
REAL(SP), DIMENSION(:), POINTER :: pcom,xicom
CONTAINS

FUNCTION f1dim(x)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: f1dim

Used by linmin as the one-dimensional function passed to mnbrak and brent.
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
REAL(SP), DIMENSION(:), ALLOCATABLE :: xt
allocate(xt(ncom))
xt(:)=pcom(:)+x*xicom(:)
f1dim=func(xt)
deallocate(xt)
END FUNCTION f1dim
END MODULE f1dim_mod
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SUBROUTINE linmin(p,xi,fret)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : mnbrak,brent
USE f1dim_mod
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), TARGET, INTENT(INOUT) :: p,xi
REAL(SP), PARAMETER :: TOL=1.0e-4_sp

Given an N -dimensional point p and an N -dimensional direction xi, both vectors of length
N , moves and resets p to where the fixed-name function func takes on a minimum along
the direction xi from p, and replaces xi by the actual vector displacement that p was
moved. Also returns as fret the value of func at the returned location p. This is actually
all accomplished by calling the routines mnbrak and brent.
Parameter: Tolerance passed to brent.

REAL(SP) :: ax,bx,fa,fb,fx,xmin,xx
ncom=assert_eq(size(p),size(xi),’linmin’)
pcom=>p Communicate the global variables to f1dim.
xicom=>xi
ax=0.0 Initial guess for brackets.
xx=1.0
call mnbrak(ax,xx,bx,fa,fx,fb,f1dim)
fret=brent(ax,xx,bx,f1dim,TOL,xmin)
xi=xmin*xi Construct the vector results to return.
p=p+xi
END SUBROUTINE linmin

f90
USE f1dim_mod At first sight this situation is like the one involving
USE fminln in newt on p. 1197: We want to pass arraysp and xi

from linmin to f1dim without having them be arguments off1dim. If
you recall the discussion in§21.5 and on p. 1197, there are two ways of effecting
this: via pointers or via allocatable arrays. There is an important difference here,
however. The arraysp andxi are themselves arguments oflinmin, and so cannot
be allocatable arrays in the module. If we did want to use allocatable arrays in the
module, we would have to copyp andxi into them. The pointer implementation
is much more elegant, since no unnecessary copying is required. The construction
here is identical to the one infminln andnewt, except thatp andxi are arguments
instead of automatic arrays.

� � �

MODULE df1dim_mod Used for communication from dlinmin to f1dim and df1dim.
USE nrtype
INTEGER(I4B) :: ncom
REAL(SP), DIMENSION(:), POINTER :: pcom,xicom
CONTAINS

FUNCTION f1dim(x)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: f1dim

Used by dlinmin as the one-dimensional function passed to mnbrak.
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
REAL(SP), DIMENSION(:), ALLOCATABLE :: xt
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allocate(xt(ncom))
xt(:)=pcom(:)+x*xicom(:)
f1dim=func(xt)
deallocate(xt)
END FUNCTION f1dim

FUNCTION df1dim(x)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: df1dim

Used by dlinmin as the one-dimensional function passed to dbrent.
INTERFACE

FUNCTION dfunc(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: dfunc
END FUNCTION dfunc

END INTERFACE
REAL(SP), DIMENSION(:), ALLOCATABLE :: xt,df
allocate(xt(ncom),df(ncom))
xt(:)=pcom(:)+x*xicom(:)
df(:)=dfunc(xt)
df1dim=dot_product(df,xicom)
deallocate(xt,df)
END FUNCTION df1dim
END MODULE df1dim_mod

SUBROUTINE dlinmin(p,xi,fret)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : mnbrak,dbrent
USE df1dim_mod
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), TARGET :: p,xi
REAL(SP), PARAMETER :: TOL=1.0e-4_sp

Given an N -dimensional point p and an N -dimensional direction xi, both vectors of length
N , moves and resets p to where the fixed-name function func takes on a minimum along
the direction xi from p, and replaces xi by the actual vector displacement that p was
moved. Also returns as fret the value of func at the returned location p. This is actually
all accomplished by calling the routines mnbrak and dbrent. dfunc is a fixed-name user-
supplied function that computes the gradient of func.
Parameter: Tolerance passed to dbrent.

REAL(SP) :: ax,bx,fa,fb,fx,xmin,xx
ncom=assert_eq(size(p),size(xi),’dlinmin’)
pcom=>p Communicate the global variables to f1dim.
xicom=>xi
ax=0.0 Initial guess for brackets.
xx=1.0
call mnbrak(ax,xx,bx,fa,fx,fb,f1dim)
fret=dbrent(ax,xx,bx,f1dim,df1dim,TOL,xmin)
xi=xmin*xi Construct the vector results to return.
p=p+xi
END SUBROUTINE dlinmin

f90 USE df1dim_mod See discussion ofUSE f1dim mod on p. 1212.

� � �
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SUBROUTINE frprmn(p,ftol,iter,fret)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : linmin
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP) :: func
END FUNCTION func

FUNCTION dfunc(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP), DIMENSION(size(p)) :: dfunc
END FUNCTION dfunc

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=200
REAL(SP), PARAMETER :: EPS=1.0e-10_sp

Given a starting point p that is a vector of length N , Fletcher-Reeves-Polak-Ribiere min-
imization is performed on a function func, using its gradient as calculated by a routine
dfunc. The convergence tolerance on the function value is input as ftol. Returned quan-
tities are p (the location of the minimum), iter (the number of iterations that were
performed), and fret (the minimum value of the function). The routine linmin is called
to perform line minimizations.
Parameters: ITMAX is the maximum allowed number of iterations; EPS is a small number
to rectify the special case of converging to exactly zero function value.

INTEGER(I4B) :: its
REAL(SP) :: dgg,fp,gam,gg
REAL(SP), DIMENSION(size(p)) :: g,h,xi
fp=func(p) Initializations.
xi=dfunc(p)
g=-xi
h=g
xi=h
do its=1,ITMAX Loop over iterations.

iter=its
call linmin(p,xi,fret) Next statement is the normal return:
if (2.0_sp*abs(fret-fp) <= ftol*(abs(fret)+abs(fp)+EPS)) RETURN
fp=fret
xi=dfunc(p)
gg=dot_product(g,g)

! dgg=dot_product(xi,xi) This statement for Fletcher-Reeves.
dgg=dot_product(xi+g,xi) This statement for Polak-Ribiere.
if (gg == 0.0) RETURN Unlikely. If gradient is exactly zero then we are al-

ready done.gam=dgg/gg
g=-xi
h=g+gam*h
xi=h

end do
call nrerror(’frprmn: maximum iterations exceeded’)
END SUBROUTINE frprmn

� � �
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SUBROUTINE dfpmin(p,gtol,iter,fret,func,dfunc)
USE nrtype; USE nrutil, ONLY : nrerror,outerprod,unit_matrix,vabs
USE nr, ONLY : lnsrch
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: gtol
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP) :: func
END FUNCTION func

FUNCTION dfunc(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP), DIMENSION(size(p)) :: dfunc
END FUNCTION dfunc

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=200
REAL(SP), PARAMETER :: STPMX=100.0_sp,EPS=epsilon(p),TOLX=4.0_sp*EPS

Given a starting point p that is a vector of length N , the Broyden-Fletcher-Goldfarb-Shanno
variant of Davidon-Fletcher-Powell minimization is performed on a function func, using its
gradient as calculated by a routine dfunc. The convergence requirement on zeroing the
gradient is input as gtol. Returned quantities are p (the location of the minimum), iter
(the number of iterations that were performed), and fret (the minimum value of the
function). The routine lnsrch is called to perform approximate line minimizations.
Parameters: ITMAX is the maximum allowed number of iterations; STPMX is the scaled
maximum step length allowed in line searches; EPS is the machine precision; TOLX is the
convergence criterion on x values.

INTEGER(I4B) :: its
LOGICAL :: check
REAL(SP) :: den,fac,fad,fae,fp,stpmax,sumdg,sumxi
REAL(SP), DIMENSION(size(p)) :: dg,g,hdg,pnew,xi
REAL(SP), DIMENSION(size(p),size(p)) :: hessin
fp=func(p) Calculate starting function value and gradi-

ent.g=dfunc(p)
call unit_matrix(hessin) Initialize inverse Hessian to the unit matrix.
xi=-g Initial line direction.
stpmax=STPMX*max(vabs(p),real(size(p),sp))
do its=1,ITMAX Main loop over the iterations.

iter=its
call lnsrch(p,fp,g,xi,pnew,fret,stpmax,check,func)

The new function evaluation occurs in lnsrch; save the function value in fp for the next
line search. It is usually safe to ignore the value of check.

fp=fret
xi=pnew-p Update the line direction,
p=pnew and the current point.
if (maxval(abs(xi)/max(abs(p),1.0_sp)) < TOLX) RETURN

Test for convergence on ∆x.
dg=g Save the old gradient,
g=dfunc(p) and get the new gradient.
den=max(fret,1.0_sp)
if (maxval(abs(g)*max(abs(p),1.0_sp)/den) < gtol) RETURN

Test for convergence on zero gradient.
dg=g-dg Compute difference of gradients,
hdg=matmul(hessin,dg) and difference times current matrix.
fac=dot_product(dg,xi) Calculate dot products for the denominators.
fae=dot_product(dg,hdg)
sumdg=dot_product(dg,dg)
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sumxi=dot_product(xi,xi)
if (fac > sqrt(EPS*sumdg*sumxi)) then Skip update if fac not sufficiently

positive.fac=1.0_sp/fac
fad=1.0_sp/fae
dg=fac*xi-fad*hdg Vector that makes BFGS different from DFP.
hessin=hessin+fac*outerprod(xi,xi)-& The BFGS updating formula.

fad*outerprod(hdg,hdg)+fae*outerprod(dg,dg)
end if
xi=-matmul(hessin,g) Now calculate the next direction to go,

end do and go back for another iteration.
call nrerror(’dfpmin: too many iterations’)
END SUBROUTINE dfpmin

f90
call unit_matrix(hessin) The unit matrix routine in nrutil does
exactly what its name suggests. The routinedfpmin makes use of
outerprod from nrutil, as well as the matrix intrinsicsmatmul and

dot product, to simplify and parallelize the coding.

� � �

SUBROUTINE simplx(a,m1,m2,m3,icase,izrov,iposv)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,ifirstloc,imaxloc,&

nrerror,outerprod,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: m1,m2,m3
INTEGER(I4B), INTENT(OUT) :: icase
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: izrov,iposv
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Simplex method for linear programming. Input parameters a, m1, m2, and m3, and output
parameters a, icase, izrov, and iposv are described above the routine in Vol. 1. Dimen-
sions are (M + 2) × (N + 1) for a, M for iposv, N for izrov, with m1+ m2+ m3 = M .
Parameter: EPS is the absolute precision, which should be adjusted to the scale of your
variables.

INTEGER(I4B) :: ip,k,kh,kp,nl1,m,n
INTEGER(I4B), DIMENSION(size(a,2)) :: l1
INTEGER(I4B), DIMENSION(m2) :: l3
REAL(SP) :: bmax
LOGICAL(LGT) :: init
m=assert_eq(size(a,1)-2,size(iposv),’simplx: m’)
n=assert_eq(size(a,2)-1,size(izrov),’simplx: n’)
if (m /= m1+m2+m3) call nrerror(’simplx: bad input constraint counts’)
if (any(a(2:m+1,1) < 0.0)) call nrerror(’bad input tableau in simplx’)

Constants bi must be nonnegative.
nl1=n
l1(1:n)=arth(1,1,n)

Initialize index list of columns admissible for exchange.
izrov(:)=l1(1:n) Initially make all variables right-hand.
iposv(:)=n+arth(1,1,m)

Initial left-hand variables. m1 type constraints are represented by having their slack variable
initially left-hand, with no artificial variable. m2 type constraints have their slack variable
initially left-hand, with a minus sign, and their artificial variable handled implicitly during
their first exchange. m3 type constraints have their artificial variable initially left-hand.

init=.true.
phase1: do

if (init) then Initial pass only.
if (m2+m3 == 0) exit phase1 Origin is a feasible solution. Go to phase two.
init=.false.
l3(1:m2)=1

Initialize list of m2 constraints whose slack variables have never been exchanged out
of the initial basis.

a(m+2,1:n+1)=-sum(a(m1+2:m+1,1:n+1),dim=1) Compute the auxiliary objec-
tive function.end if
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if (nl1 > 0) then
kp=l1(imaxloc(a(m+2,l1(1:nl1)+1))) Find the maximum coefficient of the

auxiliary objective function.bmax=a(m+2,kp+1)
else

bmax=0.0
end if
phase1a: do

if (bmax <= EPS .and. a(m+2,1) < -EPS) then
Auxiliary objective function is still negative and can’t be improved, hence no
feasible solution exists.

icase=-1
RETURN

else if (bmax <= EPS .and. a(m+2,1) <= EPS) then
Auxiliary objective function is zero and can’t be improved. This signals that we
have a feasible starting vector. Clean out the artificial variables corresponding
to any remaining equality constraints and then eventually exit phase one.

do ip=m1+m2+1,m
if (iposv(ip) == ip+n) then Found an artificial variable for an equal-

ity constraint.if (nl1 > 0) then
kp=l1(imaxloc(abs(a(ip+1,l1(1:nl1)+1))))
bmax=a(ip+1,kp+1)

else
bmax=0.0

end if
if (bmax > EPS) exit phase1a Exchange with column correspond-

ing to maximum pivot ele-
ment in row.

end if
end do
where (spread(l3(1:m2),2,n+1) == 1) &

a(m1+2:m1+m2+1,1:n+1)=-a(m1+2:m1+m2+1,1:n+1)
Change sign of row for any m2 constraints still present from the initial basis.

exit phase1 Go to phase two.
end if
call simp1 Locate a pivot element (phase one).
if (ip == 0) then Maximum of auxiliary objective function is

unbounded, so no feasible solution ex-
ists.

icase=-1
RETURN

end if
exit phase1a

end do phase1a
call simp2(m+1,n) Exchange a left- and a right-hand variable.
if (iposv(ip) >= n+m1+m2+1) then Exchanged out an artificial variable for an

equality constraint. Make sure it stays
out by removing it from the l1 list.

k=ifirstloc(l1(1:nl1) == kp)
nl1=nl1-1
l1(k:nl1)=l1(k+1:nl1+1)

else
kh=iposv(ip)-m1-n
if (kh >= 1) then Exchanged out an m2 type constraint.

if (l3(kh) /= 0) then If it’s the first time, correct the pivot col-
umn for the minus sign and the implicit

artificial variable.
l3(kh)=0
a(m+2,kp+1)=a(m+2,kp+1)+1.0_sp
a(1:m+2,kp+1)=-a(1:m+2,kp+1)

end if
end if

end if
call swap(izrov(kp),iposv(ip)) Update lists of left- and right-hand variables.

end do phase1 If still in phase one, go back again.
phase2: do

We have an initial feasible solution. Now optimize it.
if (nl1 > 0) then

kp=l1(imaxloc(a(1,l1(1:nl1)+1))) Test the z-row for doneness.
bmax=a(1,kp+1)

else
bmax=0.0

end if
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if (bmax <= EPS) then Done. Solution found. Return with the good
news.icase=0

RETURN
end if
call simp1 Locate a pivot element (phase two).
if (ip == 0) then Objective function is unbounded. Report and

return.icase=1
RETURN

end if
call simp2(m,n) Exchange a left- and a right-hand variable,
call swap(izrov(kp),iposv(ip)) update lists of left- and right-hand variables,

end do phase2 and return for another iteration.
CONTAINS

SUBROUTINE simp1
Locate a pivot element, taking degeneracy into account.

IMPLICIT NONE
INTEGER(I4B) :: i,k
REAL(SP) :: q,q0,q1,qp
ip=0
i=ifirstloc(a(2:m+1,kp+1) < -EPS)
if (i > m) RETURN No possible pivots. Return with message.
q1=-a(i+1,1)/a(i+1,kp+1)
ip=i
do i=ip+1,m

if (a(i+1,kp+1) < -EPS) then
q=-a(i+1,1)/a(i+1,kp+1)
if (q < q1) then

ip=i
q1=q

else if (q == q1) then We have a degeneracy.
do k=1,n

qp=-a(ip+1,k+1)/a(ip+1,kp+1)
q0=-a(i+1,k+1)/a(i+1,kp+1)
if (q0 /= qp) exit

end do
if (q0 < qp) ip=i

end if
end if

end do
END SUBROUTINE simp1

SUBROUTINE simp2(i1,k1)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: i1,k1

Matrix operations to exchange a left-hand and right-hand variable (see text).
INTEGER(I4B) :: ip1,kp1
REAL(SP) :: piv
INTEGER(I4B), DIMENSION(k1) :: icol
INTEGER(I4B), DIMENSION(i1) :: irow
INTEGER(I4B), DIMENSION(max(i1,k1)+1) :: itmp
ip1=ip+1
kp1=kp+1
piv=1.0_sp/a(ip1,kp1)
itmp(1:k1+1)=arth(1,1,k1+1)
icol=pack(itmp(1:k1+1),itmp(1:k1+1) /= kp1)
itmp(1:i1+1)=arth(1,1,i1+1)
irow=pack(itmp(1:i1+1),itmp(1:i1+1) /= ip1)
a(irow,kp1)=a(irow,kp1)*piv
a(irow,icol)=a(irow,icol)-outerprod(a(irow,kp1),a(ip1,icol))
a(ip1,icol)=-a(ip1,icol)*piv
a(ip1,kp1)=piv
END SUBROUTINE simp2
END SUBROUTINE simplx



Chapter B10. Minimization or Maximization of Functions 1219

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
main_procedure: do The routinesimplx makes extensive use of named
do-loops to control the program flow. The variousexit statements have
the names of the do-loops attached to them so we can easily tell where

control is being transferred to. We believe that it is almost never necessary to use
goto statements: Code will always be clearer with well-constructed block structures.

phase1a: do...end do phase1a This is not a real do-loop: It is executed only
once, as you can see from the unconditionalexit before theend do. We use this
construction to define a block of code that is traversed once but that has several
possible exit points.

where (spread(l3(1:m12-m1),2,n+1) == 1) &

a(m1+2:m12+1,1:n+1)=-a(m1+2:m12+1,1:n+1)

These lines are equivalent to

do i=m1+1,m12
if (l3(i-m1) == 1) a(i+1,1:n+1)=-a(i+1,1:n+1)

end do

� � �

SUBROUTINE anneal(x,y,iorder)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,swap
USE nr, ONLY : ran1
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: iorder
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y

This algorithm finds the shortest round-trip path to N cities whose coordinates are in the
length N arrays x, y. The length N array iorder specifies the order in which the cities are
visited. On input, the elements of iorder may be set to any permutation of the numbers
1 . . . N . This routine will return the best alternative path it can find.

INTEGER(I4B), DIMENSION(6) :: n
INTEGER(I4B) :: i1,i2,j,k,nlimit,ncity,nn,nover,nsucc
REAL(SP) :: de,harvest,path,t,tfactr
LOGICAL(LGT) :: ans
ncity=assert_eq(size(x),size(y),size(iorder),’anneal’)
nover=100*ncity Maximum number of paths tried at any temperature,
nlimit=10*ncity and of successful path changes before continuing.
tfactr=0.9_sp Annealing schedule: t is reduced by this factor on

each step.t=0.5_sp
path=sum(alen_v(x(iorder(1:ncity-1)),x(iorder(2:ncity)),&

y(iorder(1:ncity-1)),y(iorder(2:ncity)))) Calculate initial path length.
i1=iorder(ncity) Close the loop by tying path ends to-

gether.i2=iorder(1)
path=path+alen(x(i1),x(i2),y(i1),y(i2))
do j=1,100 Try up to 100 temperature steps.

nsucc=0
do k=1,nover

do
call ran1(harvest)
n(1)=1+int(ncity*harvest) Choose beginning of segment . . .
call ran1(harvest)
n(2)=1+int((ncity-1)*harvest) . . . and end of segment.
if (n(2) >= n(1)) n(2)=n(2)+1
nn=1+mod((n(1)-n(2)+ncity-1),ncity) nn is the number of cities not on

the segment.if (nn >= 3) exit
end do
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call ran1(harvest)
Decide whether to do a reversal or a transport.

if (harvest < 0.5_sp) then Do a transport.
call ran1(harvest)
n(3)=n(2)+int(abs(nn-2)*harvest)+1
n(3)=1+mod(n(3)-1,ncity) Transport to a location not on the path.
call trncst(x,y,iorder,n,de) Calculate cost.
call metrop(de,t,ans) Consult the oracle.
if (ans) then

nsucc=nsucc+1
path=path+de
call trnspt(iorder,n) Carry out the transport.

end if
else Do a path reversal.

call revcst(x,y,iorder,n,de) Calculate cost.
call metrop(de,t,ans) Consult the oracle.
if (ans) then

nsucc=nsucc+1
path=path+de
call revers(iorder,n) Carry out the reversal.

end if
end if
if (nsucc >= nlimit) exit Finish early if we have enough successful

changes.end do
write(*,*)
write(*,*) ’T =’,t,’ Path Length =’,path
write(*,*) ’Successful Moves: ’,nsucc
t=t*tfactr Annealing schedule.
if (nsucc == 0) RETURN If no success, we are done.

end do
CONTAINS

FUNCTION alen(x1,x2,y1,y2)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,y1,y2
REAL(SP) :: alen

Computes distance between two cities.
alen=sqrt((x2-x1)**2+(y2-y1)**2)
END FUNCTION alen

FUNCTION alen_v(x1,x2,y1,y2)
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1,x2,y1,y2
REAL(SP), DIMENSION(size(x1)) :: alen_v

Computes distances between pairs of cities.
alen_v=sqrt((x2-x1)**2+(y2-y1)**2)
END FUNCTION alen_v

SUBROUTINE metrop(de,t,ans)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: de,t
LOGICAL(LGT), INTENT(OUT) :: ans

Metropolis algorithm. ans is a logical variable that issues a verdict on whether to accept a
reconfiguration that leads to a change de in the objective function. If de<0, ans=.true.,
while if de>0, ans is only .true. with probability exp(-de/t), where t is a temperature
determined by the annealing schedule.

call ran1(harvest)
ans=(de < 0.0) .or. (harvest < exp(-de/t))
END SUBROUTINE metrop

SUBROUTINE revcst(x,y,iorder,n,de)
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: iorder
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: n
REAL(SP), INTENT(OUT) :: de
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This subroutine returns the value of the cost function for a proposed path reversal. The
arrays x and y give the coordinates of these cities. iorder holds the present itinerary. The
first two values n(1) and n(2) of array n give the starting and ending cities along the path
segment which is to be reversed. On output, de is the cost of making the reversal. The
actual reversal is not performed by this routine.

INTEGER(I4B) :: ncity
REAL(SP), DIMENSION(4) :: xx,yy
ncity=size(x)
n(3)=1+mod((n(1)+ncity-2),ncity) Find the city before n(1) . . .
n(4)=1+mod(n(2),ncity) . . . and the city after n(2).
xx(1:4)=x(iorder(n(1:4))) Find coordinates for the four cities involved.
yy(1:4)=y(iorder(n(1:4)))
de=-alen(xx(1),xx(3),yy(1),yy(3))& Calculate cost of disconnecting the segment

at both ends and reconnecting in the op-
posite order.

-alen(xx(2),xx(4),yy(2),yy(4))&
+alen(xx(1),xx(4),yy(1),yy(4))&
+alen(xx(2),xx(3),yy(2),yy(3))

END SUBROUTINE revcst

SUBROUTINE revers(iorder,n)
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: iorder
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n

This routine performs a path segment reversal. iorder is an input array giving the present
itinerary. The vector n has as its first four elements the first and last cities n(1), n(2)
of the path segment to be reversed, and the two cities n(3) and n(4) that immediately
precede and follow this segment. n(3) and n(4) are found by subroutine revcst. On
output, iorder contains the segment from n(1) to n(2) in reversed order.

INTEGER(I4B) :: j,k,l,nn,ncity
ncity=size(iorder)
nn=(1+mod(n(2)-n(1)+ncity,ncity))/2 This many cities must be swapped to effect

the reversal.do j=1,nn
k=1+mod((n(1)+j-2),ncity) Start at the ends of the segment and swap

pairs of cities, moving toward the cen-
ter.

l=1+mod((n(2)-j+ncity),ncity)
call swap(iorder(k),iorder(l))

end do
END SUBROUTINE revers

SUBROUTINE trncst(x,y,iorder,n,de)
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: iorder
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: n
REAL(SP), INTENT(OUT) :: de

This subroutine returns the value of the cost function for a proposed path segment transport.
Arrays x and y give the city coordinates. iorder is an array giving the present itinerary.
The first three elements of array n give the starting and ending cities of the path to be
transported, and the point among the remaining cities after which it is to be inserted. On
output, de is the cost of the change. The actual transport is not performed by this routine.

INTEGER(I4B) :: ncity
REAL(SP), DIMENSION(6) :: xx,yy
ncity=size(x)
n(4)=1+mod(n(3),ncity) Find the city following n(3) . . .
n(5)=1+mod((n(1)+ncity-2),ncity) . . . and the one preceding n(1) . . .
n(6)=1+mod(n(2),ncity) . . . and the one following n(2).
xx(1:6)=x(iorder(n(1:6))) Determine coordinates for the six cities in-

volved.yy(1:6)=y(iorder(n(1:6)))
de=-alen(xx(2),xx(6),yy(2),yy(6))& Calculate the cost of disconnecting the path

segment from n(1) to n(2), opening a
space between n(3) and n(4), connect-
ing the segment in the space, and con-
necting n(5) to n(6).

-alen(xx(1),xx(5),yy(1),yy(5))&
-alen(xx(3),xx(4),yy(3),yy(4))&
+alen(xx(1),xx(3),yy(1),yy(3))&
+alen(xx(2),xx(4),yy(2),yy(4))&
+alen(xx(5),xx(6),yy(5),yy(6))

END SUBROUTINE trncst

SUBROUTINE trnspt(iorder,n)
IMPLICIT NONE
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INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: iorder
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n

This routine does the actual path transport, once metrop has approved. iorder is an
input array giving the present itinerary. The array n has as its six elements the beginning
n(1) and end n(2) of the path to be transported, the adjacent cities n(3) and n(4)
between which the path is to be placed, and the cities n(5) and n(6) that precede and
follow the path. n(4), n(5), and n(6) are calculated by subroutine trncst. On output,
iorder is modified to reflect the movement of the path segment.

INTEGER(I4B) :: m1,m2,m3,nn,ncity
INTEGER(I4B), DIMENSION(size(iorder)) :: jorder
ncity=size(iorder)
m1=1+mod((n(2)-n(1)+ncity),ncity) Find number of cities from n(1) to n(2) . . .
m2=1+mod((n(5)-n(4)+ncity),ncity) . . . and the number from n(4) to n(5)
m3=1+mod((n(3)-n(6)+ncity),ncity) . . . and the number from n(6) to n(3).
jorder(1:m1)=iorder(1+mod((arth(1,1,m1)+n(1)-2),ncity)) Copy the chosen segment.
nn=m1
jorder(nn+1:nn+m2)=iorder(1+mod((arth(1,1,m2)+n(4)-2),ncity))

Then copy the segment from n(4) to n(5).
nn=nn+m2
jorder(nn+1:nn+m3)=iorder(1+mod((arth(1,1,m3)+n(6)-2),ncity))

Finally, the segment from n(6) to n(3).
iorder(1:ncity)=jorder(1:ncity) Copy jorder back into iorder.
END SUBROUTINE trnspt
END SUBROUTINE anneal

� � �

SUBROUTINE amebsa(p,y,pb,yb,ftol,func,iter,temptr)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,iminloc,swap
USE nr, ONLY : ran1
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: iter
REAL(SP), INTENT(INOUT) :: yb
REAL(SP), INTENT(IN) :: ftol,temptr
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y,pb
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: NMAX=200

Minimization of the N -dimensional function func by simulated annealing combined with the
downhill simplex method of Nelder and Mead. The (N+1)×N matrix p is input. Its N+1
rows are N -dimensional vectors that are the vertices of the starting simplex. Also input is
the vector y of length N+1, whose components must be preinitialized to the values of func
evaluated at the N+1 vertices (rows) of p; ftol, the fractional convergence tolerance to be
achieved in the function value for an early return; iter, and temptr. The routine makes
iter function evaluations at an annealing temperature temptr, then returns. You should
then decrease temptr according to your annealing schedule, reset iter, and call the routine
again (leaving other arguments unaltered between calls). If iter is returned with a positive
value, then early convergence and return occurred. If you initialize yb to a very large value
on the first call, then yb and pb (an array of length N) will subsequently return the best
function value and point ever encountered (even if it is no longer a point in the simplex).

INTEGER(I4B) :: ihi,ndim Global variables.
REAL(SP) :: yhi
REAL(SP), DIMENSION(size(p,2)) :: psum
call amebsa_private
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CONTAINS

SUBROUTINE amebsa_private
INTEGER(I4B) :: i,ilo,inhi
REAL(SP) :: rtol,ylo,ynhi,ysave,ytry
REAL(SP), DIMENSION(size(y)) :: yt,harvest
ndim=assert_eq(size(p,2),size(p,1)-1,size(y)-1,size(pb),’amebsa’)
psum(:)=sum(p(:,:),dim=1)
do Iteration loop.

call ran1(harvest)
yt(:)=y(:)-temptr*log(harvest)

Whenever we “look at” a vertex, it gets a random thermal fluctuation.
ilo=iminloc(yt(:)) Determine which point is the highest (worst),

next-highest, and lowest (best).ylo=yt(ilo)
ihi=imaxloc(yt(:))
yhi=yt(ihi)
yt(ihi)=ylo
inhi=imaxloc(yt(:))
ynhi=yt(inhi)
rtol=2.0_sp*abs(yhi-ylo)/(abs(yhi)+abs(ylo))

Compute the fractional range from highest to lowest and return if satisfactory.
if (rtol < ftol .or. iter < 0) then If returning, put best point and value in

slot 1.call swap(y(1),y(ilo))
call swap(p(1,:),p(ilo,:))
RETURN

end if
Begin a new iteration. First extrapolate by a factor −1 through the face of the simplex
across from the high point, i.e., reflect the simplex from the high point.

ytry=amotsa(-1.0_sp)
iter=iter-1
if (ytry <= ylo) then Gives a result better than the best point, so

try an additional extrapolation by a fac-
tor of 2.

ytry=amotsa(2.0_sp)
iter=iter-1

else if (ytry >= ynhi) then The reflected point is worse than the second-
highest, so look for an intermediate lower
point, i.e., do a one-dimensional contrac-
tion.

ysave=yhi
ytry=amotsa(0.5_sp)
iter=iter-1
if (ytry >= ysave) then

Can’t seem to get rid of that high point. Better contract around the lowest
(best) point.

p(:,:)=0.5_sp*(p(:,:)+spread(p(ilo,:),1,size(p,1)))
do i=1,ndim+1

if (i /= ilo) y(i)=func(p(i,:))
end do
iter=iter-ndim Keep track of function evaluations.
psum(:)=sum(p(:,:),dim=1)

end if
end if

end do
END SUBROUTINE amebsa_private

FUNCTION amotsa(fac)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: fac
REAL(SP) :: amotsa

Extrapolates by a factor fac through the face of the simplex across from the high point,
tries it, and replaces the high point if the new point is better.

REAL(SP) :: fac1,fac2,yflu,ytry,harv
REAL(SP), DIMENSION(size(p,2)) :: ptry
fac1=(1.0_sp-fac)/ndim
fac2=fac1-fac
ptry(:)=psum(:)*fac1-p(ihi,:)*fac2
ytry=func(ptry)
if (ytry <= yb) then Save the best-ever.

pb(:)=ptry(:)
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yb=ytry
end if
call ran1(harv)
yflu=ytry+temptr*log(harv) We added a thermal fluctuation to all the cur-

rent vertices, but we subtract it here, so
as to give the simplex a thermal Brow-
nian motion: It likes to accept any sug-
gested change.

if (yflu < yhi) then
y(ihi)=ytry
yhi=yflu
psum(:)=psum(:)-p(ihi,:)+ptry(:)
p(ihi,:)=ptry(:)

end if
amotsa=yflu
END FUNCTION amotsa
END SUBROUTINE amebsa

f90
See the discussion ofamoeba on p. 1209 for why the routine is coded
this way.
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Chapter B11. Eigensystems

SUBROUTINE jacobi(a,d,v,nrot)
USE nrtype; USE nrutil, ONLY : assert_eq,get_diag,nrerror,unit_matrix,&

upper_triangle
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: nrot
REAL(SP), DIMENSION(:), INTENT(OUT) :: d
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: v

Computes all eigenvalues and eigenvectors of a real symmetric N×N matrix a. On output,
elements of a above the diagonal are destroyed. d is a vector of length N that returns the
eigenvalues of a. v is an N ×N matrix whose columns contain, on output, the normalized
eigenvectors of a. nrot returns the number of Jacobi rotations that were required.

INTEGER(I4B) :: i,ip,iq,n
REAL(SP) :: c,g,h,s,sm,t,tau,theta,tresh
REAL(SP), DIMENSION(size(d)) :: b,z
n=assert_eq((/size(a,1),size(a,2),size(d),size(v,1),size(v,2)/),’jacobi’)
call unit_matrix(v(:,:)) Initialize v to the identity matrix.
b(:)=get_diag(a(:,:)) Initialize b and d to the diagonal of

a.d(:)=b(:)
z(:)=0.0 This vector will accumulate terms of

the form tapq as in eq. (11.1.14).nrot=0
do i=1,50

sm=sum(abs(a),mask=upper_triangle(n,n)) Sum off-diagonal elements.
if (sm == 0.0) RETURN

The normal return, which relies on quadratic convergence to machine underflow.
tresh=merge(0.2_sp*sm/n**2,0.0_sp, i < 4 )

On the first three sweeps, we will rotate only if tresh exceeded.
do ip=1,n-1

do iq=ip+1,n
g=100.0_sp*abs(a(ip,iq))

After four sweeps, skip the rotation if the off-diagonal element is small.
if ((i > 4) .and. (abs(d(ip))+g == abs(d(ip))) &

.and. (abs(d(iq))+g == abs(d(iq)))) then
a(ip,iq)=0.0

else if (abs(a(ip,iq)) > tresh) then
h=d(iq)-d(ip)
if (abs(h)+g == abs(h)) then

t=a(ip,iq)/h t = 1/(2θ)
else

theta=0.5_sp*h/a(ip,iq) Equation (11.1.10).
t=1.0_sp/(abs(theta)+sqrt(1.0_sp+theta**2))
if (theta < 0.0) t=-t

end if
c=1.0_sp/sqrt(1+t**2)
s=t*c
tau=s/(1.0_sp+c)
h=t*a(ip,iq)
z(ip)=z(ip)-h
z(iq)=z(iq)+h
d(ip)=d(ip)-h
d(iq)=d(iq)+h
a(ip,iq)=0.0

1225
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call jrotate(a(1:ip-1,ip),a(1:ip-1,iq))
Case of rotations 1 ≤ j < p.

call jrotate(a(ip,ip+1:iq-1),a(ip+1:iq-1,iq))
Case of rotations p < j < q.

call jrotate(a(ip,iq+1:n),a(iq,iq+1:n))
Case of rotations q < j ≤ n.

call jrotate(v(:,ip),v(:,iq))
nrot=nrot+1

end if
end do

end do
b(:)=b(:)+z(:)
d(:)=b(:) Update d with the sum of tapq,
z(:)=0.0 and reinitialize z.

end do
call nrerror(’too many iterations in jacobi’)
CONTAINS

SUBROUTINE jrotate(a1,a2)
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a1,a2
REAL(SP), DIMENSION(size(a1)) :: wk1
wk1(:)=a1(:)
a1(:)=a1(:)-s*(a2(:)+a1(:)*tau)
a2(:)=a2(:)+s*(wk1(:)-a2(:)*tau)
END SUBROUTINE jrotate
END SUBROUTINE jacobi

As discussed in Volume 1, jacobi is generally not competitive with tqli
in terms of efficiency. However, jacobi can be parallelized whereas
tqli uses an intrinsically serial algorithm. The version of jacobi

implemented here is likely to be adequate for a small-scale parallel (SSP) machine,
but is probably still not competitive with tqli. For a massively multiprocessor
(MMP) machine, the order of the rotations needs to be chosen in a more complicated
pattern than here so that the rotations can be executed in parallel. In this case the
Jacobi algorithm may well turn out to be the method of choice. Parallel replacements
for tqli based on a divide and conquer algorithm have also been proposed. See
the discussion after tqli on p. 1229.

f90
call unit_matrix...b(:)=get_diag... These routines in nrutil both
require access to the diagonal of a matrix, an operation that is not
conveniently provided for in Fortran 90. We have split them off into

nrutil in case your compiler provides parallel library routines so you can replace
our standard versions.

sm=sum(abs(a),mask=upper_triangle(n,n)) The upper triangle function in
nrutil returns an upper triangular logical mask. As used here, the mask is true
everywhere in the upper triangle of an n × n matrix, excluding the diagonal. An
optional integer argument extra allows additional diagonals to be set to true. With
extra=1 the upper triangle including the diagonal would be true. By using the mask,
we can conveniently sum over the desired matrix elements in parallel.

SUBROUTINE jrotate(a1,a2) This internal subroutine also uses the values of s
and tau from the calling subroutine jacobi. Variables in the calling routine are
visible to an internal subprogram, but you should be circumspect in making use of
this fact. It is easy to overwrite a value in the calling program inadvertently, and it is
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often difficult to figure out the logic of an internal routine if not all its variables are
declared explicitly. However, jrotate is so simple that there is no danger here.

� � �

SUBROUTINE eigsrt(d,v)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: v

Given the eigenvalues d and eigenvectors v as output from jacobi (§11.1) or tqli (§11.3),
this routine sorts the eigenvalues into descending order, and rearranges the columns of v
correspondingly. The method is straight insertion.

INTEGER(I4B) :: i,j,n
n=assert_eq(size(d),size(v,1),size(v,2),’eigsrt’)
do i=1,n-1

j=imaxloc(d(i:n))+i-1
if (j /= i) then

call swap(d(i),d(j))
call swap(v(:,i),v(:,j))

end if
end do
END SUBROUTINE eigsrt

f90 j=imaxloc... See discussion of imaxloc on p. 1017.

call swap... See discussion of overloaded versions of swap after amoeba
on p. 1210.

� � �

SUBROUTINE tred2(a,d,e,novectors)
USE nrtype; USE nrutil, ONLY : assert_eq,outerprod
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: d,e
LOGICAL(LGT), OPTIONAL, INTENT(IN) :: novectors

Householder reduction of a real, symmetric, N × N matrix a. On output, a is replaced
by the orthogonal matrix Q effecting the transformation. d returns the diagonal elements
of the tridiagonal matrix, and e the off-diagonal elements, with e(1)=0. If the optional
argument novectors is present, only eigenvalues are to be found subsequently, in which
case a contains no useful information on output.

INTEGER(I4B) :: i,j,l,n
REAL(SP) :: f,g,h,hh,scale
REAL(SP), DIMENSION(size(a,1)) :: gg
LOGICAL(LGT), SAVE :: yesvec=.true.
n=assert_eq(size(a,1),size(a,2),size(d),size(e),’tred2’)
if (present(novectors)) yesvec=.not. novectors
do i=n,2,-1

l=i-1
h=0.0
if (l > 1) then

scale=sum(abs(a(i,1:l)))
if (scale == 0.0) then Skip transformation.

e(i)=a(i,l)
else

a(i,1:l)=a(i,1:l)/scale Use scaled a’s for transformation.
h=sum(a(i,1:l)**2) Form σ in h.
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f=a(i,l)
g=-sign(sqrt(h),f)
e(i)=scale*g
h=h-f*g Now h is equation (11.2.4).
a(i,l)=f-g Store u in the ith row of a.
if (yesvec) a(1:l,i)=a(i,1:l)/h Store u/H in ith column of a.
do j=1,l Store elements of p in temporarily

unused elements of e.e(j)=(dot_product(a(j,1:j),a(i,1:j)) &
+dot_product(a(j+1:l,j),a(i,j+1:l)))/h

end do
f=dot_product(e(1:l),a(i,1:l))
hh=f/(h+h) Form K, equation (11.2.11).
e(1:l)=e(1:l)-hh*a(i,1:l)

Form q and store in e overwriting p.
do j=1,l Reduce a, equation (11.2.13).

a(j,1:j)=a(j,1:j)-a(i,j)*e(1:j)-e(j)*a(i,1:j)
end do

end if
else

e(i)=a(i,l)
end if
d(i)=h

end do
if (yesvec) d(1)=0.0
e(1)=0.0
do i=1,n Begin accumulation of transforma-

tion matrices.if (yesvec) then
l=i-1
if (d(i) /= 0.0) then

This block skipped when i=1. Use u and u/H stored in a to form P · Q.
gg(1:l)=matmul(a(i,1:l),a(1:l,1:l))
a(1:l,1:l)=a(1:l,1:l)-outerprod(a(1:l,i),gg(1:l))

end if
d(i)=a(i,i)
a(i,i)=1.0 Reset row and column of a to iden-

tity matrix for next iteration.a(i,1:l)=0.0
a(1:l,i)=0.0

else
d(i)=a(i,i)

end if
end do
END SUBROUTINE tred2

f90
This routine gives a nice example of the usefulness of optional arguments.
The routine is written under the assumption that usually you will want
to find both eigenvalues and eigenvectors. In this case you just supply

the arguments a, d, and e. If, however, you want only eigenvalues, you supply the
additional logical argument novectors with the value .true.. The routine then
skips the unnecessary computations. Supplying novectorswith the value .false.
has the same effect as omitting it.

� � �

SUBROUTINE tqli(d,e,z)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : pythag
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d,e
REAL(SP), DIMENSION(:,:), OPTIONAL, INTENT(INOUT) :: z

QL algorithm with implicit shifts, to determine the eigenvalues and eigenvectors of a real,
symmetric, tridiagonal matrix, or of a real, symmetric matrix previously reduced by tred2
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§11.2. d is a vector of length N . On input, its elements are the diagonal elements of the
tridiagonal matrix. On output, it returns the eigenvalues. The vector e inputs the subdi-
agonal elements of the tridiagonal matrix, with e(1) arbitrary. On output e is destroyed.
When finding only the eigenvalues, the optional argument z is omitted. If the eigenvectors
of a tridiagonal matrix are desired, the N × N matrix z is input as the identity matrix. If
the eigenvectors of a matrix that has been reduced by tred2 are required, then z is input
as the matrix output by tred2. In either case, the kth column of z returns the normalized
eigenvector corresponding to d(k).

INTEGER(I4B) :: i,iter,l,m,n,ndum
REAL(SP) :: b,c,dd,f,g,p,r,s
REAL(SP), DIMENSION(size(e)) :: ff
n=assert_eq(size(d),size(e),’tqli: n’)
if (present(z)) ndum=assert_eq(n,size(z,1),size(z,2),’tqli: ndum’)
e(:)=eoshift(e(:),1) Convenient to renumber the elements of

e.do l=1,n
iter=0
iterate: do

do m=l,n-1 Look for a single small subdiagonal ele-
ment to split the matrix.dd=abs(d(m))+abs(d(m+1))

if (abs(e(m))+dd == dd) exit
end do
if (m == l) exit iterate
if (iter == 30) call nrerror(’too many iterations in tqli’)
iter=iter+1
g=(d(l+1)-d(l))/(2.0_sp*e(l)) Form shift.
r=pythag(g,1.0_sp)
g=d(m)-d(l)+e(l)/(g+sign(r,g)) This is dm − ks.
s=1.0
c=1.0
p=0.0
do i=m-1,l,-1 A plane rotation as in the original QL,

followed by Givens rotations to re-
store tridiagonal form.

f=s*e(i)
b=c*e(i)
r=pythag(f,g)
e(i+1)=r
if (r == 0.0) then Recover from underflow.

d(i+1)=d(i+1)-p
e(m)=0.0
cycle iterate

end if
s=f/r
c=g/r
g=d(i+1)-p
r=(d(i)-g)*s+2.0_sp*c*b
p=s*r
d(i+1)=g+p
g=c*r-b
if (present(z)) then Form eigenvectors.

ff(1:n)=z(1:n,i+1)
z(1:n,i+1)=s*z(1:n,i)+c*ff(1:n)
z(1:n,i)=c*z(1:n,i)-s*ff(1:n)

end if
end do
d(l)=d(l)-p
e(l)=g
e(m)=0.0

end do iterate
end do
END SUBROUTINE tqli

The routine tqli is intrinsically serial. A parallel replacement based on
a divide and conquer algorithm has been proposed [1,2]. The idea is to
split the tridiagonal matrix recursively into two tridiagonal matrices of
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half the size plus a correction. Given the eigensystems of the two smaller tridiagonal
matrices, it is possible to join them together and add in the effect of the correction.
When some small size of tridiagonal matrix is reached during the recursive splitting,
its eigensystem is found directly with a routine like tqli. Each of these small
problems is independent and can be assigned to an independent processor. The
procedures for sewing together can also be done independently. For very large
matrices, this algorithm can be an order of magnitude faster than tqli even on a
serial machine, and no worse than a factor of 2 or 3 slower, depending on the matrix.
Unfortunately the parallelism is not well expressed in Fortran 90. Also, the sewing
together requires quite involved coding. For an implementation see the LAPACK
routine SSTEDC. Another parallel strategy for eigensystems uses inverse iteration,
where each eigenvalue and eigenvector can be found independently [3].

f90
This routine uses z as an optional argument that is required only if
eigenvectors are being found as well as eigenvalues.

iterate: do See discussion of named do loops after simplx on p. 1219.

� � �

SUBROUTINE balanc(a)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), PARAMETER :: RADX=radix(a),SQRADX=RADX**2

Given an N × N matrix a, this routine replaces it by a balanced matrix with identical
eigenvalues. A symmetric matrix is already balanced and is unaffected by this procedure.
The parameter RADX is the machine’s floating-point radix.

INTEGER(I4B) :: i,last,ndum
REAL(SP) :: c,f,g,r,s
ndum=assert_eq(size(a,1),size(a,2),’balanc’)
do

last=1
do i=1,size(a,1) Calculate row and column norms.

c=sum(abs(a(:,i)))-a(i,i)
r=sum(abs(a(i,:)))-a(i,i)
if (c /= 0.0 .and. r /= 0.0) then If both are nonzero,

g=r/RADX
f=1.0
s=c+r
do find the integer power of the ma-

chine radix that comes closest to
balancing the matrix.

if (c >= g) exit
f=f*RADX
c=c*SQRADX

end do
g=r*RADX
do

if (c <= g) exit
f=f/RADX
c=c/SQRADX

end do
if ((c+r)/f < 0.95_sp*s) then

last=0
g=1.0_sp/f
a(i,:)=a(i,:)*g Apply similarity transformation.
a(:,i)=a(:,i)*f

end if
end if
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end do
if (last /= 0) exit

end do
END SUBROUTINE balanc

f90
REAL(SP), PARAMETER :: RADX=radix(a)... Fortran 90 provides a nice
collection of numeric inquiry intrinsic functions. Here we find the
machine’s floating-point radix. Note that only the type of the argument

a affects the returned function value.

� � �

SUBROUTINE elmhes(a)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,outerprod,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a

Reduction to Hessenberg form by the elimination method. The real, nonsymmetric, N ×N
matrix a is replaced by an upper Hessenberg matrix with identical eigenvalues. Recom-
mended, but not required, is that this routine be preceded by balanc. On output, the
Hessenberg matrix is in elements a(i, j) with i ≤ j + 1. Elements with i > j + 1 are to be
thought of as zero, but are returned with random values.

INTEGER(I4B) :: i,m,n
REAL(SP) :: x
REAL(SP), DIMENSION(size(a,1)) :: y
n=assert_eq(size(a,1),size(a,2),’elmhes’)
do m=2,n-1 m is called r + 1 in the text.

i=imaxloc(abs(a(m:n,m-1)))+m-1 Find the pivot.
x=a(i,m-1)
if (i /= m) then Interchange rows and columns.

call swap(a(i,m-1:n),a(m,m-1:n))
call swap(a(:,i),a(:,m))

end if
if (x /= 0.0) then Carry out the elimination.

y(m+1:n)=a(m+1:n,m-1)/x
a(m+1:n,m-1)=y(m+1:n)
a(m+1:n,m:n)=a(m+1:n,m:n)-outerprod(y(m+1:n),a(m,m:n))
a(:,m)=a(:,m)+matmul(a(:,m+1:n),y(m+1:n))

end if
end do
END SUBROUTINE elmhes

f90
y(m+1:n)=... If the four lines of code starting here were all coded for a
serial machine in a single do-loop starting with do i=m+1,n (see Volume
1), it would pay to test whether y was zero because the next three lines

could then be skipped for that value of i. There is no convenient way to do this
here, even with a where, since the shape of the arrays on each of the three lines is
different. For a parallel machine it is probably best just to do a few unnecessary
multiplies and skip the test for zero values of y.

� � �
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SUBROUTINE hqr(a,wr,wi)
USE nrtype; USE nrutil, ONLY : assert_eq,diagadd,nrerror,upper_triangle
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: wr,wi
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a

Finds all eigenvalues of an N × N upper Hessenberg matrix a. On input a can be exactly
as output from elmhes §11.5; on output it is destroyed. The real and imaginary parts of
the N eigenvalues are returned in wr and wi, respectively.

INTEGER(I4B) :: i,its,k,l,m,n,nn,mnnk
REAL(SP) :: anorm,p,q,r,s,t,u,v,w,x,y,z
REAL(SP), DIMENSION(size(a,1)) :: pp
n=assert_eq(size(a,1),size(a,2),size(wr),size(wi),’hqr’)
anorm=sum(abs(a),mask=upper_triangle(n,n,extra=2))

Compute matrix norm for possible use in locating single small subdiagonal element.
nn=n
t=0.0 Gets changed only by an exceptional shift.
do Begin search for next eigenvalue: “Do while

nn >= 1”.if (nn < 1) exit
its=0
iterate: do Begin iteration.

do l=nn,2,-1 Look for single small subdiagonal element.
s=abs(a(l-1,l-1))+abs(a(l,l))
if (s == 0.0) s=anorm
if (abs(a(l,l-1))+s == s) exit

end do
x=a(nn,nn)
if (l == nn) then One root found.

wr(nn)=x+t
wi(nn)=0.0
nn=nn-1
exit iterate Go back for next eigenvalue.

end if
y=a(nn-1,nn-1)
w=a(nn,nn-1)*a(nn-1,nn)
if (l == nn-1) then Two roots found . . .

p=0.5_sp*(y-x)
q=p**2+w
z=sqrt(abs(q))
x=x+t
if (q >= 0.0) then . . . a real pair . . .

z=p+sign(z,p)
wr(nn)=x+z
wr(nn-1)=wr(nn)
if (z /= 0.0) wr(nn)=x-w/z
wi(nn)=0.0
wi(nn-1)=0.0

else . . . a complex pair.
wr(nn)=x+p
wr(nn-1)=wr(nn)
wi(nn)=z
wi(nn-1)=-z

end if
nn=nn-2
exit iterate Go back for next eigenvalue.

end if
No roots found. Continue iteration.

if (its == 30) call nrerror(’too many iterations in hqr’)
if (its == 10 .or. its == 20) then Form exceptional shift.

t=t+x
call diagadd(a(1:nn,1:nn),-x)
s=abs(a(nn,nn-1))+abs(a(nn-1,nn-2))
x=0.75_sp*s
y=x
w=-0.4375_sp*s**2
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end if
its=its+1
do m=nn-2,l,-1 Form shift and then look for 2 consecu-

tive small subdiagonal elements.z=a(m,m)
r=x-z
s=y-z
p=(r*s-w)/a(m+1,m)+a(m,m+1) Equation (11.6.23).
q=a(m+1,m+1)-z-r-s
r=a(m+2,m+1)
s=abs(p)+abs(q)+abs(r) Scale to prevent overflow or underflow.
p=p/s
q=q/s
r=r/s
if (m == l) exit
u=abs(a(m,m-1))*(abs(q)+abs(r))
v=abs(p)*(abs(a(m-1,m-1))+abs(z)+abs(a(m+1,m+1)))
if (u+v == v) exit Equation (11.6.26).

end do
do i=m+2,nn

a(i,i-2)=0.0
if (i /= m+2) a(i,i-3)=0.0

end do
do k=m,nn-1 Double QR step on rows l to nn and

columns m to nn.if (k /= m) then
p=a(k,k-1) Begin setup of Householder vector.
q=a(k+1,k-1)
r=0.0
if (k /= nn-1) r=a(k+2,k-1)
x=abs(p)+abs(q)+abs(r)
if (x /= 0.0) then

p=p/x Scale to prevent overflow or underflow.
q=q/x
r=r/x

end if
end if
s=sign(sqrt(p**2+q**2+r**2),p)
if (s /= 0.0) then

if (k == m) then
if (l /= m) a(k,k-1)=-a(k,k-1)

else
a(k,k-1)=-s*x

end if
p=p+s Equations (11.6.24).
x=p/s
y=q/s
z=r/s
q=q/p
r=r/p Ready for row modification.
pp(k:nn)=a(k,k:nn)+q*a(k+1,k:nn)
if (k /= nn-1) then

pp(k:nn)=pp(k:nn)+r*a(k+2,k:nn)
a(k+2,k:nn)=a(k+2,k:nn)-pp(k:nn)*z

end if
a(k+1,k:nn)=a(k+1,k:nn)-pp(k:nn)*y
a(k,k:nn)=a(k,k:nn)-pp(k:nn)*x
mnnk=min(nn,k+3) Column modification.
pp(l:mnnk)=x*a(l:mnnk,k)+y*a(l:mnnk,k+1)
if (k /= nn-1) then

pp(l:mnnk)=pp(l:mnnk)+z*a(l:mnnk,k+2)
a(l:mnnk,k+2)=a(l:mnnk,k+2)-pp(l:mnnk)*r

end if
a(l:mnnk,k+1)=a(l:mnnk,k+1)-pp(l:mnnk)*q
a(l:mnnk,k)=a(l:mnnk,k)-pp(l:mnnk)

end if
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end do
end do iterate Go back for next iteration on current eigen-

value.end do
END SUBROUTINE hqr

f90
anorm=sum(abs(a),mask=upper_triangle(n,n,extra=2) See the discussion
of upper triangle after jacobi on p. 1226. Setting extra=2 here picks
out the upper Hessenberg part of the matrix.

iterate: do We use a named loop to improve the readability and structuring
of the routine. The if-blocks that test for one or two roots end with exit iterate,
transferring control back to the outermost loop and thus starting a search for the
next root.

call diagadd... The routines that operate on the diagonal of a matrix are
collected in nrutil partly so you can write clear code and partly in the hope that
compiler writers will provide parallel library routines. Fortran 90 does not provide
convenient parallel access to the diagonal of a matrix.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §8.6 and references therein. [1]

Sorensen, D.C., and Tang, P.T.P. 1991, SIAM Journal on Numerical Analysis, vol. 28, pp. 1752–
1775. [2]

Lo, S.-S., Philippe, B., and Sameh, A. 1987, SIAM Journal on Scientific and Statistical Computing,
vol. 8, pp. s155–s165. [3]
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Chapter B12. Fast Fourier Transform
The algorithms underlying the parallel routines in this chapter are described in

§22.4. As described there, the basic building block is a routine for simultaneously
taking the FFT of each row of a two-dimensional matrix:

SUBROUTINE fourrow_sp(data,isign)
USE nrtype; USE nrutil, ONLY : assert,swap
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces each row (constant first index) of data(1:M,1:N) by its discrete Fourier trans-
form (transform on second index), if isign is input as 1; or replaces each row of data
by N times its inverse discrete Fourier transform, if isign is input as −1. N must be an
integer power of 2. Parallelism is M -fold on the first index of data.

INTEGER(I4B) :: n,i,istep,j,m,mmax,n2
REAL(DP) :: theta
COMPLEX(SPC), DIMENSION(size(data,1)) :: temp
COMPLEX(DPC) :: w,wp Double precision for the trigonometric recurrences.
COMPLEX(SPC) :: ws
n=size(data,2)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in fourrow_sp’)
n2=n/2
j=n2
This is the bit-reversal section of the routine.

do i=1,n-2
if (j > i) call swap(data(:,j+1),data(:,i+1))
m=n2
do

if (m < 2 .or. j < m) exit
j=j-m
m=m/2

end do
j=j+m

end do
mmax=1
Here begins the Danielson-Lanczos section of the routine.

do Outer loop executed log2 N times.
if (n <= mmax) exit
istep=2*mmax
theta=PI_D/(isign*mmax) Initialize for the trigonometric recurrence.
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
do m=1,mmax Here are the two nested inner loops.

ws=w
do i=m,n,istep

j=i+mmax
temp=ws*data(:,j) This is the Danielson-Lanczos formula.
data(:,j)=data(:,i)-temp
data(:,i)=data(:,i)+temp

end do
w=w*wp+w Trigonometric recurrence.

end do
mmax=istep

1235
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end do
END SUBROUTINE fourrow_sp

f90
call assert(iand(n,n-1)==0 ... All the Fourier routines in this chapter
require the dimensionN of the data to be a power of 2. This is easily tested
for by AND’ing N andN − 1: N should have the binary representation

10000 . . . , in which caseN − 1 = 01111 . . . .

SUBROUTINE fourrow_dp(data,isign)
USE nrtype; USE nrutil, ONLY : assert,swap
IMPLICIT NONE
COMPLEX(DPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
INTEGER(I4B) :: n,i,istep,j,m,mmax,n2
REAL(DP) :: theta
COMPLEX(DPC), DIMENSION(size(data,1)) :: temp
COMPLEX(DPC) :: w,wp
COMPLEX(DPC) :: ws
n=size(data,2)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in fourrow_dp’)
n2=n/2
j=n2
do i=1,n-2

if (j > i) call swap(data(:,j+1),data(:,i+1))
m=n2
do

if (m < 2 .or. j < m) exit
j=j-m
m=m/2

end do
j=j+m

end do
mmax=1
do

if (n <= mmax) exit
istep=2*mmax
theta=PI_D/(isign*mmax)
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
do m=1,mmax

ws=w
do i=m,n,istep

j=i+mmax
temp=ws*data(:,j)
data(:,j)=data(:,i)-temp
data(:,i)=data(:,i)+temp

end do
w=w*wp+w

end do
mmax=istep

end do
END SUBROUTINE fourrow_dp

SUBROUTINE fourrow_3d(data,isign)
USE nrtype; USE nrutil, ONLY : assert,swap
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

If isign is input as 1, replaces each third-index section (constant first and second indices)
of data(1:L,1:M,1:N) by its discrete Fourier transform (transform on third index); or
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replaces each third-index section of data by N times its inverse discrete Fourier transform,
if isign is input as −1. N must be an integer power of 2. Parallelism is L× M -fold on
the first and second indices of data.

INTEGER(I4B) :: n,i,istep,j,m,mmax,n2
REAL(DP) :: theta
COMPLEX(SPC), DIMENSION(size(data,1),size(data,2)) :: temp
COMPLEX(DPC) :: w,wp Double precision for the trigonometric recurrences.
COMPLEX(SPC) :: ws
n=size(data,3)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in fourrow_3d’)
n2=n/2
j=n2
This is the bit-reversal section of the routine.

do i=1,n-2
if (j > i) call swap(data(:,:,j+1),data(:,:,i+1))
m=n2
do

if (m < 2 .or. j < m) exit
j=j-m
m=m/2

end do
j=j+m

end do
mmax=1
Here begins the Danielson-Lanczos section of the routine.

do Outer loop executed log2 N times.
if (n <= mmax) exit
istep=2*mmax
theta=PI_D/(isign*mmax) Initialize for the trigonometric recurrence.
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
do m=1,mmax Here are the two nested inner loops.

ws=w
do i=m,n,istep

j=i+mmax
temp=ws*data(:,:,j) This is the Danielson-Lanczos formula.
data(:,:,j)=data(:,:,i)-temp
data(:,:,i)=data(:,:,i)+temp

end do
w=w*wp+w Trigonometric recurrence.

end do
mmax=istep

end do
END SUBROUTINE fourrow_3d

� � �

Exactly as in the preceding routines, we can take the FFT of each
column of a two-dimensional matrix, and for eachfirst-index section of
a three-dimensional array.

SUBROUTINE fourcol(data,isign)
USE nrtype; USE nrutil, ONLY : assert,swap
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces each column (constant second index) of data(1:N,1:M) by its discrete Fourier
transform (transform on first index), if isign is input as 1; or replaces each row of data
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by N times its inverse discrete Fourier transform, if isign is input as −1. N must be an
integer power of 2. Parallelism is M -fold on the second index of data.

INTEGER(I4B) :: n,i,istep,j,m,mmax,n2
REAL(DP) :: theta
COMPLEX(SPC), DIMENSION(size(data,2)) :: temp
COMPLEX(DPC) :: w,wp Double precision for the trigonometric recurrences.
COMPLEX(SPC) :: ws
n=size(data,1)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in fourcol’)
n2=n/2
j=n2
This is the bit-reversal section of the routine.

do i=1,n-2
if (j > i) call swap(data(j+1,:),data(i+1,:))
m=n2
do

if (m < 2 .or. j < m) exit
j=j-m
m=m/2

end do
j=j+m

end do
mmax=1
Here begins the Danielson-Lanczos section of the routine.

do Outer loop executed log2 N times.
if (n <= mmax) exit
istep=2*mmax
theta=PI_D/(isign*mmax) Initialize for the trigonometric recurrence.
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
do m=1,mmax Here are the two nested inner loops.

ws=w
do i=m,n,istep

j=i+mmax
temp=ws*data(j,:) This is the Danielson-Lanczos formula.
data(j,:)=data(i,:)-temp
data(i,:)=data(i,:)+temp

end do
w=w*wp+w Trigonometric recurrence.

end do
mmax=istep

end do
END SUBROUTINE fourcol

SUBROUTINE fourcol_3d(data,isign)
USE nrtype; USE nrutil, ONLY : assert,swap
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

If isign is input as 1, replaces each first-index section (constant second and third indices)
of data(1:N,1:M,1:L) by its discrete Fourier transform (transform on first index); or
replaces each first-index section of data by N times its inverse discrete Fourier transform,
if isign is input as −1. N must be an integer power of 2. Parallelism is M × L-fold on
the second and third indices of data.

INTEGER(I4B) :: n,i,istep,j,m,mmax,n2
REAL(DP) :: theta
COMPLEX(SPC), DIMENSION(size(data,2),size(data,3)) :: temp
COMPLEX(DPC) :: w,wp Double precision for the trigonometric recurrences.
COMPLEX(SPC) :: ws
n=size(data,1)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in fourcol_3d’)
n2=n/2
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j=n2
This is the bit-reversal section of the routine.

do i=1,n-2
if (j > i) call swap(data(j+1,:,:),data(i+1,:,:))
m=n2
do

if (m < 2 .or. j < m) exit
j=j-m
m=m/2

end do
j=j+m

end do
mmax=1
Here begins the Danielson-Lanczos section of the routine.

do Outer loop executed log2 N times.
if (n <= mmax) exit
istep=2*mmax
theta=PI_D/(isign*mmax) Initialize for the trigonometric recurrence.
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
do m=1,mmax Here are the two nested inner loops.

ws=w
do i=m,n,istep

j=i+mmax
temp=ws*data(j,:,:) This is the Danielson-Lanczos formula.
data(j,:,:)=data(i,:,:)-temp
data(i,:,:)=data(i,:,:)+temp

end do
w=w*wp+w Trigonometric recurrence.

end do
mmax=istep

end do
END SUBROUTINE fourcol_3d

� � �

Here now are implementations of the method of§22.4 for the FFT of one-
dimensional single- and double-precision complex arrays:

SUBROUTINE four1_sp(data,isign)
USE nrtype; USE nrutil, ONLY : arth,assert
USE nr, ONLY : fourrow
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces a complex array data by its discrete Fourier transform, if isign is input as 1;
or replaces data by its inverse discrete Fourier transform times the size of data, if isign
is input as −1. The size of data must be an integer power of 2. Parallelism is achieved
by internally reshaping the input array to two dimensions. (Use this version if fourrow is
faster than fourcol on your machine.)

COMPLEX(SPC), DIMENSION(:,:), ALLOCATABLE :: dat,temp
COMPLEX(DPC), DIMENSION(:), ALLOCATABLE :: w,wp
REAL(DP), DIMENSION(:), ALLOCATABLE :: theta
INTEGER(I4B) :: n,m1,m2,j
n=size(data)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in four1_sp’)
Find dimensions as close to square as possible, allocate space, and reshape the input array.

m1=2**ceiling(0.5_sp*log(real(n,sp))/0.693147_sp)
m2=n/m1
allocate(dat(m1,m2),theta(m1),w(m1),wp(m1),temp(m2,m1))
dat=reshape(data,shape(dat))
call fourrow(dat,isign) Transform on second index.
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theta=arth(0,isign,m1)*TWOPI_D/n Set up recurrence.
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
do j=2,m2 Multiply by the extra phase factor.

w=w*wp+w
dat(:,j)=dat(:,j)*w

end do
temp=transpose(dat) Transpose, and transform on (original) first in-

dex.call fourrow(temp,isign)
data=reshape(temp,shape(data)) Reshape the result back to one dimension.
deallocate(dat,w,wp,theta,temp)
END SUBROUTINE four1_sp

SUBROUTINE four1_dp(data,isign)
USE nrtype; USE nrutil, ONLY : arth,assert
USE nr, ONLY : fourrow
IMPLICIT NONE
COMPLEX(DPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
COMPLEX(DPC), DIMENSION(:,:), ALLOCATABLE :: dat,temp
COMPLEX(DPC), DIMENSION(:), ALLOCATABLE :: w,wp
REAL(DP), DIMENSION(:), ALLOCATABLE :: theta
INTEGER(I4B) :: n,m1,m2,j
n=size(data)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in four1_dp’)
m1=2**ceiling(0.5_sp*log(real(n,sp))/0.693147_sp)
m2=n/m1
allocate(dat(m1,m2),theta(m1),w(m1),wp(m1),temp(m2,m1))
dat=reshape(data,shape(dat))
call fourrow(dat,isign)
theta=arth(0,isign,m1)*TWOPI_D/n
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
do j=2,m2

w=w*wp+w
dat(:,j)=dat(:,j)*w

end do
temp=transpose(dat)
call fourrow(temp,isign)
data=reshape(temp,shape(data))
deallocate(dat,w,wp,theta,temp)
END SUBROUTINE four1_dp

The above routines usefourrow exclusively, on the assumption that it is
faster than its siblingfourcol. When that is the case (as we typically find), it is
likely that four1 sp is also faster than Volume 1’s scalarfour1. The reason, on
scalar machines, is thatfourrow’s parallelism is taking better advantage of cache
memory locality.

If fourrow is not faster thanfourcol on your machine, then you should instead
try the following alternative FFT version that usesfourcol only.

SUBROUTINE four1_alt(data,isign)
USE nrtype; USE nrutil, ONLY : arth,assert
USE nr, ONLY : fourcol
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces a complex array data by its discrete Fourier transform, if isign is input as 1; or
replaces data by its inverse discrete Fourier transform times the size of data, if isign is
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input as −1. The size of data must be an integer power of 2. Parallelism is achieved by
internally reshaping the input array to two dimensions. (Use this version only if fourcol
is faster than fourrow on your machine.)

COMPLEX(SPC), DIMENSION(:,:), ALLOCATABLE :: dat,temp
COMPLEX(DPC), DIMENSION(:), ALLOCATABLE :: w,wp
REAL(DP), DIMENSION(:), ALLOCATABLE :: theta
INTEGER(I4B) :: n,m1,m2,j
n=size(data)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in four1_alt’)
Find dimensions as close to square as possible, allocate space, and reshape the input array.

m1=2**ceiling(0.5_sp*log(real(n,sp))/0.693147_sp)
m2=n/m1
allocate(dat(m1,m2),theta(m1),w(m1),wp(m1),temp(m2,m1))
dat=reshape(data,shape(dat))
temp=transpose(dat) Transpose and transform on (original) second in-

dex.call fourcol(temp,isign)
theta=arth(0,isign,m1)*TWOPI_D/n Set up recurrence.
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
do j=2,m2 Multiply by the extra phase factor.

w=w*wp+w
temp(j,:)=temp(j,:)*w

end do
dat=transpose(temp) Transpose, and transform on (original) first in-

dex.call fourcol(dat,isign)
temp=transpose(dat) Transpose and then reshape the result back to

one dimension.data=reshape(temp,shape(data))
deallocate(dat,w,wp,theta,temp)
END SUBROUTINE four1_alt

� � �

With all the machinery offourrow andfourcol, two-dimensional FFTs are
extremely straightforward. Again there is an alternative version provided in case
your hardware favorsfourcol (which would be, we think, unusual).

SUBROUTINE four2(data,isign)
USE nrtype
USE nr, ONLY : fourrow
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces a 2-d complex array data by its discrete 2-d Fourier transform, if isign is input
as 1; or replaces data by its inverse 2-d discrete Fourier transform times the product of its
two sizes, if isign is input as −1. Both of data’s sizes must be integer powers of 2 (this
is checked for in fourrow). Parallelism is by use of fourrow.

COMPLEX(SPC), DIMENSION(size(data,2),size(data,1)) :: temp
call fourrow(data,isign) Transform in second dimension.
temp=transpose(data) Tranpose.
call fourrow(temp,isign) Transform in (original) first dimension.
data=transpose(temp) Transpose into data.
END SUBROUTINE four2
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SUBROUTINE four2_alt(data,isign)
USE nrtype
USE nr, ONLY : fourcol
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces a 2-d complex array data by its discrete 2-d Fourier transform, if isign is input
as 1; or replaces data by its inverse 2-d discrete Fourier transform times the product of
its two sizes, if isign is input as −1. Both of data’s sizes must be integer powers of 2
(this is checked for in fourcol). Parallelism is by use of fourcol. (Use this version only
if fourcol is faster than fourrow on your machine.)

COMPLEX(SPC), DIMENSION(size(data,2),size(data,1)) :: temp
temp=transpose(data) Tranpose.
call fourcol(temp,isign) Transform in (original) second dimension.
data=transpose(temp) Transpose.
call fourcol(data,isign) Transform in (original) first dimension.
END SUBROUTINE four2_alt

� � �

Most of the remaining routines in this chapter simply call one or another of the
above FFT routines, with a small amount of auxiliary computation, so they are fairly
straightforward conversions from their Volume 1 counterparts.

SUBROUTINE twofft(data1,data2,fft1,fft2)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : four1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
COMPLEX(SPC), DIMENSION(:), INTENT(OUT) :: fft1,fft2

Given two real input arrays data1 and data2 of length N , this routine calls four1 and
returns two complex output arrays, fft1 and fft2, each of complex length N , that contain
the discrete Fourier transforms of the respective data arrays. N must be an integer power
of 2.

INTEGER(I4B) :: n,n2
COMPLEX(SPC), PARAMETER :: C1=(0.5_sp,0.0_sp), C2=(0.0_sp,-0.5_sp)
COMPLEX, DIMENSION(size(data1)/2+1) :: h1,h2
n=assert_eq(size(data1),size(data2),size(fft1),size(fft2),’twofft’)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in twofft’)
fft1=cmplx(data1,data2,kind=spc) Pack the two real arrays into one complex array.
call four1(fft1,1) Transform the complex array.
fft2(1)=cmplx(aimag(fft1(1)),0.0_sp,kind=spc)
fft1(1)=cmplx(real(fft1(1)),0.0_sp,kind=spc)
n2=n/2+1
h1(2:n2)=C1*(fft1(2:n2)+conjg(fft1(n:n2:-1))) Use symmetries to separate the

two transforms.h2(2:n2)=C2*(fft1(2:n2)-conjg(fft1(n:n2:-1)))
fft1(2:n2)=h1(2:n2) Ship them out in two complex arrays.
fft1(n:n2:-1)=conjg(h1(2:n2))
fft2(2:n2)=h2(2:n2)
fft2(n:n2:-1)=conjg(h2(2:n2))
END SUBROUTINE twofft

� � �
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SUBROUTINE realft_sp(data,isign,zdata)
USE nrtype; USE nrutil, ONLY : assert,assert_eq,zroots_unity
USE nr, ONLY : four1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
COMPLEX(SPC), DIMENSION(:), OPTIONAL, TARGET :: zdata

When isign = 1, calculates the Fourier transform of a set of N real-valued data points,
input in the array data. If the optional argument zdata is not present, the data are replaced
by the positive frequency half of its complex Fourier transform. The real-valued first and
last components of the complex transform are returned as elements data(1) and data(2),
respectively. If the complex array zdata of length N/2 is present, data is unchanged and
the transform is returned in zdata. N must be a power of 2. If isign = −1, this routine
calculates the inverse transform of a complex data array if it is the transform of real data.
(Result in this case must be multiplied by 2/N .) The data can be supplied either in data,
with zdata absent, or in zdata.

INTEGER(I4B) :: n,ndum,nh,nq
COMPLEX(SPC), DIMENSION(size(data)/4) :: w
COMPLEX(SPC), DIMENSION(size(data)/4-1) :: h1,h2
COMPLEX(SPC), DIMENSION(:), POINTER :: cdata Used for internal complex computa-

tions.COMPLEX(SPC) :: z
REAL(SP) :: c1=0.5_sp,c2
n=size(data)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in realft_sp’)
nh=n/2
nq=n/4
if (present(zdata)) then

ndum=assert_eq(n/2,size(zdata),’realft_sp’)
cdata=>zdata Use zdata as cdata.
if (isign == 1) cdata=cmplx(data(1:n-1:2),data(2:n:2),kind=spc)

else
allocate(cdata(n/2)) Have to allocate storage ourselves.
cdata=cmplx(data(1:n-1:2),data(2:n:2),kind=spc)

end if
if (isign == 1) then

c2=-0.5_sp
call four1(cdata,+1) The forward transform is here.

else Otherwise set up for an inverse trans-
form.c2=0.5_sp

end if
w=zroots_unity(sign(n,isign),n/4)
w=cmplx(-aimag(w),real(w),kind=spc)
h1=c1*(cdata(2:nq)+conjg(cdata(nh:nq+2:-1))) The two separate transforms are sep-

arated out of cdata.h2=c2*(cdata(2:nq)-conjg(cdata(nh:nq+2:-1)))
Next they are recombined to form the true transform of the original real data:

cdata(2:nq)=h1+w(2:nq)*h2
cdata(nh:nq+2:-1)=conjg(h1-w(2:nq)*h2)
z=cdata(1) Squeeze the first and last data to-

gether to get them all within the
original array.

if (isign == 1) then
cdata(1)=cmplx(real(z)+aimag(z),real(z)-aimag(z),kind=spc)

else
cdata(1)=cmplx(c1*(real(z)+aimag(z)),c1*(real(z)-aimag(z)),kind=spc)
call four1(cdata,-1) This is the inverse transform for the

case isign=-1.end if
if (present(zdata)) then Ship out answer in data if required.

if (isign /= 1) then
data(1:n-1:2)=real(cdata)
data(2:n:2)=aimag(cdata)

end if
else

data(1:n-1:2)=real(cdata)
data(2:n:2)=aimag(cdata)
deallocate(cdata)

end if
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END SUBROUTINE realft_sp

SUBROUTINE realft_dp(data,isign,zdata)
USE nrtype; USE nrutil, ONLY : assert,assert_eq,zroots_unity
USE nr, ONLY : four1
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
COMPLEX(DPC), DIMENSION(:), OPTIONAL, TARGET :: zdata
INTEGER(I4B) :: n,ndum,nh,nq
COMPLEX(DPC), DIMENSION(size(data)/4) :: w
COMPLEX(DPC), DIMENSION(size(data)/4-1) :: h1,h2
COMPLEX(DPC), DIMENSION(:), POINTER :: cdata
COMPLEX(DPC) :: z
REAL(DP) :: c1=0.5_dp,c2
n=size(data)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in realft_dp’)
nh=n/2
nq=n/4
if (present(zdata)) then

ndum=assert_eq(n/2,size(zdata),’realft_dp’)
cdata=>zdata
if (isign == 1) cdata=cmplx(data(1:n-1:2),data(2:n:2),kind=spc)

else
allocate(cdata(n/2))
cdata=cmplx(data(1:n-1:2),data(2:n:2),kind=spc)

end if
if (isign == 1) then

c2=-0.5_dp
call four1(cdata,+1)

else
c2=0.5_dp

end if
w=zroots_unity(sign(n,isign),n/4)
w=cmplx(-aimag(w),real(w),kind=dpc)
h1=c1*(cdata(2:nq)+conjg(cdata(nh:nq+2:-1)))
h2=c2*(cdata(2:nq)-conjg(cdata(nh:nq+2:-1)))
cdata(2:nq)=h1+w(2:nq)*h2
cdata(nh:nq+2:-1)=conjg(h1-w(2:nq)*h2)
z=cdata(1)
if (isign == 1) then

cdata(1)=cmplx(real(z)+aimag(z),real(z)-aimag(z),kind=dpc)
else

cdata(1)=cmplx(c1*(real(z)+aimag(z)),c1*(real(z)-aimag(z)),kind=dpc)
call four1(cdata,-1)

end if
if (present(zdata)) then

if (isign /= 1) then
data(1:n-1:2)=real(cdata)
data(2:n:2)=aimag(cdata)

end if
else

data(1:n-1:2)=real(cdata)
data(2:n:2)=aimag(cdata)
deallocate(cdata)

end if
END SUBROUTINE realft_dp

� � �
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SUBROUTINE sinft(y)
USE nrtype; USE nrutil, ONLY : assert,cumsum,zroots_unity
USE nr, ONLY : realft
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y

Calculates the sine transform of a set of N real-valued data points stored in array y. The
number N must be a power of 2. On exit y is replaced by its transform. This program,
without changes, also calculates the inverse sine transform, but in this case the output array
should be multiplied by 2/N .

REAL(SP), DIMENSION(size(y)/2+1) :: wi
REAL(SP), DIMENSION(size(y)/2) :: y1,y2
INTEGER(I4B) :: n,nh
n=size(y)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in sinft’)
nh=n/2
wi=aimag(zroots_unity(n+n,nh+1)) Calculate the sine for the auxiliary array.
y(1)=0.0
y1=wi(2:nh+1)*(y(2:nh+1)+y(n:nh+1:-1))
Construct the two pieces of the auxiliary array.

y2=0.5_sp*(y(2:nh+1)-y(n:nh+1:-1)) Put them together to make the auxiliary ar-
ray.y(2:nh+1)=y1+y2

y(n:nh+1:-1)=y1-y2
call realft(y,+1) Transform the auxiliary array.
y(1)=0.5_sp*y(1) Initialize the sum used for odd terms.
y(2)=0.0
y1=cumsum(y(1:n-1:2)) Odd terms are determined by this running sum.
y(1:n-1:2)=y(2:n:2) Even terms in the transform are determined di-

rectly.y(2:n:2)=y1
END SUBROUTINE sinft

SUBROUTINE cosft1(y)
USE nrtype; USE nrutil, ONLY : assert,cumsum,zroots_unity
USE nr, ONLY : realft
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y

Calculates the cosine transform of a set ofN+1 real-valued data points y. The transformed
data replace the original data in array y. N must be a power of 2. This program, without
changes, also calculates the inverse cosine transform, but in this case the output array
should be multiplied by 2/N .

COMPLEX(SPC), DIMENSION((size(y)-1)/2) :: w
REAL(SP), DIMENSION((size(y)-1)/2-1) :: y1,y2
REAL(SP) :: summ
INTEGER(I4B) :: n,nh
n=size(y)-1
call assert(iand(n,n-1)==0, ’n must be a power of 2 in cosft1’)
nh=n/2
w=zroots_unity(n+n,nh)
summ=0.5_sp*(y(1)-y(n+1))
y(1)=0.5_sp*(y(1)+y(n+1))
y1=0.5_sp*(y(2:nh)+y(n:nh+2:-1)) Construct the two pieces of the auxiliary array.
y2=y(2:nh)-y(n:nh+2:-1)
summ=summ+sum(real(w(2:nh))*y2) Carry along this sum for later use in unfolding

the transform.y2=y2*aimag(w(2:nh))
y(2:nh)=y1-y2 Calculate the auxiliary function.
y(n:nh+2:-1)=y1+y2
call realft(y(1:n),1) Calculate the transform of the auxiliary function.
y(n+1)=y(2)
y(2)=summ summ is the value of F1 in equation (12.3.21).
y(2:n:2)=cumsum(y(2:n:2)) Equation (12.3.20).
END SUBROUTINE cosft1
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SUBROUTINE cosft2(y,isign)
USE nrtype; USE nrutil, ONLY : assert,cumsum,zroots_unity
USE nr, ONLY : realft
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
INTEGER(I4B), INTENT(IN) :: isign

Calculates the “staggered” cosine transform of a set of N real-valued data points y. The
transformed data replace the original data in array y. N must be a power of 2. Set isign
to +1 for a transform, and to −1 for an inverse transform. For an inverse transform, the
output array should be multiplied by 2/N .

COMPLEX(SPC), DIMENSION(size(y)) :: w
REAL(SP), DIMENSION(size(y)/2) :: y1,y2
REAL(SP) :: ytemp
INTEGER(I4B) :: n,nh
n=size(y)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in cosft2’)
nh=n/2
w=zroots_unity(4*n,n)
if (isign == 1) then Forward transform.

y1=0.5_sp*(y(1:nh)+y(n:nh+1:-1)) Calculate the auxiliary function.
y2=aimag(w(2:n:2))*(y(1:nh)-y(n:nh+1:-1))
y(1:nh)=y1+y2
y(n:nh+1:-1)=y1-y2
call realft(y,1) Calculate transform of the auxiliary function.
y1(1:nh-1)=y(3:n-1:2)*real(w(3:n-1:2)) & Even terms.

-y(4:n:2)*aimag(w(3:n-1:2))
y2(1:nh-1)=y(4:n:2)*real(w(3:n-1:2)) &

+y(3:n-1:2)*aimag(w(3:n-1:2))
y(3:n-1:2)=y1(1:nh-1)
y(4:n:2)=y2(1:nh-1)
ytemp=0.5_sp*y(2) Initialize recurrence for odd terms with 1

2
RN/2.

y(n-2:2:-2)=cumsum(y(n:4:-2),ytemp) Recurrence for odd terms.
y(n)=ytemp

else if (isign == -1) then Inverse transform.
ytemp=y(n)
y(4:n:2)=y(2:n-2:2)-y(4:n:2) Form difference of odd terms.
y(2)=2.0_sp*ytemp
y1(1:nh-1)=y(3:n-1:2)*real(w(3:n-1:2)) & Calculate Rk and Ik .

+y(4:n:2)*aimag(w(3:n-1:2))
y2(1:nh-1)=y(4:n:2)*real(w(3:n-1:2)) &

-y(3:n-1:2)*aimag(w(3:n-1:2))
y(3:n-1:2)=y1(1:nh-1)
y(4:n:2)=y2(1:nh-1)
call realft(y,-1)
y1=y(1:nh)+y(n:nh+1:-1) Invert auxiliary array.
y2=(0.5_sp/aimag(w(2:n:2)))*(y(1:nh)-y(n:nh+1:-1))
y(1:nh)=0.5_sp*(y1+y2)
y(n:nh+1:-1)=0.5_sp*(y1-y2)

end if
END SUBROUTINE cosft2

� � �

SUBROUTINE four3(data,isign)
USE nrtype
USE nr, ONLY : fourrow_3d
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces a 3-d complex array data by its discrete 3-d Fourier transform, if isign is input
as 1; or replaces data by its inverse 3-d discrete Fourier transform times the product of its
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three sizes, if isign is input as −1. All three of data’s sizes must be integer powers of 2
(this is checked for in fourrow 3d). Parallelism is by use of fourrow 3d.

COMPLEX(SPC), DIMENSION(:,:,:), ALLOCATABLE :: dat2,dat3
call fourrow_3d(data,isign) Transform in third dimension.
allocate(dat2(size(data,2),size(data,3),size(data,1)))
dat2=reshape(data,shape=shape(dat2),order=(/3,1,2/)) Transpose.
call fourrow_3d(dat2,isign) Transform in (original) first dimension.
allocate(dat3(size(data,3),size(data,1),size(data,2)))
dat3=reshape(dat2,shape=shape(dat3),order=(/3,1,2/)) Transpose.
deallocate(dat2)
call fourrow_3d(dat3,isign) Transform in (original) second dimension.
data=reshape(dat3,shape=shape(data),order=(/3,1,2/)) Transpose back to output or-

der.deallocate(dat3)
END SUBROUTINE four3

f90
The reshape intrinsic, used with anorder= parameter, is the multidi-
mensional generalization of the two-dimensionaltranspose operation.
The line

dat2=reshape(data,shape=shape(dat2),order=(/3,1,2/))

is equivalent to the do-loop

do j=1,size(data,1)
dat2(:,:,j)=data(j,:,:)

end do

Incidentally, we have found some Fortran 90 compilers that (for scalar machines) are
significantlyslower executing thereshape than executing the equivalent do-loop.
This, of course, shouldn’t happen, since thereshape basicallyis an implicit do-loop.
If you find such inefficient behavior on your compiler, you should report it as a
bug to your compiler vendor! (Only thus will Fortran 90 compilers be brought to
mature states of efficiency.)

SUBROUTINE four3_alt(data,isign)
USE nrtype
USE nr, ONLY : fourcol_3d
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces a 3-d complex array data by its discrete 2-d Fourier transform, if isign is input
as 1; or replaces data by its inverse 3-d discrete Fourier transform times the product of
its three sizes, if isign is input as −1. All three of data’s sizes must be integer powers
of 2 (this is checked for in fourcol 3d). Parallelism is by use of fourcol 3d. (Use this
version only if fourcol 3d is faster than fourrow 3d on your machine.)

COMPLEX(SPC), DIMENSION(:,:,:), ALLOCATABLE :: dat2,dat3
call fourcol_3d(data,isign) Transform in first dimension.
allocate(dat2(size(data,2),size(data,3),size(data,1)))
dat2=reshape(data,shape=shape(dat2),order=(/3,1,2/)) Transpose.
call fourcol_3d(dat2,isign) Transform in (original) second dimension.
allocate(dat3(size(data,3),size(data,1),size(data,2)))
dat3=reshape(dat2,shape=shape(dat3),order=(/3,1,2/)) Transpose.
deallocate(dat2)
call fourcol_3d(dat3,isign) Transform in (original) third dimension.
data=reshape(dat3,shape=shape(data),order=(/3,1,2/)) Transpose back to output or-

der.deallocate(dat3)
END SUBROUTINE four3_alt
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Note thatfour3 usesfourrow 3d, the three-dimensional counterpart
of fourrow, whilefour3 alt usesfourcol 3d, the three-dimensional
counterpart offourcol. You may want to time these programs to see

which is faster on your machine.

� � �

f90
In Volume 1, a single routine namedrlft3 was able to serve both as a
three-dimensional real FFT, and as a two-dimensional real FFT. The trick
is that the Fortran 77 version doesn’t care whether the input arraydata

is dimensioned as two- or three-dimensional. Fortran 90 is not so indifferent, and
better programming practice is to have two separate versions of the algorithm:

SUBROUTINE rlft2(data,spec,speq,isign)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : four2
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: data
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: spec
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: speq
INTEGER(I4B), INTENT(IN) :: isign

Given a two-dimensional real array data(1:M,1:N), this routine returns (for isign=1)
the complex fast Fourier transform as two complex arrays: On output, spec(1:M/2,1:N)
contains the zero and positive frequency values of the first frequency component, while
speq(1:N) contains the Nyquist critical frequency values of the first frequency component.
The second frequency components are stored for zero, positive, and negative frequencies,
in standard wrap-around order. For isign=-1, the inverse transform (times M × N/2 as
a constant multiplicative factor) is performed, with output data deriving from input spec
and speq. For inverse transforms on data not generated first by a forward transform, make
sure the complex input data array satisfies property (12.5.2). The size of all arrays must
always be integer powers of 2.

INTEGER :: i1,j1,nn1,nn2
REAL(DP) :: theta
COMPLEX(SPC) :: c1=(0.5_sp,0.0_sp),c2,h1,h2,w
COMPLEX(SPC), DIMENSION(size(data,2)-1) :: h1a,h2a
COMPLEX(DPC) :: ww,wp
nn1=assert_eq(size(data,1),2*size(spec,1),’rlft2: nn1’)
nn2=assert_eq(size(data,2),size(spec,2),size(speq),’rlft2: nn2’)
call assert(iand((/nn1,nn2/),(/nn1,nn2/)-1)==0, &

’dimensions must be powers of 2 in rlft2’)
c2=cmplx(0.0_sp,-0.5_sp*isign,kind=spc)
theta=TWOPI_D/(isign*nn1)
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=spc)
if (isign == 1) then Case of forward transform.

spec(:,:)=cmplx(data(1:nn1:2,:),data(2:nn1:2,:),kind=spc)
call four2(spec,isign) Here is where most all of the compute time

is spent.speq=spec(1,:)
end if
h1=c1*(spec(1,1)+conjg(speq(1)))
h1a=c1*(spec(1,2:nn2)+conjg(speq(nn2:2:-1)))
h2=c2*(spec(1,1)-conjg(speq(1)))
h2a=c2*(spec(1,2:nn2)-conjg(speq(nn2:2:-1)))
spec(1,1)=h1+h2
spec(1,2:nn2)=h1a+h2a
speq(1)=conjg(h1-h2)
speq(nn2:2:-1)=conjg(h1a-h2a)
ww=cmplx(1.0_dp,0.0_dp,kind=dpc) Initialize trigonometric recurrence.
do i1=2,nn1/4+1

j1=nn1/2-i1+2 Corresponding negative frequency.
ww=ww*wp+ww Do the trig recurrence.
w=ww
h1=c1*(spec(i1,1)+conjg(spec(j1,1))) Equation (12.3.5).
h1a=c1*(spec(i1,2:nn2)+conjg(spec(j1,nn2:2:-1)))
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h2=c2*(spec(i1,1)-conjg(spec(j1,1)))
h2a=c2*(spec(i1,2:nn2)-conjg(spec(j1,nn2:2:-1)))
spec(i1,1)=h1+w*h2
spec(i1,2:nn2)=h1a+w*h2a
spec(j1,1)=conjg(h1-w*h2)
spec(j1,nn2:2:-1)=conjg(h1a-w*h2a)

end do
if (isign == -1) then Case of reverse transform.

call four2(spec,isign)
data(1:nn1:2,:)=real(spec)
data(2:nn1:2,:)=aimag(spec)

end if
END SUBROUTINE rlft2

f90
call assert(iand((/nn1,nn2/),(/nn1,nn2/)-1)==0 ... Here an over-
loaded version ofassert that takes vector arguments is used to check
that each dimension is a power of 2. Note thatiand acts element-by-

element on an array.

SUBROUTINE rlft3(data,spec,speq,isign)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : four3
REAL(SP), DIMENSION(:,:,:), INTENT(INOUT) :: data
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: spec
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: speq
INTEGER(I4B), INTENT(IN) :: isign

Given a three-dimensional real array data(1:L,1:M,1:N), this routine returns (for
isign=1) the complex Fourier transform as two complex arrays: On output, the zero and
positive frequency values of the first frequency component are in spec(1:L/2,1:M,1:N),
while speq(1:M,1:N) contains the Nyquist critical frequency values of the first frequency
component. The second and third frequency components are stored for zero, positive, and
negative frequencies, in standard wrap-around order. For isign=-1, the inverse transform
(times L × M × N/2 as a constant multiplicative factor) is performed, with output data
deriving from input spec and speq. For inverse transforms on data not generated first by a
forward transform, make sure the complex input data array satisfies property (12.5.2). The
size of all arrays must always be integer powers of 2.

INTEGER :: i1,i3,j1,j3,nn1,nn2,nn3
REAL(DP) :: theta
COMPLEX(SPC) :: c1=(0.5_sp,0.0_sp),c2,h1,h2,w
COMPLEX(SPC), DIMENSION(size(data,2)-1) :: h1a,h2a
COMPLEX(DPC) :: ww,wp
c2=cmplx(0.0_sp,-0.5_sp*isign,kind=spc)
nn1=assert_eq(size(data,1),2*size(spec,1),’rlft2: nn1’)
nn2=assert_eq(size(data,2),size(spec,2),size(speq,1),’rlft2: nn2’)
nn3=assert_eq(size(data,3),size(spec,3),size(speq,2),’rlft2: nn3’)
call assert(iand((/nn1,nn2,nn3/),(/nn1,nn2,nn3/)-1)==0, &

’dimensions must be powers of 2 in rlft3’)
theta=TWOPI_D/(isign*nn1)
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
if (isign == 1) then Case of forward transform.

spec(:,:,:)=cmplx(data(1:nn1:2,:,:),data(2:nn1:2,:,:),kind=spc)
call four3(spec,isign) Here is where most all of the compute time

is spent.speq=spec(1,:,:)
end if
do i3=1,nn3

j3=1
if (i3 /= 1) j3=nn3-i3+2
h1=c1*(spec(1,1,i3)+conjg(speq(1,j3)))
h1a=c1*(spec(1,2:nn2,i3)+conjg(speq(nn2:2:-1,j3)))
h2=c2*(spec(1,1,i3)-conjg(speq(1,j3)))
h2a=c2*(spec(1,2:nn2,i3)-conjg(speq(nn2:2:-1,j3)))
spec(1,1,i3)=h1+h2
spec(1,2:nn2,i3)=h1a+h2a
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speq(1,j3)=conjg(h1-h2)
speq(nn2:2:-1,j3)=conjg(h1a-h2a)
ww=cmplx(1.0_dp,0.0_dp,kind=dpc) Initialize trigonometric recurrence.
do i1=2,nn1/4+1

j1=nn1/2-i1+2 Corresponding negative frequency.
ww=ww*wp+ww Do the trig recurrence.
w=ww
h1=c1*(spec(i1,1,i3)+conjg(spec(j1,1,j3))) Equation (12.3.5).
h1a=c1*(spec(i1,2:nn2,i3)+conjg(spec(j1,nn2:2:-1,j3)))
h2=c2*(spec(i1,1,i3)-conjg(spec(j1,1,j3)))
h2a=c2*(spec(i1,2:nn2,i3)-conjg(spec(j1,nn2:2:-1,j3)))
spec(i1,1,i3)=h1+w*h2
spec(i1,2:nn2,i3)=h1a+w*h2a
spec(j1,1,j3)=conjg(h1-w*h2)
spec(j1,nn2:2:-1,j3)=conjg(h1a-w*h2a)

end do
end do
if (isign == -1) then Case of reverse transform.

call four3(spec,isign)
data(1:nn1:2,:,:)=real(spec)
data(2:nn1:2,:,:)=aimag(spec)

end if
END SUBROUTINE rlft3

� � �

Referring back to the discussion of parallelism,§22.4, that led tofour1’s
implementation with

√
N parallelism, you might wonder whether Fortran 90 provides

sufficiently powerful high-level constructs to enable an FFT routine withN -fold
parallelism. The answer is, “It does, but you wouldn’t want to use them!” Access to
arbitrary interprocessor communication in Fortran 90 is through the mechanism of
the “vector subscript” (one-dimensional array of indices in arbitrary order). When a
vector subscript is on the right-hand side of an assignment statement, the operation
performed is effectively a “gather”; when it is on the left-hand side, the operation
is effectively a “scatter.”

It is quite possible to write the classic FFT algorithm in terms of gather and scatter
operations. In fact, we do so now. The problem is efficiency: The computations
involved in constructing the vector subscripts for the scatter/gather operations,and the
actual scatter/gather operations themselves, tend to swamp the underlying very lean
FFT algorithm. The result is very slow, though theoretically perfectly parallelizable,
code. Since small-scale parallel (SSP) machines can saturate their processors with√
N parallelism, while massively multiprocessor (MMP) machines inevitably come

with architecture-optimized FFT library calls, there is really no niche for these
routines, except as pedagogical demonstrations. We give here a one-dimensional
routine, and also an arbitrary-dimensional routine modeled on Volume 1’sfourn.
Note the complete absence of do-loops of sizeN ; the loops that remain are over
logN stages, or over the number of dimensions.

SUBROUTINE four1_gather(data,isign)
USE nrtype; USE nrutil, ONLY : arth,assert
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces a complex array data by its discrete Fourier transform, if isign is input as 1;
or replaces data by size(data) times its inverse discrete Fourier transform, if isign is
input as −1. The size of data must be an integer power of 2. This routine demonstrates
coding the FFT algorithm in high-level Fortran 90 constructs. Generally the result is very
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much slower than library routines coded for specific architectures, and also significantly slower
than the parallelization-by-rows method used in the routine four1.

INTEGER(I4B) :: n,n2,m,mm
REAL(DP) :: theta
COMPLEX(SPC) :: wp
INTEGER(I4B), DIMENSION(size(data)) :: jarr
INTEGER(I4B), DIMENSION(:), ALLOCATABLE :: jrev
COMPLEX(SPC), DIMENSION(:), ALLOCATABLE :: wtab,dtemp
n=size(data)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in four1_gather’)
if (n <= 1) RETURN
allocate(jrev(n)) Begin bit-reversal section of the routine.
jarr=arth(0,1,n)
jrev=0
n2=n/2
m=n2
do Construct an array of pointers from an index

to its bit-reverse.where (iand(jarr,1) /= 0) jrev=jrev+m
jarr=jarr/2
m=m/2
if (m == 0) exit

end do
data=data(jrev+1) Move all data to bit-reversed location by a

single gather/scatter.deallocate(jrev)
allocate(dtemp(n),wtab(n2)) Begin Danielson-Lanczos section of the rou-

tine.jarr=arth(0,1,n)
m=1
mm=n2
wtab(1)=(1.0_sp,0.0_sp) Seed the roots-of-unity table.
do Outer loop executed log2 N times.

where (iand(jarr,m) /= 0)
The basic idea is to address the correct root-of-unity for each Danielson-Lanczos
multiplication by tricky bit manipulations.

dtemp=data*wtab(mm*iand(jarr,m-1)+1)
data=eoshift(data,-m)-dtemp This is half of Danielson-Lanczos.

elsewhere
data=data+eoshift(dtemp,m) This is the other half. The referenced ele-

ments of dtemp will have been set in the
where clause.

end where
m=m*2
if (m >= n) exit
mm=mm/2
theta=PI_D/(isign*m) Ready for trigonometry?
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2, sin(theta),kind=spc)
Add entries to the table for the next iteration.

wtab(mm+1:n2:2*mm)=wtab(1:n2-mm:2*mm)*wp+wtab(1:n2-mm:2*mm)
end do
deallocate(dtemp,wtab)
END SUBROUTINE four1_gather

SUBROUTINE fourn_gather(data,nn,isign)
USE nrtype; USE nrutil, ONLY : arth,assert
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), DIMENSION(:) :: nn
INTEGER(I4B), INTENT(IN) :: isign

For data a one-dimensional complex array containing the values (in Fortran normal order-
ing) of an M -dimensional complex arrray, this routine replaces data by its M -dimensional
discrete Fourier transform, if isign is input as 1. nn(1:M) is an integer array containing
the lengths of each dimension (number of complex values), each of which must be a power
of 2. If isign is input as −1, data is replaced by its inverse transform times the product of
the lengths of all dimensions. This routine demonstrates coding the multidimensional FFT
algorithm in high-level Fortran 90 constructs. Generally the result is very much slower than
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library routines coded for specific architectures, and significantly slower than routines four2
and four3 for the two- and three-dimensional cases.

INTEGER(I4B), DIMENSION(:), ALLOCATABLE :: jarr
INTEGER(I4B) :: ndim,idim,ntot,nprev,n,n2,msk0,msk1,msk2,m,mm,mn
REAL(DP) :: theta
COMPLEX(SPC) :: wp
COMPLEX(SPC), DIMENSION(:), ALLOCATABLE :: wtab,dtemp
call assert(iand(nn,nn-1)==0, &

’each dimension must be a power of 2 in fourn_gather’)
ndim=size(nn)
ntot=product(nn)
nprev=1
allocate(jarr(ntot))
do idim=1,ndim Loop over the dimensions.

jarr=arth(0,1,ntot) We begin the bit-reversal section of the
routine.n=nn(idim)

n2=n/2
msk0=nprev
msk1=nprev*n2
msk2=msk0+msk1
do Construct an array of pointers from an

index to its bit-reverse.if (msk1 <= msk0) exit
where (iand(jarr,msk0) == 0 .neqv. iand(jarr,msk1) == 0) &

jarr=ieor(jarr,msk2)
msk0=msk0*2
msk1=msk1/2
msk2=msk0+msk1

end do
data=data(jarr+1) Move all data to bit-reversed location by

a single gather/scatter.allocate(dtemp(ntot),wtab(n2))
We begin the Danielson-Lanczos section of the routine.

jarr=iand(n-1,arth(0,1,ntot)/nprev)
m=1
mm=n2
mn=m*nprev
wtab(1)=(1.0_sp,0.0_sp) Seed the roots-of-unity table.
do This loop executed log2 N times.

if (mm == 0) exit
where (iand(jarr,m) /= 0)

The basic idea is to address the correct root-of-unity for each Danielson-Lanczos
multiplication by tricky bit manipulations.

dtemp=data*wtab(mm*iand(jarr,m-1)+1)
data=eoshift(data,-mn)-dtemp This is half of Danielson-Lanczos.

elsewhere
data=data+eoshift(dtemp,mn) This is the other half. The referenced el-

ements of dtemp will have been set
in the where clause.

end where
m=m*2
if (m >= n) exit
mn=m*nprev
mm=mm/2
theta=PI_D/(isign*m) Ready for trigonometry?
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
Add entries to the table for the next iteration.

wtab(mm+1:n2:2*mm)=wtab(1:n2-mm:2*mm)*wp &
+wtab(1:n2-mm:2*mm)

end do
deallocate(dtemp,wtab)
nprev=n*nprev

end do
deallocate(jarr)
END SUBROUTINE fourn_gather

f90
call assert(iand(nn,nn-1)==0 ... Once again the vector version of
assert is used to test all the dimensions stored innn simultaneously.
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Chapter B13. Fourier and Spectral
Applications

FUNCTION convlv(data,respns,isign)
USE nrtype; USE nrutil, ONLY : assert,nrerror
USE nr, ONLY : realft
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data
REAL(SP), DIMENSION(:), INTENT(IN) :: respns
INTEGER(I4B), INTENT(IN) :: isign
REAL(SP), DIMENSION(size(data)) :: convlv

Convolves or deconvolves a real data set data (of length N , including any user-supplied
zero padding) with a response function respns, stored in wrap-around order in a real array
of length M ≤ N . (M should be an odd integer, N a power of 2.) Wrap-around order
means that the first half of the array respns contains the impulse response function at
positive times, while the second half of the array contains the impulse response function at
negative times, counting down from the highest element respns(M). On input isign is
+1 for convolution, −1 for deconvolution. The answer is returned as the function convlv,
an array of length N . data has INTENT(INOUT) for consistency with realft, but is
actually unchanged.

INTEGER(I4B) :: no2,n,m
COMPLEX(SPC), DIMENSION(size(data)/2) :: tmpd,tmpr
n=size(data)
m=size(respns)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in convlv’)
call assert(mod(m,2)==1, ’m must be odd in convlv’)
convlv(1:m)=respns(:) Put respns in array of length n.
convlv(n-(m-3)/2:n)=convlv((m+3)/2:m)
convlv((m+3)/2:n-(m-1)/2)=0.0 Pad with zeros.
no2=n/2
call realft(data,1,tmpd) FFT both arrays.
call realft(convlv,1,tmpr)
if (isign == 1) then Multiply FFTs to convolve.

tmpr(1)=cmplx(real(tmpd(1))*real(tmpr(1))/no2, &
aimag(tmpd(1))*aimag(tmpr(1))/no2, kind=spc)

tmpr(2:)=tmpd(2:)*tmpr(2:)/no2
else if (isign == -1) then Divide FFTs to deconvolve.

if (any(abs(tmpr(2:)) == 0.0) .or. real(tmpr(1)) == 0.0 &
.or. aimag(tmpr(1)) == 0.0) call nrerror &
(’deconvolving at response zero in convlv’)

tmpr(1)=cmplx(real(tmpd(1))/real(tmpr(1))/no2, &
aimag(tmpd(1))/aimag(tmpr(1))/no2, kind=spc)

tmpr(2:)=tmpd(2:)/tmpr(2:)/no2
else

call nrerror(’no meaning for isign in convlv’)
end if
call realft(convlv,-1,tmpr) Inverse transform back to time domain.
END FUNCTION convlv

1253
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f90
tmpr(1)=cmplx(...kind=spc) The intrinsic functioncmplx returns a
quantity of type default complex unless thekind argument is present. It
is therefore a good idea always to include this argument. The intrinsic

functionsreal andaimag, on the other hand, when called with a complex argument,
return the same kind as their argument. So it is a good ideanot to put in a
kind argment for these. (In fact,aimag doesn’t allow one.) Don’t confuse these
situations, regarding complex variables, with the completely unrelated use ofreal

to convert a real or integer variable to a real value of specified kind. In this latter
case,kind should be specified.

� � �

FUNCTION correl(data1,data2)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : realft
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data1,data2
REAL(SP), DIMENSION(size(data1)) :: correl

Computes the correlation of two real data sets data1 and data2 of length N (includ-
ing any user-supplied zero padding). N must be an integer power of 2. The answer is
returned as the function correl, an array of length N . The answer is stored in wrap-
around order, i.e., correlations at increasingly negative lags are in correl(N) on down to
correl(N/2+ 1), while correlations at increasingly positive lags are in correl(1) (zero
lag) on up to correl(N/2). Sign convention of this routine: if data1 lags data2, i.e.,
is shifted to the right of it, then correl will show a peak at positive lags.

COMPLEX(SPC), DIMENSION(size(data1)/2) :: cdat1,cdat2
INTEGER(I4B) :: no2,n Normalization for inverse FFT.
n=assert_eq(size(data1),size(data2),’correl’)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in correl’)
no2=n/2
call realft(data1,1,cdat1) Transform both data vectors.
call realft(data2,1,cdat2)
cdat1(1)=cmplx(real(cdat1(1))*real(cdat2(1))/no2, & Multiply to find FFT of their

correlation.aimag(cdat1(1))*aimag(cdat2(1))/no2, kind=spc)
cdat1(2:)=cdat1(2:)*conjg(cdat2(2:))/no2
call realft(correl,-1,cdat1) Inverse transform gives correlation.
END FUNCTION correl

f90
cdat1(1)=cmplx(...kind=spc) See just above for why we use the explicit
kind type parameterspc for cmplx, but omitsp for real.

� � �

SUBROUTINE spctrm(p,k,ovrlap,unit,n_window)
USE nrtype; USE nrutil, ONLY : arth,nrerror
USE nr, ONLY : four1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: p
INTEGER(I4B), INTENT(IN) :: k
LOGICAL(LGT), INTENT(IN) :: ovrlap True for overlapping segments, false other-

wise.INTEGER(I4B), OPTIONAL, INTENT(IN) :: n_window,unit
Reads data from input unit 9, or if the optional argument unit is present, from that input
unit. The output is an array p of length M that contains the data’s power (mean square
amplitude) at frequency (j − 1)/2M cycles per grid point, for j = 1, 2, . . . ,M , based on
(2*k+1)*M data points (if ovrlap is set .true.) or 4*k*M data points (if ovrlap
is set .false.). The number of segments of the data is 2*k in both cases: The routine
calls four1 k times, each call with 2 partitions each of 2M real data points. If the optional
argument n window is present, the routine uses the Bartlett window, the square window,
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or the Welch window for n window= 1,2, 3 respectively. If n window is not present, the
Bartlett window is used.

INTEGER(I4B) :: j,joff,joffn,kk,m,m4,m43,m44,mm,iunit,nn_window
REAL(SP) :: den,facm,facp,sumw
REAL(SP), DIMENSION(2*size(p)) :: w
REAL(SP), DIMENSION(4*size(p)) :: w1
REAL(SP), DIMENSION(size(p)) :: w2
COMPLEX(SPC), DIMENSION(2*size(p)) :: cw1
m=size(p)
if (present(n_window)) then

nn_window=n_window
else

nn_window=1
end if
if (present(unit)) then

iunit=unit
else

iunit=9
end if
mm=m+m Useful factors.
m4=mm+mm
m44=m4+4
m43=m4+3
den=0.0
facm=m Factors used by the window function.
facp=1.0_sp/m
w1(1:mm)=window(arth(1,1,mm),facm,facp,nn_window)
sumw=dot_product(w1(1:mm),w1(1:mm)) Accumulate the squared sum of the weights.
p(:)=0.0 Initialize the spectrum to zero.
if (ovrlap) read (iunit,*) (w2(j),j=1,m) Initialize the “save” half-buffer.
do kk=1,k Loop over data segments in groups of two.

do joff=-1,0,1 Get two complete segments into workspace.
if (ovrlap) then

w1(joff+2:joff+mm:2)=w2(1:m)
read (iunit,*) (w2(j),j=1,m)
joffn=joff+mm
w1(joffn+2:joffn+mm:2)=w2(1:m)

else
read (iunit,*) (w1(j),j=joff+2,m4,2)

end if
end do
w=window(arth(1,1,mm),facm,facp,nn_window) Apply the window to the data.
w1(2:m4:2)=w1(2:m4:2)*w
w1(1:m4:2)=w1(1:m4:2)*w
cw1(1:mm)=cmplx(w1(1:m4:2),w1(2:m4:2),kind=spc)
call four1(cw1(1:mm),1) Fourier transform the windowed data.
w1(1:m4:2)=real(cw1(1:mm))
w1(2:m4:2)=aimag(cw1(1:mm))
p(1)=p(1)+w1(1)**2+w1(2)**2 Sum results into previous segments.
p(2:m)=p(2:m)+w1(4:2*m:2)**2+w1(3:2*m-1:2)**2+&

w1(m44-4:m44-2*m:-2)**2+w1(m43-4:m43-2*m:-2)**2
den=den+sumw

end do
p(:)=p(:)/(m4*den) Normalize the output.
CONTAINS

FUNCTION window(j,facm,facp,nn_window)
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: j
INTEGER(I4B), INTENT(IN) :: nn_window
REAL(SP), INTENT(IN) :: facm,facp
REAL(SP), DIMENSION(size(j)) :: window
select case(nn_window)

case(1)
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window(j)=(1.0_sp-abs(((j-1)-facm)*facp)) Bartlett window.
case(2)

window(j)=1.0 Square window.
case(3)

window(j)=(1.0_sp-(((j-1)-facm)*facp)**2) Welch window.
case default

call nrerror(’unimplemented window function in spctrm’)
end select
END FUNCTION window
END SUBROUTINE spctrm

f90
The Fortran 90 optional argument feature allows us to make unit 9
the default output unit in this routine, but leave the user the option of
specifying a different output unit by supplying an actual argument for

unit. We also use an optional argument to allow the user the option of overriding
the default selection of the Bartlett window function.

FUNCTION window(j,facm,facp,nn_window) In Fortran 77 we coded this as a
statement function. Here the internal function is equivalent, but allows full
specification of the interface and so is preferred.

� � �

SUBROUTINE memcof(data,xms,d)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: xms
REAL(SP), DIMENSION(:), INTENT(IN) :: data
REAL(SP), DIMENSION(:), INTENT(OUT) :: d

Given a real vector data of length N , this routine returns M linear prediction coefficients
in a vector d of length M , and returns the mean square discrepancy as xms.

INTEGER(I4B) :: k,m,n
REAL(SP) :: denom,pneum
REAL(SP), DIMENSION(size(data)) :: wk1,wk2,wktmp
REAL(SP), DIMENSION(size(d)) :: wkm
m=size(d)
n=size(data)
xms=dot_product(data,data)/n
wk1(1:n-1)=data(1:n-1)
wk2(1:n-1)=data(2:n)
do k=1,m

pneum=dot_product(wk1(1:n-k),wk2(1:n-k))
denom=dot_product(wk1(1:n-k),wk1(1:n-k))+ &

dot_product(wk2(1:n-k),wk2(1:n-k))
d(k)=2.0_sp*pneum/denom
xms=xms*(1.0_sp-d(k)**2)
d(1:k-1)=wkm(1:k-1)-d(k)*wkm(k-1:1:-1)
The algorithm is recursive, although it is implemented as an iteration. It builds up the
answer for larger and larger values of m until the desired value is reached. At this point
in the algorithm, one could return the vector d and scalar xms for a set of LP coefficients
with k (rather than m) terms.

if (k == m) RETURN
wkm(1:k)=d(1:k)
wktmp(2:n-k)=wk1(2:n-k)
wk1(1:n-k-1)=wk1(1:n-k-1)-wkm(k)*wk2(1:n-k-1)
wk2(1:n-k-1)=wk2(2:n-k)-wkm(k)*wktmp(2:n-k)

end do
call nrerror(’never get here in memcof’)
END SUBROUTINE memcof

� � �
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SUBROUTINE fixrts(d)
USE nrtype
USE nr, ONLY : zroots
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d

Given the LP coefficients d, this routine finds all roots of the characteristic polynomial
(13.6.14), reflects any roots that are outside the unit circle back inside, and then returns
a modified set of coefficients in d.

INTEGER(I4B) :: i,m
LOGICAL(LGT) :: polish
COMPLEX(SPC), DIMENSION(size(d)+1) :: a
COMPLEX(SPC), DIMENSION(size(d)) :: roots
m=size(d)
a(m+1)=cmplx(1.0_sp,kind=spc) Set up complex coefficients for polynomial

root finder.a(m:1:-1)=cmplx(-d(1:m),kind=spc)
polish=.true.
call zroots(a(1:m+1),roots,polish) Find all the roots.
where (abs(roots) > 1.0) roots=1.0_sp/conjg(roots)
Reflect all roots outside the unit circle back inside.

a(1)=-roots(1) Now reconstruct the polynomial coefficients,
a(2:m+1)=cmplx(1.0_sp,kind=spc)
do i=2,m by looping over the roots

a(2:i)=a(1:i-1)-roots(i)*a(2:i) and synthetically multiplying.
a(1)=-roots(i)*a(1)

end do
d(m:1:-1)=-real(a(1:m)) The polynomial coefficients are guaranteed

to be real, so we need only return the
real part as new LP coefficients.

END SUBROUTINE fixrts

f90
a(m+1)=cmplx(1.0_sp,kind=spc) See afterconvlv on p. 1254 to review
why we use the explicit kind type parameterspc for cmplx.

� � �

FUNCTION predic(data,d,nfut)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data,d
INTEGER(I4B), INTENT(IN) :: nfut
REAL(SP), DIMENSION(nfut) :: predic

Given an array data, and given the data’s LP coefficients d in an array of length M , this
routine applies equation (13.6.11) to predict the next nfut data points, which it returns in
an array as the function value predic. Note that the routine references only the last M
values of data, as initial values for the prediction.

INTEGER(I4B) :: j,ndata,m
REAL(SP) :: discrp,sm
REAL(SP), DIMENSION(size(d)) :: reg
m=size(d)
ndata=size(data)
reg(1:m)=data(ndata:ndata+1-m:-1)
do j=1,nfut

discrp=0.0
This is where you would put in a known discrepancy if you were reconstructing a function
by linear predictive coding rather than extrapolating a function by linear prediction. See
text.

sm=discrp+dot_product(d,reg)
reg=eoshift(reg,-1,sm) [If you want to implement circular arrays, you can

avoid this shifting of coefficients!]predic(j)=sm
end do
END FUNCTION predic

� � �
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FUNCTION evlmem(fdt,d,xms)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: fdt,xms
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP) :: evlmem

Given d and xms as returned by memcof, this function returns the power spectrum estimate
P (f) as a function of fdt = f∆.

COMPLEX(SPC) :: z,zz
REAL(DP) :: theta Trigonometric recurrences in double precision.
theta=TWOPI_D*fdt
z=cmplx(cos(theta),sin(theta),kind=spc)
zz=1.0_sp-z*poly(z,d)
evlmem=xms/abs(zz)**2 Equation (13.7.4).
END FUNCTION evlmem

f90
zz=...poly(z,d) Thepoly function innrutil returns the value of the
polynomial with coefficientsd(:) at z. Here a version that takes real
coefficients and a complex argument is actually invoked, but all the

different versions have been overloaded onto the same namepoly.

� � �

SUBROUTINE period(x,y,ofac,hifac,px,py,jmax,prob)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc
USE nr, ONLY : avevar
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: jmax
REAL(SP), INTENT(IN) :: ofac,hifac
REAL(SP), INTENT(OUT) :: prob
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), DIMENSION(:), POINTER :: px,py

Input is a set of N data points with abscissas x (which need not be equally spaced) and
ordinates y, and a desired oversampling factor ofac (a typical value being 4 or larger).
The routine returns pointers to internally allocated arrays px and py. px is filled with
an increasing sequence of frequencies (not angular frequencies) up to hifac times the
“average” Nyquist frequency, and py is filled with the values of the Lomb normalized
periodogram at those frequencies. The length of these arrays is 0.5*ofac*hifac*N .
The arrays x and y are not altered. The routine also returns jmax such that py(jmax) is
the maximum element in py, and prob, an estimate of the significance of that maximum
against the hypothesis of random noise. A small value of prob indicates that a significant
periodic signal is present.

INTEGER(I4B) :: i,n,nout
REAL(SP) :: ave,cwtau,effm,expy,pnow,sumc,sumcy,&

sums,sumsh,sumsy,swtau,var,wtau,xave,xdif,xmax,xmin
REAL(DP), DIMENSION(size(x)) :: tmp1,tmp2,wi,wpi,wpr,wr
LOGICAL(LGT), SAVE :: init=.true.
n=assert_eq(size(x),size(y),’period’)
if (init) then

init=.false.
nullify(px,py)

else
if (associated(px)) deallocate(px)
if (associated(py)) deallocate(py)

end if
nout=0.5_sp*ofac*hifac*n
allocate(px(nout),py(nout))
call avevar(y(:),ave,var) Get mean and variance of the input data.
xmax=maxval(x(:)) Go through data to get the range of abscis-

sas.xmin=minval(x(:))
xdif=xmax-xmin
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xave=0.5_sp*(xmax+xmin)
pnow=1.0_sp/(xdif*ofac) Starting frequency.
tmp1(:)=TWOPI_D*((x(:)-xave)*pnow) Initialize values for the trigonometric recur-

rences at each data point. The recur-
rences are done in double precision.

wpr(:)=-2.0_dp*sin(0.5_dp*tmp1)**2
wpi(:)=sin(tmp1(:))
wr(:)=cos(tmp1(:))
wi(:)=wpi(:)
do i=1,nout Main loop over the frequencies to be evalu-

ated.px(i)=pnow
sumsh=dot_product(wi,wr) First, loop over the data to get τ and related

quantities.sumc=dot_product(wr(:)-wi(:),wr(:)+wi(:))
wtau=0.5_sp*atan2(2.0_sp*sumsh,sumc)
swtau=sin(wtau)
cwtau=cos(wtau)
tmp1(:)=wi(:)*cwtau-wr(:)*swtau Then, loop over the data again to get the

periodogram value.tmp2(:)=wr(:)*cwtau+wi(:)*swtau
sums=dot_product(tmp1,tmp1)
sumc=dot_product(tmp2,tmp2)
sumsy=dot_product(y(:)-ave,tmp1)
sumcy=dot_product(y(:)-ave,tmp2)
tmp1(:)=wr(:) Update the trigonometric recurrences.
wr(:)=(wr(:)*wpr(:)-wi(:)*wpi(:))+wr(:)
wi(:)=(wi(:)*wpr(:)+tmp1(:)*wpi(:))+wi(:)
py(i)=0.5_sp*(sumcy**2/sumc+sumsy**2/sums)/var
pnow=pnow+1.0_sp/(ofac*xdif) The next frequency.

end do
jmax=imaxloc(py(1:nout))
expy=exp(-py(jmax)) Evaluate statistical significance of the maxi-

mum.effm=2.0_sp*nout/ofac
prob=effm*expy
if (prob > 0.01_sp) prob=1.0_sp-(1.0_sp-expy)**effm
END SUBROUTINE period

f90
This routine shows another example of how to return arrays whose size is
not known in advance (cf.zbrac in Chapter B9). The coding is explained
in the subsection on pointers in§21.5. The size of the output arrays,

nout in the code, is available assize(px).

jmax=imaxloc... See discussion ofimaxloc on p. 1017.

SUBROUTINE fasper(x,y,ofac,hifac,px,py,jmax,prob)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,imaxloc,nrerror
USE nr, ONLY : avevar,realft
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(IN) :: ofac,hifac
INTEGER(I4B), INTENT(OUT) :: jmax
REAL(SP), INTENT(OUT) :: prob
REAL(SP), DIMENSION(:), POINTER :: px,py
INTEGER(I4B), PARAMETER :: MACC=4

Input is a set of N data points with abscissas x (which need not be equally spaced) and
ordinates y, and a desired oversampling factor ofac (a typical value being 4 or larger).
The routine returns pointers to internally allocated arrays px and py. px is filled with
an increasing sequence of frequencies (not angular frequencies) up to hifac times the
“average” Nyquist frequency, and py is filled with the values of the Lomb normalized
periodogram at those frequencies. The length of these arrays is 0.5*ofac*hifac*N .
The arrays x and y are not altered. The routine also returns jmax such that py(jmax) is
the maximum element in py, and prob, an estimate of the significance of that maximum
against the hypothesis of random noise. A small value of prob indicates that a significant
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periodic signal is present.
Parameter: MACC is the number of interpolation points per 1/4 cycle of highest frequency.

INTEGER(I4B) :: j,k,n,ndim,nfreq,nfreqt,nout
REAL(SP) :: ave,ck,ckk,cterm,cwt,den,df,effm,expy,fac,fndim,hc2wt,&

hs2wt,hypo,sterm,swt,var,xdif,xmax,xmin
REAL(SP), DIMENSION(:), ALLOCATABLE :: wk1,wk2
LOGICAL(LGT), SAVE :: init=.true.
n=assert_eq(size(x),size(y),’fasper’)
if (init) then

init=.false.
nullify(px,py)

else
if (associated(px)) deallocate(px)
if (associated(py)) deallocate(py)

end if
nfreqt=ofac*hifac*n*MACC
nfreq=64
do Size the FFT as next power of 2 above nfreqt.

if (nfreq >= nfreqt) exit
nfreq=nfreq*2

end do
ndim=2*nfreq
allocate(wk1(ndim),wk2(ndim))
call avevar(y(1:n),ave,var) Compute the mean, variance, and range of the data.
xmax=maxval(x(:))
xmin=minval(x(:))
xdif=xmax-xmin
wk1(1:ndim)=0.0 Zero the workspaces.
wk2(1:ndim)=0.0
fac=ndim/(xdif*ofac)
fndim=ndim
do j=1,n Extirpolate the data into the workspaces.

ck=1.0_sp+mod((x(j)-xmin)*fac,fndim)
ckk=1.0_sp+mod(2.0_sp*(ck-1.0_sp),fndim)
call spreadval(y(j)-ave,wk1,ck,MACC)
call spreadval(1.0_sp,wk2,ckk,MACC)

end do
call realft(wk1(1:ndim),1) Take the fast Fourier transforms.
call realft(wk2(1:ndim),1)
df=1.0_sp/(xdif*ofac)
nout=0.5_sp*ofac*hifac*n
allocate(px(nout),py(nout))
k=3
do j=1,nout Compute the Lomb value for each frequency.

hypo=sqrt(wk2(k)**2+wk2(k+1)**2)
hc2wt=0.5_sp*wk2(k)/hypo
hs2wt=0.5_sp*wk2(k+1)/hypo
cwt=sqrt(0.5_sp+hc2wt)
swt=sign(sqrt(0.5_sp-hc2wt),hs2wt)
den=0.5_sp*n+hc2wt*wk2(k)+hs2wt*wk2(k+1)
cterm=(cwt*wk1(k)+swt*wk1(k+1))**2/den
sterm=(cwt*wk1(k+1)-swt*wk1(k))**2/(n-den)
px(j)=j*df
py(j)=(cterm+sterm)/(2.0_sp*var)
k=k+2

end do
deallocate(wk1,wk2)
jmax=imaxloc(py(1:nout))
expy=exp(-py(jmax)) Estimate significance of largest peak value.
effm=2.0_sp*nout/ofac
prob=effm*expy
if (prob > 0.01_sp) prob=1.0_sp-(1.0_sp-expy)**effm
CONTAINS
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SUBROUTINE spreadval(y,yy,x,m)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: y,x
REAL(SP), DIMENSION(:), INTENT(INOUT) :: yy
INTEGER(I4B), INTENT(IN) :: m

Given an array yy of length N , extirpolate (spread) a value y into m actual array elements
that best approximate the “fictional” (i.e., possibly noninteger) array element number x.
The weights used are coefficients of the Lagrange interpolating polynomial.

INTEGER(I4B) :: ihi,ilo,ix,j,nden,n
REAL(SP) :: fac
INTEGER(I4B), DIMENSION(10) :: nfac = (/ &

1,1,2,6,24,120,720,5040,40320,362880 /)
if (m > 10) call nrerror(’factorial table too small in spreadval’)
n=size(yy)
ix=x
if (x == real(ix,sp)) then

yy(ix)=yy(ix)+y
else

ilo=min(max(int(x-0.5_sp*m+1.0_sp),1),n-m+1)
ihi=ilo+m-1
nden=nfac(m)
fac=product(x-arth(ilo,1,m))
yy(ihi)=yy(ihi)+y*fac/(nden*(x-ihi))
do j=ihi-1,ilo,-1

nden=(nden/(j+1-ilo))*(j-ihi)
yy(j)=yy(j)+y*fac/(nden*(x-j))

end do
end if
END SUBROUTINE spreadval
END SUBROUTINE fasper

f90
This routine shows another example of how to return arrays whose size is
not known in advance (cf.zbrac in Chapter B9). The coding is explained
in the subsection on pointers in§21.5. The size of the output arrays,

nout in the code, is available assize(px).

jmax=imaxloc... See discussion ofimaxloc on p. 1017.

if (x == real(ix,sp)) then Without the explicit kind type parametersp,
real returns a value of type default real for an integer argument. This prevents
automatic conversion of the routine from single to double precision. Here all you
have to do is redefinesp in nrtype to get double precision.

� � �

SUBROUTINE dftcor(w,delta,a,b,endpts,corre,corim,corfac)
USE nrtype; USE nrutil, ONLY : assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: w,delta,a,b
REAL(SP), INTENT(OUT) :: corre,corim,corfac
REAL(SP), DIMENSION(:), INTENT(IN) :: endpts

For an integral approximated by a discrete Fourier transform, this routine computes the
correction factor that multiplies the DFT and the endpoint correction to be added. Input
is the angular frequency w, stepsize delta, lower and upper limits of the integral a and
b, while the array endpts of length 8 contains the first 4 and last 4 function values. The
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correction factor W (θ) is returned as corfac, while the real and imaginary parts of the
endpoint correction are returned as corre and corim.

REAL(SP) :: a0i,a0r,a1i,a1r,a2i,a2r,a3i,a3r,arg,c,cl,cr,s,sl,sr,t,&
t2,t4,t6

REAL(DP) :: cth,ctth,spth2,sth,sth4i,stth,th,th2,th4,&
tmth2,tth4i

th=w*delta
call assert(a < b, th >= 0.0, th <= PI_D, ’dftcor args’)
if (abs(th) < 5.0e-2_dp) then Use series.

t=th
t2=t*t
t4=t2*t2
t6=t4*t2
corfac=1.0_sp-(11.0_sp/720.0_sp)*t4+(23.0_sp/15120.0_sp)*t6
a0r=(-2.0_sp/3.0_sp)+t2/45.0_sp+(103.0_sp/15120.0_sp)*t4-&

(169.0_sp/226800.0_sp)*t6
a1r=(7.0_sp/24.0_sp)-(7.0_sp/180.0_sp)*t2+(5.0_sp/3456.0_sp)*t4&

-(7.0_sp/259200.0_sp)*t6
a2r=(-1.0_sp/6.0_sp)+t2/45.0_sp-(5.0_sp/6048.0_sp)*t4+t6/64800.0_sp
a3r=(1.0_sp/24.0_sp)-t2/180.0_sp+(5.0_sp/24192.0_sp)*t4-t6/259200.0_sp
a0i=t*(2.0_sp/45.0_sp+(2.0_sp/105.0_sp)*t2-&

(8.0_sp/2835.0_sp)*t4+(86.0_sp/467775.0_sp)*t6)
a1i=t*(7.0_sp/72.0_sp-t2/168.0_sp+(11.0_sp/72576.0_sp)*t4-&

(13.0_sp/5987520.0_sp)*t6)
a2i=t*(-7.0_sp/90.0_sp+t2/210.0_sp-(11.0_sp/90720.0_sp)*t4+&

(13.0_sp/7484400.0_sp)*t6)
a3i=t*(7.0_sp/360.0_sp-t2/840.0_sp+(11.0_sp/362880.0_sp)*t4-&

(13.0_sp/29937600.0_sp)*t6)
else Use trigonometric formulas in double precision.

cth=cos(th)
sth=sin(th)
ctth=cth**2-sth**2
stth=2.0_dp*sth*cth
th2=th*th
th4=th2*th2
tmth2=3.0_dp-th2
spth2=6.0_dp+th2
sth4i=1.0_sp/(6.0_dp*th4)
tth4i=2.0_dp*sth4i
corfac=tth4i*spth2*(3.0_sp-4.0_dp*cth+ctth)
a0r=sth4i*(-42.0_dp+5.0_dp*th2+spth2*(8.0_dp*cth-ctth))
a0i=sth4i*(th*(-12.0_dp+6.0_dp*th2)+spth2*stth)
a1r=sth4i*(14.0_dp*tmth2-7.0_dp*spth2*cth)
a1i=sth4i*(30.0_dp*th-5.0_dp*spth2*sth)
a2r=tth4i*(-4.0_dp*tmth2+2.0_dp*spth2*cth)
a2i=tth4i*(-12.0_dp*th+2.0_dp*spth2*sth)
a3r=sth4i*(2.0_dp*tmth2-spth2*cth)
a3i=sth4i*(6.0_dp*th-spth2*sth)

end if
cl=a0r*endpts(1)+a1r*endpts(2)+a2r*endpts(3)+a3r*endpts(4)
sl=a0i*endpts(1)+a1i*endpts(2)+a2i*endpts(3)+a3i*endpts(4)
cr=a0r*endpts(8)+a1r*endpts(7)+a2r*endpts(6)+a3r*endpts(5)
sr=-a0i*endpts(8)-a1i*endpts(7)-a2i*endpts(6)-a3i*endpts(5)
arg=w*(b-a)
c=cos(arg)
s=sin(arg)
corre=cl+c*cr-s*sr
corim=sl+s*cr+c*sr
END SUBROUTINE dftcor
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SUBROUTINE dftint(func,a,b,w,cosint,sinint)
USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : dftcor,polint,realft
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b,w
REAL(SP), INTENT(OUT) :: cosint,sinint
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: M=64,NDFT=1024,MPOL=6

Example subroutine illustrating how to use the routine dftcor. The user supplies an exter-

nal function func that returns the quantity h(t). The routine then returns
∫ b
a cos(ωt)h(t)dt

as cosint and
∫ b
a

sin(ωt)h(t)dt as sinint.
Parameters: The values of M, NDFT, and MPOL are merely illustrative and should be opti-
mized for your particular application. M is the number of subintervals, NDFT is the length of
the FFT (a power of 2), and MPOL is the degree of polynomial interpolation used to obtain
the desired frequency from the FFT.

INTEGER(I4B) :: nn
INTEGER(I4B), SAVE :: init=0
INTEGER(I4B), DIMENSION(MPOL) :: nnmpol
REAL(SP) :: c,cdft,cerr,corfac,corim,corre,en,s,sdft,serr
REAL(SP), SAVE :: delta
REAL(SP), DIMENSION(MPOL) :: cpol,spol,xpol
REAL(SP), DIMENSION(NDFT), SAVE :: data
REAL(SP), DIMENSION(8), SAVE :: endpts
REAL(SP), SAVE :: aold=-1.0e30_sp,bold=-1.0e30_sp
if (init /= 1 .or. a /= aold .or. b /= bold) then Do we need to initialize, or

is only ω changed?init=1
aold=a
bold=b
delta=(b-a)/M
data(1:M+1)=func(a+arth(0,1,M+1)*delta)
Load the function values into the data array.

data(M+2:NDFT)=0.0 Zero pad the rest of the data array.
endpts(1:4)=data(1:4) Load the endpoints.
endpts(5:8)=data(M-2:M+1)
call realft(data(1:NDFT),1)
realft returns the unused value corresponding to ωN/2 in data(2). We actually want
this element to contain the imaginary part corresponding to ω0, which is zero.

data(2)=0.0
end if
Now interpolate on the DFT result for the desired frequency. If the frequency is an ωn, i.e.,
the quantity en is an integer, then cdft=data(2*en-1), sdft=data(2*en), and you could
omit the interpolation.

en=w*delta*NDFT/TWOPI+1.0_sp
nn=min(max(int(en-0.5_sp*MPOL+1.0_sp),1),NDFT/2-MPOL+1) Leftmost point for the in-

terpolation.nnmpol=arth(nn,1,MPOL)
cpol(1:MPOL)=data(2*nnmpol(:)-1)
spol(1:MPOL)=data(2*nnmpol(:))
xpol(1:MPOL)=nnmpol(:)
call polint(xpol,cpol,en,cdft,cerr)
call polint(xpol,spol,en,sdft,serr)
call dftcor(w,delta,a,b,endpts,corre,corim,corfac) Now get the endpoint cor-

rection and the multiplica-
tive factor W (θ).

cdft=cdft*corfac+corre
sdft=sdft*corfac+corim
c=delta*cos(w*a) Finally multiply by ∆ and exp(iωa).
s=delta*sin(w*a)
cosint=c*cdft-s*sdft
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sinint=s*cdft+c*sdft
END SUBROUTINE dftint

� � �

SUBROUTINE wt1(a,isign,wtstep)
USE nrtype; USE nrutil, ONLY : assert
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
INTERFACE

SUBROUTINE wtstep(a,isign)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE wtstep

END INTERFACE
One-dimensional discrete wavelet transform. This routine implements the pyramid algo-
rithm, replacing a by its wavelet transform (for isign=1), or performing the inverse oper-
ation (for isign=-1). The length of a is N , which must be an integer power of 2. The
subroutine wtstep, whose actual name must be supplied in calling this routine, is the
underlying wavelet filter. Examples of wtstep are daub4 and (preceded by pwtset) pwt.

INTEGER(I4B) :: n,nn
n=size(a)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in wt1’)
if (n < 4) RETURN
if (isign >= 0) then Wavelet transform.

nn=n Start at largest hierarchy,
do

if (nn < 4) exit
call wtstep(a(1:nn),isign)
nn=nn/2 and work towards smallest.

end do
else Inverse wavelet transform.

nn=4 Start at smallest hierarchy,
do

if (nn > n) exit
call wtstep(a(1:nn),isign)
nn=nn*2 and work towards largest.

end do
end if
END SUBROUTINE wt1

SUBROUTINE daub4(a,isign)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign

Applies the Daubechies 4-coefficient wavelet filter to data vector a (for isign=1) or applies
its transpose (for isign=-1). Used hierarchically by routines wt1 and wtn.

REAL(SP), DIMENSION(size(a)) :: wksp
REAL(SP), PARAMETER :: C0=0.4829629131445341_sp,&

C1=0.8365163037378079_sp,C2=0.2241438680420134_sp,&
C3=-0.1294095225512604_sp

INTEGER(I4B) :: n,nh,nhp,nhm
n=size(a)
if (n < 4) RETURN
nh=n/2
nhp=nh+1
nhm=nh-1
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if (isign >= 0) then Apply filter.
wksp(1:nhm) = C0*a(1:n-3:2)+C1*a(2:n-2:2) &

+C2*a(3:n-1:2)+C3*a(4:n:2)
wksp(nh)=C0*a(n-1)+C1*a(n)+C2*a(1)+C3*a(2)
wksp(nhp:n-1) = C3*a(1:n-3:2)-C2*a(2:n-2:2) &

+C1*a(3:n-1:2)-C0*a(4:n:2)
wksp(n)=C3*a(n-1)-C2*a(n)+C1*a(1)-C0*a(2)

else Apply transpose filter.
wksp(1)=C2*a(nh)+C1*a(n)+C0*a(1)+C3*a(nhp)
wksp(2)=C3*a(nh)-C0*a(n)+C1*a(1)-C2*a(nhp)
wksp(3:n-1:2) = C2*a(1:nhm)+C1*a(nhp:n-1) &

+C0*a(2:nh)+C3*a(nh+2:n)
wksp(4:n:2) = C3*a(1:nhm)-C0*a(nhp:n-1) &

+C1*a(2:nh)-C2*a(nh+2:n)
end if
a(1:n)=wksp(1:n)
END SUBROUTINE daub4

MODULE pwtcom
USE nrtype
INTEGER(I4B), SAVE :: ncof=0,ioff,joff These module variables communicate the

filter to pwt.REAL(SP), DIMENSION(:), ALLOCATABLE, SAVE :: cc,cr
END MODULE pwtcom

SUBROUTINE pwtset(n)
USE nrtype; USE nrutil, ONLY : nrerror
USE pwtcom
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n

Initializing routine for pwt, here implementing the Daubechies wavelet filters with 4, 12,
and 20 coefficients, as selected by the input value n. Further wavelet filters can be included
in the obvious manner. This routine must be called (once) before the first use of pwt. (For
the case n=4, the specific routine daub4 is considerably faster than pwt.)

REAL(SP) :: sig
REAL(SP), PARAMETER :: &

c4(4)=(/&
0.4829629131445341_sp, 0.8365163037378079_sp, &
0.2241438680420134_sp,-0.1294095225512604_sp /), &
c12(12)=(/&
0.111540743350_sp, 0.494623890398_sp, 0.751133908021_sp, &
0.315250351709_sp,-0.226264693965_sp,-0.129766867567_sp, &
0.097501605587_sp, 0.027522865530_sp,-0.031582039318_sp, &
0.000553842201_sp, 0.004777257511_sp,-0.001077301085_sp /), &
c20(20)=(/&
0.026670057901_sp, 0.188176800078_sp, 0.527201188932_sp, &
0.688459039454_sp, 0.281172343661_sp,-0.249846424327_sp, &
-0.195946274377_sp, 0.127369340336_sp, 0.093057364604_sp, &
-0.071394147166_sp,-0.029457536822_sp, 0.033212674059_sp, &
0.003606553567_sp,-0.010733175483_sp, 0.001395351747_sp, &
0.001992405295_sp,-0.000685856695_sp,-0.000116466855_sp, &
0.000093588670_sp,-0.000013264203_sp /)

if (allocated(cc)) deallocate(cc)
if (allocated(cr)) deallocate(cr)
allocate(cc(n),cr(n))
ncof=n
ioff=-n/2 These values center the “support” of the wavelets at each

level. Alternatively, the “peaks” of the wavelets can
be approximately centered by the choices ioff=-2
and joff=-n+2. Note that daub4 and pwtset with
n=4 use different default centerings.

joff=-n/2
sig=-1.0
select case(n)

case(4)
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cc=c4
case(12)

cc=c12
case(20)

cc=c20
case default

call nrerror(’unimplemented value n in pwtset’)
end select
cr(n:1:-1) = cc
cr(n:1:-2) = -cr(n:1:-2)
END SUBROUTINE pwtset

f90
Here we need to have as global variables arrays whose dimensions are
known only at run time. At first sight the situation is the same as with the
modulefminln in newt on p. 1197. If you review the discussion there

and in§21.5, you will recall that there are two good ways to implement this: with
allocatable arrays (“Method 1”) or with pointers (“Method 2”). There is a difference
here that makes allocatable arrays simpler. We do not wish to deallocate the arrays
on exitingpwtset. On the contrary, the values incc andcr need to be preserved
for use inpwt. Since allocatable arrays are born in the well-defined state of “not
currently allocated,” we can declare the arrays here as

REAL(SP), DIMENSION(:), ALLOCATABLE, SAVE :: cc,cr

and test whether they were used on a previous call with

if (allocated(cc)) deallocate(cc)
if (allocated(cr)) deallocate(cr)

We are then ready to allocate the new storage:

allocate(cc(n),cr(n))

With pointers, we would need the additional machinery of nullifying the pointers on
the initial call, since pointers are born in an undefined state (see§21.5).

There is an additional important point in this example. The module variables
need to be used by a “sibling” routine,pwt. We need to be sure that they do
not become undefined when we exitpwtset. We could ensure this by putting a
USE pwtcom in the main program that calls bothpwtset andpwt, but it’s easy to
forget to do this. It is preferable to put explicitSAVEs on all the module variables.

SUBROUTINE pwt(a,isign)
USE nrtype; USE nrutil, ONLY : arth,nrerror
USE pwtcom
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign

Partial wavelet transform: applies an arbitrary wavelet filter to data vector a (for isign=1)
or applies its transpose (for isign=-1). Used hierarchically by routines wt1 and wtn. The
actual filter is determined by a preceding (and required) call to pwtset, which initializes
the module pwtcom.

REAL(SP), DIMENSION(size(a)) :: wksp
INTEGER(I4B), DIMENSION(size(a)/2) :: jf,jr
INTEGER(I4B) :: k,n,nh,nmod
n=size(a)
if (n < 4) RETURN
if (ncof == 0) call nrerror(’pwt: must call pwtset before pwt’)
nmod=ncof*n A positive constant equal to zero mod n.
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nh=n/2
wksp(:)=0.0
jf=iand(n-1,arth(2+nmod+ioff,2,nh)) Use bitwise AND to wrap-around the point-

ers. n-1 is a mask of all bits, since n is
a power of 2.

jr=iand(n-1,arth(2+nmod+joff,2,nh))
do k=1,ncof

if (isign >= 0) then Apply filter.
wksp(1:nh)=wksp(1:nh)+cc(k)*a(jf+1)
wksp(nh+1:n)=wksp(nh+1:n)+cr(k)*a(jr+1)

else Apply transpose filter.
wksp(jf+1)=wksp(jf+1)+cc(k)*a(1:nh)
wksp(jr+1)=wksp(jr+1)+cr(k)*a(nh+1:n)

end if
if (k == ncof) exit
jf=iand(n-1,jf+1)
jr=iand(n-1,jr+1)

end do
a(:)=wksp(:) Copy the results back from workspace.
END SUBROUTINE pwt

� � �

SUBROUTINE wtn(a,nn,isign,wtstep)
USE nrtype; USE nrutil, ONLY : arth,assert
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: nn
INTEGER(I4B), INTENT(IN) :: isign
INTERFACE

SUBROUTINE wtstep(a,isign)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE wtstep

END INTERFACE
Replaces a by its N -dimensional discrete wavelet transform, if isign is input as 1. nn is an
integer array of length N , containing the lengths of each dimension (number of real values),
which must all be powers of 2. a is a real array of length equal to the product of these
lengths, in which the data are stored as in a multidimensional real FORTRAN array. If isign
is input as −1, a is replaced by its inverse wavelet transform. The subroutine wtstep,
whose actual name must be supplied in calling this routine, is the underlying wavelet filter.
Examples of wtstep are daub4 and (preceded by pwtset) pwt.

INTEGER(I4B) :: i1,i2,i3,idim,n,ndim,nnew,nprev,nt,ntot
REAL(SP), DIMENSION(:), ALLOCATABLE :: wksp
call assert(iand(nn,nn-1)==0, ’each dimension must be a power of 2 in wtn’)
allocate(wksp(maxval(nn)))
ndim=size(nn)
ntot=product(nn(:))
nprev=1
do idim=1,ndim Main loop over the dimensions.

n=nn(idim)
nnew=n*nprev
if (n > 4) then

do i2=0,ntot-1,nnew
do i1=1,nprev

i3=i1+i2
wksp(1:n)=a(arth(i3,nprev,n)) Copy the relevant row or column

or etc. into workspace.i3=i3+n*nprev
if (isign >= 0) then Do one-dimensional wavelet trans-

form.nt=n
do



1268 Chapter B13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (nt < 4) exit
call wtstep(wksp(1:nt),isign)
nt=nt/2

end do
else Or inverse transform.

nt=4
do

if (nt > n) exit
call wtstep(wksp(1:nt),isign)
nt=nt*2

end do
end if
i3=i1+i2
a(arth(i3,nprev,n))=wksp(1:n) Copy back from workspace.
i3=i3+n*nprev

end do
end do

end if
nprev=nnew

end do
deallocate(wksp)
END SUBROUTINE wtn
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Chapter B14. Statistical
Description of Data

SUBROUTINE moment(data,ave,adev,sdev,var,skew,curt)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: ave,adev,sdev,var,skew,curt
REAL(SP), DIMENSION(:), INTENT(IN) :: data

Given an array of data, this routine returns its mean ave, average deviation adev, standard
deviation sdev, variance var, skewness skew, and kurtosis curt.

INTEGER(I4B) :: n
REAL(SP) :: ep
REAL(SP), DIMENSION(size(data)) :: p,s
n=size(data)
if (n <= 1) call nrerror(’moment: n must be at least 2’)
ave=sum(data(:))/n First pass to get the mean.
s(:)=data(:)-ave Second pass to get the first (absolute), second, third, and

fourth moments of the deviation from the mean.ep=sum(s(:))
adev=sum(abs(s(:)))/n
p(:)=s(:)*s(:)
var=sum(p(:))
p(:)=p(:)*s(:)
skew=sum(p(:))
p(:)=p(:)*s(:)
curt=sum(p(:))
var=(var-ep**2/n)/(n-1) Corrected two-pass formula.
sdev=sqrt(var)
if (var /= 0.0) then

skew=skew/(n*sdev**3)
curt=curt/(n*var**2)-3.0_sp

else
call nrerror(’moment: no skew or kurtosis when zero variance’)

end if
END SUBROUTINE moment

� � �

SUBROUTINE ttest(data1,data2,t,prob)
USE nrtype
USE nr, ONLY : avevar,betai
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: t,prob

Given the arrays data1 and data2, which need not have the same length, this routine
returns Student’s t as t, and its significance as prob, small values of prob indicating that

1269
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the arrays have significantly different means. The data arrays are assumed to be drawn
from populations with the same true variance.

INTEGER(I4B) :: n1,n2
REAL(SP) :: ave1,ave2,df,var,var1,var2
n1=size(data1)
n2=size(data2)
call avevar(data1,ave1,var1)
call avevar(data2,ave2,var2)
df=n1+n2-2 Degrees of freedom.
var=((n1-1)*var1+(n2-1)*var2)/df Pooled variance.
t=(ave1-ave2)/sqrt(var*(1.0_sp/n1+1.0_sp/n2))
prob=betai(0.5_sp*df,0.5_sp,df/(df+t**2)) See equation (6.4.9).
END SUBROUTINE ttest

� � �

SUBROUTINE avevar(data,ave,var)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data
REAL(SP), INTENT(OUT) :: ave,var

Given array data, returns its mean as ave and its variance as var.
INTEGER(I4B) :: n
REAL(SP), DIMENSION(size(data)) :: s
n=size(data)
ave=sum(data(:))/n
s(:)=data(:)-ave
var=dot_product(s,s)
var=(var-sum(s)**2/n)/(n-1) Corrected two-pass formula (14.1.8).
END SUBROUTINE avevar

� � �

SUBROUTINE tutest(data1,data2,t,prob)
USE nrtype
USE nr, ONLY : avevar,betai
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: t,prob

Given the arrays data1 and data2, which need not have the same length, this routine
returns Student’s t as t, and its significance as prob, small values of prob indicating that
the arrays have significantly different means. The data arrays are allowed to be drawn from
populations with unequal variances.

INTEGER(I4B) :: n1,n2
REAL(SP) :: ave1,ave2,df,var1,var2
n1=size(data1)
n2=size(data2)
call avevar(data1,ave1,var1)
call avevar(data2,ave2,var2)
t=(ave1-ave2)/sqrt(var1/n1+var2/n2)
df=(var1/n1+var2/n2)**2/((var1/n1)**2/(n1-1)+(var2/n2)**2/(n2-1))
prob=betai(0.5_sp*df,0.5_sp,df/(df+t**2))
END SUBROUTINE tutest

� � �
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SUBROUTINE tptest(data1,data2,t,prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : avevar,betai
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: t,prob

Given the paired arrays data1 and data2 of the same length, this routine returns Student’s
t for paired data as t, and its significance as prob, small values of prob indicating a
significant difference of means.

INTEGER(I4B) :: n
REAL(SP) :: ave1,ave2,cov,df,sd,var1,var2
n=assert_eq(size(data1),size(data2),’tptest’)
call avevar(data1,ave1,var1)
call avevar(data2,ave2,var2)
cov=dot_product(data1(:)-ave1,data2(:)-ave2)
df=n-1
cov=cov/df
sd=sqrt((var1+var2-2.0_sp*cov)/n)
t=(ave1-ave2)/sd
prob=betai(0.5_sp*df,0.5_sp,df/(df+t**2))
END SUBROUTINE tptest

� � �

SUBROUTINE ftest(data1,data2,f,prob)
USE nrtype
USE nr, ONLY : avevar,betai
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: f,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2

Given the arrays data1 and data2, which need not have the same length, this routine
returns the value of f, and its significance as prob. Small values of prob indicate that the
two arrays have significantly different variances.

INTEGER(I4B) :: n1,n2
REAL(SP) :: ave1,ave2,df1,df2,var1,var2
n1=size(data1)
n2=size(data2)
call avevar(data1,ave1,var1)
call avevar(data2,ave2,var2)
if (var1 > var2) then Make F the ratio of the larger variance to the smaller one.

f=var1/var2
df1=n1-1
df2=n2-1

else
f=var2/var1
df1=n2-1
df2=n1-1

end if
prob=2.0_sp*betai(0.5_sp*df2,0.5_sp*df1,df2/(df2+df1*f))
if (prob > 1.0) prob=2.0_sp-prob
END SUBROUTINE ftest

� � �
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SUBROUTINE chsone(bins,ebins,knstrn,df,chsq,prob)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : gammq
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: knstrn
REAL(SP), INTENT(OUT) :: df,chsq,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: bins,ebins

Given the same-size arrays bins containing the observed numbers of events, and ebins
containing the expected numbers of events, and given the number of constraints knstrn
(normally one), this routine returns (trivially) the number of degrees of freedom df, and
(nontrivially) the chi-square chsq and the significance prob. A small value of prob indi-
cates a significant difference between the distributions bins and ebins. Note that bins
and ebins are both real arrays, although bins will normally contain integer values.

INTEGER(I4B) :: ndum
ndum=assert_eq(size(bins),size(ebins),’chsone’)
if (any(ebins(:) <= 0.0)) call nrerror(’bad expected number in chsone’)
df=size(bins)-knstrn
chsq=sum((bins(:)-ebins(:))**2/ebins(:))
prob=gammq(0.5_sp*df,0.5_sp*chsq) Chi-square probability function. See §6.2.
END SUBROUTINE chsone

SUBROUTINE chstwo(bins1,bins2,knstrn,df,chsq,prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : gammq
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: knstrn
REAL(SP), INTENT(OUT) :: df,chsq,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: bins1,bins2

Given the same-size arrays bins1 and bins2, containing two sets of binned data, and given
the number of constraints knstrn (normally 1 or 0), this routine returns the number of
degrees of freedom df, the chi-square chsq, and the significance prob. A small value of
prob indicates a significant difference between the distributions bins1 and bins2. Note
that bins1 and bins2 are both real arrays, although they will normally contain integer
values.

INTEGER(I4B) :: ndum
LOGICAL(LGT), DIMENSION(size(bins1)) :: nzeromask
ndum=assert_eq(size(bins1),size(bins2),’chstwo’)
nzeromask = bins1(:) /= 0.0 .or. bins2(:) /= 0.0
chsq=sum((bins1(:)-bins2(:))**2/(bins1(:)+bins2(:)),mask=nzeromask)
df=count(nzeromask)-knstrn No data means one less degree of freedom.
prob=gammq(0.5_sp*df,0.5_sp*chsq) Chi-square probability function. See §6.2.
END SUBROUTINE chstwo

f90
nzeromask=...chisq=sum(...mask=nzeromask) We use the optional argu-
ment mask in sum to select out the elements to be summed over. In
this case, at least one of the elements of bins1 or bins2 is not zero

for each term in the sum.

� � �
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SUBROUTINE ksone(data,func,d,prob)
USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : probks,sort
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: d,prob
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
Given an array data, and given a user-supplied function of a single variable func which
is a cumulative distribution function ranging from 0 (for smallest values of its argument)
to 1 (for largest values of its argument), this routine returns the K–S statistic d, and the
significance level prob. Small values of prob show that the cumulative distribution function
of data is significantly different from func. The array data is modified by being sorted
into ascending order.

INTEGER(I4B) :: n
REAL(SP) :: en
REAL(SP), DIMENSION(size(data)) :: fvals
REAL(SP), DIMENSION(size(data)+1) :: temp
call sort(data) If the data are already sorted into as-

cending order, then this call can be
omitted.

n=size(data)
en=n
fvals(:)=func(data(:))
temp=arth(0,1,n+1)/en
d=maxval(max(abs(temp(1:n)-fvals(:)), & Compute the maximum distance between

the data’s c.d.f. and the user-supplied
function.

abs(temp(2:n+1)-fvals(:))))
en=sqrt(en)
prob=probks((en+0.12_sp+0.11_sp/en)*d) Compute significance.
END SUBROUTINE ksone

f90
d=maxval(max... Note the difference between max and maxval: max

takes two or more arguments and returns the maximum. If the arguments
are two arrays, it returns an array each of whose elements is the maximum

of the corresponding elements in the two arrays. maxval takes a single array
argument and returns its maximum value.

SUBROUTINE kstwo(data1,data2,d,prob)
USE nrtype; USE nrutil, ONLY : cumsum
USE nr, ONLY : probks,sort2
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: d,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2

Given arrays data1 and data2, which can be of different length, this routine returns the
K–S statistic d, and the significance level prob for the null hypothesis that the data sets
are drawn from the same distribution. Small values of prob show that the cumulative
distribution function of data1 is significantly different from that of data2. The arrays
data1 and data2 are not modified.

INTEGER(I4B) :: n1,n2
REAL(SP) :: en1,en2,en
REAL(SP), DIMENSION(size(data1)+size(data2)) :: dat,org
n1=size(data1)
n2=size(data2)
en1=n1
en2=n2
dat(1:n1)=data1 Copy the two data sets into a single ar-

ray.dat(n1+1:)=data2
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org(1:n1)=0.0 Define an array that contains 0 when the
corresponding element comes from
data1, 1 from data2.

org(n1+1:)=1.0
call sort2(dat,org)

Sort the array of 1’s and 0’s into the order of the merged data sets.
d=maxval(abs(cumsum(org)/en2-cumsum(1.0_sp-org)/en1))

Now use cumsum to get the c.d.f. corresponding to each set of data.
en=sqrt(en1*en2/(en1+en2))
prob=probks((en+0.12_sp+0.11_sp/en)*d) Compute significance.
END SUBROUTINE kstwo

The problem here is how to compute the cumulative distribution function
(c.d.f.) corresponding to each set of data, and then find the corresponding
KS statistic, without a serial loop over the data. The trick is to define

an array that contains 0 when the corresponding element comes from the first data
set and 1 when it’s from the second data set. Sort the array of 1’s and 0’s into the
same order as the merged data sets. Now tabulate the partial sums of the array.
Every time you encounter a 1, the partial sum increases by 1. So if you normalize
the partial sums by dividing by the number of elements in the second data set, you
have the c.d.f. of the second data set.

If you subtract the array of 1’s and 0’s from an array of all 1’s, you get an
array where 1 corresponds to an element in the first data set, 0 the second data set.
So tabulating its partial sums and normalizing gives the c.d.f. of the first data set.
As we’ve seen before, tabulating partial sums can be done with a parallel algorithm
(cumsum in nrutil). The KS statistic is just the maximum absolute difference of
the c.d.f.’s, computed in parallel with Fortran 90’s maxval function.

FUNCTION probks(alam)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: alam
REAL(SP) :: probks
REAL(SP), PARAMETER :: EPS1=0.001_sp,EPS2=1.0e-8_sp
INTEGER(I4B), PARAMETER :: NITER=100

Kolmogorov-Smirnov probability function.
INTEGER(I4B) :: j
REAL(SP) :: a2,fac,term,termbf
a2=-2.0_sp*alam**2
fac=2.0
probks=0.0
termbf=0.0 Previous term in sum.
do j=1,NITER

term=fac*exp(a2*j**2)
probks=probks+term
if (abs(term) <= EPS1*termbf .or. abs(term) <= EPS2*probks) RETURN
fac=-fac Alternating signs in sum.
termbf=abs(term)

end do
probks=1.0 Get here only by failing to converge, which implies the func-

tion is very close to 1.END FUNCTION probks

� � �
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SUBROUTINE cntab1(nn,chisq,df,prob,cramrv,ccc)
USE nrtype; USE nrutil, ONLY : outerprod
USE nr, ONLY : gammq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:,:), INTENT(IN) :: nn
REAL(SP), INTENT(OUT) :: chisq,df,prob,cramrv,ccc
REAL(SP), PARAMETER :: TINY=1.0e-30_sp

Given a two-dimensional contingency table in the form of a rectangular integer array nn,
this routine returns the chi-square chisq, the number of degrees of freedom df, the signif-
icance level prob (small values indicating a significant association), and two measures of
association, Cramer’s V (cramrv), and the contingency coefficient C (ccc).

INTEGER(I4B) :: nni,nnj
REAL(SP) :: sumn
REAL(SP), DIMENSION(size(nn,1)) :: sumi
REAL(SP), DIMENSION(size(nn,2)) :: sumj
REAL(SP), DIMENSION(size(nn,1),size(nn,2)) :: expctd
sumi(:)=sum(nn(:,:),dim=2) Get the row totals.
sumj(:)=sum(nn(:,:),dim=1) Get the column totals.
sumn=sum(sumi(:)) Get the grand total.
nni=size(sumi)-count(sumi(:) == 0.0)

Eliminate any zero rows by reducing the number of rows.
nnj=size(sumj)-count(sumj(:) == 0.0) Eliminate any zero columns.
df=nni*nnj-nni-nnj+1 Corrected number of degrees of freedom.
expctd(:,:)=outerprod(sumi(:),sumj(:))/sumn
chisq=sum((nn(:,:)-expctd(:,:))**2/(expctd(:,:)+TINY))

Do the chi-square sum. Here TINY guarantees that any eliminated row or column will not
contribute to the sum.

prob=gammq(0.5_sp*df,0.5_sp*chisq) Chi-square probability function.
cramrv=sqrt(chisq/(sumn*min(nni-1,nnj-1)))
ccc=sqrt(chisq/(chisq+sumn))
END SUBROUTINE cntab1

f90
sumi(:)=sum(...dim=2)...sumj(:)=sum(...dim=1) We use the optional ar-
gument dim of sum to sum first over the columns (dim=2) to get the row
totals, and then to sum over the rows (dim=1) to get the column totals.

expctd(:,:)=... This is a direct implementation of equation (14.4.2) using
outerprod from nrutil.

chisq=... And here is a direct implementation of equation (14.4.3).

SUBROUTINE cntab2(nn,h,hx,hy,hygx,hxgy,uygx,uxgy,uxy)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:,:), INTENT(IN) :: nn
REAL(SP), INTENT(OUT) :: h,hx,hy,hygx,hxgy,uygx,uxgy,uxy
REAL(SP), PARAMETER :: TINY=1.0e-30_sp

Given a two-dimensional contingency table in the form of a rectangular integer array nn,
where the first index labels the x-variable and the second index labels the y variable, this
routine returns the entropy h of the whole table, the entropy hx of the x-distribution, the
entropy hy of the y-distribution, the entropy hygx of y given x, the entropy hxgy of x
given y, the dependency uygx of y on x (eq. 14.4.15), the dependency uxgy of x on y
(eq. 14.4.16), and the symmetrical dependency uxy (eq. 14.4.17).

REAL(SP) :: sumn
REAL(SP), DIMENSION(size(nn,1)) :: sumi
REAL(SP), DIMENSION(size(nn,2)) :: sumj
sumi(:)=sum(nn(:,:),dim=2) Get the row totals.
sumj(:)=sum(nn(:,:),dim=1) Get the column totals.
sumn=sum(sumi(:))
hx=-sum(sumi(:)*log(sumi(:)/sumn), mask=(sumi(:) /= 0.0) )/sumn

Entropy of the x distribution,
hy=-sum(sumj(:)*log(sumj(:)/sumn), mask=(sumj(:) /= 0.0) )/sumn
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and of the y distribution.
h=-sum(nn(:,:)*log(nn(:,:)/sumn), mask=(nn(:,:) /= 0) )/sumn

Total entropy: loop over both x and y.
hygx=h-hx Uses equation (14.4.18),
hxgy=h-hy as does this.
uygx=(hy-hygx)/(hy+TINY) Equation (14.4.15).
uxgy=(hx-hxgy)/(hx+TINY) Equation (14.4.16).
uxy=2.0_sp*(hx+hy-h)/(hx+hy+TINY) Equation (14.4.17).
END SUBROUTINE cntab2

f90
This code exploits both the dim feature of sum (see discussion after
cntab1) and the mask feature to restrict the elements to be summed over.

� � �

SUBROUTINE pearsn(x,y,r,prob,z)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : betai
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: r,prob,z
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), PARAMETER :: TINY=1.0e-20_sp

Given two arrays x and y of the same size, this routine computes their correlation coefficient
r (returned as r), the significance level at which the null hypothesis of zero correlation
is disproved (prob whose small value indicates a significant correlation), and Fisher’s z
(returned as z), whose value can be used in further statistical tests as described above the
routine in Volume 1.
Parameter: TINY will regularize the unusual case of complete correlation.

REAL(SP), DIMENSION(size(x)) :: xt,yt
REAL(SP) :: ax,ay,df,sxx,sxy,syy,t
INTEGER(I4B) :: n
n=assert_eq(size(x),size(y),’pearsn’)
ax=sum(x)/n Find the means.
ay=sum(y)/n
xt(:)=x(:)-ax Compute the correlation co-

efficient.yt(:)=y(:)-ay
sxx=dot_product(xt,xt)
syy=dot_product(yt,yt)
sxy=dot_product(xt,yt)
r=sxy/(sqrt(sxx*syy)+TINY)
z=0.5_sp*log(((1.0_sp+r)+TINY)/((1.0_sp-r)+TINY)) Fisher’s z transformation.
df=n-2
t=r*sqrt(df/(((1.0_sp-r)+TINY)*((1.0_sp+r)+TINY))) Equation (14.5.5).
prob=betai(0.5_sp*df,0.5_sp,df/(df+t**2)) Student’s t probability.

! prob=erfcc(abs(z*sqrt(n-1.0_sp))/SQRT2)
For large n, this easier computation of prob, using the short routine erfcc, would give
approximately the same value.

END SUBROUTINE pearsn

� � �
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SUBROUTINE spear(data1,data2,d,zd,probd,rs,probrs)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : betai,erfcc,sort2
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: d,zd,probd,rs,probrs

Given two data arrays of the same size, data1 and data2, this routine returns their sum-
squared difference of ranks as D, the number of standard deviations by which D deviates
from its null-hypothesis expected value as zd, the two-sided significance level of this devia-
tion as probd, Spearman’s rank correlation rs as rs, and the two-sided significance level of
its deviation from zero as probrs. data1 and data2 are not modified. A small value of
either probd or probrs indicates a significant correlation (rs positive) or anticorrelation
(rs negative).

INTEGER(I4B) :: n
REAL(SP) :: aved,df,en,en3n,fac,sf,sg,t,vard
REAL(SP), DIMENSION(size(data1)) :: wksp1,wksp2
n=assert_eq(size(data1),size(data2),’spear’)
wksp1(:)=data1(:)
wksp2(:)=data2(:)
call sort2(wksp1,wksp2) Sort each of the data arrays, and convert the

entries to ranks. The values sf and sg
return the sums

∑
(f3

k−fk) and
∑

(g3
m−

gm), respectively.

call crank(wksp1,sf)
call sort2(wksp2,wksp1)
call crank(wksp2,sg)
wksp1(:)=wksp1(:)-wksp2(:)
d=dot_product(wksp1,wksp1) Sum the squared difference of ranks.
en=n
en3n=en**3-en
aved=en3n/6.0_sp-(sf+sg)/12.0_sp Expectation value of D,
fac=(1.0_sp-sf/en3n)*(1.0_sp-sg/en3n)
vard=((en-1.0_sp)*en**2*(en+1.0_sp)**2/36.0_sp)*fac and variance of D give
zd=(d-aved)/sqrt(vard) number of standard deviations,
probd=erfcc(abs(zd)/SQRT2) and significance.
rs=(1.0_sp-(6.0_sp/en3n)*(d+(sf+sg)/12.0_sp))/sqrt(fac) Rank correlation coeffi-

cient,fac=(1.0_sp+rs)*(1.0_sp-rs)
if (fac > 0.0) then

t=rs*sqrt((en-2.0_sp)/fac) and its t value,
df=en-2.0_sp
probrs=betai(0.5_sp*df,0.5_sp,df/(df+t**2)) give its significance.

else
probrs=0.0

end if
CONTAINS

SUBROUTINE crank(w,s)
USE nrtype; USE nrutil, ONLY : arth,array_copy
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: s
REAL(SP), DIMENSION(:), INTENT(INOUT) :: w

Given a sorted array w, replaces the elements by their rank, including midranking of ties,
and returns as s the sum of f3 − f , where f is the number of elements in each tie.

INTEGER(I4B) :: i,n,ndum,nties
INTEGER(I4B), DIMENSION(size(w)) :: tstart,tend,tie,idx
n=size(w)
idx(:)=arth(1,1,n) Index vector.
tie(:)=merge(1,0,w == eoshift(w,-1))

Look for ties: Compare each element to the one before. If it’s equal, it’s part of a tie, and
we put 1 into tie. Otherwise we put 0.

tie(1)=0 Boundary; the first element must be zero.
w(:)=idx(:) Assign ranks ignoring possible ties.
if (all(tie == 0)) then No ties—we’re done.

s=0.0
RETURN

end if
call array_copy(pack(idx(:),tie(:)<eoshift(tie(:),1)),tstart,nties,ndum)
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Look for 0 → 1 transitions in tie, which mean that the 0 element is the start of a tie run.
Store index of each transition in tstart. nties is the number of ties found.

tend(1:nties)=pack(idx(:),tie(:)>eoshift(tie(:),1))
Look for 1 → 0 transitions in tie, which mean that the 1 element is the end of a tie run.

do i=1,nties Midrank assignments.
w(tstart(i):tend(i))=(tstart(i)+tend(i))/2.0_sp

end do
tend(1:nties)=tend(1:nties)-tstart(1:nties)+1 Now calculate s.
s=sum(tend(1:nties)**3-tend(1:nties))
END SUBROUTINE crank
END SUBROUTINE spear

To understand how the parallel version of crank works, let’s consider
an example of 9 elements in the array w, which is input in sorted order
to crank. The elements in our example are given in the second line

of the following table:

index 1 2 3 4 5 6 7 8 9

data in w 0 0 1 1 1 2 3 4 4
shift right 0 0 0 1 1 1 2 3 4
compare 1 1 0 1 1 0 0 0 1

tie array 0 1 0 1 1 0 0 0 1
shift left 1 0 1 1 0 0 0 1 0

0 → 1 1 3 8 start index
1 → 0 2 5 9 stop index

We look for ties by comparing this array with itself, right shifted by one element
(“shift right” in table). We record a 1 for each element that is the same, a 0 for each
element that is different (“compare”). A 1 indicates the element is part of a tie with
the preceding element, so we always set the first element to 0, even if it was a 1
as in our example. This gives the “tie array.” Now wherever the tie array makes a
transition 0 → 1 indicates the start of a tie run, while a 1 → 0 transition indicates
the end of a tie run. We find these transitions by comparing the tie array to itself
left shifted by one (“shift left”). If the tie array element is smaller than the shifted
array element, we have a 0 → 1 transition and we record the corresponding index
as the start of a tie. Similarly if the tie array element is larger we record the index
as the end of a tie. Note that the shifts must be end-off shifts with zeros inserted in
the gaps for the boundary conditions to work.

f90
call array_copy(pack(idx(:),tie(:)<eoshift(tie(:),1)),

tstart,nties,ndum)

The start indices (1, 3, and 8 in our example above) are here packed into
the first few elements of tstart. array copy is a useful routine in nrutil for
copying elements from one array to another, when the number of elements to be
copied is not known in advance. This line of code is equivalent to

tstart(:)=0
tstart(:)=pack(idx(:), tie(:) < eoshift(tie(:),1),tstart(:))
nties=count(tstart(:) > 0)

The point is that we don’t know how many elements pack is going to select. We
have to make sure the dimensions of both sides of the pack statement are the same,
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so we set the optional third argument of pack to tstart. We then make a separate
pass through tstart to count how many elements we copied. Alternatively, we
could have used an additional logical array mask and coded this as

mask(:)=tie(:) < eoshift(tie(:),1)
nties=count(mask)
tstart(1:nties)=pack(idx(:),mask)

But we still need two passes through the mask array. The beauty of the array copy

routine is that nties is determined from the size of the first argument, without the
necessity for a second pass through the array.

� � �

SUBROUTINE kendl1(data1,data2,tau,z,prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : erfcc
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: tau,z,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2

Given same-size data arrays data1 and data2, this program returns Kendall’s τ as tau, its
number of standard deviations from zero as z, and its two-sided significance level as prob.
Small values of prob indicate a significant correlation (tau positive) or anticorrelation
(tau negative).

INTEGER(I4B) :: is,j,n,n1,n2
REAL(SP) :: var
REAL(SP), DIMENSION(size(data1)) :: a1,a2
n=assert_eq(size(data1),size(data2),’kendl1’)
n1=0 This will be the argument of one square root in (14.6.8),
n2=0 and this the other.
is=0 This will be the numerator in (14.6.8).
do j=1,n-1 For each first member of pair,

a1(j+1:n)=data1(j)-data1(j+1:n) loop over second member.
a2(j+1:n)=data2(j)-data2(j+1:n)
n1=n1+count(a1(j+1:n) /= 0.0)
n2=n2+count(a2(j+1:n) /= 0.0)

Now accumulate the numerator in (14.6.8):
is=is+count((a1(j+1:n) > 0.0 .and. a2(j+1:n) > 0.0) &

.or. (a1(j+1:n) < 0.0 .and. a2(j+1:n) < 0.0)) - &
count((a1(j+1:n) > 0.0 .and. a2(j+1:n) < 0.0) &
.or. (a1(j+1:n) < 0.0 .and. a2(j+1:n) > 0.0))

end do
tau=real(is,sp)/sqrt(real(n1,sp)*real(n2,sp)) Equation (14.6.8).
var=(4.0_sp*n+10.0_sp)/(9.0_sp*n*(n-1.0_sp)) Equation (14.6.9).
z=tau/sqrt(var)
prob=erfcc(abs(z)/SQRT2) Significance.
END SUBROUTINE kendl1

SUBROUTINE kendl2(tab,tau,z,prob)
USE nrtype; USE nrutil, ONLY : cumsum
USE nr, ONLY : erfcc
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: tab
REAL(SP), INTENT(OUT) :: tau,z,prob

Given a two-dimensional table tab such that tab(k, l) contains the number of events falling
in bin k of one variable and bin l of another, this program returns Kendall’s τ as tau, its
number of standard deviations from zero as z, and its two-sided significance level as prob.
Small values of prob indicate a significant correlation (tau positive) or anticorrelation (tau
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negative) between the two variables. Although tab is a real array, it will normally contain
integral values.

REAL(SP), DIMENSION(size(tab,1),size(tab,2)) :: cum,cumt
INTEGER(I4B) :: i,j,ii,jj
REAL(SP) :: sc,sd,en1,en2,points,var
ii=size(tab,1)
jj=size(tab,2)
do i=1,ii Get cumulative sums leftward along

rows.cumt(i,jj:1:-1)=cumsum(tab(i,jj:1:-1))
end do
en2=sum(tab(1:ii,1:jj-1)*cumt(1:ii,2:jj)) Tally the extra-y pairs.
do j=1,jj Get counts of points to lower-right

of each cell in cum.cum(ii:1:-1,j)=cumsum(cumt(ii:1:-1,j))
end do
points=cum(1,1) Total number of entries in table.
sc=sum(tab(1:ii-1,1:jj-1)*cum(2:ii,2:jj)) Tally the concordant pairs.
do j=1,jj Now get counts of points to upper-

right of each cell in cum,cum(1:ii,j)=cumsum(cumt(1:ii,j))
end do
sd=sum(tab(2:ii,1:jj-1)*cum(1:ii-1,2:jj)) giving tally of discordant points.
do j=1,jj Finally, get cumulative sums upward

along columns,cumt(ii:1:-1,j)=cumsum(tab(ii:1:-1,j))
end do
en1=sum(tab(1:ii-1,1:jj)*cumt(2:ii,1:jj)) giving the count of extra-x pairs,
tau=(sc-sd)/sqrt((en1+sc+sd)*(en2+sc+sd)) and compute desired results.
var=(4.0_sp*points+10.0_sp)/(9.0_sp*points*(points-1.0_sp))
z=tau/sqrt(var)
prob=erfcc(abs(z)/SQRT2)
END SUBROUTINE kendl2

The underlying algorithm in kendl2 might seem to require looping over
all pairs of cells in the two-dimensional table tab. Actually, however,
clever use of the cumsum utility function reduces this to a simple loop

over all the cells; moreover this “loop” parallelizes into a simple parallel product and
call to the sum intrinsic. The basic idea is shown in the following table:

d d

t y y

x c c

x c c

x c c

Relative to the cell marked t (which we use to denote the numerical value it contains),
the cells marked d contribute to the “discordant” tally in Volume 1’s equation (14.6.8),
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while the cells marked c contribute to the “concordant” tally. Likewise, the cells
marked x and y contribute, respectively, to the “extra-x” and “extra-y” tallies. What
about the cells left blank? Since we want to count pairs of cells only once, without
duplication, these cells will be counted, relative to the location shown as t, when
t itself moves into the blank-cell area.

Symbolically we have

concordant =
∑
n

tn


 ∑

lower right

cm




discordant =
∑
n

tn


 ∑

upper right

dm




extra-x =
∑
n

tn

(∑
below

xm

)

extra-y =
∑
n

tn


 ∑

to the right

ym




(B14.1)

Here n varies over all the positions in the table, while the limits of the inner sums
are relative to the position of n. (The letters tn, cm, dm, xm, ym all represent the
value in a cell; we use different letters only to make the relation with the above table
clear.) Now the final trick is to recognize that the inner sums, over cells to the lower-
or upper-right, below, and to the right can be done in parallel by cumulative sums
(cumsum) sweeping to the right and up. The routine does these in a nonintuitive
order merely to be able to reuse maximally the scratch spaces cum and cumt.

� � �

SUBROUTINE ks2d1s(x1,y1,quadvl,d1,prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : pearsn,probks,quadct
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1,y1
REAL(SP), INTENT(OUT) :: d1,prob
INTERFACE

SUBROUTINE quadvl(x,y,fa,fb,fc,fd)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd
END SUBROUTINE quadvl

END INTERFACE
Two-dimensional Kolmogorov-Smirnov test of one sample against a model. Given the x-
and y-coordinates of a set of data points in arrays x1 and y1 of the same length, and given
a user-supplied function quadvl that exemplifies the model, this routine returns the two-
dimensional K-S statistic as d1, and its significance level as prob. Small values of prob
show that the sample is significantly different from the model. Note that the test is slightly
distribution-dependent, so prob is only an estimate.

INTEGER(I4B) :: j,n1
REAL(SP) :: dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,rr,sqen
n1=assert_eq(size(x1),size(y1),’ks2d1s’)
d1=0.0
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do j=1,n1 Loop over the data points.
call quadct(x1(j),y1(j),x1,y1,fa,fb,fc,fd)
call quadvl(x1(j),y1(j),ga,gb,gc,gd)
d1=max(d1,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))

For both the sample and the model, the distribution is integrated in each of four quad-
rants, and the maximum difference is saved.

end do
call pearsn(x1,y1,r1,dum,dumm) Get the linear correlation coefficient r1.
sqen=sqrt(real(n1,sp))
rr=sqrt(1.0_sp-r1**2)

Estimate the probability using the K-S probability function probks.
prob=probks(d1*sqen/(1.0_sp+rr*(0.25_sp-0.75_sp/sqen)))
END SUBROUTINE ks2d1s

SUBROUTINE quadct(x,y,xx,yy,fa,fb,fc,fd)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y
REAL(SP), DIMENSION(:), INTENT(IN) :: xx,yy
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd

Given an origin (x,y), and an array of points with coordinates xx and yy, count how many of
them are in each quadrant around the origin, and return the normalized fractions. Quadrants
are labeled alphabetically, counterclockwise from the upper right. Used by ks2d1s and
ks2d2s.

INTEGER(I4B) :: na,nb,nc,nd,nn
REAL(SP) :: ff
nn=assert_eq(size(xx),size(yy),’quadct’)
na=count(yy(:) > y .and. xx(:) > x)
nb=count(yy(:) > y .and. xx(:) <= x)
nc=count(yy(:) <= y .and. xx(:) <= x)
nd=nn-na-nb-nc
ff=1.0_sp/nn
fa=ff*na
fb=ff*nb
fc=ff*nc
fd=ff*nd
END SUBROUTINE quadct

SUBROUTINE quadvl(x,y,fa,fb,fc,fd)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd

This is a sample of a user-supplied routine to be used with ks2d1s. In this case, the model
distribution is uniform inside the square −1 < x < 1, −1 < y < 1. In general this routine
should return, for any point (x, y), the fraction of the total distribution in each of the
four quadrants around that point. The fractions, fa, fb, fc, and fd, must add up to 1.
Quadrants are alphabetical, counterclockwise from the upper right.

REAL(SP) :: qa,qb,qc,qd
qa=min(2.0_sp,max(0.0_sp,1.0_sp-x))
qb=min(2.0_sp,max(0.0_sp,1.0_sp-y))
qc=min(2.0_sp,max(0.0_sp,x+1.0_sp))
qd=min(2.0_sp,max(0.0_sp,y+1.0_sp))
fa=0.25_sp*qa*qb
fb=0.25_sp*qb*qc
fc=0.25_sp*qc*qd
fd=0.25_sp*qd*qa
END SUBROUTINE quadvl
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SUBROUTINE ks2d2s(x1,y1,x2,y2,d,prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : pearsn,probks,quadct
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1,y1,x2,y2
REAL(SP), INTENT(OUT) :: d,prob

Compute two-dimensional Kolmogorov-Smirnov test on two samples. Input are the x- and
y-coordinates of the first sample in arrays x1 and y1 of the same length, and of the second
sample in arrays x2 and y2 of the same length (possibly different from the length of the first
sample). The routine returns the two-dimensional, two-sample K-S statistic as d, and its
significance level as prob. Small values of prob show that the two samples are significantly
different. Note that the test is slightly distribution-dependent, so prob is only an estimate.

INTEGER(I4B) :: j,n1,n2
REAL(SP) :: d1,d2,dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,r2,rr,sqen
n1=assert_eq(size(x1),size(y1),’ks2d2s: n1’)
n2=assert_eq(size(x2),size(y2),’ks2d2s: n2’)
d1=0.0
do j=1,n1 First, use points in the first sample as origins.

call quadct(x1(j),y1(j),x1,y1,fa,fb,fc,fd)
call quadct(x1(j),y1(j),x2,y2,ga,gb,gc,gd)
d1=max(d1,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))

end do
d2=0.0
do j=1,n2 Then, use points in the second sample as ori-

gins.call quadct(x2(j),y2(j),x1,y1,fa,fb,fc,fd)
call quadct(x2(j),y2(j),x2,y2,ga,gb,gc,gd)
d2=max(d2,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))

end do
d=0.5_sp*(d1+d2) Average the K-S statistics.
sqen=sqrt(real(n1,sp)*real(n2,sp)/real(n1+n2,sp))
call pearsn(x1,y1,r1,dum,dumm) Get the linear correlation coefficient for each sam-

ple.call pearsn(x2,y2,r2,dum,dumm)
rr=sqrt(1.0_sp-0.5_sp*(r1**2+r2**2))

Estimate the probability using the K-S probability function probks.
prob=probks(d*sqen/(1.0_sp+rr*(0.25_sp-0.75_sp/sqen)))
END SUBROUTINE ks2d2s

� � �

FUNCTION savgol(nl,nrr,ld,m)
USE nrtype; USE nrutil, ONLY : arth,assert,poly
USE nr, ONLY : lubksb,ludcmp
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: nl,nrr,ld,m

Returns in array c, in wrap-around order (N.B.!) consistent with the argument respns in
routine convlv, a set of Savitzky-Golay filter coefficients. nl is the number of leftward
(past) data points used, while nrr is the number of rightward (future) data points, making
the total number of data points used nl+nrr+1. ld is the order of the derivative desired
(e.g., ld = 0 for smoothed function). m is the order of the smoothing polynomial, also
equal to the highest conserved moment; usual value is m = 2 or m = 4.

REAL(SP), DIMENSION(nl+nrr+1) :: savgol
INTEGER(I4B) :: imj,ipj,mm,np
INTEGER(I4B), DIMENSION(m+1) :: indx
REAL(SP) :: d,sm
REAL(SP), DIMENSION(m+1) :: b
REAL(SP), DIMENSION(m+1,m+1) :: a
INTEGER(I4B) :: irng(nl+nrr+1)
call assert(nl >= 0, nrr >= 0, ld <= m, nl+nrr >= m, ’savgol args’)
do ipj=0,2*m Set up the normal equations of the desired least

squares fit.sm=sum(arth(1.0_sp,1.0_sp,nrr)**ipj)+&
sum(arth(-1.0_sp,-1.0_sp,nl)**ipj)
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if (ipj == 0) sm=sm+1.0_sp
mm=min(ipj,2*m-ipj)
do imj=-mm,mm,2

a(1+(ipj+imj)/2,1+(ipj-imj)/2)=sm
end do

end do
call ludcmp(a(:,:),indx(:),d) Solve them: LU decomposition.
b(:)=0.0
b(ld+1)=1.0 Right-hand-side vector is unit vector, depending

on which derivative we want.call lubksb(a(:,:),indx(:),b(:))
Backsubstitute, giving one row of the inverse matrix.

savgol(:)=0.0 Zero the output array (it may be bigger than
number of coefficients).irng(:)=arth(-nl,1,nrr+nl+1)

np=nl+nrr+1
savgol(mod(np-irng(:),np)+1)=poly(real(irng(:),sp),b(:))

Each Savitzky-Golay coefficient is the value of the polynomial in (14.8.6) at the corresponding
integer. The polynomial coefficients are a row of the inverse matrix. The mod function takes
care of the wrap-around order.

END FUNCTION savgol

f90
do imj=-mm,mm,2 Here is an example of a loop that cannot be parallelized
in the framework of Fortran 90: We need to access “skew” sections of
the matrix a.

savgol...=poly(real(irng(:),sp),b(:))) The poly function in nrutil re-
turns the value of a polynomial, here the one in equation (14.8.6). We need the
explicit kind type parameter sp in the real function, otherwise it would return
type default real for the integer argument and would not automatically convert to
double precision if desired.
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Chapter B15. Modeling of Data

SUBROUTINE fit(x,y,a,b,siga,sigb,chi2,q,sig)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : gammq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: a,b,siga,sigb,chi2,q
REAL(SP), DIMENSION(:), OPTIONAL, INTENT(IN) :: sig

Given a set of data points in same-size arrays x and y, fit them to a straight line y = a+ bx
by minimizing χ2. sig is an optional array of the same length containing the individual
standard deviations. If it is present, then a,b are returned with their respective probable
uncertainties siga and sigb, the chi-square chi2, and the goodness-of-fit probability q
(that the fit would have χ2 this large or larger). If sig is not present, then q is returned
as 1.0 and the normalization of chi2 is to unit standard deviation on all points.

INTEGER(I4B) :: ndata
REAL(SP) :: sigdat,ss,sx,sxoss,sy,st2
REAL(SP), DIMENSION(size(x)), TARGET :: t
REAL(SP), DIMENSION(:), POINTER :: wt
if (present(sig)) then

ndata=assert_eq(size(x),size(y),size(sig),’fit’)
wt=>t Use temporary variable t to store weights.
wt(:)=1.0_sp/(sig(:)**2)
ss=sum(wt(:)) Accumulate sums with weights.
sx=dot_product(wt,x)
sy=dot_product(wt,y)

else
ndata=assert_eq(size(x),size(y),’fit’)
ss=real(size(x),sp) Accumulate sums without weights.
sx=sum(x)
sy=sum(y)

end if
sxoss=sx/ss
t(:)=x(:)-sxoss
if (present(sig)) then

t(:)=t(:)/sig(:)
b=dot_product(t/sig,y)

else
b=dot_product(t,y)

end if
st2=dot_product(t,t)
b=b/st2 Solve for a, b, σa, and σb.
a=(sy-sx*b)/ss
siga=sqrt((1.0_sp+sx*sx/(ss*st2))/ss)
sigb=sqrt(1.0_sp/st2)
t(:)=y(:)-a-b*x(:)
q=1.0
if (present(sig)) then

t(:)=t(:)/sig(:)
chi2=dot_product(t,t) Calculate χ2.
if (ndata > 2) q=gammq(0.5_sp*(size(x)-2),0.5_sp*chi2) Equation (15.2.12).

else
chi2=dot_product(t,t)

1285
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sigdat=sqrt(chi2/(size(x)-2)) For unweighted data evaluate typical
sig using chi2, and adjust the
standard deviations.

siga=siga*sigdat
sigb=sigb*sigdat

end if
END SUBROUTINE fit

f90
REAL(SP), DIMENSION(:), POINTER :: wt...wt=>t When standard devia-
tions are supplied in sig, we need to compute the weights for the least
squares fit in a temporary array wt. Later in the routine, we need another

temporary array, which we call t to correspond to the variable in equation (15.2.15).
It would be confusing to use the same name for both arrays. In Fortran 77 the arrays
could share storage with an EQUIVALENCEdeclaration, but that is a deprecated feature
in Fortran 90. We accomplish the same thing by making wt a pointer alias to t.

� � �

SUBROUTINE fitexy(x,y,sigx,sigy,a,b,siga,sigb,chi2,q)
USE nrtype; USE nrutil, ONLY : assert_eq,swap
USE nr, ONLY : avevar,brent,fit,gammq,mnbrak,zbrent
USE chixyfit
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sigx,sigy
REAL(SP), INTENT(OUT) :: a,b,siga,sigb,chi2,q
REAL(SP), PARAMETER :: POTN=1.571000_sp,BIG=1.0e30_sp,ACC=1.0e-3_sp

Straight-line fit to input data x and y with errors in both x and y, the respective standard
deviations being the input quantities sigx and sigy. x, y, sigx, and sigy are all arrays of
the same length. Output quantities are a and b such that y = a+ bx minimizes χ2, whose
value is returned as chi2. The χ2 probability is returned as q, a small value indicating
a poor fit (sometimes indicating underestimated errors). Standard errors on a and b are
returned as siga and sigb. These are not meaningful if either (i) the fit is poor, or (ii) b
is so large that the data are consistent with a vertical (infinite b) line. If siga and sigb
are returned as BIG, then the data are consistent with all values of b.

INTEGER(I4B) :: j,n
REAL(SP), DIMENSION(size(x)), TARGET :: xx,yy,sx,sy,ww
REAL(SP), DIMENSION(6) :: ang,ch
REAL(SP) :: amx,amn,varx,vary,scale,bmn,bmx,d1,d2,r2,&

dum1,dum2,dum3,dum4,dum5
n=assert_eq(size(x),size(y),size(sigx),size(sigy),’fitexy’)
xxp=>xx Set up communication with function chixy

through global variables in the module
chixyfit.

yyp=>yy
sxp=>sx
syp=>sy
wwp=>ww
call avevar(x,dum1,varx) Find the x and y variances, and scale the

data.call avevar(y,dum1,vary)
scale=sqrt(varx/vary)
xx(:)=x(:)
yy(:)=y(:)*scale
sx(:)=sigx(:)
sy(:)=sigy(:)*scale
ww(:)=sqrt(sx(:)**2+sy(:)**2) Use both x and y weights in first trial fit.
call fit(xx,yy,dum1,b,dum2,dum3,dum4,dum5,ww) Trial fit for b.
offs=0.0
ang(1)=0.0 Construct several angles for reference points.
ang(2)=atan(b) Make b an angle.
ang(4)=0.0
ang(5)=ang(2)
ang(6)=POTN
do j=4,6

ch(j)=chixy(ang(j))
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end do
call mnbrak(ang(1),ang(2),ang(3),ch(1),ch(2),ch(3),chixy)
Bracket the χ2 minimum and then locate it with brent.

chi2=brent(ang(1),ang(2),ang(3),chixy,ACC,b)
chi2=chixy(b)
a=aa
q=gammq(0.5_sp*(n-2),0.5_sp*chi2) Compute χ2 probability.
r2=1.0_sp/sum(ww(:)) Save inverse sum of weights at the minimum.
bmx=BIG Now, find standard errors for b as points where

∆χ2 = 1.bmn=BIG
offs=chi2+1.0_sp
do j=1,6 Go through saved values to bracket the de-

sired roots. Note periodicity in slope an-
gles.

if (ch(j) > offs) then
d1=mod(abs(ang(j)-b),PI)
d2=PI-d1
if (ang(j) < b) call swap(d1,d2)
if (d1 < bmx) bmx=d1
if (d2 < bmn) bmn=d2

end if
end do
if (bmx < BIG) then Call zbrent to find the roots.

bmx=zbrent(chixy,b,b+bmx,ACC)-b
amx=aa-a
bmn=zbrent(chixy,b,b-bmn,ACC)-b
amn=aa-a
sigb=sqrt(0.5_sp*(bmx**2+bmn**2))/(scale*cos(b)**2)
siga=sqrt(0.5_sp*(amx**2+amn**2)+r2)/scale Error in a has additional piece

r2.else
sigb=BIG
siga=BIG

end if
a=a/scale Unscale the answers.
b=tan(b)/scale
END SUBROUTINE fitexy

f90
USE chixyfit We need to pass arrays and other variables to chixy, but
not as arguments. See §21.5 and the discussion of fminln on p. 1197
for two good ways to do this. The pointer construction here is analogous

to the one used in fminln.

MODULE chixyfit
USE nrtype; USE nrutil, ONLY : nrerror
REAL(SP), DIMENSION(:), POINTER :: xxp,yyp,sxp,syp,wwp
REAL(SP) :: aa,offs
CONTAINS

FUNCTION chixy(bang)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: bang
REAL(SP) :: chixy
REAL(SP), PARAMETER :: BIG=1.0e30_sp

Captive function of fitexy, returns the value of (χ2 −offs) for the slope b=tan(bang).
Scaled data and offs are communicated via the module chixyfit.

REAL(SP) :: avex,avey,sumw,b
if (.not. associated(wwp)) call nrerror("chixy: bad pointers")
b=tan(bang)
wwp(:)=(b*sxp(:))**2+syp(:)**2
where (wwp(:) < 1.0/BIG)

wwp(:)=BIG
elsewhere

wwp(:)=1.0_sp/wwp(:)
end where
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sumw=sum(wwp)
avex=dot_product(wwp,xxp)/sumw
avey=dot_product(wwp,yyp)/sumw
aa=avey-b*avex
chixy=sum(wwp(:)*(yyp(:)-aa-b*xxp(:))**2)-offs
END FUNCTION chixy
END MODULE chixyfit

� � �

SUBROUTINE lfit(x,y,sig,a,maska,covar,chisq,funcs)
USE nrtype; USE nrutil, ONLY : assert_eq,diagmult,nrerror
USE nr, ONLY :covsrt,gaussj
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sig
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: maska
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: covar
REAL(SP), INTENT(OUT) :: chisq
INTERFACE

SUBROUTINE funcs(x,arr)
USE nrtype
IMPLICIT NONE
REAL(SP),INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: arr
END SUBROUTINE funcs

END INTERFACE
Given a set of N data points x, y with individual standard deviations sig, all arrays of
length N , use χ2 minimization to fit for some or all of the M coefficients a of a function
that depends linearly on a, y =

∑M
i=1 ai × afunci(x). The input logical array maska of

length M indicates by true entries those components of a that should be fitted for, and by
false entries those components that should be held fixed at their input values. The program
returns values for a, χ2 = chisq, and the M ×M covariance matrix covar. (Parameters
held fixed will return zero covariances.) The user supplies a subroutine funcs(x,afunc)
that returns the M basis functions evaluated at x = x in the array afunc.

INTEGER(I4B) :: i,j,k,l,ma,mfit,n
REAL(SP) :: sig2i,wt,ym
REAL(SP), DIMENSION(size(maska)) :: afunc
REAL(SP), DIMENSION(size(maska),1) :: beta
n=assert_eq(size(x),size(y),size(sig),’lfit: n’)
ma=assert_eq(size(maska),size(a),size(covar,1),size(covar,2),’lfit: ma’)
mfit=count(maska) Number of parameters to fit for.
if (mfit == 0) call nrerror(’lfit: no parameters to be fitted’)
covar(1:mfit,1:mfit)=0.0 Initialize the (symmetric) matrix.
beta(1:mfit,1)=0.0
do i=1,n Loop over data to accumulate coefficients of

the normal equations.call funcs(x(i),afunc)
ym=y(i)
if (mfit < ma) ym=ym-sum(a(1:ma)*afunc(1:ma), mask=.not. maska)
Subtract off dependences on known pieces of the fitting function.

sig2i=1.0_sp/sig(i)**2
j=0
do l=1,ma

if (maska(l)) then
j=j+1
wt=afunc(l)*sig2i
k=count(maska(1:l))
covar(j,1:k)=covar(j,1:k)+wt*pack(afunc(1:l),maska(1:l))
beta(j,1)=beta(j,1)+ym*wt

end if
end do
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end do
call diagmult(covar(1:mfit,1:mfit),0.5_sp)
covar(1:mfit,1:mfit)= & Fill in above the diagonal from symmetry.

covar(1:mfit,1:mfit)+transpose(covar(1:mfit,1:mfit))
call gaussj(covar(1:mfit,1:mfit),beta(1:mfit,1:1)) Matrix solution.
a(1:ma)=unpack(beta(1:ma,1),maska,a(1:ma))
Partition solution to appropriate coefficients a.

chisq=0.0 Evaluate χ2 of the fit.
do i=1,n

call funcs(x(i),afunc)
chisq=chisq+((y(i)-dot_product(a(1:ma),afunc(1:ma)))/sig(i))**2

end do
call covsrt(covar,maska) Sort covariance matrix to true order of fitting

coefficients.END SUBROUTINE lfit

f90
if (mfit < ma) ym=ym-sum(a(1:ma)*afunc(1:ma), mask=.not. maska)

This is the first of several uses of maska in this routine to control
which elements of an array are to be used. Here we include in the sum

only elements for which maska is false, i.e., elements corresponding to parameters
that are not being fitted for.

covar(j,1:k)=covar(j,1:k)+wt*pack(afunc(1:l),maska(1:l)) Here maska

controls which elements of afunc get packed into the covariance matrix.

call diagmult(covar(1:mfit,1:mfit),0.5_sp) See discussion of diagadd
after hqr on p. 1234.

a(1:ma)=unpack(beta(1:ma,1),maska,a(1:ma)) And heremaska controls which
elements of beta get unpacked into the appropriate slots in a. Where maska is
false, corresponding elements are selected from the third argument of unpack, here
a itself. The net effect is that those elements remain unchanged.

� � �

SUBROUTINE covsrt(covar,maska)
USE nrtype; USE nrutil, ONLY : assert_eq,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: covar
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: maska

Expand in storage the covariance matrix covar, so as to take into account parameters that
are being held fixed. (For the latter, return zero covariances.)

INTEGER(I4B) :: ma,mfit,j,k
ma=assert_eq(size(covar,1),size(covar,2),size(maska),’covsrt’)
mfit=count(maska)
covar(mfit+1:ma,1:ma)=0.0
covar(1:ma,mfit+1:ma)=0.0
k=mfit
do j=ma,1,-1

if (maska(j)) then
call swap(covar(1:ma,k),covar(1:ma,j))
call swap(covar(k,1:ma),covar(j,1:ma))
k=k-1

end if
end do
END SUBROUTINE covsrt

� � �
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SUBROUTINE svdfit(x,y,sig,a,v,w,chisq,funcs)
USE nrtype; USE nrutil, ONLY : assert_eq,vabs
USE nr, ONLY : svbksb,svdcmp
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sig
REAL(SP), DIMENSION(:), INTENT(OUT) :: a,w
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: v
REAL(SP), INTENT(OUT) :: chisq
INTERFACE

FUNCTION funcs(x,n)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: funcs
END FUNCTION funcs

END INTERFACE
REAL(SP), PARAMETER :: TOL=1.0e-5_sp

Given a set ofN data points x, y with individual standard deviations sig, all arrays of length
N , use χ2 minimization to determine theM coefficients a of a function that depends linearly
on a, y =

∑M
i=1 ai × afunci(x). Here we solve the fitting equations using singular value

decomposition of the N × M matrix, as in §2.6. On output, the M × M array v and the
vector w of length M define part of the singular value decomposition, and can be used to
obtain the covariance matrix. The program returns values for the M fit parameters a, and
χ2, chisq. The user supplies a subroutine funcs(x,afunc) that returns the M basis
functions evaluated at x = X in the array afunc.

INTEGER(I4B) :: i,ma,n
REAL(SP), DIMENSION(size(x)) :: b,sigi
REAL(SP), DIMENSION(size(x),size(a)) :: u,usav
n=assert_eq(size(x),size(y),size(sig),’svdfit: n’)
ma=assert_eq(size(a),size(v,1),size(v,2),size(w),’svdfit: ma’)
sigi=1.0_sp/sig Accumulate coefficients of the fitting matrix in

u.b=y*sigi
do i=1,n

usav(i,:)=funcs(x(i),ma)
end do
u=usav*spread(sigi,dim=2,ncopies=ma)
usav=u
call svdcmp(u,w,v) Singular value decomposition.
where (w < TOL*maxval(w)) w=0.0 Edit the singular values, given TOL from the pa-

rameter statement.call svbksb(u,w,v,b,a)
chisq=vabs(matmul(usav,a)-b)**2 Evaluate chi-square.
END SUBROUTINE svdfit

f90
u=usav*spread(sigi,dim=2,ncopies=ma) Remember how spread works:
the vector sigi is copied along the dimension 2, making a matrix whose
columns are each a copy of sigi. The multiplication here is element by

element, so each row of usav is multiplied by the corresponding element of sigi.

chisq=vabs(matmul(usav,a)-b)**2 Fortran 90’s matmul intrinsic allows us to
evaluate χ2 from the mathematical definition in terms of matrices. vabs in nrutil

returns the length of a vector (L2 norm).

SUBROUTINE svdvar(v,w,cvm)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: v
REAL(SP), DIMENSION(:), INTENT(IN) :: w
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: cvm
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To evaluate the covariance matrix cvm of the fit for M parameters obtained by svdfit,
call this routine with matrices v,w as returned from svdfit. The dimensions are M for
w and M × M for v and cvm.

INTEGER(I4B) :: ma
REAL(SP), DIMENSION(size(w)) :: wti
ma=assert_eq((/size(v,1),size(v,2),size(w),size(cvm,1),size(cvm,2)/),&

’svdvar’)
where (w /= 0.0)

wti=1.0_sp/(w*w)
elsewhere

wti=0.0
end where
cvm=v*spread(wti,dim=1,ncopies=ma)
cvm=matmul(cvm,transpose(v)) Covariance matrix is given by (15.4.20).
END SUBROUTINE svdvar

f90
where (w /= 0.0)...elsewhere...end where This is the standard Fortran
90 construction for doing different things to a matrix depending on some
condition. Here we want to avoid inverting elements of w that are zero.

cvm=v*spread(wti,dim=1,ncopies=ma) Each column of v gets multiplied by
the corresponding element of wti. Contrast the construction spread(...dim=2...)

in svdfit.

� � �

FUNCTION fpoly(x,n)
USE nrtype; USE nrutil, ONLY : geop
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: fpoly

Fitting routine for a polynomial of degree n − 1, returning n coefficients in fpoly.
fpoly=geop(1.0_sp,x,n)
END FUNCTION fpoly

� � �

FUNCTION fleg(x,nl)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: nl
REAL(SP), DIMENSION(nl) :: fleg

Fitting routine for an expansion with nl Legendre polynomials evaluated at x and returned
in the array fleg of length nl. The evaluation uses the recurrence relation as in §5.5.

INTEGER(I4B) :: j
REAL(SP) :: d,f1,f2,twox
fleg(1)=1.0
fleg(2)=x
if (nl > 2) then

twox=2.0_sp*x
f2=x
d=1.0
do j=3,nl

f1=d
f2=f2+twox
d=d+1.0_sp
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fleg(j)=(f2*fleg(j-1)-f1*fleg(j-2))/d
end do

end if
END FUNCTION fleg

� � �

SUBROUTINE mrqmin(x,y,sig,a,maska,covar,alpha,chisq,funcs,alamda)
USE nrtype; USE nrutil, ONLY : assert_eq,diagmult
USE nr, ONLY : covsrt,gaussj
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sig
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: covar,alpha
REAL(SP), INTENT(OUT) :: chisq
REAL(SP), INTENT(INOUT) :: alamda
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: maska
INTERFACE

SUBROUTINE funcs(x,a,yfit,dyda)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,a
REAL(SP), DIMENSION(:), INTENT(OUT) :: yfit
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dyda
END SUBROUTINE funcs

END INTERFACE
Levenberg-Marquardt method, attempting to reduce the value χ2 of a fit between a set ofN
data points x, y with individual standard deviations sig, and a nonlinear function dependent
on M coefficients a. The input logical array maska of length M indicates by true entries
those components of a that should be fitted for, and by false entries those components that
should be held fixed at their input values. The program returns current best-fit values for the
parameters a, and χ2 = chisq. The M×M arrays covar and alpha are used as working
space during most iterations. Supply a subroutine funcs(x,a,yfit,dyda) that evaluates
the fitting function yfit, and its derivatives dyda with respect to the fitting parameters a
at x. On the first call provide an initial guess for the parameters a, and set alamda<0 for
initialization (which then sets alamda=.001). If a step succeeds chisq becomes smaller
and alamda decreases by a factor of 10. If a step fails alamda grows by a factor of 10.
You must call this routine repeatedly until convergence is achieved. Then, make one final
call with alamda=0, so that covar returns the covariance matrix, and alpha the curvature
matrix. (Parameters held fixed will return zero covariances.)

INTEGER(I4B) :: ma,ndata
INTEGER(I4B), SAVE :: mfit
call mrqmin_private
CONTAINS

SUBROUTINE mrqmin_private
REAL(SP), SAVE :: ochisq
REAL(SP), DIMENSION(:), ALLOCATABLE, SAVE :: atry,beta
REAL(SP), DIMENSION(:,:), ALLOCATABLE, SAVE :: da
ndata=assert_eq(size(x),size(y),size(sig),’mrqmin: ndata’)
ma=assert_eq((/size(a),size(maska),size(covar,1),size(covar,2),&

size(alpha,1),size(alpha,2)/),’mrqmin: ma’)
mfit=count(maska)
if (alamda < 0.0) then Initialization.

allocate(atry(ma),beta(ma),da(ma,1))
alamda=0.001_sp
call mrqcof(a,alpha,beta)
ochisq=chisq
atry=a

end if
covar(1:mfit,1:mfit)=alpha(1:mfit,1:mfit)
call diagmult(covar(1:mfit,1:mfit),1.0_sp+alamda)
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Alter linearized fitting matrix, by augmenting diagonal elements.
da(1:mfit,1)=beta(1:mfit)
call gaussj(covar(1:mfit,1:mfit),da(1:mfit,1:1)) Matrix solution.
if (alamda == 0.0) then Once converged, evaluate covariance ma-

trix.call covsrt(covar,maska)
call covsrt(alpha,maska) Spread out alpha to its full size too.
deallocate(atry,beta,da)
RETURN

end if
atry=a+unpack(da(1:mfit,1),maska,0.0_sp) Did the trial succeed?
call mrqcof(atry,covar,da(1:mfit,1))
if (chisq < ochisq) then Success, accept the new solution.

alamda=0.1_sp*alamda
ochisq=chisq
alpha(1:mfit,1:mfit)=covar(1:mfit,1:mfit)
beta(1:mfit)=da(1:mfit,1)
a=atry

else Failure, increase alamda and return.
alamda=10.0_sp*alamda
chisq=ochisq

end if
END SUBROUTINE mrqmin_private

SUBROUTINE mrqcof(a,alpha,beta)
REAL(SP), DIMENSION(:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: beta
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: alpha

Used by mrqmin to evaluate the linearized fitting matrix alpha, and vector beta as in
(15.5.8), and calculate χ2.

INTEGER(I4B) :: j,k,l,m
REAL(SP), DIMENSION(size(x),size(a)) :: dyda
REAL(SP), DIMENSION(size(x)) :: dy,sig2i,wt,ymod
call funcs(x,a,ymod,dyda) Loop over all the data.
sig2i=1.0_sp/(sig**2)
dy=y-ymod
j=0
do l=1,ma

if (maska(l)) then
j=j+1
wt=dyda(:,l)*sig2i
k=0
do m=1,l

if (maska(m)) then
k=k+1
alpha(j,k)=dot_product(wt,dyda(:,m))
alpha(k,j)=alpha(j,k) Fill in the symmetric side.

end if
end do
beta(j)=dot_product(dy,wt)

end if
end do
chisq=dot_product(dy**2,sig2i) Find χ2.
END SUBROUTINE mrqcof
END SUBROUTINE mrqmin

f90
The organization of this routine is similar to that of amoeba, discussed
on p. 1209. We want to keep the argument list of mrqcof to a minimum,
but we want to make clear what global variables it accesses, and protect

mrqmin private’s name space.

REAL(SP), DIMENSION(:), ALLOCATABLE, SAVE :: atry,beta These arrays, as
well as da, are allocated with the correct dimensions on the first call to mrqmin.
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They need to retain their values between calls, so they are declared with the SAVE

attribute. They get deallocated only on the final call when alamda=0.

call diagmult(...) See discussion of diagadd after hqr on p. 1234.

atry=a+unpack(da(1:mfit,1),maska,0.0_sp) maska controls which elements
of a get incremented by da and which by 0.

� � �

SUBROUTINE fgauss(x,a,y,dyda)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,a
REAL(SP), DIMENSION(:), INTENT(OUT) :: y
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dyda

y(x; a) is the sum of N/3 Gaussians (15.5.16). Here N is the length of the vectors x, y
and a, while dyda is an N ×N matrix. The amplitude, center, and width of the Gaussians
are stored in consecutive locations of a: a(i) = Bk, a(i+1) = Ek, a(i+2) = Gk ,
k = 1, . . . , N/3.

INTEGER(I4B) :: i,na,nx
REAL(SP), DIMENSION(size(x)) :: arg,ex,fac
nx=assert_eq(size(x),size(y),size(dyda,1),’fgauss: nx’)
na=assert_eq(size(a),size(dyda,2),’fgauss: na’)
y(:)=0.0
do i=1,na-1,3

arg(:)=(x(:)-a(i+1))/a(i+2)
ex(:)=exp(-arg(:)**2)
fac(:)=a(i)*ex(:)*2.0_sp*arg(:)
y(:)=y(:)+a(i)*ex(:)
dyda(:,i)=ex(:)
dyda(:,i+1)=fac(:)/a(i+2)
dyda(:,i+2)=fac(:)*arg(:)/a(i+2)

end do
END SUBROUTINE fgauss

� � �

SUBROUTINE medfit(x,y,a,b,abdev)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : select
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: a,b,abdev

Fits y = a+bx by the criterion of least absolute deviations. The same-size arrays x and y are
the input experimental points. The fitted parameters a and b are output, along with abdev,
which is the mean absolute deviation (in y) of the experimental points from the fitted line.

INTEGER(I4B) :: ndata
REAL(SP) :: aa
call medfit_private
CONTAINS

SUBROUTINE medfit_private
IMPLICIT NONE
REAL(SP) :: b1,b2,bb,chisq,del,f,f1,f2,sigb,sx,sxx,sxy,sy
REAL(SP), DIMENSION(size(x)) :: tmp
ndata=assert_eq(size(x),size(y),’medfit’)
sx=sum(x) As a first guess for a and b, we will find the least

squares fitting line.sy=sum(y)
sxy=dot_product(x,y)
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sxx=dot_product(x,x)
del=ndata*sxx-sx**2
aa=(sxx*sy-sx*sxy)/del Least squares solutions.
bb=(ndata*sxy-sx*sy)/del
tmp(:)=y(:)-(aa+bb*x(:))
chisq=dot_product(tmp,tmp)
sigb=sqrt(chisq/del) The standard deviation will give some idea of how

big an iteration step to take.b1=bb
f1=rofunc(b1)
b2=bb+sign(3.0_sp*sigb,f1) Guess bracket as 3-σ away, in the downhill direction

known from f1.f2=rofunc(b2)
if (b2 == b1) then

a=aa
b=bb
RETURN

endif
do Bracketing.

if (f1*f2 <= 0.0) exit
bb=b2+1.6_sp*(b2-b1)
b1=b2
f1=f2
b2=bb
f2=rofunc(b2)

end do
sigb=0.01_sp*sigb Refine until error a negligible number of standard de-

viations.do
if (abs(b2-b1) <= sigb) exit
bb=b1+0.5_sp*(b2-b1) Bisection.
if (bb == b1 .or. bb == b2) exit
f=rofunc(bb)
if (f*f1 >= 0.0) then

f1=f
b1=bb

else
f2=f
b2=bb

end if
end do
a=aa
b=bb
abdev=abdev/ndata
END SUBROUTINE medfit_private

FUNCTION rofunc(b)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: b
REAL(SP) :: rofunc
REAL(SP), PARAMETER :: EPS=epsilon(b)

Evaluates the right-hand side of equation (15.7.16) for a given value of b.
INTEGER(I4B) :: j
REAL(SP), DIMENSION(size(x)) :: arr,d
arr(:)=y(:)-b*x(:)
if (mod(ndata,2) == 0) then

j=ndata/2
aa=0.5_sp*(select(j,arr)+select(j+1,arr))

else
aa=select((ndata+1)/2,arr)

end if
d(:)=y(:)-(b*x(:)+aa)
abdev=sum(abs(d))
where (y(:) /= 0.0) d(:)=d(:)/abs(y(:))
rofunc=sum(x(:)*sign(1.0_sp,d(:)), mask=(abs(d(:)) > EPS) )
END FUNCTION rofunc
END SUBROUTINE medfit
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f90
The organization of this routine is similar to that of amoeba discussed on
p. 1209. We want to keep the argument list of rofunc to a minimum,
but we want to make clear what global variables it accesses and protect

medfit private’s name space. In the Fortran 77 version, we kept the only
argument as b by passing the global variables in a common block. This required us to
make copies of the arrays x and y. An alternative Fortran 90 implementation would
be to use a module with pointers to the arguments of medfit like x and y that need
to be passed to rofunc. We think the medfit private construction is simpler.
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Chapter B16. Integration of Ordinary
Differential Equations

SUBROUTINE rk4(y,dydx,x,h,yout,derivs)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx
REAL(SP), INTENT(IN) :: x,h
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
Given values for the N variables y and their derivatives dydx known at x, use the fourth-
order Runge-Kutta method to advance the solution over an interval h and return the incre-
mented variables as yout, which need not be a distinct array from y. y, dydx and yout
are all of length N . The user supplies the subroutine derivs(x,y,dydx), which returns
derivatives dydx at x.

INTEGER(I4B) :: ndum
REAL(SP) :: h6,hh,xh
REAL(SP), DIMENSION(size(y)) :: dym,dyt,yt
ndum=assert_eq(size(y),size(dydx),size(yout),’rk4’)
hh=h*0.5_sp
h6=h/6.0_sp
xh=x+hh
yt=y+hh*dydx First step.
call derivs(xh,yt,dyt) Second step.
yt=y+hh*dyt
call derivs(xh,yt,dym) Third step.
yt=y+h*dym
dym=dyt+dym
call derivs(x+h,yt,dyt) Fourth step.
yout=y+h6*(dydx+dyt+2.0_sp*dym) Accumulate increments with proper weights.
END SUBROUTINE rk4

� � �

MODULE rkdumb_path Storage of results.
USE nrtype
REAL(SP), DIMENSION(:), ALLOCATABLE:: xx
REAL(SP), DIMENSION(:,:), ALLOCATABLE :: y
END MODULE rkdumb_path

1297
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SUBROUTINE rkdumb(vstart,x1,x2,nstep,derivs)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : rk4
USE rkdumb_path
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: vstart
REAL(SP), INTENT(IN) :: x1,x2
INTEGER(I4B), INTENT(IN) :: nstep
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
Starting from N initial values vstart known at x1, use fourth-order Runge-Kutta to ad-
vance nstep equal increments to x2. The user-supplied subroutine derivs(x,y,dydx)
evaluates derivatives. Results are stored in the module variables xx and y.

INTEGER(I4B) :: k
REAL(SP) :: h,x
REAL(SP), DIMENSION(size(vstart)) :: dv,v
v(:)=vstart(:) Load starting values.
if (allocated(xx)) deallocate(xx) Clear out old stored variables if necessary.
if (allocated(y)) deallocate(y)
allocate(xx(nstep+1)) Allocate storage for saved values.
allocate(y(size(vstart),nstep+1))
y(:,1)=v(:)
xx(1)=x1
x=x1
h=(x2-x1)/nstep
do k=1,nstep Take nstep steps.

call derivs(x,v,dv)
call rk4(v,dv,x,h,v,derivs)
if (x+h == x) call nrerror(’stepsize not significant in rkdumb’)
x=x+h
xx(k+1)=x Store intermediate steps.
y(:,k+1)=v(:)

end do
END SUBROUTINE rkdumb

f90
MODULE rkdumb_path This routine needs straightforward communication
of arrays with the calling program. The dimension of the arrays is not
known in advance, and if the routine is called a second time we need

to throw away the old array information. The Fortran 90 construction for this is
to declare allocatable arrays in a module, and then test them at the beginning of
the routine withif (allocated...).

� � �

SUBROUTINE rkqs(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : rkck
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext
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INTERFACE
SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
Fifth order Runge-Kutta step with monitoring of local truncation error to ensure accuracy
and adjust stepsize. Input are the dependent variable vector y and its derivative dydx at
the starting value of the independent variable x. Also input are the stepsize to be attempted
htry, the required accuracy eps, and the vector yscal against which the error is scaled. y,
dydx, and yscal are all of the same length. On output, y and x are replaced by their new
values, hdid is the stepsize that was actually accomplished, and hnext is the estimated
next stepsize. derivs is the user-supplied subroutine that computes the right-hand-side
derivatives.

INTEGER(I4B) :: ndum
REAL(SP) :: errmax,h,htemp,xnew
REAL(SP), DIMENSION(size(y)) :: yerr,ytemp
REAL(SP), PARAMETER :: SAFETY=0.9_sp,PGROW=-0.2_sp,PSHRNK=-0.25_sp,&

ERRCON=1.89e-4
The value ERRCON equals (5/SAFETY)**(1/PGROW), see use below.

ndum=assert_eq(size(y),size(dydx),size(yscal),’rkqs’)
h=htry Set stepsize to the initial trial value.
do

call rkck(y,dydx,x,h,ytemp,yerr,derivs) Take a step.
errmax=maxval(abs(yerr(:)/yscal(:)))/eps Evaluate accuracy.
if (errmax <= 1.0) exit Step succeeded.
htemp=SAFETY*h*(errmax**PSHRNK) Truncation error too large, reduce stepsize.
h=sign(max(abs(htemp),0.1_sp*abs(h)),h) No more than a factor of 10.
xnew=x+h
if (xnew == x) call nrerror(’stepsize underflow in rkqs’)

end do Go back for another try.
if (errmax > ERRCON) then Compute size of next step.

hnext=SAFETY*h*(errmax**PGROW)
else No more than a factor of 5 increase.

hnext=5.0_sp*h
end if
hdid=h
x=x+h
y(:)=ytemp(:)
END SUBROUTINE rkqs

� � �

SUBROUTINE rkck(y,dydx,x,h,yout,yerr,derivs)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx
REAL(SP), INTENT(IN) :: x,h
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout,yerr
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
Given values for N variables y and their derivatives dydx known at x, use the fifth or-
der Cash-Karp Runge-Kutta method to advance the solution over an interval h and return
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the incremented variables as yout. Also return an estimate of the local truncation er-
ror in yout using the embedded fourth order method. The user supplies the subroutine
derivs(x,y,dydx), which returns derivatives dydx at x.

INTEGER(I4B) :: ndum
REAL(SP), DIMENSION(size(y)) :: ak2,ak3,ak4,ak5,ak6,ytemp
REAL(SP), PARAMETER :: A2=0.2_sp,A3=0.3_sp,A4=0.6_sp,A5=1.0_sp,&

A6=0.875_sp,B21=0.2_sp,B31=3.0_sp/40.0_sp,B32=9.0_sp/40.0_sp,&
B41=0.3_sp,B42=-0.9_sp,B43=1.2_sp,B51=-11.0_sp/54.0_sp,&
B52=2.5_sp,B53=-70.0_sp/27.0_sp,B54=35.0_sp/27.0_sp,&
B61=1631.0_sp/55296.0_sp,B62=175.0_sp/512.0_sp,&
B63=575.0_sp/13824.0_sp,B64=44275.0_sp/110592.0_sp,&
B65=253.0_sp/4096.0_sp,C1=37.0_sp/378.0_sp,&
C3=250.0_sp/621.0_sp,C4=125.0_sp/594.0_sp,&
C6=512.0_sp/1771.0_sp,DC1=C1-2825.0_sp/27648.0_sp,&
DC3=C3-18575.0_sp/48384.0_sp,DC4=C4-13525.0_sp/55296.0_sp,&
DC5=-277.0_sp/14336.0_sp,DC6=C6-0.25_sp

ndum=assert_eq(size(y),size(dydx),size(yout),size(yerr),’rkck’)
ytemp=y+B21*h*dydx First step.
call derivs(x+A2*h,ytemp,ak2) Second step.
ytemp=y+h*(B31*dydx+B32*ak2)
call derivs(x+A3*h,ytemp,ak3) Third step.
ytemp=y+h*(B41*dydx+B42*ak2+B43*ak3)
call derivs(x+A4*h,ytemp,ak4) Fourth step.
ytemp=y+h*(B51*dydx+B52*ak2+B53*ak3+B54*ak4)
call derivs(x+A5*h,ytemp,ak5) Fifth step.
ytemp=y+h*(B61*dydx+B62*ak2+B63*ak3+B64*ak4+B65*ak5)
call derivs(x+A6*h,ytemp,ak6) Sixth step.
yout=y+h*(C1*dydx+C3*ak3+C4*ak4+C6*ak6) Accumulate increments with proper weights.
yerr=h*(DC1*dydx+DC3*ak3+DC4*ak4+DC5*ak5+DC6*ak6)
Estimate error as difference between fourth and fifth order methods.

END SUBROUTINE rkck

� � �

MODULE ode_path On output nok and nbad are the num-
ber of good and bad (but retried and
fixed) steps taken. If save steps is
set to true in the calling program,
then intermediate values are stored
in xp and yp at intervals greater than
dxsav. kount is the total number of
saved steps.

USE nrtype
INTEGER(I4B) :: nok,nbad,kount
LOGICAL(LGT), SAVE :: save_steps=.false.
REAL(SP) :: dxsav
REAL(SP), DIMENSION(:), POINTER :: xp
REAL(SP), DIMENSION(:,:), POINTER :: yp
END MODULE ode_path

SUBROUTINE odeint(ystart,x1,x2,eps,h1,hmin,derivs,rkqs)
USE nrtype; USE nrutil, ONLY : nrerror,reallocate
USE ode_path
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: ystart
REAL(SP), INTENT(IN) :: x1,x2,eps,h1,hmin
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

SUBROUTINE rkqs(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype
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IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE rkqs

END INTERFACE
REAL(SP), PARAMETER :: TINY=1.0e-30_sp
INTEGER(I4B), PARAMETER :: MAXSTP=10000

Runge-Kutta driver with adaptive stepsize control. Integrate the array of starting values
ystart from x1 to x2 with accuracy eps, storing intermediate results in the module
variables in ode path. h1 should be set as a guessed first stepsize, hmin as the minimum
allowed stepsize (can be zero). On output ystart is replaced by values at the end of the
integration interval. derivs is the user-supplied subroutine for calculating the right-hand-
side derivative, while rkqs is the name of the stepper routine to be used.

INTEGER(I4B) :: nstp
REAL(SP) :: h,hdid,hnext,x,xsav
REAL(SP), DIMENSION(size(ystart)) :: dydx,y,yscal
x=x1
h=sign(h1,x2-x1)
nok=0
nbad=0
kount=0
y(:)=ystart(:)
if (save_steps) then

xsav=x-2.0_sp*dxsav Assures storage of first step.
nullify(xp,yp) Pointers nullified here, but memory not

deallocated. If odeint is called mul-
tiple times, calling program should
deallocate xp and yp between calls.

allocate(xp(256))
allocate(yp(size(ystart),size(xp)))

end if
do nstp=1,MAXSTP Take at most MAXSTP steps.

call derivs(x,y,dydx)
yscal(:)=abs(y(:))+abs(h*dydx(:))+TINY
Scaling used to monitor accuracy. This general purpose choice can be modified if need
be.

if (save_steps .and. (abs(x-xsav) > abs(dxsav))) & Store intermediate results.
call save_a_step

if ((x+h-x2)*(x+h-x1) > 0.0) h=x2-x If stepsize can overshoot, decrease.
call rkqs(y,dydx,x,h,eps,yscal,hdid,hnext,derivs)
if (hdid == h) then

nok=nok+1
else

nbad=nbad+1
end if
if ((x-x2)*(x2-x1) >= 0.0) then Are we done?

ystart(:)=y(:)
if (save_steps) call save_a_step Save final step.
RETURN Normal exit.

end if
if (abs(hnext) < hmin)&

call nrerror(’stepsize smaller than minimum in odeint’)
h=hnext

end do
call nrerror(’too many steps in odeint’)
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CONTAINS

SUBROUTINE save_a_step
kount=kount+1
if (kount > size(xp)) then

xp=>reallocate(xp,2*size(xp))
yp=>reallocate(yp,size(yp,1),size(xp))

end if
xp(kount)=x
yp(:,kount)=y(:)
xsav=x
END SUBROUTINE save_a_step
END SUBROUTINE odeint

f90
MODULE ode_path The situation here is similar torkdumb path, except
we don’t know at run time how much storage to allocate. We may need
to usereallocate from nrutil to increase the storage. The solution

is pointers to arrays, with anullify to be sure the pointer status is well-defined
at the beginning of the routine.

SUBROUTINE save_a_step An internal subprogram with no arguments is like
a macro in C: you could imagine just copying its code wherever it is called in
the parent routine.

� � �

SUBROUTINE mmid(y,dydx,xs,htot,nstep,yout,derivs)
USE nrtype; USE nrutil, ONLY : assert_eq,swap
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: nstep
REAL(SP), INTENT(IN) :: xs,htot
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
Modified midpoint step. Dependent variable vector y and its derivative vector dydx are
input at xs. Also input is htot, the total step to be taken, and nstep, the number of
substeps to be used. The output is returned as yout, which need not be a distinct array
from y; if it is distinct, however, then y and dydx are returned undamaged. y, dydx, and
yout must all have the same length.

INTEGER(I4B) :: n,ndum
REAL(SP) :: h,h2,x
REAL(SP), DIMENSION(size(y)) :: ym,yn
ndum=assert_eq(size(y),size(dydx),size(yout),’mmid’)
h=htot/nstep Stepsize this trip.
ym=y
yn=y+h*dydx First step.
x=xs+h
call derivs(x,yn,yout) Will use yout for temporary storage of derivatives.
h2=2.0_sp*h
do n=2,nstep General step.

call swap(ym,yn)
yn=yn+h2*yout
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x=x+h
call derivs(x,yn,yout)

end do
yout=0.5_sp*(ym+yn+h*yout) Last step.
END SUBROUTINE mmid

� � �

SUBROUTINE bsstep(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,cumsum,iminloc,nrerror,&

outerdiff,outerprod,upper_triangle
USE nr, ONLY : mmid,pzextr
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
INTEGER(I4B), PARAMETER :: IMAX=9, KMAXX=IMAX-1
REAL(SP), PARAMETER :: SAFE1=0.25_sp,SAFE2=0.7_sp,REDMAX=1.0e-5_sp,&

REDMIN=0.7_sp,TINY=1.0e-30_sp,SCALMX=0.1_sp
Bulirsch-Stoer step with monitoring of local truncation error to ensure accuracy and adjust
stepsize. Input are the dependent variable vector y and its derivative dydx at the starting
value of the independent variable x. Also input are the stepsize to be attempted htry, the
required accuracy eps, and the vector yscal against which the error is scaled. On output, y
and x are replaced by their new values, hdid is the stepsize that was actually accomplished,
and hnext is the estimated next stepsize. derivs is the user-supplied subroutine that
computes the right-hand-side derivatives. y, dydx, and yscal must all have the same
length. Be sure to set htry on successive steps to the value of hnext returned from the
previous step, as is the case if the routine is called by odeint.
Parameters: KMAXX is the maximum row number used in the extrapolation; IMAX is the
next row number; SAFE1 and SAFE2 are safety factors; REDMAX is the maximum factor
used when a stepsize is reduced, REDMIN the minimum; TINY prevents division by zero;
1/SCALMX is the maximum factor by which a stepsize can be increased.

INTEGER(I4B) :: k,km,ndum
INTEGER(I4B), DIMENSION(IMAX) :: nseq = (/ 2,4,6,8,10,12,14,16,18 /)
INTEGER(I4B), SAVE :: kopt,kmax
REAL(SP), DIMENSION(KMAXX,KMAXX), SAVE :: alf
REAL(SP), DIMENSION(KMAXX) :: err
REAL(SP), DIMENSION(IMAX), SAVE :: a
REAL(SP), SAVE :: epsold = -1.0_sp,xnew
REAL(SP) :: eps1,errmax,fact,h,red,scale,wrkmin,xest
REAL(SP), DIMENSION(size(y)) :: yerr,ysav,yseq
LOGICAL(LGT) :: reduct
LOGICAL(LGT), SAVE :: first=.true.
ndum=assert_eq(size(y),size(dydx),size(yscal),’bsstep’)
if (eps /= epsold) then A new tolerance, so reinitialize.

hnext=-1.0e29_sp “Impossible” values.
xnew=-1.0e29_sp
eps1=SAFE1*eps
a(:)=cumsum(nseq,1)
Compute α(k, q):

where (upper_triangle(KMAXX,KMAXX)) alf=eps1** &
(outerdiff(a(2:),a(2:))/outerprod(arth( &
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3.0_sp,2.0_sp,KMAXX),(a(2:)-a(1)+1.0_sp)))
epsold=eps
do kopt=2,KMAXX-1 Determine optimal row number for con-

vergence.if (a(kopt+1) > a(kopt)*alf(kopt-1,kopt)) exit
end do
kmax=kopt

end if
h=htry
ysav(:)=y(:) Save the starting values.
if (h /= hnext .or. x /= xnew) then A new stepsize or a new integration: Re-

establish the order window.first=.true.
kopt=kmax

end if
reduct=.false.
main_loop: do

do k=1,kmax Evaluate the sequence of modified mid-
point integrations.xnew=x+h

if (xnew == x) call nrerror(’step size underflow in bsstep’)
call mmid(ysav,dydx,x,h,nseq(k),yseq,derivs)
xest=(h/nseq(k))**2 Squared, since error series is even.
call pzextr(k,xest,yseq,y,yerr) Perform extrapolation.
if (k /= 1) then Compute normalized error estimate ε(k).

errmax=maxval(abs(yerr(:)/yscal(:)))
errmax=max(TINY,errmax)/eps Scale error relative to tolerance.
km=k-1
err(km)=(errmax/SAFE1)**(1.0_sp/(2*km+1))

end if
if (k /= 1 .and. (k >= kopt-1 .or. first)) then In order window.

if (errmax < 1.0) exit main_loop Converged.
if (k == kmax .or. k == kopt+1) then Check for possible step-

size reduction.red=SAFE2/err(km)
exit

else if (k == kopt) then
if (alf(kopt-1,kopt) < err(km)) then

red=1.0_sp/err(km)
exit

end if
else if (kopt == kmax) then

if (alf(km,kmax-1) < err(km)) then
red=alf(km,kmax-1)*SAFE2/err(km)
exit

end if
else if (alf(km,kopt) < err(km)) then

red=alf(km,kopt-1)/err(km)
exit

end if
end if

end do
red=max(min(red,REDMIN),REDMAX) Reduce stepsize by at least REDMIN and

at most REDMAX.h=h*red
reduct=.true.

end do main_loop Try again.
x=xnew Successful step taken.
hdid=h
first=.false.
kopt=1+iminloc(a(2:km+1)*max(err(1:km),SCALMX))
Compute optimal row for convergence and corresponding stepsize.

scale=max(err(kopt-1),SCALMX)
wrkmin=scale*a(kopt)
hnext=h/scale
if (kopt >= k .and. kopt /= kmax .and. .not. reduct) then Check for possible or-

der increase, but
not if stepsize was
just reduced.

fact=max(scale/alf(kopt-1,kopt),SCALMX)
if (a(kopt+1)*fact <= wrkmin) then

hnext=h/fact
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kopt=kopt+1
end if

end if
END SUBROUTINE bsstep

f90
a(:)=cumsum(nseq,1) The functioncumsum in nrutil with the optional
argumentseed=1 gives a direct implementation of equation (16.4.6).

where (upper_triangle(KMAXX,KMAXX))... The upper triangle function in
nrutil returns an upper triangular logical mask. As used here, the mask is true
everywhere in the upper triangle of aKMAXX×KMAXX matrix, excluding the diagonal.
An optional integer argumentextra allows additional diagonals to be set to true.
With extra=1 the upper triangle including the diagonal would be true.

main_loop: do Using a named do-loop provides clear structured code that
requiredgoto’s in the Fortran 77 version.

kopt=1+iminloc(...) See the discussion ofimaxloc on p. 1017.

� � �

SUBROUTINE pzextr(iest,xest,yest,yz,dy)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: iest
REAL(SP), INTENT(IN) :: xest
REAL(SP), DIMENSION(:), INTENT(IN) :: yest
REAL(SP), DIMENSION(:), INTENT(OUT) :: yz,dy

Use polynomial extrapolation to evaluate N functions at x = 0 by fitting a polynomial to
a sequence of estimates with progressively smaller values x = xest, and corresponding
function vectors yest. This call is number iest in the sequence of calls. Extrapolated
function values are output as yz, and their estimated error is output as dy. yest, yz, and
dy are arrays of length N .

INTEGER(I4B), PARAMETER :: IEST_MAX=16
INTEGER(I4B) :: j,nv
INTEGER(I4B), SAVE :: nvold=-1
REAL(SP) :: delta,f1,f2
REAL(SP), DIMENSION(size(yz)) :: d,tmp,q
REAL(SP), DIMENSION(IEST_MAX), SAVE :: x
REAL(SP), DIMENSION(:,:), ALLOCATABLE, SAVE :: qcol
nv=assert_eq(size(yz),size(yest),size(dy),’pzextr’)
if (iest > IEST_MAX) call &

nrerror(’pzextr: probable misuse, too much extrapolation’)
if (nv /= nvold) then Set up internal storage.

if (allocated(qcol)) deallocate(qcol)
allocate(qcol(nv,IEST_MAX))
nvold=nv

end if
x(iest)=xest Save current independent variable.
dy(:)=yest(:)
yz(:)=yest(:)
if (iest == 1) then Store first estimate in first column.

qcol(:,1)=yest(:)
else

d(:)=yest(:)
do j=1,iest-1

delta=1.0_sp/(x(iest-j)-xest)
f1=xest*delta
f2=x(iest-j)*delta
q(:)=qcol(:,j) Propagate tableau 1 diagonal more.
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qcol(:,j)=dy(:)
tmp(:)=d(:)-q(:)
dy(:)=f1*tmp(:)
d(:)=f2*tmp(:)
yz(:)=yz(:)+dy(:)

end do
qcol(:,iest)=dy(:)

end if
END SUBROUTINE pzextr

f90
REAL(SP), DIMENSION(:,:), ALLOCATABLE, SAVE :: qcol The second di-
mension ofqcol is known at compile time to beIEST MAX, but the first
dimension is known only at run time, fromsize(yz). The language

requires us to have all dimensions allocatable if any one of them is.

if (nv /= nvold) then... This routine generally gets called many times with
iest cycling repeatedly through the values1, 2, . . . , up to some value less than
IEST MAX. The number of variables,nv, is fixed during the solution of the problem.
The routine might be called again in solving a different problem with a new value
of nv. This if block ensures thatqcol is dimensioned correctly both for the first
and subsequent problems, if any.

SUBROUTINE rzextr(iest,xest,yest,yz,dy)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: iest
REAL(SP), INTENT(IN) :: xest
REAL(SP), DIMENSION(:), INTENT(IN) :: yest
REAL(SP), DIMENSION(:), INTENT(OUT) :: yz,dy

Exact substitute for pzextr, but uses diagonal rational function extrapolation instead of
polynomial extrapolation.

INTEGER(I4B), PARAMETER :: IEST_MAX=16
INTEGER(I4B) :: k,nv
INTEGER(I4B), SAVE :: nvold=-1
REAL(SP), DIMENSION(size(yz)) :: yy,v,c,b,b1,ddy
REAL(SP), DIMENSION(:,:), ALLOCATABLE, SAVE :: d
REAL(SP), DIMENSION(IEST_MAX), SAVE :: fx,x
nv=assert_eq(size(yz),size(dy),size(yest),’rzextr’)
if (iest > IEST_MAX) call &

nrerror(’rzextr: probable misuse, too much extrapolation’)
if (nv /= nvold) then

if (allocated(d)) deallocate(d)
allocate(d(nv,IEST_MAX))
nvold=nv

end if
x(iest)=xest Save current independent variable.
if (iest == 1) then

yz=yest
d(:,1)=yest
dy=yest

else
fx(2:iest)=x(iest-1:1:-1)/xest
yy=yest Evaluate next diagonal in tableau.
v=d(1:nv,1)
c=yy
d(1:nv,1)=yy
do k=2,iest

b1=fx(k)*v
b=b1-c
where (b /= 0.0)
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b=(c-v)/b
ddy=c*b
c=b1*b

elsewhere Care needed to avoid division by 0.
ddy=v

end where
if (k /= iest) v=d(1:nv,k)
d(1:nv,k)=ddy
yy=yy+ddy

end do
dy=ddy
yz=yy

end if
END SUBROUTINE rzextr

� � �

SUBROUTINE stoerm(y,d2y,xs,htot,nstep,yout,derivs)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: y,d2y
REAL(SP), INTENT(IN) :: xs,htot
INTEGER(I4B), INTENT(IN) :: nstep
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
Stoermer’s rule for integrating y′′ = f(x, y) for a system of n equations. On input y
contains y in its first n elements and y′ in its second n elements, all evaluated at xs. d2y
contains the right-hand-side function f (also evaluated at xs) in its first n elements. Its
second n elements are not referenced. Also input is htot, the total step to be taken, and
nstep, the number of substeps to be used. The output is returned as yout, with the same
storage arrangement as y. derivs is the user-supplied subroutine that calculates f .

INTEGER(I4B) :: neqn,neqn1,nn,nv
REAL(SP) :: h,h2,halfh,x
REAL(SP), DIMENSION(size(y)) :: ytemp
nv=assert_eq(size(y),size(d2y),size(yout),’stoerm’)
neqn=nv/2 Number of equations.
neqn1=neqn+1
h=htot/nstep Stepsize this trip.
halfh=0.5_sp*h First step.
ytemp(neqn1:nv)=h*(y(neqn1:nv)+halfh*d2y(1:neqn))
ytemp(1:neqn)=y(1:neqn)+ytemp(neqn1:nv)
x=xs+h
call derivs(x,ytemp,yout) Use yout for temporary storage of deriva-

tives.h2=h*h
do nn=2,nstep General step.

ytemp(neqn1:nv)=ytemp(neqn1:nv)+h2*yout(1:neqn)
ytemp(1:neqn)=ytemp(1:neqn)+ytemp(neqn1:nv)
x=x+h
call derivs(x,ytemp,yout)

end do
yout(neqn1:nv)=ytemp(neqn1:nv)/h+halfh*yout(1:neqn) Last step.
yout(1:neqn)=ytemp(1:neqn)
END SUBROUTINE stoerm

� � �
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SUBROUTINE stiff(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype; USE nrutil, ONLY : assert_eq,diagadd,nrerror
USE nr, ONLY : lubksb,ludcmp
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

SUBROUTINE jacobn(x,y,dfdx,dfdy)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dfdx
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dfdy
END SUBROUTINE jacobn

END INTERFACE
INTEGER(I4B), PARAMETER :: MAXTRY=40
REAL(SP), PARAMETER :: SAFETY=0.9_sp,GROW=1.5_sp,PGROW=-0.25_sp,&

SHRNK=0.5_sp,PSHRNK=-1.0_sp/3.0_sp,ERRCON=0.1296_sp,&
GAM=1.0_sp/2.0_sp,&
A21=2.0_sp,A31=48.0_sp/25.0_sp,A32=6.0_sp/25.0_sp,C21=-8.0_sp,&
C31=372.0_sp/25.0_sp,C32=12.0_sp/5.0_sp,&
C41=-112.0_sp/125.0_sp,C42=-54.0_sp/125.0_sp,&
C43=-2.0_sp/5.0_sp,B1=19.0_sp/9.0_sp,B2=1.0_sp/2.0_sp,&
B3=25.0_sp/108.0_sp,B4=125.0_sp/108.0_sp,E1=17.0_sp/54.0_sp,&
E2=7.0_sp/36.0_sp,E3=0.0_sp,E4=125.0_sp/108.0_sp,&
C1X=1.0_sp/2.0_sp,C2X=-3.0_sp/2.0_sp,C3X=121.0_sp/50.0_sp,&
C4X=29.0_sp/250.0_sp,A2X=1.0_sp,A3X=3.0_sp/5.0_sp
Fourth order Rosenbrock step for integrating stiff ODEs, with monitoring of local trunca-
tion error to adjust stepsize. Input are the dependent variable vector y and its derivative
dydx at the starting value of the independent variable x. Also input are the stepsize to
be attempted htry, the required accuracy eps, and the vector yscal against which the
error is scaled. On output, y and x are replaced by their new values, hdid is the stepsize
that was actually accomplished, and hnext is the estimated next stepsize. derivs is a
user-supplied subroutine that computes the derivatives of the right-hand side with respect
to x, while jacobn (a fixed name) is a user-supplied subroutine that computes the Jacobi
matrix of derivatives of the right-hand side with respect to the components of y. y, dydx,
and yscal must have the same length.
Parameters: GROW and SHRNK are the largest and smallest factors by which stepsize can
change in one step; ERRCON=(GROW/SAFETY)**(1/PGROW) and handles the case when
errmax � 0.

INTEGER(I4B) :: jtry,ndum
INTEGER(I4B), DIMENSION(size(y)) :: indx
REAL(SP), DIMENSION(size(y)) :: dfdx,dytmp,err,g1,g2,g3,g4,ysav
REAL(SP), DIMENSION(size(y),size(y)) :: a,dfdy
REAL(SP) :: d,errmax,h,xsav
ndum=assert_eq(size(y),size(dydx),size(yscal),’stiff’)
xsav=x Save initial values.
ysav(:)=y(:)
call jacobn(xsav,ysav,dfdx,dfdy)
The user must supply this subroutine to return the n× n matrix dfdy and the vector dfdx.

h=htry Set stepsize to the initial trial value.
do jtry=1,MAXTRY
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a(:,:)=-dfdy(:,:) Set up the matrix 1 − γhf′.
call diagadd(a,1.0_sp/(GAM*h))
call ludcmp(a,indx,d) LU decomposition of the matrix.
g1=dydx+h*C1X*dfdx Set up right-hand side for g1.
call lubksb(a,indx,g1) Solve for g1.
y=ysav+A21*g1 Compute intermediate values of y and x.
x=xsav+A2X*h
call derivs(x,y,dytmp) Compute dydx at the intermediate values.
g2=dytmp+h*C2X*dfdx+C21*g1/h Set up right-hand side for g2.
call lubksb(a,indx,g2) Solve for g2.
y=ysav+A31*g1+A32*g2 Compute intermediate values of y and x.
x=xsav+A3X*h
call derivs(x,y,dytmp) Compute dydx at the intermediate values.
g3=dytmp+h*C3X*dfdx+(C31*g1+C32*g2)/h Set up right-hand side for g3.
call lubksb(a,indx,g3) Solve for g3.
g4=dytmp+h*C4X*dfdx+(C41*g1+C42*g2+C43*g3)/h Set up right-hand side for g4.
call lubksb(a,indx,g4) Solve for g4.
y=ysav+B1*g1+B2*g2+B3*g3+B4*g4 Get fourth order estimate of y and error es-

timate.err=E1*g1+E2*g2+E3*g3+E4*g4
x=xsav+h
if (x == xsav) call &

nrerror(’stepsize not significant in stiff’)
errmax=maxval(abs(err/yscal))/eps Evaluate accuracy.
if (errmax <= 1.0) then Step succeeded. Compute size of next step

and return.hdid=h
hnext=merge(SAFETY*h*errmax**PGROW, GROW*h, &

errmax > ERRCON)
RETURN

else Truncation error too large, reduce stepsize.
hnext=SAFETY*h*errmax**PSHRNK
h=sign(max(abs(hnext),SHRNK*abs(h)),h)

end if
end do Go back and retry step.
call nrerror(’exceeded MAXTRY in stiff’)
END SUBROUTINE stiff

f90 call diagadd(...) See discussion ofdiagadd afterhqr on p. 1234.

SUBROUTINE jacobn(x,y,dfdx,dfdy)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dfdx
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dfdy

Routine for Jacobi matrix corresponding to example in equations (16.6.27).
dfdx(:)=0.0
dfdy(1,1)=-0.013_sp-1000.0_sp*y(3)
dfdy(1,2)=0.0
dfdy(1,3)=-1000.0_sp*y(1)
dfdy(2,1)=0.0
dfdy(2,2)=-2500.0_sp*y(3)
dfdy(2,3)=-2500.0_sp*y(2)
dfdy(3,1)=-0.013_sp-1000.0_sp*y(3)
dfdy(3,2)=-2500.0_sp*y(3)
dfdy(3,3)=-1000.0_sp*y(1)-2500.0_sp*y(2)
END SUBROUTINE jacobn
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SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx

Routine for right-hand side of example in equations (16.6.27).
dydx(1)=-0.013_sp*y(1)-1000.0_sp*y(1)*y(3)
dydx(2)=-2500.0_sp*y(2)*y(3)
dydx(3)=-0.013_sp*y(1)-1000.0_sp*y(1)*y(3)-2500.0_sp*y(2)*y(3)
END SUBROUTINE derivs

� � �

SUBROUTINE simpr(y,dydx,dfdx,dfdy,xs,htot,nstep,yout,derivs)
USE nrtype; USE nrutil, ONLY : assert_eq,diagadd
USE nr, ONLY : lubksb,ludcmp
IMPLICIT NONE
REAL(SP), INTENT(IN) :: xs,htot
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx,dfdx
REAL(SP), DIMENSION(:,:), INTENT(IN) :: dfdy
INTEGER(I4B), INTENT(IN) :: nstep
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
Performs one step of semi-implicit midpoint rule. Input are the dependent variable y, its
derivative dydx, the derivative of the right-hand side with respect to x, dfdx, which are all
vectors of length N , and the N ×N Jacobian dfdy at xs. Also input are htot, the total
step to be taken, and nstep, the number of substeps to be used. The output is returned as
yout, a vector of length N . derivs is the user-supplied subroutine that calculates dydx.

INTEGER(I4B) :: ndum,nn
INTEGER(I4B), DIMENSION(size(y)) :: indx
REAL(SP) :: d,h,x
REAL(SP), DIMENSION(size(y)) :: del,ytemp
REAL(SP), DIMENSION(size(y),size(y)) :: a
ndum=assert_eq((/size(y),size(dydx),size(dfdx),size(dfdy,1),&

size(dfdy,2),size(yout)/),’simpr’)
h=htot/nstep Stepsize this trip.
a(:,:)=-h*dfdy(:,:) Set up the matrix 1 − hf′.
call diagadd(a,1.0_sp)
call ludcmp(a,indx,d) LU decomposition of the matrix.
yout=h*(dydx+h*dfdx) Set up right-hand side for first step. Use yout for

temporary storage.call lubksb(a,indx,yout)
del=yout First step.
ytemp=y+del
x=xs+h
call derivs(x,ytemp,yout) Use yout for temporary storage of derivatives.
do nn=2,nstep General step.

yout=h*yout-del Set up right-hand side for general step.
call lubksb(a,indx,yout)
del=del+2.0_sp*yout
ytemp=ytemp+del
x=x+h
call derivs(x,ytemp,yout)



Chapter B16. Integration of Ordinary Differential Equations 1311

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end do
yout=h*yout-del Set up right-hand side for last step.
call lubksb(a,indx,yout)
yout=ytemp+yout Take last step.
END SUBROUTINE simpr

f90 call diagadd(...) See discussion ofdiagadd afterhqr on p. 1234.

� � �

SUBROUTINE stifbs(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,cumsum,iminloc,nrerror,&

outerdiff,outerprod,upper_triangle
USE nr, ONLY : simpr,pzextr
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

SUBROUTINE jacobn(x,y,dfdx,dfdy)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dfdx
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dfdy
END SUBROUTINE jacobn

END INTERFACE
INTEGER(I4B), PARAMETER :: IMAX=8, KMAXX=IMAX-1
REAL(SP), PARAMETER :: SAFE1=0.25_sp,SAFE2=0.7_sp,REDMAX=1.0e-5_sp,&

REDMIN=0.7_sp,TINY=1.0e-30_sp,SCALMX=0.1_sp
Semi-implicit extrapolation step for integrating stiff ODEs, with monitoring of local trun-
cation error to adjust stepsize. Input are the dependent variable vector y and its derivative
dydx at the starting value of the independent variable x. Also input are the stepsize to be
attempted htry, the required accuracy eps, and the vector yscal against which the error
is scaled. On output, y and x are replaced by their new values, hdid is the stepsize that
was actually accomplished, and hnext is the estimated next stepsize. derivs is a user-
supplied subroutine that computes the derivatives of the right-hand side with respect to x,
while jacobn (a fixed name) is a user-supplied subroutine that computes the Jacobi matrix
of derivatives of the right-hand side with respect to the components of y. y, dydx, and
yscal must all have the same length. Be sure to set htry on successive steps to the value
of hnext returned from the previous step, as is the case if the routine is called by odeint.

INTEGER(I4B) :: k,km,ndum
INTEGER(I4B), DIMENSION(IMAX) :: nseq = (/ 2,6,10,14,22,34,50,70 /)
Sequence is different from bsstep.

INTEGER(I4B), SAVE :: kopt,kmax,nvold=-1
REAL(SP), DIMENSION(KMAXX,KMAXX), SAVE :: alf
REAL(SP), DIMENSION(KMAXX) :: err
REAL(SP), DIMENSION(IMAX), SAVE :: a
REAL(SP), SAVE :: epsold = -1.0
REAL(SP) :: eps1,errmax,fact,h,red,scale,wrkmin,xest
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REAL(SP), SAVE :: xnew
REAL(SP), DIMENSION(size(y)) :: dfdx,yerr,ysav,yseq
REAL(SP), DIMENSION(size(y),size(y)) :: dfdy
LOGICAL(LGT) :: reduct
LOGICAL(LGT), SAVE :: first=.true.
ndum=assert_eq(size(y),size(dydx),size(yscal),’stifbs’)
if (eps /= epsold .or. nvold /= size(y)) then Reinitialize also if number of vari-

ables has changed.hnext=-1.0e29_sp
xnew=-1.0e29_sp
eps1=SAFE1*eps
a(:)=cumsum(nseq,1)
where (upper_triangle(KMAXX,KMAXX)) alf=eps1** &

(outerdiff(a(2:),a(2:))/outerprod(arth( &
3.0_sp,2.0_sp,KMAXX),(a(2:)-a(1)+1.0_sp)))

epsold=eps
nvold=size(y) Save number of variables.
a(:)=cumsum(nseq,1+nvold) Add cost of Jacobian evaluations to work co-

efficients.do kopt=2,KMAXX-1
if (a(kopt+1) > a(kopt)*alf(kopt-1,kopt)) exit

end do
kmax=kopt

end if
h=htry
ysav(:)=y(:)
call jacobn(x,y,dfdx,dfdy) Evaluate Jacobian.
if (h /= hnext .or. x /= xnew) then

first=.true.
kopt=kmax

end if
reduct=.false.
main_loop: do

do k=1,kmax
xnew=x+h
if (xnew == x) call nrerror(’step size underflow in stifbs’)
call simpr(ysav,dydx,dfdx,dfdy,x,h,nseq(k),yseq,derivs)
Here is the call to the semi-implicit midpoint rule.

xest=(h/nseq(k))**2 The rest of the routine is identical to bsstep.
call pzextr(k,xest,yseq,y,yerr)
if (k /= 1) then

errmax=maxval(abs(yerr(:)/yscal(:)))
errmax=max(TINY,errmax)/eps
km=k-1
err(km)=(errmax/SAFE1)**(1.0_sp/(2*km+1))

end if
if (k /= 1 .and. (k >= kopt-1 .or. first)) then

if (errmax < 1.0) exit main_loop
if (k == kmax .or. k == kopt+1) then

red=SAFE2/err(km)
exit

else if (k == kopt) then
if (alf(kopt-1,kopt) < err(km)) then

red=1.0_sp/err(km)
exit

end if
else if (kopt == kmax) then

if (alf(km,kmax-1) < err(km)) then
red=alf(km,kmax-1)*SAFE2/err(km)
exit

end if
else if (alf(km,kopt) < err(km)) then

red=alf(km,kopt-1)/err(km)
exit

end if
end if
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end do
red=max(min(red,REDMIN),REDMAX)
h=h*red
reduct=.true.

end do main_loop
x=xnew
hdid=h
first=.false.
kopt=1+iminloc(a(2:km+1)*max(err(1:km),SCALMX))
scale=max(err(kopt-1),SCALMX)
wrkmin=scale*a(kopt)
hnext=h/scale
if (kopt >= k .and. kopt /= kmax .and. .not. reduct) then

fact=max(scale/alf(kopt-1,kopt),SCALMX)
if (a(kopt+1)*fact <= wrkmin) then

hnext=h/fact
kopt=kopt+1

end if
end if
END SUBROUTINE stifbs

f90
This routine is very similar tobsstep, and the same remarks about
Fortran 90 constructions on p. 1305 apply here.
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Chapter B17. Two Point Boundary
Value Problems

! FUNCTION shoot(v) is named "funcv" for use with "newt"
FUNCTION funcv(v)
USE nrtype
USE nr, ONLY : odeint,rkqs
USE sphoot_caller, ONLY : nvar,x1,x2; USE ode_path, ONLY : xp,yp
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: v
REAL(SP), DIMENSION(size(v)) :: funcv
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Routine for use with newt to solve a two point boundary value problem for N coupled
ODEs by shooting from x1 to x2. Initial values for the ODEs at x1 are generated from
the n2 input coefficients v, using the user-supplied routine load. The routine integrates
the ODEs to x2 using the Runge-Kutta method with tolerance EPS, initial stepsize h1,
and minimum stepsize hmin. At x2 it calls the user-supplied subroutine score to evaluate
the n2 functions funcv that ought to be zero to satisfy the boundary conditions at x2.
The functions funcv are returned on output. newt uses a globally convergent Newton’s
method to adjust the values of v until the functions funcv are zero. The user-supplied
subroutine derivs(x,y,dydx) supplies derivative information to the ODE integrator (see
Chapter 16). The module sphoot caller receives its values from the main program so
that funcv can have the syntax required by newt. Set nvar = N in the main program.

REAL(SP) :: h1,hmin
REAL(SP), DIMENSION(nvar) :: y
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

SUBROUTINE load(x1,v,y)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1
REAL(SP), DIMENSION(:), INTENT(IN) :: v
REAL(SP), DIMENSION(:), INTENT(OUT) :: y
END SUBROUTINE load

SUBROUTINE score(x2,y,f)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x2
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: f
END SUBROUTINE score

END INTERFACE
h1=(x2-x1)/100.0_sp

1314
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hmin=0.0
call load(x1,v,y)
if (associated(xp)) deallocate(xp,yp) Prevent memory leak if save steps set

to .true.call odeint(y,x1,x2,EPS,h1,hmin,derivs,rkqs)
call score(x2,y,funcv)
END FUNCTION funcv

� � �

! FUNCTION shootf(v) is named "funcv" for use with "newt"
FUNCTION funcv(v)
USE nrtype
USE nr, ONLY : odeint,rkqs
USE sphfpt_caller, ONLY : x1,x2,xf,nn2; USE ode_path, ONLY : xp,yp
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: v
REAL(SP), DIMENSION(size(v)) :: funcv
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Routine for use with newt to solve a two point boundary value problem for N coupled
ODEs by shooting from x1 and x2 to a fitting point xf. Initial values for the ODEs at
x1 (x2) are generated from the n2 (n1) coefficients V1 (V2), using the user-supplied
routine load1 (load2). The coefficients V1 and V2 should be stored in a single ar-
ray v of length N in the main program, and referenced by pointers as v1=>v(1:n2),
v2=>v(n2 + 1:N). Here N = n1 + n2. The routine integrates the ODEs to xf using
the Runge-Kutta method with tolerance EPS, initial stepsize h1, and minimum stepsize
hmin. At xf it calls the user-supplied subroutine score to evaluate the N functions f1
and f2 that ought to match at xf. The differences funcv are returned on output. newt
uses a globally convergent Newton’s method to adjust the values of v until the functions
funcv are zero. The user-supplied subroutine derivs(x,y,dydx) supplies derivative in-
formation to the ODE integrator (see Chapter 16). The module sphfpt caller receives
its values from the main program so that funcv can have the syntax required by newt.
Set nn2 = n2 in the main program.

REAL(SP) :: h1,hmin
REAL(SP), DIMENSION(size(v)) :: f1,f2,y
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

SUBROUTINE load1(x1,v1,y)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1
REAL(SP), DIMENSION(:), INTENT(IN) :: v1
REAL(SP), DIMENSION(:), INTENT(OUT) :: y
END SUBROUTINE load1

SUBROUTINE load2(x2,v2,y)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x2
REAL(SP), DIMENSION(:), INTENT(IN) :: v2
REAL(SP), DIMENSION(:), INTENT(OUT) :: y
END SUBROUTINE load2

SUBROUTINE score(x2,y,f)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x2
REAL(SP), DIMENSION(:), INTENT(IN) :: y
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REAL(SP), DIMENSION(:), INTENT(OUT) :: f
END SUBROUTINE score

END INTERFACE
h1=(x2-x1)/100.0_sp
hmin=0.0
call load1(x1,v,y) Path from x1 to xf with best trial values V1.
if (associated(xp)) deallocate(xp,yp) Prevent memory leak if save steps set

to .true.call odeint(y,x1,xf,EPS,h1,hmin,derivs,rkqs)
call score(xf,y,f1)
call load2(x2,v(nn2+1:),y) Path from x2 to xf with best trial values V2.
call odeint(y,x2,xf,EPS,h1,hmin,derivs,rkqs)
call score(xf,y,f2)
funcv(:)=f1(:)-f2(:)
END FUNCTION funcv

� � �

SUBROUTINE solvde(itmax,conv,slowc,scalv,indexv,nb,y)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,nrerror
USE nr, ONLY : difeq
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: itmax,nb
REAL(SP), INTENT(IN) :: conv,slowc
REAL(SP), DIMENSION(:), INTENT(IN) :: scalv
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indexv
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: y

Driver routine for solution of two point boundary value problems with N equations by
relaxation. itmax is the maximum number of iterations. conv is the convergence criterion
(see text). slowc controls the fraction of corrections actually used after each iteration.
scalv, a vector of length N , contains typical sizes for each dependent variable, used to
weight errors. indexv, also of length N , lists the column ordering of variables used to
construct the matrix s of derivatives. (The nb boundary conditions at the first mesh point
must contain some dependence on the first nb variables listed in indexv.) There are a total
ofM mesh points. y is the N×M array that contains the initial guess for all the dependent
variables at each mesh point. On each iteration, it is updated by the calculated correction.

INTEGER(I4B) :: ic1,ic2,ic3,ic4,it,j,j1,j2,j3,j4,j5,j6,j7,j8,&
j9,jc1,jcf,jv,k,k1,k2,km,kp,m,ne,nvars

INTEGER(I4B), DIMENSION(size(scalv)) :: kmax
REAL(SP) :: err,fac
REAL(SP), DIMENSION(size(scalv)) :: ermax
REAL(SP), DIMENSION(size(scalv),2*size(scalv)+1) :: s
REAL(SP), DIMENSION(size(scalv),size(scalv)-nb+1,size(y,2)+1) :: c
ne=assert_eq(size(scalv),size(indexv),size(y,1),’solvde: ne’)
m=size(y,2)
k1=1 Set up row and column markers.
k2=m
nvars=ne*m
j1=1
j2=nb
j3=nb+1
j4=ne
j5=j4+j1
j6=j4+j2
j7=j4+j3
j8=j4+j4
j9=j8+j1
ic1=1
ic2=ne-nb
ic3=ic2+1
ic4=ne
jc1=1
jcf=ic3
do it=1,itmax Primary iteration loop.

k=k1 Boundary conditions at first point.
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call difeq(k,k1,k2,j9,ic3,ic4,indexv,s,y)
call pinvs(ic3,ic4,j5,j9,jc1,k1,c,s)
do k=k1+1,k2 Finite difference equations at all point

pairs.kp=k-1
call difeq(k,k1,k2,j9,ic1,ic4,indexv,s,y)
call red(ic1,ic4,j1,j2,j3,j4,j9,ic3,jc1,jcf,kp,c,s)
call pinvs(ic1,ic4,j3,j9,jc1,k,c,s)

end do
k=k2+1 Final boundary conditions.
call difeq(k,k1,k2,j9,ic1,ic2,indexv,s,y)
call red(ic1,ic2,j5,j6,j7,j8,j9,ic3,jc1,jcf,k2,c,s)
call pinvs(ic1,ic2,j7,j9,jcf,k2+1,c,s)
call bksub(ne,nb,jcf,k1,k2,c) Backsubstitution.
do j=1,ne Convergence check, accumulate average

error.jv=indexv(j)
km=imaxloc(abs(c(jv,1,k1:k2)))+k1-1
Find point with largest error, for each dependent variable.

ermax(j)=c(jv,1,km)
kmax(j)=km

end do
ermax(:)=ermax(:)/scalv(:) Weighting for each dependent variable.
err=sum(sum(abs(c(indexv(:),1,k1:k2)),dim=2)/scalv(:))/nvars
fac=slowc/max(slowc,err)
Reduce correction applied when error is large.

y(:,k1:k2)=y(:,k1:k2)-fac*c(indexv(:),1,k1:k2) Apply corrections.
write(*,’(1x,i4,2f12.6)’) it,err,fac
Summary of corrections for this step. Point with largest error for each variable can be
monitored by writing out kmax and ermax.

if (err < conv) RETURN
end do
call nrerror(’itmax exceeded in solvde’) Convergence failed.
CONTAINS

SUBROUTINE bksub(ne,nb,jf,k1,k2,c)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: ne,nb,jf,k1,k2
REAL(SP), DIMENSION(:,:,:), INTENT(INOUT) :: c

Backsubstitution, used internally by solvde.
INTEGER(I4B) :: im,k,nbf
nbf=ne-nb
im=1
do k=k2,k1,-1

Use recurrence relations to eliminate remaining dependences.
if (k == k1) im=nbf+1 Special handling of first point.
c(im:ne,jf,k)=c(im:ne,jf,k)-matmul(c(im:ne,1:nbf,k),c(1:nbf,jf,k+1))

end do
c(1:nb,1,k1:k2)=c(1+nbf:nb+nbf,jf,k1:k2) Reorder corrections to be in column 1.
c(1+nb:nbf+nb,1,k1:k2)=c(1:nbf,jf,k1+1:k2+1)
END SUBROUTINE bksub

SUBROUTINE pinvs(ie1,ie2,je1,jsf,jc1,k,c,s)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: ie1,ie2,je1,jsf,jc1,k
REAL(SP), DIMENSION(:,:,:), INTENT(OUT) :: c
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: s

Diagonalize the square subsection of the s matrix, and store the recursion coefficients in
c; used internally by solvde.

INTEGER(I4B) :: i,icoff,id,ipiv,jcoff,je2,jp,jpiv,js1
INTEGER(I4B), DIMENSION(ie2) :: indxr
REAL(SP) :: big,piv,pivinv
REAL(SP), DIMENSION(ie2) :: pscl
je2=je1+ie2-ie1
js1=je2+1
pscl(ie1:ie2)=maxval(abs(s(ie1:ie2,je1:je2)),dim=2)
Implicit pivoting, as in §2.1.
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if (any(pscl(ie1:ie2) == 0.0)) &
call nrerror(’singular matrix, row all 0 in pinvs’)

pscl(ie1:ie2)=1.0_sp/pscl(ie1:ie2)
indxr(ie1:ie2)=0
do id=ie1,ie2

piv=0.0
do i=ie1,ie2 Find pivot element.

if (indxr(i) == 0) then
jp=imaxloc(abs(s(i,je1:je2)))+je1-1
big=abs(s(i,jp))
if (big*pscl(i) > piv) then

ipiv=i
jpiv=jp
piv=big*pscl(i)

end if
end if

end do
if (s(ipiv,jpiv) == 0.0) call nrerror(’singular matrix in pinvs’)
indxr(ipiv)=jpiv In place reduction. Save column order-

ing.pivinv=1.0_sp/s(ipiv,jpiv)
s(ipiv,je1:jsf)=s(ipiv,je1:jsf)*pivinv Normalize pivot row.
s(ipiv,jpiv)=1.0
do i=ie1,ie2 Reduce nonpivot elements in column.

if (indxr(i) /= jpiv .and. s(i,jpiv) /= 0.0) then
s(i,je1:jsf)=s(i,je1:jsf)-s(i,jpiv)*s(ipiv,je1:jsf)
s(i,jpiv)=0.0

end if
end do

end do
jcoff=jc1-js1 Sort and store unreduced coefficients.
icoff=ie1-je1
c(indxr(ie1:ie2)+icoff,js1+jcoff:jsf+jcoff,k)=s(ie1:ie2,js1:jsf)
END SUBROUTINE pinvs

SUBROUTINE red(iz1,iz2,jz1,jz2,jm1,jm2,jmf,ic1,jc1,jcf,kc,c,s)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: iz1,iz2,jz1,jz2,jm1,jm2,jmf,ic1,jc1,jcf,kc
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: s
REAL(SP), DIMENSION(:,:,:), INTENT(IN) :: c

Reduce columns jz1-jz2 of the s matrix, using previous results as stored in the c matrix.
Only columns jm1-jm2,jmf are affected by the prior results. red is used internally by
solvde.

INTEGER(I4B) :: ic,l,loff
loff=jc1-jm1
ic=ic1
do j=jz1,jz2 Loop over columns to be zeroed.

do l=jm1,jm2 Loop over columns altered.
s(iz1:iz2,l)=s(iz1:iz2,l)-s(iz1:iz2,j)*c(ic,l+loff,kc)
Loop over rows.

end do
s(iz1:iz2,jmf)=s(iz1:iz2,jmf)-s(iz1:iz2,j)*c(ic,jcf,kc) Plus final element.
ic=ic+1

end do
END SUBROUTINE red
END SUBROUTINE solvde

f90 km=imaxloc... See discussion of imaxloc on p. 1017.

� � �
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MODULE sfroid_data Communicates with difeq.
USE nrtype
INTEGER(I4B), PARAMETER :: M=41
INTEGER(I4B) :: mm,n
REAL(SP) :: anorm,c2,h
REAL(SP), DIMENSION(M) :: x
END MODULE sfroid_data

PROGRAM sfroid
USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : plgndr,solvde
USE sfroid_data
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NE=3,NB=1

Sample program using solvde. Computes eigenvalues of spheroidal harmonics Smn(x; c)
for m ≥ 0 and n ≥ m. In the program, m is mm, c2 is c2, and γ of equation (17.4.20)
is anorm.

INTEGER(I4B) :: itmax
INTEGER(I4B), DIMENSION(NE) :: indexv
REAL(SP) :: conv,slowc
REAL(SP), DIMENSION(M) :: deriv,fac1,fac2
REAL(SP), DIMENSION(NE) :: scalv
REAL(SP), DIMENSION(NE,M) :: y
itmax=100
conv=5.0e-6_sp
slowc=1.0
h=1.0_sp/(M-1)
c2=0.0
write(*,*) ’ENTER M,N’
read(*,*) mm,n
indexv(1:3)=merge( (/ 1, 2, 3 /), (/ 2, 1, 3 /), (mod(n+mm,2) == 1) )
No interchanges necessary if n+mm is odd; otherwise interchange y1 and y2.

anorm=1.0 Compute γ.
if (mm /= 0) then

anorm=(-0.5_sp)**mm*product(&
arth(n+1,1,mm)*arth(real(n,sp),-1.0_sp,mm)/arth(1,1,mm))

end if
x(1:M-1)=arth(0,1,M-1)*h
fac1(1:M-1)=1.0_sp-x(1:M-1)**2 Compute initial guess.
fac2(1:M-1)=fac1(1:M-1)**(-mm/2.0_sp)
y(1,1:M-1)=plgndr(n,mm,x(1:M-1))*fac2(1:M-1) Pm

n from §6.8.
deriv(1:M-1)=-((n-mm+1)*plgndr(n+1,mm,x(1:M-1))-(n+1)*&

x(1:M-1)*plgndr(n,mm,x(1:M-1)))/fac1(1:M-1)
Derivative of Pm

n from a recurrence relation.
y(2,1:M-1)=mm*x(1:M-1)*y(1,1:M-1)/fac1(1:M-1)+deriv(1:M-1)*fac2(1:M-1)
y(3,1:M-1)=n*(n+1)-mm*(mm+1)
x(M)=1.0 Initial guess at x = 1 done separately.
y(1,M)=anorm
y(3,M)=n*(n+1)-mm*(mm+1)
y(2,M)=(y(3,M)-c2)*y(1,M)/(2.0_sp*(mm+1.0_sp))
scalv(1:3)=(/ abs(anorm), max(abs(anorm),y(2,M)), max(1.0_sp,y(3,M)) /)
do

write (*,*) ’ENTER C**2 OR 999 TO END’
read (*,*) c2
if (c2 == 999.0) exit
call solvde(itmax,conv,slowc,scalv,indexv,NB,y)
write (*,*) ’ M = ’,mm,’ N = ’,n,&

’ C**2 = ’,c2,’ LAMBDA = ’,y(3,1)+mm*(mm+1)
end do Go back for another value of c2.
END PROGRAM sfroid
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f90
MODULE sfroid_data This module functions just like a common block to
communicate variables with difeq. The advantage of a module is that
it allows complete specification of the variables.

anorm=(-0.5_sp)**mm*product(... This statement computes equation (17.4.20)
by direct multiplication.

� � �

SUBROUTINE difeq(k,k1,k2,jsf,is1,isf,indexv,s,y)
USE nrtype
USE sfroid_data
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: is1,isf,jsf,k,k1,k2
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indexv
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: s
REAL(SP), DIMENSION(:,:), INTENT(IN) :: y

Returns matrix s(i,j) for solvde.
REAL(SP) :: temp,temp2
INTEGER(I4B), DIMENSION(3) :: indexv3
indexv3(1:3)=3+indexv(1:3)
if (k == k1) then Boundary condition at first point.

if (mod(n+mm,2) == 1) then
s(3,indexv3(1:3))= (/ 1.0_sp, 0.0_sp, 0.0_sp /) Equation (17.4.32).
s(3,jsf)=y(1,1) Equation (17.4.31).

else
s(3,indexv3(1:3))= (/ 0.0_sp, 1.0_sp, 0.0_sp /) Equation (17.4.32).
s(3,jsf)=y(2,1) Equation (17.4.31).

end if
else if (k > k2) then Boundary conditions at last point.

s(1,indexv3(1:3))= (/ -(y(3,M)-c2)/(2.0_sp*(mm+1.0_sp)),&
1.0_sp, -y(1,M)/(2.0_sp*(mm+1.0_sp)) /) Equation (17.4.35).

s(1,jsf)=y(2,M)-(y(3,M)-c2)*y(1,M)/(2.0_sp*(mm+1.0_sp)) Equation (17.4.33).
s(2,indexv3(1:3))=(/ 1.0_sp, 0.0_sp, 0.0_sp /) Equation (17.4.36).
s(2,jsf)=y(1,M)-anorm Equation (17.4.34).

else Interior point.
s(1,indexv(1:3))=(/ -1.0_sp, -0.5_sp*h, 0.0_sp /) Equation (17.4.28).
s(1,indexv3(1:3))=(/ 1.0_sp, -0.5_sp*h, 0.0_sp /)
temp=h/(1.0_sp-(x(k)+x(k-1))**2*0.25_sp)
temp2=0.5_sp*(y(3,k)+y(3,k-1))-c2*0.25_sp*(x(k)+x(k-1))**2
s(2,indexv(1:3))=(/ temp*temp2*0.5_sp,& Equation (17.4.29).

-1.0_sp-0.5_sp*temp*(mm+1.0_sp)*(x(k)+x(k-1)),&
0.25_sp*temp*(y(1,k)+y(1,k-1)) /)

s(2,indexv3(1:3))=s(2,indexv(1:3))
s(2,indexv3(2))=s(2,indexv3(2))+2.0_sp
s(3,indexv(1:3))=(/ 0.0_sp, 0.0_sp, -1.0_sp /) Equation (17.4.30).
s(3,indexv3(1:3))=(/ 0.0_sp, 0.0_sp, 1.0_sp /)
s(1,jsf)=y(1,k)-y(1,k-1)-0.5_sp*h*(y(2,k)+y(2,k-1)) Equation (17.4.23).
s(2,jsf)=y(2,k)-y(2,k-1)-temp*((x(k)+x(k-1))*& Equation (17.4.24).

0.5_sp*(mm+1.0_sp)*(y(2,k)+y(2,k-1))-temp2*&
0.5_sp*(y(1,k)+y(1,k-1)))

s(3,jsf)=y(3,k)-y(3,k-1) Equation (17.4.27).
end if
END SUBROUTINE difeq

� � �



Chapter B17. Two Point Boundary Value Problems 1321

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

MODULE sphoot_data Communicates with load, score, and derivs.
USE nrtype
INTEGER(I4B) :: m,n
REAL(SP) :: c2,dx,gamma
END MODULE sphoot_data

MODULE sphoot_caller Communicates with shoot.
USE nrtype
INTEGER(I4B) :: nvar
REAL(SP) :: x1,x2
END MODULE sphoot_caller

PROGRAM sphoot
Sample program using shoot. Computes eigenvalues of spheroidal harmonics Smn(x; c) for
m ≥ 0 and n ≥ m. Be sure that routine funcv for newt is provided by shoot (§17.1).

USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : newt
USE sphoot_data
USE sphoot_caller
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NV=3,N2=1
REAL(SP), DIMENSION(N2) :: v
LOGICAL(LGT) :: check
nvar=NV Number of equations.
dx=1.0e-4_sp Avoid evaluating derivatives exactly at x =

−1.do
write(*,*) ’input m,n,c-squared (999 to end)’
read(*,*) m,n,c2
if (c2 == 999.0) exit
if ((n < m) .or. (m < 0)) cycle
gamma=(-0.5_sp)**m*product(& Compute γ of equation (17.4.20).

arth(n+1,1,m)*(arth(real(n,sp),-1.0_sp,m)/arth(1,1,m)))
v(1)=n*(n+1)-m*(m+1)+c2/2.0_sp Initial guess for eigenvalue.
x1=-1.0_sp+dx Set range of integration.
x2=0.0
call newt(v,check) Find v that zeros function f in score.
if (check) then

write(*,*)’shoot failed; bad initial guess’
exit

else
write(*,’(1x,t6,a)’) ’mu(m,n)’
write(*,’(1x,f12.6)’) v(1)

end if
end do
END PROGRAM sphoot

SUBROUTINE load(x1,v,y)
USE nrtype
USE sphoot_data
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1
REAL(SP), DIMENSION(:), INTENT(IN) :: v
REAL(SP), DIMENSION(:), INTENT(OUT) :: y

Supplies starting values for integration at x = −1 + dx.
REAL(SP) :: y1
y(3)=v(1)
y1=merge(gamma,-gamma, mod(n-m,2) == 0 )
y(2)=-(y(3)-c2)*y1/(2*(m+1))
y(1)=y1+y(2)*dx
END SUBROUTINE load
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SUBROUTINE score(x2,y,f)
USE nrtype
USE sphoot_data
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x2
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: f

Tests whether boundary condition at x = 0 is satisfied.
f(1)=merge(y(2),y(1), mod(n-m,2) == 0 )
END SUBROUTINE score

f90
MODULE sphoot_data...MODULE sphoot_caller These modules function
just like common blocks to communicate variables from sphoot to the
various subsidiary routines. The advantage of a module is that it allows

complete specification of the variables.

SUBROUTINE derivs(x,y,dydx)
USE nrtype
USE sphoot_data
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx

Evaluates derivatives for odeint.
dydx(1)=y(2)
dydx(2)=(2.0_sp*x*(m+1.0_sp)*y(2)-(y(3)-c2*x*x)*y(1))/(1.0_sp-x*x)
dydx(3)=0.0
END SUBROUTINE derivs

� � �

MODULE sphfpt_data Communicates with load1, load2, score,
and derivs.USE nrtype

INTEGER(I4B) :: m,n
REAL(SP) :: c2,dx,gamma
END MODULE sphfpt_data

MODULE sphfpt_caller Communicates with shootf.
USE nrtype
INTEGER(I4B) :: nn2
REAL(SP) :: x1,x2,xf
END MODULE sphfpt_caller
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PROGRAM sphfpt
Sample program using shootf. Computes eigenvalues of spheroidal harmonics Smn(x; c)
form ≥ 0 and n ≥ m. Be sure that routine funcv for newt is provided by shootf (§17.2).
The routine derivs is the same as for sphoot.

USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : newt
USE sphfpt_data
USE sphfpt_caller
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: N1=2,N2=1,NTOT=N1+N2
REAL(SP), PARAMETER :: DXX=1.0e-4_sp
REAL(SP), DIMENSION(:), POINTER :: v1,v2
REAL(SP), DIMENSION(NTOT), TARGET :: v
LOGICAL(LGT) :: check
v1=>v(1:N2)
v2=>v(N2+1:NTOT)
nn2=N2
dx=DXX Avoid evaluating derivatives exactly at x =

±1.do
write(*,*) ’input m,n,c-squared (999 to end)’
read(*,*) m,n,c2
if (c2 == 999.0) exit
if ((n < m) .or. (m < 0)) cycle
gamma=(-0.5_sp)**m*product(& Compute γ of equation (17.4.20).

arth(n+1,1,m)*(arth(real(n,sp),-1.0_sp,m)/arth(1,1,m)))
v1(1)=n*(n+1)-m*(m+1)+c2/2.0_sp Initial guess for eigenvalue and function value.
v2(2)=v1(1)
v2(1)=gamma*(1.0_sp-(v2(2)-c2)*dx/(2*(m+1)))
x1=-1.0_sp+dx Set range of integration.
x2=1.0_sp-dx
xf=0.0 Fitting point.
call newt(v,check) Find v that zeros function f in score.
if (check) then

write(*,*) ’shootf failed; bad initial guess’
exit

else
write(*,’(1x,t6,a)’) ’mu(m,n)’
write(*,’(1x,f12.6)’) v1(1)

end if
end do
END PROGRAM sphfpt

SUBROUTINE load1(x1,v1,y)
USE nrtype
USE sphfpt_data
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1
REAL(SP), DIMENSION(:), INTENT(IN) :: v1
REAL(SP), DIMENSION(:), INTENT(OUT) :: y

Supplies starting values for integration at x = −1 + dx.
REAL(SP) :: y1
y(3)=v1(1)
y1=merge(gamma,-gamma,mod(n-m,2) == 0)
y(2)=-(y(3)-c2)*y1/(2*(m+1))
y(1)=y1+y(2)*dx
END SUBROUTINE load1
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SUBROUTINE load2(x2,v2,y)
USE nrtype
USE sphfpt_data
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x2
REAL(SP), DIMENSION(:), INTENT(IN) :: v2
REAL(SP), DIMENSION(:), INTENT(OUT) :: y

Supplies starting values for integration at x = 1 − dx.
y(3)=v2(2)
y(1)=v2(1)
y(2)=(y(3)-c2)*y(1)/(2*(m+1))
END SUBROUTINE load2

SUBROUTINE score(xf,y,f)
USE nrtype
USE sphfpt_data
IMPLICIT NONE
REAL(SP), INTENT(IN) :: xf
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: f

Tests whether solutions match at fitting point x = 0.
f(1:3)=y(1:3)
END SUBROUTINE score

f90
MODULE sphfpt_data...MODULE sphfpt_caller These modules function
just like common blocks to communicate variables from sphfpt to the
various subsidiary routines. The advantage of a module is that it allows

complete specification of the variables.
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Chapter B18. Integral Equations
and Inverse
Theory

SUBROUTINE fred2(a,b,t,f,w,g,ak)
USE nrtype; USE nrutil, ONLY : assert_eq,unit_matrix
USE nr, ONLY : gauleg,lubksb,ludcmp
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(OUT) :: t,f,w
INTERFACE

FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: t
REAL(SP), DIMENSION(size(t)) :: g
END FUNCTION g

FUNCTION ak(t,s)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: t,s
REAL(SP), DIMENSION(size(t),size(s)) :: ak
END FUNCTION ak

END INTERFACE
Solves a linear Fredholm equation of the second kind by N -point Gaussian quadrature. On
input, a and b are the limits of integration. g and ak are user-supplied external functions. g
returns g(t) as a vector of lengthN for a vector ofN arguments, while ak returns λK(t, s) as
an N×N matrix. The routine returns arrays t and f of length N containing the abscissas ti
of the Gaussian quadrature and the solution f at these abscissas. Also returned is the array
w of length N of Gaussian weights for use with the Nystrom interpolation routine fredin.

INTEGER(I4B) :: n
INTEGER(I4B), DIMENSION(size(f)) :: indx
REAL(SP) :: d
REAL(SP), DIMENSION(size(f),size(f)) :: omk
n=assert_eq(size(f),size(t),size(w),’fred2’)
call gauleg(a,b,t,w) Replace gauleg with another routine if not

using Gauss-Legendre quadrature.call unit_matrix(omk)
omk=omk-ak(t,t)*spread(w,dim=1,ncopies=n) Form 1 − λK̃.
f=g(t)
call ludcmp(omk,indx,d) Solve linear equations.
call lubksb(omk,indx,f)
END SUBROUTINE fred2

f90
call unit_matrix(omk) The unit matrix routine in nrutil does ex-
actly what its name suggests.

1325
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omk=omk-ak(t,t)*spread(w,dim=1,ncopies=n) By now this idiom should be
second nature: the first column of ak gets multiplied by the first element of w,
and so on.

� � �

FUNCTION fredin(x,a,b,t,f,w,g,ak)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: x,t,f,w
REAL(SP), DIMENSION(size(x)) :: fredin
INTERFACE

FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: t
REAL(SP), DIMENSION(size(t)) :: g
END FUNCTION g

FUNCTION ak(t,s)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: t,s
REAL(SP), DIMENSION(size(t),size(s)) :: ak
END FUNCTION ak

END INTERFACE
Input are arrays t and w of length N containing the abscissas and weights of the N -point
Gaussian quadrature, and the solution array f of length N from fred2. The function
fredin returns the array of values of f at an array of points x using the Nystrom interpo-
lation formula. On input, a and b are the limits of integration. g and ak are user-supplied
external functions. g returns g(t) as a vector of length N for a vector of N arguments,
while ak returns λK(t, s) as an N × N matrix.

INTEGER(I4B) :: n
n=assert_eq(size(f),size(t),size(w),’fredin’)
fredin=g(x)+matmul(ak(x,t),w*f)
END FUNCTION fredin

f90
fredin=g(x)+matmul... Fortran 90 allows very concise coding here,
which also happens to be much closer to the mathematical formulation
than the loops required in Fortran 77.

� � �

SUBROUTINE voltra(t0,h,t,f,g,ak)
USE nrtype; USE nrutil, ONLY : array_copy,assert_eq,unit_matrix
USE nr, ONLY : lubksb,ludcmp
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t0,h
REAL(SP), DIMENSION(:), INTENT(OUT) :: t
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: f
INTERFACE

FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t
REAL(SP), DIMENSION(:), POINTER :: g
END FUNCTION g

FUNCTION ak(t,s)
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USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t,s
REAL(SP), DIMENSION(:,:), POINTER :: ak
END FUNCTION ak

END INTERFACE
Solves a set ofM linear Volterra equations of the second kind using the extended trapezoidal
rule. On input, t0 is the starting point of the integration. The routine takes N − 1 steps
of size h and returns the abscissas in t, a vector of length N . The solution at these points
is returned in the M × N matrix f. g is a user-supplied external function that returns a
pointer to the M -dimensional vector of functions gk(t), while ak is another user-supplied
external function that returns a pointer to the M × M matrix K(t, s).

INTEGER(I4B) :: i,j,n,ncop,nerr,m
INTEGER(I4B), DIMENSION(size(f,1)) :: indx
REAL(SP) :: d
REAL(SP), DIMENSION(size(f,1)) :: b
REAL(SP), DIMENSION(size(f,1),size(f,1)) :: a
n=assert_eq(size(f,2),size(t),’voltra: n’)
t(1)=t0 Initialize.
call array_copy(g(t(1)),f(:,1),ncop,nerr)
m=assert_eq(size(f,1),ncop,ncop+nerr,’voltra: m’)
do i=2,n Take a step h.

t(i)=t(i-1)+h
b=g(t(i))+0.5_sp*h*matmul(ak(t(i),t(1)),f(:,1)) Accumulate right-hand side

of linear equations in b.do j=2,i-1
b=b+h*matmul(ak(t(i),t(j)),f(:,j))

end do
call unit_matrix(a) Left-hand side goes in ma-

trix a.a=a-0.5_sp*h*ak(t(i),t(i))
call ludcmp(a,indx,d) Solve linear equations.
call lubksb(a,indx,b)
f(:,i)=b(:)

end do
END SUBROUTINE voltra

f90
FUNCTION g(t)...REAL(SP), DIMENSION(:), POINTER :: g The routine
voltra requires an argument that is a function returning a vector, but we
don’t know the dimension of the vector at compile time. The solution

is to make the function return a pointer to the vector. This is not the same thing
as a pointer to a function, which is not allowed in Fortran 90. When you use the
pointer in the routine, Fortran 90 figures out from the context that you want the
vector of values, so the code remains highly readable. Similarly, the argument ak
is a function returning a pointer to a matrix.

The coding of the user-supplied functions g and ak deserves some comment:
functions returning pointers to arrays are potential memory leaks if the arrays are
allocated dynamically in the functions. Here the user knows in advance the dimension
of the problem, and so there is no need to use dynamical allocation in the functions.
For example, in a two-dimensional problem, you can code g as follows:

FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t
REAL(SP), DIMENSION(:), POINTER :: g
REAL(SP), DIMENSION(2), TARGET, SAVE :: gg
g=>gg
g(1)=...
g(2)=...
END FUNCTION g
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and similarly for ak.
Suppose, however, we coded g with dynamical allocation:

FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t
REAL(SP), DIMENSION(:), POINTER :: g
allocate(g(2))
g(1)=...
g(2)=...
END FUNCTION g

Now g never gets deallocated; each time we call the function fresh memory gets
consumed. If you have a problem that really does require dynamical allocation
in a pointer function, you have to be sure to deallocate the pointer in the calling
routine. In voltra, for example, we would declare pointers gtemp and aktemp.
Then instead of writing simply

b=g(t(i))+...

we would write

gtemp=>g(t(i))
b=gtemp+...
deallocate(gtemp)

and similarly for each pointer function invocation.

call array_copy(g(t(1)),f(:,1),ncop,nerr) The routine would work if we re-
placed this statement with simply f(:,1)=g(t(1)). The purpose of using array copy

from nrutil is that we can check that f and g have consistent dimensions with
a call to assert eq.

� � �

FUNCTION wwghts(n,h,kermom)
USE nrtype; USE nrutil, ONLY : geop
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: h
REAL(SP), DIMENSION(n) :: wwghts
INTERFACE

FUNCTION kermom(y,m)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(IN) :: y
INTEGER(I4B), INTENT(IN) :: m
REAL(DP), DIMENSION(m) :: kermom
END FUNCTION kermom

END INTERFACE
Returns in wwghts(1:n) weights for the n-point equal-interval quadrature from 0 to (n−
1)h of a function f(x) times an arbitrary (possibly singular) weight function w(x) whose
indefinite-integral moments Fn(y) are provided by the user-supplied function kermom.

INTEGER(I4B) :: j
REAL(DP) :: hh,hi,c,a,b
REAL(DP), DIMENSION(4) :: wold,wnew,w
hh=h Double precision on internal calculations even though

the interface is in single precision.hi=1.0_dp/hh
wwghts(1:n)=0.0 Zero all the weights so we can sum into them.
wold(1:4)=kermom(0.0_dp,4) Evaluate indefinite integrals at lower end.
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if (n >= 4) then Use highest available order.
b=0.0 For another problem, you might change this lower

limit.do j=1,n-3
c=j-1 This is called k in equation (18.3.5).
a=b Set upper and lower limits for this step.
b=a+hh
if (j == n-3) b=(n-1)*hh Last interval: go all the way to end.
wnew(1:4)=kermom(b,4)
w(1:4)=(wnew(1:4)-wold(1:4))*geop(1.0_dp,hi,4) Equation (18.3.4).
wwghts(j:j+3)=wwghts(j:j+3)+(/& Equation (18.3.5).

((c+1.0_dp)*(c+2.0_dp)*(c+3.0_dp)*w(1)&
-(11.0_dp+c*(12.0_dp+c*3.0_dp))*w(2)&

+3.0_dp*(c+2.0_dp)*w(3)-w(4))/6.0_dp,&
(-c*(c+2.0_dp)*(c+3.0_dp)*w(1)&
+(6.0_dp+c*(10.0_dp+c*3.0_dp))*w(2)&

-(3.0_dp*c+5.0_dp)*w(3)+w(4))*0.50_dp,&
(c*(c+1.0_dp)*(c+3.0_dp)*w(1)&
-(3.0_dp+c*(8.0_dp+c*3.0_dp))*w(2)&

+(3.0_dp*c+4.0_dp)*w(3)-w(4))*0.50_dp,&
(-c*(c+1.0_dp)*(c+2.0_dp)*w(1)&
+(2.0_dp+c*(6.0_dp+c*3.0_dp))*w(2)&
-3.0_dp*(c+1.0_dp)*w(3)+w(4))/6.0_dp /)

wold(1:4)=wnew(1:4) Reset lower limits for moments.
end do

else if (n == 3) then Lower-order cases; not recommended.
wnew(1:3)=kermom(hh+hh,3)
w(1:3)= (/ wnew(1)-wold(1), hi*(wnew(2)-wold(2)),&

hi**2*(wnew(3)-wold(3)) /)
wwghts(1:3)= (/ w(1)-1.50_dp*w(2)+0.50_dp*w(3),&

2.0_dp*w(2)-w(3), 0.50_dp*(w(3)-w(2)) /)
else if (n == 2) then

wnew(1:2)=kermom(hh,2)
wwghts(2)=hi*(wnew(2)-wold(2))
wwghts(1)=wnew(1)-wold(1)-wwghts(2)

end if
END FUNCTION wwghts

� � �

MODULE kermom_info
USE nrtype
REAL(DP) :: kermom_x
END MODULE kermom_info

FUNCTION kermom(y,m)
USE nrtype
USE kermom_info
IMPLICIT NONE
REAL(DP), INTENT(IN) :: y
INTEGER(I4B), INTENT(IN) :: m
REAL(DP), DIMENSION(m) :: kermom

Returns in kermom(1:m) the first m indefinite-integral moments of one row of the singular
part of the kernel. (For this example, m is hard-wired to be 4.) The input variable y labels
the column, while kermom x (in the module kermom info) is the row.

REAL(DP) :: x,d,df,clog,x2,x3,x4
x=kermom_x We can take x as the lower limit of integration. Thus, we

return the moment integrals either purely to the left or
purely to the right of the diagonal.

if (y >= x) then
d=y-x
df=2.0_dp*sqrt(d)*d
kermom(1:4) = (/ df/3.0_dp, df*(x/3.0_dp+d/5.0_dp),&
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df*((x/3.0_dp + 0.4_dp*d)*x + d**2/7.0_dp),&
df*(((x/3.0_dp + 0.6_dp*d)*x + 3.0_dp*d**2/7.0_dp)*x&

+ d**3/9.0_dp) /)
else

x2=x**2
x3=x2*x
x4=x2*x2
d=x-y
clog=log(d)
kermom(1:4) = (/ d*(clog-1.0_dp),&

-0.25_dp*(3.0_dp*x+y-2.0_dp*clog*(x+y))*d,&
(-11.0_dp*x3+y*(6.0_dp*x2+y*(3.0_dp*x+2.0_dp*y))&

+6.0_dp*clog*(x3-y**3))/18.0_dp,&
(-25.0_dp*x4+y*(12.0_dp*x3+y*(6.0_dp*x2+y*&

(4.0_dp*x+3.0_dp*y)))+12.0_dp*clog*(x4-y**4))/48.0_dp /)
end if
END FUNCTION kermom

f90
MODULE kermom_info This module functions just like a common block to
share the variable kermom x with the routine quadmx.

� � �

SUBROUTINE quadmx(a)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,diagadd,outerprod
USE nr, ONLY : wwghts,kermom
USE kermom_info
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: a

Constructs in the N×N array a the quadrature matrix for an example Fredholm equation of
the second kind. The nonsingular part of the kernel is computed within this routine, while
the quadrature weights that integrate the singular part of the kernel are obtained via calls
to wwghts. An external routine kermom, which supplies indefinite-integral moments of the
singular part of the kernel, is passed to wwghts.

INTEGER(I4B) :: j,n
REAL(SP) :: h,x
REAL(SP), DIMENSION(size(a,1)) :: wt
n=assert_eq(size(a,1),size(a,2),’quadmx’)
h=PI/(n-1)
do j=1,n

x=(j-1)*h
kermom_x=x Put x in the module kermom info for use by kermom.
wt(:)=wwghts(n,h,kermom) Part of nonsingular kernel.
a(j,:)=wt(:) Put together all the pieces of the kernel.

end do
wt(:)=cos(arth(0,1,n)*h)
a(:,:)=a(:,:)*outerprod(wt(:),wt(:))
call diagadd(a,1.0_sp) Since equation of the second kind, there is diagonal

piece independent of h.END SUBROUTINE quadmx

f90 call diagadd... See discussion of diagadd after hqr on p. 1234.

� � �
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PROGRAM fredex
USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : quadmx,ludcmp,lubksb
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: N=40
INTEGER(I4B) :: j
INTEGER(I4B), DIMENSION(N) :: indx
REAL(SP) :: d
REAL(SP), DIMENSION(N) :: g,x
REAL(SP), DIMENSION(N,N) :: a

This sample program shows how to solve a Fredholm equation of the second kind using
the product Nystrom method and a quadrature rule especially constructed for a particular,
singular, kernel.
Parameter: N is the size of the grid.

call quadmx(a) Make the quadrature matrix; all the action is here.
call ludcmp(a,indx,d) Decompose the matrix.
x(:)=arth(0,1,n)*PI/(n-1)
g(:)=sin(x(:)) Construct the right-hand side, here sin x.
call lubksb(a,indx,g) Backsubstitute.
do j=1,n Write out the solution.

write (*,*) j,x(j),g(j)
end do
write (*,*) ’normal completion’
END PROGRAM fredex
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Chapter B19. Partial Differential
Equations

SUBROUTINE sor(a,b,c,d,e,f,u,rjac)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(IN) :: a,b,c,d,e,f
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), INTENT(IN) :: rjac
INTEGER(I4B), PARAMETER :: MAXITS=1000
REAL(DP), PARAMETER :: EPS=1.0e-5_dp

Successive overrelaxation solution of equation (19.5.25) with Chebyshev acceleration. a, b,
c, d, e, and f are input as the coefficients of the equation, each dimensioned to the grid
size J × J. u is input as the initial guess to the solution, usually zero, and returns with the
final value. rjac is input as the spectral radius of the Jacobi iteration, or an estimate of
it. Double precision is a good idea for J bigger than about 25.

REAL(DP), DIMENSION(size(a,1),size(a,1)) :: resid
INTEGER(I4B) :: jmax,jm1,jm2,jm3,n
REAL(DP) :: anorm,anormf,omega
jmax=assert_eq((/size(a,1),size(a,2),size(b,1),size(b,2), &

size(c,1),size(c,2),size(d,1),size(d,2),size(e,1), &
size(e,2),size(f,1),size(f,2),size(u,1),size(u,2)/),’sor’)

jm1=jmax-1
jm2=jmax-2
jm3=jmax-3
anormf=sum(abs(f(2:jm1,2:jm1)))
Compute initial norm of residual and terminate iteration when norm has been reduced by a
factor EPS. This computation assumes initial u is zero.

omega=1.0
do n=1,MAXITS

First do the even-even and odd-odd squares of the grid, i.e., the red squares of the
checkerboard:

resid(2:jm1:2,2:jm1:2)=a(2:jm1:2,2:jm1:2)*u(3:jmax:2,2:jm1:2)+&
b(2:jm1:2,2:jm1:2)*u(1:jm2:2,2:jm1:2)+&
c(2:jm1:2,2:jm1:2)*u(2:jm1:2,3:jmax:2)+&
d(2:jm1:2,2:jm1:2)*u(2:jm1:2,1:jm2:2)+&
e(2:jm1:2,2:jm1:2)*u(2:jm1:2,2:jm1:2)-f(2:jm1:2,2:jm1:2)

u(2:jm1:2,2:jm1:2)=u(2:jm1:2,2:jm1:2)-omega*&
resid(2:jm1:2,2:jm1:2)/e(2:jm1:2,2:jm1:2)

resid(3:jm2:2,3:jm2:2)=a(3:jm2:2,3:jm2:2)*u(4:jm1:2,3:jm2:2)+&
b(3:jm2:2,3:jm2:2)*u(2:jm3:2,3:jm2:2)+&
c(3:jm2:2,3:jm2:2)*u(3:jm2:2,4:jm1:2)+&
d(3:jm2:2,3:jm2:2)*u(3:jm2:2,2:jm3:2)+&
e(3:jm2:2,3:jm2:2)*u(3:jm2:2,3:jm2:2)-f(3:jm2:2,3:jm2:2)

u(3:jm2:2,3:jm2:2)=u(3:jm2:2,3:jm2:2)-omega*&
resid(3:jm2:2,3:jm2:2)/e(3:jm2:2,3:jm2:2)

omega=merge(1.0_dp/(1.0_dp-0.5_dp*rjac**2), &
1.0_dp/(1.0_dp-0.25_dp*rjac**2*omega), n == 1)

Now do even-odd and odd-even squares of the grid, i.e., the black squares of the checker-
board:

resid(3:jm2:2,2:jm1:2)=a(3:jm2:2,2:jm1:2)*u(4:jm1:2,2:jm1:2)+&
b(3:jm2:2,2:jm1:2)*u(2:jm3:2,2:jm1:2)+&

1332
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c(3:jm2:2,2:jm1:2)*u(3:jm2:2,3:jmax:2)+&
d(3:jm2:2,2:jm1:2)*u(3:jm2:2,1:jm2:2)+&
e(3:jm2:2,2:jm1:2)*u(3:jm2:2,2:jm1:2)-f(3:jm2:2,2:jm1:2)

u(3:jm2:2,2:jm1:2)=u(3:jm2:2,2:jm1:2)-omega*&
resid(3:jm2:2,2:jm1:2)/e(3:jm2:2,2:jm1:2)

resid(2:jm1:2,3:jm2:2)=a(2:jm1:2,3:jm2:2)*u(3:jmax:2,3:jm2:2)+&
b(2:jm1:2,3:jm2:2)*u(1:jm2:2,3:jm2:2)+&
c(2:jm1:2,3:jm2:2)*u(2:jm1:2,4:jm1:2)+&
d(2:jm1:2,3:jm2:2)*u(2:jm1:2,2:jm3:2)+&
e(2:jm1:2,3:jm2:2)*u(2:jm1:2,3:jm2:2)-f(2:jm1:2,3:jm2:2)

u(2:jm1:2,3:jm2:2)=u(2:jm1:2,3:jm2:2)-omega*&
resid(2:jm1:2,3:jm2:2)/e(2:jm1:2,3:jm2:2)

omega=1.0_dp/(1.0_dp-0.25_dp*rjac**2*omega)
anorm=sum(abs(resid(2:jm1,2:jm1)))
if (anorm < EPS*anormf) exit

end do
if (n > MAXITS) call nrerror(’MAXITS exceeded in sor’)
END SUBROUTINE sor

Red-black iterative schemes like the one used in sor are easily paral-
lelizable. Updating the red grid points requires information only from
the black grid points, so they can all be updated independently. Similarly

the black grid points can all be updated independently. Since nearest neighbors are
involved in the updating, communication costs can be kept to a minimum.

f90
There are several possibilities for coding the red-black iteration in a data
parallel way using only Fortran 90 and no parallel language extensions.
One way is to define an N ×N logical mask red that is true on the red

grid points and false on the black. Then each iteration consists of an update governed
by a where(red)...end where block and a where(.not. red)...end where block. We
have chosen a more direct coding that avoids the need for storage of the array red.
The red update corresponds to the even-even and odd-odd grid points, the black to
the even-odd and odd-even points. We can code each of these four cases directly
with array sections, as in the routine above.

The array section notation used in sor is rather dense and hard to read. We
could use pointer aliases to try to simplify things, but since each array section is
different, we end up merely giving names to each term that was there all along.
Pointer aliases do help if we code sor using a logical mask. Since there may be
machines on which this version is faster, and since it is of some pedagogic interest,
we give the alternative code:

SUBROUTINE sor_mask(a,b,c,d,e,f,u,rjac)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), TARGET, INTENT(IN) :: a,b,c,d,e,f
REAL(DP), DIMENSION(:,:), TARGET, INTENT(INOUT) :: u
REAL(DP), INTENT(IN) :: rjac
INTEGER(I4B), PARAMETER :: MAXITS=1000
REAL(DP), PARAMETER :: EPS=1.0e-5_dp
REAL(DP), DIMENSION(:,:), ALLOCATABLE :: resid
REAL(DP), DIMENSION(:,:), POINTER :: u_int,u_down,u_up,u_left,&

u_right,a_int,b_int,c_int,d_int,e_int,f_int
INTEGER(I4B) :: jmax,jm1,jm2,jm3,n
REAL(DP) anorm,anormf,omega
LOGICAL, DIMENSION(:,:), ALLOCATABLE :: red
jmax=assert_eq((/size(a,1),size(a,2),size(b,1),size(b,2), &
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size(c,1),size(c,2),size(d,1),size(d,2),size(e,1), &
size(e,2),size(f,1),size(f,2),size(u,1),size(u,2)/),’sor’)

jm1=jmax-1
jm2=jmax-2
jm3=jmax-3
allocate(resid(jm2,jm2),red(jm2,jm2)) Interior is (jmax− 2) × (jmax− 2).
red=.false.
red(1:jm2:2,1:jm2:2)=.true.
red(2:jm3:2,2:jm3:2)=.true.
u_int=>u(2:jm1,2:jm1)
u_down=>u(3:jmax,2:jm1)
u_up=>u(1:jm2,2:jm1)
u_left=>u(2:jm1,1:jm2)
u_right=>u(2:jm1,3:jmax)
a_int=>a(2:jm1,2:jm1)
b_int=>b(2:jm1,2:jm1)
c_int=>c(2:jm1,2:jm1)
d_int=>d(2:jm1,2:jm1)
e_int=>e(2:jm1,2:jm1)
f_int=>f(2:jm1,2:jm1)
anormf=sum(abs(f_int))
omega=1.0
do n=1,MAXITS

where(red)
resid=a_int*u_down+b_int*u_up+c_int*u_right+&

d_int*u_left+e_int*u_int-f_int
u_int=u_int-omega*resid/e_int

end where
omega=merge(1.0_dp/(1.0_dp-0.5_dp*rjac**2), &

1.0_dp/(1.0_dp-0.25_dp*rjac**2*omega), n == 1)
where(.not.red)

resid=a_int*u_down+b_int*u_up+c_int*u_right+&
d_int*u_left+e_int*u_int-f_int

u_int=u_int-omega*resid/e_int
end where
omega=1.0_dp/(1.0_dp-0.25_dp*rjac**2*omega)
anorm=sum(abs(resid))
if(anorm < EPS*anormf)exit

end do
deallocate(resid,red)
if (n > MAXITS) call nrerror(’MAXITS exceeded in sor’)
END SUBROUTINE sor_mask

� � �

SUBROUTINE mglin(u,ncycle)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : interp,rstrct,slvsml
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: ncycle

Full Multigrid Algorithm for solution of linear elliptic equation, here the model problem
(19.0.6). On input u contains the right-hand side ρ in an N × N array, while on output
it returns the solution. The dimension N is related to the number of grid levels used in
the solution, ng below, by N = 2**ng+1. ncycle is the number of V-cycles to be used
at each level.

INTEGER(I4B) :: j,jcycle,n,ng,ngrid,nn
TYPE ptr2d Define a type so we can have an array of pointers

to arrays of grid variables.REAL(DP), POINTER :: a(:,:)
END TYPE ptr2d
TYPE(ptr2d), ALLOCATABLE :: rho(:)
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REAL(DP), DIMENSION(:,:), POINTER :: uj,uj_1
n=assert_eq(size(u,1),size(u,2),’mglin’)
ng=nint(log(n-1.0)/log(2.0))
if (n /= 2**ng+1) call nrerror(’n-1 must be a power of 2 in mglin’)
allocate(rho(ng))
nn=n
ngrid=ng
allocate(rho(ngrid)%a(nn,nn)) Allocate storage for r.h.s. on grid ng,
rho(ngrid)%a=u and fill it with the input r.h.s.
do Similarly allocate storage and fill r.h.s. on all coarse

grids by restricting from finer grids.if (nn <= 3) exit
nn=nn/2+1
ngrid=ngrid-1
allocate(rho(ngrid)%a(nn,nn))
rho(ngrid)%a=rstrct(rho(ngrid+1)%a)

end do
nn=3
allocate(uj(nn,nn))
call slvsml(uj,rho(1)%a) Initial solution on coarsest grid.
do j=2,ng Nested iteration loop.

nn=2*nn-1
uj_1=>uj
allocate(uj(nn,nn))
uj=interp(uj_1) Interpolate from grid j-1 to next finer grid j.
deallocate(uj_1)
do jcycle=1,ncycle V-cycle loop.

call mg(j,uj,rho(j)%a)
end do

end do
u=uj Return solution in u.
deallocate(uj)
do j=1,ng

deallocate(rho(j)%a)
end do
deallocate(rho)
CONTAINS

RECURSIVE SUBROUTINE mg(j,u,rhs)
USE nrtype
USE nr, ONLY : interp,relax,resid,rstrct,slvsml
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: j
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), DIMENSION(:,:), INTENT(IN) :: rhs
INTEGER(I4B), PARAMETER :: NPRE=1,NPOST=1

Recursive multigrid iteration. On input, j is the current level, u is the current value of the
solution, and rhs is the right-hand side. On output u contains the improved solution at the
current level.
Parameters: NPRE and NPOST are the number of relaxation sweeps before and after the
coarse-grid correction is computed.

INTEGER(I4B) :: jpost,jpre
REAL(DP), DIMENSION((size(u,1)+1)/2,(size(u,1)+1)/2) :: res,v
if (j == 1) then Bottom of V: Solve on coarsest grid.

call slvsml(u,rhs)
else On downward stoke of the V.

do jpre=1,NPRE Pre-smoothing.
call relax(u,rhs)

end do
res=rstrct(resid(u,rhs)) Restriction of the residual is the next r.h.s.
v=0.0 Zero for initial guess in next relaxation.
call mg(j-1,v,res) Recursive call for the coarse grid correction.
u=u+interp(v) On upward stroke of V.
do jpost=1,NPOST Post-smoothing.

call relax(u,rhs)
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end do
end if
END SUBROUTINE mg
END SUBROUTINE mglin

f90
The Fortran 90 version of mglin (and of mgfas below) is quite different
from the Fortran 77 version, although the algorithm is identical. First,
we use a recursive implementation. This makes the code much more

transparent. It also makes the memory management much better: we simply define
the new arrays res and v as automatic arrays of the appropriate dimension on each
recursive call to a coarser level. And a third benefit is that it is trivial to change
the code to increase the number of multigrid iterations done at level j − 1 by each
iteration at level j, i.e., to set the quantity γ in §19.6 to a value greater than one.
(Recall that γ = 1 as chosen in mglin gives V-cycles, γ = 2 gives W-cycles.)
Simply enclose the recursive call in a do-loop:

do i=1,merge(gamma,1,j /= 2)
call mg(j-1,v,res)

end do

The merge expression ensures that there is no more than one call to the coarsest
level, where the problem is solved exactly.

A second improvement in the Fortran 90 version is to make the procedures
resid, interp, and rstrct functions instead of subroutines. This allows us to
code the algorithm exactly as written mathematically.

TYPE ptr2d... The right-hand-sidequantityρ is supplied initiallyon the finest
grid in the argument u. It has to be defined on the coarser grids by restriction, and
then supplied as the right-hand side to mg in the nested iteration loop. This loop
starts at the coarsest level and progresses up to the finest level. We thus need a data
structure to store ρ on all the grid levels. A convenient way to implement this in
Fortran 90 is to define a type ptr2d, a pointer to a two-dimensional array a that
represents a grid. (In three dimensions, a would of course be three-dimensional.)
We then declare the variable ρ as an allocatable array of type ptr2d:

TYPE(ptr2d), ALLOCATABLE :: rho(:)

Next we allocate storage for ρ on each level. The number of levels or grids, ng,
is known only at run time:

allocate(rho(ng))

Then we allocate storage as needed on particular sized grids. For example,

allocate(rho(ngrid)%a(nn,nn))

allocates an nn × nn grid for rho on grid number ngrid.
The various subsidiary routines of mglin such as rstrct and interp are

written to accept two-dimensional arrays as arguments. With the data structure
we’ve employed, using these routines is simple. For example,

rho(ngrid)%a=rstrct(rho(ngrid+1)%a)

will restrict rho from the grid ngrid+1 to the grid ngrid. The statement is even
more readable if we mentally ignore the %a that is tagged onto each variable. (If
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we actually did omit %a in the code, the compiler would think we meant the array
of type ptr2d instead of the grid array.)

Note that while Fortran 90 does not allow you to declare an array of pointers
directly, you can achieve the same effect by declaring your own type, as we have
done with ptr2d in this example.

FUNCTION rstrct(uf)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(IN) :: uf
REAL(DP), DIMENSION((size(uf,1)+1)/2,(size(uf,1)+1)/2) :: rstrct

Half-weighting restriction. If Nc is the coarse-grid dimension, the fine-grid solution is input
in the (2Nc − 1)× (2Nc − 1) array uf, the coarse-grid solution is returned in the Nc ×Nc

array rstrct.
INTEGER(I4B) :: nc,nf
nf=assert_eq(size(uf,1),size(uf,2),’rstrct’)
nc=(nf+1)/2
rstrct(2:nc-1,2:nc-1)=0.5_dp*uf(3:nf-2:2,3:nf-2:2)+0.125_dp*(& Interior points.

uf(4:nf-1:2,3:nf-2:2)+uf(2:nf-3:2,3:nf-2:2)+&
uf(3:nf-2:2,4:nf-1:2)+uf(3:nf-2:2,2:nf-3:2))

rstrct(1:nc,1)=uf(1:nf:2,1) Boundary points.
rstrct(1:nc,nc)=uf(1:nf:2,nf)
rstrct(1,1:nc)=uf(1,1:nf:2)
rstrct(nc,1:nc)=uf(nf,1:nf:2)
END FUNCTION rstrct

FUNCTION interp(uc)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(IN) :: uc
REAL(DP), DIMENSION(2*size(uc,1)-1,2*size(uc,1)-1) :: interp

Coarse-to-fine prolongation by bilinear interpolation. If Nf is the fine-grid dimension and
Nc the coarse-grid dimension, then Nf = 2Nc− 1. The coarse-grid solution is input as uc,
the fine-grid solution is returned in interp.

INTEGER(I4B) :: nc,nf
nc=assert_eq(size(uc,1),size(uc,2),’interp’)
nf=2*nc-1
interp(1:nf:2,1:nf:2)=uc(1:nc,1:nc)
Do elements that are copies.

interp(2:nf-1:2,1:nf:2)=0.5_dp*(interp(3:nf:2,1:nf:2)+ &
interp(1:nf-2:2,1:nf:2))
Do odd-numbered columns, interpolating vertically.

interp(1:nf,2:nf-1:2)=0.5_dp*(interp(1:nf,3:nf:2)+interp(1:nf,1:nf-2:2))
Do even-numbered columns, interpolating horizontally.

END FUNCTION interp

SUBROUTINE slvsml(u,rhs)
USE nrtype
IMPLICIT NONE
REAL(DP), DIMENSION(3,3), INTENT(OUT) :: u
REAL(DP), DIMENSION(3,3), INTENT(IN) :: rhs

Solution of the model problem on the coarsest grid, where h = 1
2
. The right-hand side is

input in rhs(1:3,1:3) and the solution is returned in u(1:3,1:3).
REAL(DP) :: h
u=0.0
h=0.5_dp
u(2,2)=-h*h*rhs(2,2)/4.0_dp
END SUBROUTINE slvsml
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SUBROUTINE relax(u,rhs)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), DIMENSION(:,:), INTENT(IN) :: rhs

Red-black Gauss-Seidel relaxation for model problem. The current value of the solution u is
updated, using the right-hand-side function rhs. u and rhs are square arrays of the same
odd dimension.

INTEGER(I4B) :: n
REAL(DP) :: h,h2
n=assert_eq(size(u,1),size(u,2),size(rhs,1),size(rhs,2),’relax’)
h=1.0_dp/(n-1)
h2=h*h
First do the even-even and odd-odd squares of the grid, i.e., the red squares of the checker-
board:

u(2:n-1:2,2:n-1:2)=0.25_dp*(u(3:n:2,2:n-1:2)+u(1:n-2:2,2:n-1:2)+&
u(2:n-1:2,3:n:2)+u(2:n-1:2,1:n-2:2)-h2*rhs(2:n-1:2,2:n-1:2))

u(3:n-2:2,3:n-2:2)=0.25_dp*(u(4:n-1:2,3:n-2:2)+u(2:n-3:2,3:n-2:2)+&
u(3:n-2:2,4:n-1:2)+u(3:n-2:2,2:n-3:2)-h2*rhs(3:n-2:2,3:n-2:2))

Now do even-odd and odd-even squares of the grid, i.e., the black squares of the checker-
board:

u(3:n-2:2,2:n-1:2)=0.25_dp*(u(4:n-1:2,2:n-1:2)+u(2:n-3:2,2:n-1:2)+&
u(3:n-2:2,3:n:2)+u(3:n-2:2,1:n-2:2)-h2*rhs(3:n-2:2,2:n-1:2))

u(2:n-1:2,3:n-2:2)=0.25_dp*(u(3:n:2,3:n-2:2)+u(1:n-2:2,3:n-2:2)+&
u(2:n-1:2,4:n-1:2)+u(2:n-1:2,2:n-3:2)-h2*rhs(2:n-1:2,3:n-2:2))

END SUBROUTINE relax

f90 See the discussion of red-black relaxation after sor on p. 1333.

FUNCTION resid(u,rhs)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(IN) :: u,rhs
REAL(DP), DIMENSION(size(u,1),size(u,1)) :: resid

Returns minus the residual for the model problem. Input quantities are u and rhs, while
the residual is returned in resid. All three quantities are square arrays with the same odd
dimension.

INTEGER(I4B) :: n
REAL(DP) :: h,h2i
n=assert_eq((/size(u,1),size(u,2),size(rhs,1),size(rhs,2)/),’resid’)
n=size(u,1)
h=1.0_dp/(n-1)
h2i=1.0_dp/(h*h)
resid(2:n-1,2:n-1)=-h2i*(u(3:n,2:n-1)+u(1:n-2,2:n-1)+u(2:n-1,3:n)+&

u(2:n-1,1:n-2)-4.0_dp*u(2:n-1,2:n-1))+rhs(2:n-1,2:n-1) Interior points.
resid(1:n,1)=0.0 Boundary points.
resid(1:n,n)=0.0
resid(1,1:n)=0.0
resid(n,1:n)=0.0
END FUNCTION resid

� � �
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SUBROUTINE mgfas(u,maxcyc)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : interp,lop,rstrct,slvsm2
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: maxcyc

Full Multigrid Algorithm for FAS solution of nonlinear elliptic equation, here equation
(19.6.44). On input u contains the right-hand side ρ in an N × N array, while on out-
put it returns the solution. The dimension N is related to the number of grid levels used
in the solution, ng below, by N = 2**ng+1. maxcyc is the maximum number of V-cycles
to be used at each level.

INTEGER(I4B) :: j,jcycle,n,ng,ngrid,nn
REAL(DP) :: res,trerr
TYPE ptr2d Define a type so we can have an array of

pointers to arrays of grid variables.REAL(DP), POINTER :: a(:,:)
END TYPE ptr2d
TYPE(ptr2d), ALLOCATABLE :: rho(:)
REAL(DP), DIMENSION(:,:), POINTER :: uj,uj_1
n=assert_eq(size(u,1),size(u,2),’mgfas’)
ng=nint(log(n-1.0)/log(2.0))
if (n /= 2**ng+1) call nrerror(’n-1 must be a power of 2 in mgfas’)
allocate(rho(ng))
nn=n
ngrid=ng
allocate(rho(ngrid)%a(nn,nn)) Allocate storage for r.h.s. on grid ng,
rho(ngrid)%a=u and fill it with ρ from the fine grid.
do Similarly allocate storage and fill r.h.s. by re-

striction on all coarse grids.if (nn <= 3) exit
nn=nn/2+1
ngrid=ngrid-1
allocate(rho(ngrid)%a(nn,nn))
rho(ngrid)%a=rstrct(rho(ngrid+1)%a)

end do
nn=3
allocate(uj(nn,nn))
call slvsm2(uj,rho(1)%a) Initial solution on coarsest grid.
do j=2,ng Nested iteration loop.

nn=2*nn-1
uj_1=>uj
allocate(uj(nn,nn))
uj=interp(uj_1) Interpolate from grid j-1 to next finer grid

j.deallocate(uj_1)
do jcycle=1,maxcyc V-cycle loop.

call mg(j,uj,trerr=trerr)
res=sqrt(sum((lop(uj)-rho(j)%a)**2))/nn Form residual ‖dh‖.
if (res < trerr) exit No more V-cycles needed if residual small

enough.end do
end do
u=uj Return solution in u.
deallocate(uj)
do j=1,ng

deallocate(rho(j)%a)
end do
deallocate(rho)
CONTAINS

RECURSIVE SUBROUTINE mg(j,u,rhs,trerr)
USE nrtype
USE nr, ONLY : interp,lop,relax2,rstrct,slvsm2
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: j
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), DIMENSION(:,:), INTENT(IN), OPTIONAL :: rhs
REAL(DP), INTENT(OUT), OPTIONAL :: trerr



1340 Chapter B19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTEGER(I4B), PARAMETER :: NPRE=1,NPOST=1
REAL(DP), PARAMETER :: ALPHA=0.33_dp

Recursive multigrid iteration. On input, j is the current level and u is the current value
of the solution. For the first call on a given level, the right-hand side is zero, and the
optional argument rhs is not present. Subsequent recursive calls supply a nonzero rhs as
in equation (19.6.33). On output u contains the improved solution at the current level.
When the first call on a given level is made, the relative truncation error τ is returned in
the optional argument trerr.
Parameters: NPRE and NPOST are the number of relaxation sweeps before and after the
coarse-grid correction is computed; ALPHA relates the estimated truncation error to the
norm of the residual.

INTEGER(I4B) :: jpost,jpre
REAL(DP), DIMENSION((size(u,1)+1)/2,(size(u,1)+1)/2) :: v,ut,tau
if (j == 1) then Bottom of V: Solve on coarsest grid.

call slvsm2(u,rhs+rho(j)%a)
else On downward stoke of the V.

do jpre=1,NPRE Pre-smoothing.
if (present(rhs)) then

call relax2(u,rhs+rho(j)%a)
else

call relax2(u,rho(j)%a)
end if

end do
ut=rstrct(u) Rũh.
v=ut Make a copy in v.
if (present(rhs)) then

tau=lop(ut)-rstrct(lop(u)-rhs) Form τ̃h + fH = LH(Rũh) − RLh(ũh) +
fH .else

tau=lop(ut)-rstrct(lop(u))
trerr=ALPHA*sqrt(sum(tau**2))/size(tau,1) Estimate truncation error τ .

end if
call mg(j-1,v,tau) Recursive call for the coarse-grid correction.
u=u+interp(v-ut) ũnew

h = ũh + P(ũH − Rũh)
do jpost=1,NPOST Post-smoothing.

if (present(rhs)) then
call relax2(u,rhs+rho(j)%a)

else
call relax2(u,rho(j)%a)

end if
end do

end if
END SUBROUTINE mg
END SUBROUTINE mgfas

f90
See the discussion after mglin on p. 1336 for the changes made in the
Fortran 90 versions of the multigrid routines from the Fortran 77 versions.

TYPE ptr2d... See discussion after mglin on p. 1336.

RECURSIVE SUBROUTINE mg(j,u,rhs,trerr) Recall that mgfas solves the prob-
lem Lu = 0, but that nonzero right-hand sides appear during the solution. We
implement this by having rhs be an optional argument to mg. On the first call
at a given level j, the right-hand side is zero and so you just omit it from the
calling sequence. On the other hand, the truncation error trerr is computed only
on the first call at a given level, so it is also an optional argument that does get
supplied on the first call:

call mg(j,uj,trerr=trerr)

The second and subsequent calls at a given level supply rhs=tau but omit trerr:
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call mg(j-1,v,tau)

Note that we can omit the keyword rhs from this call because the variable tau

appears in the correct order of arguments. However, in the other call above, the
keyword trerr must be supplied because rhs has been omitted.

The example equation that is solved in mgfas, equation (19.6.44), is almost
linear, and the code is set up so that ρ is supplied as part of the right-hand side
instead of pulling it over to the left-hand side. The variable rho is visible to mg

by host association. Note also that the function lop does not include rho, but
that the statement

tau=lop(ut)-rstrct(lop(u))

is nevertheless correct, since rho would cancel out if it were included in lop. This
feature is also true in the Fortran 77 code.

SUBROUTINE relax2(u,rhs)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), DIMENSION(:,:), INTENT(IN) :: rhs

Red-black Gauss-Seidel relaxation for equation (19.6.44). The current value of the solution
u is updated, using the right-hand-side function rhs. u and rhs are square arrays of the
same odd dimension.

INTEGER(I4B) :: n
REAL(DP) :: foh2,h,h2i
REAL(DP) :: res(size(u,1),size(u,1))
n=assert_eq(size(u,1),size(u,2),size(rhs,1),size(rhs,2),’relax2’)
h=1.0_dp/(n-1)
h2i=1.0_dp/(h*h)
foh2=-4.0_dp*h2i
First do the even-even and odd-odd squares of the grid, i.e., the red squares of the checker-
board:

res(2:n-1:2,2:n-1:2)=h2i*(u(3:n:2,2:n-1:2)+u(1:n-2:2,2:n-1:2)+&
u(2:n-1:2,3:n:2)+u(2:n-1:2,1:n-2:2)-4.0_dp*u(2:n-1:2,2:n-1:2))&
+u(2:n-1:2,2:n-1:2)**2-rhs(2:n-1:2,2:n-1:2)

u(2:n-1:2,2:n-1:2)=u(2:n-1:2,2:n-1:2)-res(2:n-1:2,2:n-1:2)/&
(foh2+2.0_dp*u(2:n-1:2,2:n-1:2))

res(3:n-2:2,3:n-2:2)=h2i*(u(4:n-1:2,3:n-2:2)+u(2:n-3:2,3:n-2:2)+&
u(3:n-2:2,4:n-1:2)+u(3:n-2:2,2:n-3:2)-4.0_dp*u(3:n-2:2,3:n-2:2))&
+u(3:n-2:2,3:n-2:2)**2-rhs(3:n-2:2,3:n-2:2)

u(3:n-2:2,3:n-2:2)=u(3:n-2:2,3:n-2:2)-res(3:n-2:2,3:n-2:2)/&
(foh2+2.0_dp*u(3:n-2:2,3:n-2:2))

Now do even-odd and odd-even squares of the grid, i.e., the black squares of the checker-
board:

res(3:n-2:2,2:n-1:2)=h2i*(u(4:n-1:2,2:n-1:2)+u(2:n-3:2,2:n-1:2)+&
u(3:n-2:2,3:n:2)+u(3:n-2:2,1:n-2:2)-4.0_dp*u(3:n-2:2,2:n-1:2))&
+u(3:n-2:2,2:n-1:2)**2-rhs(3:n-2:2,2:n-1:2)

u(3:n-2:2,2:n-1:2)=u(3:n-2:2,2:n-1:2)-res(3:n-2:2,2:n-1:2)/&
(foh2+2.0_dp*u(3:n-2:2,2:n-1:2))

res(2:n-1:2,3:n-2:2)=h2i*(u(3:n:2,3:n-2:2)+u(1:n-2:2,3:n-2:2)+&
u(2:n-1:2,4:n-1:2)+u(2:n-1:2,2:n-3:2)-4.0_dp*u(2:n-1:2,3:n-2:2))&
+u(2:n-1:2,3:n-2:2)**2-rhs(2:n-1:2,3:n-2:2)

u(2:n-1:2,3:n-2:2)=u(2:n-1:2,3:n-2:2)-res(2:n-1:2,3:n-2:2)/&
(foh2+2.0_dp*u(2:n-1:2,3:n-2:2))

END SUBROUTINE relax2

f90 See the discussion of red-black relaxation after sor on p. 1333.
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SUBROUTINE slvsm2(u,rhs)
USE nrtype
IMPLICIT NONE
REAL(DP), DIMENSION(3,3), INTENT(OUT) :: u
REAL(DP), DIMENSION(3,3), INTENT(IN) :: rhs

Solution of equation (19.6.44) on the coarsest grid, where h = 1
2
. The right-hand side is

input in rhs(1:3,1:3) and the solution is returned in u(1:3,1:3).
REAL(DP) :: disc,fact,h
u=0.0
h=0.5_dp
fact=2.0_dp/h**2
disc=sqrt(fact**2+rhs(2,2))
u(2,2)=-rhs(2,2)/(fact+disc)
END SUBROUTINE slvsm2

FUNCTION lop(u)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(IN) :: u
REAL(DP), DIMENSION(size(u,1),size(u,1)) :: lop

Given u, returns Lh(ũh) for equation (19.6.44). u and lop are square arrays of the same
odd dimension.

INTEGER(I4B) :: n
REAL(DP) :: h,h2i
n=assert_eq(size(u,1),size(u,2),’lop’)
h=1.0_dp/(n-1)
h2i=1.0_dp/(h*h)
lop(2:n-1,2:n-1)=h2i*(u(3:n,2:n-1)+u(1:n-2,2:n-1)+u(2:n-1,3:n)+&

u(2:n-1,1:n-2)-4.0_dp*u(2:n-1,2:n-1))+u(2:n-1,2:n-1)**2 Interior points.
lop(1:n,1)=0.0 Boundary points.
lop(1:n,n)=0.0
lop(1,1:n)=0.0
lop(n,1:n)=0.0
END FUNCTION lop
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Chapter B20. Less-Numerical
Algorithms

f90
Volume 1’s Fortran 77 routinemachar performed various clever con-
tortions (due to Cody, Malcolm, and others) to discover the underlying
properties of a machine’s floating-point representation. Fortran 90, by

contrast, provides a built-in set of “numeric inquiry functions” that accomplish the
same goal. The routinemachar included here makes use of these and is included
largely for compatibility with the previous version.

SUBROUTINE machar(ibeta,it,irnd,ngrd,machep,negep,iexp,minexp,&
maxexp,eps,epsneg,xmin,xmax)

USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: ibeta,iexp,irnd,it,machep,maxexp,minexp,negep,ngrd
REAL(SP), INTENT(OUT) :: eps,epsneg,xmax,xmin
REAL(SP), PARAMETER :: RX=1.0

Determines and returns machine-specific parameters affecting floating-point arithmetic. Re-
turned values include ibeta, the floating-point radix; it, the number of base-ibeta digits
in the floating-point mantissa; eps, the smallest positive number that, added to 1.0, is
not equal to 1.0; epsneg, the smallest positive number that, subtracted from 1.0, is not
equal to 1.0; xmin, the smallest representable positive number; and xmax, the largest rep-
resentable positive number. See text for description of other returned parameters. Change
all REAL(SP) declarations to REAL(DP) to find double-precision parameters.

REAL(SP) :: a,beta,betah,one,temp,tempa,two,zero
ibeta=radix(RX) Most of the parameters are easily determined

from intrinsic functions.it=digits(RX)
machep=exponent(nearest(RX,RX)-RX)-1
negep=exponent(nearest(RX,-RX)-RX)-1
minexp=minexponent(RX)-1
maxexp=maxexponent(RX)
iexp=nint(log(real(maxexp-minexp+2,sp))/log(2.0_sp))
eps=real(ibeta,sp)**machep
epsneg=real(ibeta,sp)**negep
xmax=huge(RX)
xmin=tiny(RX)
one=RX Determine irnd.
two=one+one
zero=one-one
beta=real(ibeta,sp)
a=beta**(-negep)
irnd=0
betah=beta/two
temp=a+betah
if (temp-a /= zero) irnd=1
tempa=a+beta
temp=tempa+betah
if ((irnd == 0) .and. (temp-tempa /= zero)) irnd=2
ngrd=0 Determine ngrd.

1343
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temp=one+eps
if ((irnd == 0) .and. (temp*one-one /= zero)) ngrd=1
temp=xmin/two
if (temp /= zero) irnd=irnd+3 Adjust irnd to reflect partial underflow.
END SUBROUTINE machar

� � �

FUNCTION igray(n,is)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n,is
INTEGER(I4B) :: igray

For zero or positive values of is, return the Gray code of n; if is is negative, return the
inverse Gray code of n.

INTEGER(I4B) :: idiv,ish
if (is >= 0) then This is the easy direction!

igray=ieor(n,n/2)
else This is the more complicated direction: In hierarchical stages,

starting with a one-bit right shift, cause each bit to be
XORed with all more significant bits.

ish=-1
igray=n
do

idiv=ishft(igray,ish)
igray=ieor(igray,idiv)
if (idiv <= 1 .or. ish == -16) RETURN
ish=ish+ish Double the amount of shift on the next cycle.

end do
end if
END FUNCTION igray

� � �

FUNCTION icrc(crc,buf,jinit,jrev)
USE nrtype
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(IN) :: buf
INTEGER(I2B), INTENT(IN) :: crc,jinit
INTEGER(I4B), INTENT(IN) :: jrev
INTEGER(I2B) :: icrc

Computes a 16-bit Cyclic Redundancy Check for an array buf of bytes, using any of several
conventions as determined by the settings of jinit and jrev (see accompanying table).
The result is returned both as an integer icrc and as a 2-byte array crc. If jinit is neg-
ative, then crc is used on input to initialize the remainder register, in effect concatenating
buf to the previous call.

INTEGER(I4B), SAVE :: init=0
INTEGER(I2B) :: j,cword,ich
INTEGER(I2B), DIMENSION(0:255), SAVE :: icrctb,rchr
INTEGER(I2B), DIMENSION(0:15) :: it = & Table of 4-bit bit-reverses.

(/ 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15 /)
if (init == 0) then Do we need to initialize tables?

init=1
do j=0,255 The two tables are: CRCs of all characters,

and bit-reverses of all characters.icrctb(j)=icrc1(ishft(j,8),char(0))
rchr(j)=ishft(it(iand(j,15_I2B)),4)+it(ishft(j,-4))

end do
end if
cword=crc
if (jinit >= 0) then Initialize the remainder register.

cword=ior(jinit,ishft(jinit,8))
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else if (jrev < 0) then If not initializing, do we reverse the register?
cword=ior(rchr(hibyte()),ishft(rchr(lobyte()),8))

end if
do j=1,size(buf) Main loop over the characters in the array.

ich=ichar(buf(j))
if (jrev < 0) ich=rchr(ich)
cword=ieor(icrctb(ieor(ich,hibyte())),ishft(lobyte(),8))

end do
icrc=merge(cword, & Do we need to reverse the output?

ior(rchr(hibyte()),ishft(rchr(lobyte()),8)), jrev >= 0)
CONTAINS

FUNCTION hibyte()
INTEGER(I2B) :: hibyte
Extracts the high byte of the 2-byte integer cword.

hibyte = ishft(cword,-8)
END FUNCTION hibyte

FUNCTION lobyte()
INTEGER(I2B) :: lobyte
Extracts the low byte of the 2-byte integer cword.

lobyte = iand(cword,255_I2B)
END FUNCTION lobyte

FUNCTION icrc1(crc,onech)
INTEGER(I2B), INTENT(IN) :: crc
CHARACTER(1), INTENT(IN) :: onech
INTEGER(I2B) :: icrc1
Given a remainder up to now, return the new CRC after one character is added. This routine is
functionally equivalent to icrc(,,-1,1), but slower. It is used by icrc to initialize its table.

INTEGER(I2B) :: i,ich, bit16, ccitt
DATA bit16,ccitt /Z’8000’, Z’1021’/
ich=ichar(onech) Here is where the character is folded into the

register.icrc1=ieor(crc,ishft(ich,8))
do i=1,8 Here is where 8 one-bit shifts, and some XORs

with the generator polynomial,
are done.

icrc1=merge(ieor(ccitt,ishft(icrc1,1)), &
ishft(icrc1,1), iand(icrc1,bit16) /= 0)

end do
END FUNCTION icrc1
END FUNCTION icrc

f90
The embedded functionshibyte and lobyte always act on the same
variable,cword. Thus they don’t need any explicit argument.

� � �

FUNCTION decchk(string,ch)
USE nrtype; USE nrutil, ONLY : ifirstloc
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(IN) :: string
CHARACTER(1), INTENT(OUT) :: ch
LOGICAL(LGT) :: decchk

Decimal check digit computation or verification. Returns as ch a check digit for appending
to string. In this mode, ignore the returned logical value. If string already ends with
a check digit, returns the function value .true. if the check digit is valid, otherwise
.false. In this mode, ignore the returned value of ch. Note that string and ch contain
ASCII characters corresponding to the digits 0-9, not byte values in that range. Other ASCII
characters are allowed in string, and are ignored in calculating the check digit.

INTEGER(I4B) :: i,j,k,m
INTEGER(I4B) :: ip(0:9,0:7) = reshape((/ & Group multiplication and permuta-

tion tables.0,1,2,3,4,5,6,7,8,9,1,5,7,6,2,8,3,0,9,4,&
5,8,0,3,7,9,6,1,4,2,8,9,1,6,0,4,3,5,2,7,9,4,5,3,1,2,6,8,7,0,&
4,2,8,6,5,7,3,9,0,1,2,7,9,3,8,0,6,4,1,5,7,0,4,6,9,1,3,2,5,8 /),&
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(/ 10,8 /) )
INTEGER(I4B) :: ij(0:9,0:9) = reshape((/ &

0,1,2,3,4,5,6,7,8,9,1,2,3,4,0,9,5,6,7,8,2,3,4,0,1,8,9,5,6,&
7,3,4,0,1,2,7,8,9,5,6,4,0,1,2,3,6,7,8,9,5,5,6,7,8,9,0,1,2,3,&
4,6,7,8,9,5,4,0,1,2,3,7,8,9,5,6,3,4,0,1,2,8,9,5,6,7,2,3,4,0,&
1,9,5,6,7,8,1,2,3,4,0 /),(/ 10,10 /))

k=0
m=0
do j=1,size(string) Look at successive characters.

i=ichar(string(j))
if (i >= 48 .and. i <= 57) then Ignore everything except digits.

k=ij(k,ip(mod(i+2,10),mod(m,8)))
m=m+1

end if
end do
decchk=logical(k == 0,kind=lgt)
i=mod(m,8) Find which appended digit will check prop-

erly.i=ifirstloc(ij(k,ip(0:9,i)) == 0)-1
ch=char(i+48) Convert to ASCII.
END FUNCTION decchk

f90
Note the use of the utility functionifirstloc to find the first (in this
case, the only) correct check digit.

� � �

f90
The Huffman and arithmetic coding routinesexemplify the use of modules
to encapsulate user-defined data types. In these algorithms, “the code”
is a fairly complicated construct containing scalar and array data. We

define typeshuffcode andarithcode, then can pass “the code” from the routine
that constructs it to the routine that uses it as a single variable.

MODULE huf_info
USE nrtype
IMPLICIT NONE
TYPE huffcode

INTEGER(I4B) :: nch,nodemax
INTEGER(I4B), DIMENSION(:), POINTER :: icode,left,iright,ncode

END TYPE huffcode
CONTAINS
SUBROUTINE huff_allocate(hcode,mc)
USE nrtype
IMPLICIT NONE
TYPE(huffcode) :: hcode
INTEGER(I4B) :: mc
INTEGER(I4B) :: mq
mq=2*mc-1
allocate(hcode%icode(mq),hcode%ncode(mq),hcode%left(mq),hcode%iright(mq))
hcode%icode(:)=0
hcode%ncode(:)=0
END SUBROUTINE huff_allocate

SUBROUTINE huff_deallocate(hcode)
USE nrtype
IMPLICIT NONE
TYPE(huffcode) :: hcode
deallocate(hcode%iright,hcode%left,hcode%ncode,hcode%icode)
nullify(hcode%icode)
nullify(hcode%ncode)
nullify(hcode%left)
nullify(hcode%iright)
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END SUBROUTINE huff_deallocate
END MODULE huf_info

SUBROUTINE hufmak(nfreq,ilong,nlong,hcode)
USE nrtype; USE nrutil, ONLY : array_copy,arth,imaxloc,nrerror
USE huf_info
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: ilong,nlong
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: nfreq
TYPE(huffcode) :: hcode

Given the frequency of occurrence table nfreq of size(nfreq) characters, return the
Huffman code hcode. Returned values ilong and nlong are the character number that
produced the longest code symbol, and the length of that symbol.

INTEGER(I4B) :: ibit,j,k,n,node,nused,nerr
INTEGER(I4B), DIMENSION(2*size(nfreq)-1) :: indx,iup,nprob
hcode%nch=size(nfreq) Initialization.
call huff_allocate(hcode,size(nfreq))
nused=0
nprob(1:hcode%nch)=nfreq(1:hcode%nch)
call array_copy(pack(arth(1,1,hcode%nch), nfreq(1:hcode%nch) /= 0 ),&

indx,nused,nerr)
do j=nused,1,-1 Sort nprob into a heap structure in indx.

call hufapp(j)
end do
k=hcode%nch
do Combine heap nodes, remaking the heap at each stage.

if (nused <= 1) exit
node=indx(1)
indx(1)=indx(nused)
nused=nused-1
call hufapp(1)
k=k+1
nprob(k)=nprob(indx(1))+nprob(node)
hcode%left(k)=node Store left and right children of a node.
hcode%iright(k)=indx(1)
iup(indx(1))=-k Indicate whether a node is a left or right child of its par-

ent.iup(node)=k
indx(1)=k
call hufapp(1)

end do
hcode%nodemax=k
iup(hcode%nodemax)=0
do j=1,hcode%nch Make the Huffman code from the tree.

if (nprob(j) /= 0) then
n=0
ibit=0
node=iup(j)
do

if (node == 0) exit
if (node < 0) then

n=ibset(n,ibit)
node=-node

end if
node=iup(node)
ibit=ibit+1

end do
hcode%icode(j)=n
hcode%ncode(j)=ibit

end if
end do
ilong=imaxloc(hcode%ncode(1:hcode%nch))
nlong=hcode%ncode(ilong)
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if (nlong > bit_size(1_i4b)) call & Check nlong not larger than word length.
nrerror(’hufmak: Number of possible bits for code exceeded’)

CONTAINS

SUBROUTINE hufapp(l)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: l
Used by hufmak to maintain a heap structure in the array indx(1:l).

INTEGER(I4B) :: i,j,k,n
n=nused
i=l
k=indx(i)
do

if (i > n/2) exit
j=i+i
if (j < n .and. nprob(indx(j)) > nprob(indx(j+1))) &

j=j+1
if (nprob(k) <= nprob(indx(j))) exit
indx(i)=indx(j)
i=j

end do
indx(i)=k
END SUBROUTINE hufapp
END SUBROUTINE hufmak

SUBROUTINE hufenc(ich,codep,nb,hcode)
USE nrtype; USE nrutil, ONLY : nrerror,reallocate
USE huf_info
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: ich
INTEGER(I4B), INTENT(INOUT) :: nb
CHARACTER(1), DIMENSION(:), POINTER :: codep
TYPE(huffcode) :: hcode

Huffman encode the single character ich (in the range 0..nch-1) using the code in hcode,
write the result to the character array pointed to by codep starting at bit nb (whose smallest
valid value is zero), and increment nb appropriately. This routine is called repeatedly to
encode consecutive characters in a message, but must be preceded by a single initializing
call to hufmak.

INTEGER(I4B) :: k,l,n,nc,ntmp
k=ich+1 Convert character range 0..nch-1 to ar-

ray index range 1..nch.if (k > hcode%nch .or. k < 1) call &
nrerror(’hufenc: ich out of range’)

do n=hcode%ncode(k),1,-1 Loop over the bits in the stored Huffman
code for ich.nc=nb/8+1

if (nc > size(codep)) codep=>reallocate(codep,2*size(codep))
l=mod(nb,8)
if (l == 0) codep(nc)=char(0)
if (btest(hcode%icode(k),n-1)) then Set appropriate bits in codep.

ntmp=ibset(ichar(codep(nc)),l)
codep(nc)=char(ntmp)

end if
nb=nb+1

end do
END SUBROUTINE hufenc
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SUBROUTINE hufdec(ich,code,nb,hcode)
USE nrtype
USE huf_info
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: ich
INTEGER(I4B), INTENT(INOUT) :: nb
CHARACTER(1), DIMENSION(:), INTENT(IN) :: code
TYPE(huffcode) :: hcode

Starting at bit number nb in the character array code, use the Huffman code in hcode
to decode a single character (returned as ich in the range 0..nch-1) and increment nb
appropriately. Repeated calls, starting with nb = 0, will return successive characters in a
compressed message. The returned value ich=nch indicates end-of-message. This routine
must be preceded by a single initializing call to hufmak.

INTEGER(I4B) :: l,nc,node
node=hcode%nodemax Set node to the top of the decoding tree.
do Loop until a valid character is obtained.

nc=nb/8+1
if (nc > size(code)) then Ran out of input; return with ich=nch

indicating end of message.ich=hcode%nch
RETURN

end if
l=mod(nb,8) Now decoding this bit.
nb=nb+1
if (btest(ichar(code(nc)),l)) then Branch left or right in tree, depending on

its value.node=hcode%iright(node)
else

node=hcode%left(node)
end if
if (node <= hcode%nch) then If we reach a terminal node, we have a

complete character and can return.ich=node-1
RETURN

end if
end do
END SUBROUTINE hufdec

� � �

MODULE arcode_info
USE nrtype
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NWK=20
NWK is the number of working digits (see text).

TYPE arithcode
INTEGER(I4B), DIMENSION(:), POINTER :: ilob,iupb,ncumfq
INTEGER(I4B) :: jdif,nc,minint,nch,ncum,nrad

END TYPE arithcode
CONTAINS
SUBROUTINE arcode_allocate(acode,mc)
USE nrtype
IMPLICIT NONE
TYPE(arithcode) :: acode
INTEGER(I4B) :: mc
allocate(acode%ilob(NWK),acode%iupb(NWK),acode%ncumfq(mc+2))
END SUBROUTINE arcode_allocate

SUBROUTINE arcode_deallocate(acode)
USE nrtype
IMPLICIT NONE
TYPE(arithcode) :: acode
deallocate(acode%ncumfq,acode%iupb,acode%ilob)
nullify(acode%ilob)
nullify(acode%iupb)
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nullify(acode%ncumfq)
END SUBROUTINE arcode_deallocate
END MODULE arcode_info

SUBROUTINE arcmak(nfreq,nradd,acode)
USE nrtype; USE nrutil, ONLY : cumsum,nrerror
USE arcode_info
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: nradd
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: nfreq
TYPE(arithcode) :: acode
INTEGER(I4B), PARAMETER :: MAXINT=huge(nradd)

Given a table nfreq of the frequency of occurrence of size(nfreq) symbols, and given
a desired output radix nradd, initialize the cumulative frequency table and other variables
for arithmetic compression. Store the code in acode.
MAXINT is a large positive integer that does not overflow.

if (nradd > 256) call nrerror(’output radix may not exceed 256 in arcmak’)
acode%minint=MAXINT/nradd
acode%nch=size(nfreq)
acode%nrad=nradd
call arcode_allocate(acode,acode%nch)
acode%ncumfq(1)=0
acode%ncumfq(2:acode%nch+1)=cumsum(max(nfreq(1:acode%nch),1))
acode%ncumfq(acode%nch+2)=acode%ncumfq(acode%nch+1)+1
acode%ncum=acode%ncumfq(acode%nch+2)
END SUBROUTINE arcmak

SUBROUTINE arcode(ich,codep,lcd,isign,acode)
USE nrtype; USE nrutil, ONLY : nrerror,reallocate
USE arcode_info
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: ich,lcd
INTEGER(I4B), INTENT(IN) :: isign
CHARACTER(1), DIMENSION(:), POINTER :: codep
TYPE(arithcode) :: acode

Compress (isign = 1) or decompress (isign = −1) the single character ich into or out of
the character array pointed to by codep, starting with byte codep(lcd) and (if necessary)
incrementing lcd so that, on return, lcd points to the first unused byte in codep. Note
that this routine saves the result of previous calls until a new byte of code is produced, and
only then increments lcd. An initializing call with isign=0 is required for each different
array codep. The routine arcmak must have previously been called to initialize the code
acode. A call with ich=arcode%nch (as set in arcmak) has the reserved meaning “end
of message.”

INTEGER(I4B) :: ihi,j,ja,jh,jl,m
if (isign == 0) then Initialize enough digits of the upper and lower

bounds.acode%jdif=acode%nrad-1
acode%ilob(:)=0
acode%iupb(:)=acode%nrad-1
do j=NWK,1,-1

acode%nc=j
if (acode%jdif > acode%minint) RETURN Initialization complete.
acode%jdif=(acode%jdif+1)*acode%nrad-1

end do
call nrerror(’NWK too small in arcode’)

else
if (isign > 0) then If encoding, check for valid input character.

if (ich > acode%nch .or. ich < 0) call nrerror(’bad ich in arcode’)
else If decoding, locate the character ich by bi-

section.ja=ichar(codep(lcd))-acode%ilob(acode%nc)
do j=acode%nc+1,NWK
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ja=ja*acode%nrad+(ichar(codep(j+lcd-acode%nc))-acode%ilob(j))
end do
ich=0
ihi=acode%nch+1
do

if (ihi-ich <= 1) exit
m=(ich+ihi)/2
if (ja >= jtry(acode%jdif,acode%ncumfq(m+1),acode%ncum)) then

ich=m
else

ihi=m
end if

end do
if (ich == acode%nch) RETURN Detected end of message.

end if
Following code is common for encoding and decoding. Convert character ich to a new
subrange [ilob,iupb).

jh=jtry(acode%jdif,acode%ncumfq(ich+2),acode%ncum)
jl=jtry(acode%jdif,acode%ncumfq(ich+1),acode%ncum)
acode%jdif=jh-jl
call arcsum(acode%ilob,acode%iupb,jh,NWK,acode%nrad,acode%nc)
How many leading digits to output (if encoding) or skip over?

call arcsum(acode%ilob,acode%ilob,jl,NWK,acode%nrad,acode%nc)
do j=acode%nc,NWK

if (ich /= acode%nch .and. acode%iupb(j) /= acode%ilob(j)) exit
if (acode%nc > size(codep)) codep=>reallocate(codep,2*size(codep))
if (isign > 0) codep(lcd)=char(acode%ilob(j))
lcd=lcd+1

end do
if (j > NWK) RETURN Ran out of message. Did someone forget to

encode a terminating ncd?acode%nc=j
j=0 How many digits to shift?
do

if (acode%jdif >= acode%minint) exit
j=j+1
acode%jdif=acode%jdif*acode%nrad

end do
if (acode%nc-j < 1) call nrerror(’NWK too small in arcode’)
if (j /= 0) then Shift them.

acode%iupb((acode%nc-j):(NWK-j))=acode%iupb(acode%nc:NWK)
acode%ilob((acode%nc-j):(NWK-j))=acode%ilob(acode%nc:NWK)

end if
acode%nc=acode%nc-j
acode%iupb((NWK-j+1):NWK)=0
acode%ilob((NWK-j+1):NWK)=0

end if Normal return.
CONTAINS

FUNCTION jtry(m,n,k)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: m,n,k
INTEGER(I4B) :: jtry
Calculate (m*n)/k without overflow. Program efficiency can be improved by substituting an
assembly language routine that does integer multiply to a double register.

jtry=int((real(m,dp)*real(n,dp))/real(k,dp))
END FUNCTION jtry

SUBROUTINE arcsum(iin,iout,ja,nwk,nrad,nc)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: iin
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: iout
INTEGER(I4B), INTENT(IN) :: nwk,nrad,nc
INTEGER(I4B), INTENT(INOUT) :: ja
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Add the integer ja to the radix nrad multiple-precision integer iin(nc..nwk). Return the
result in iout(nc..nwk).

INTEGER(I4B) :: j,jtmp,karry
karry=0
do j=nwk,nc+1,-1

jtmp=ja
ja=ja/nrad
iout(j)=iin(j)+(jtmp-ja*nrad)+karry
if (iout(j) >= nrad) then

iout(j)=iout(j)-nrad
karry=1

else
karry=0

end if
end do
iout(nc)=iin(nc)+ja+karry
END SUBROUTINE arcsum
END SUBROUTINE arcode

� � �

MODULE mpops
USE nrtype
INTEGER(I4B), PARAMETER :: NPAR_ICARRY=64
CONTAINS

SUBROUTINE icarry(karry,isum,nbits)
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: karry

Perform deferred carry operation on an array isum of multiple-precision digits. Nonzero bits
of higher order than nbits (typically 8) are carried to the next-lower (leftward) component
of isum. The final (most leftward) carry value is returned as karry.

INTEGER(I2B), DIMENSION(:), INTENT(INOUT) :: isum
INTEGER(I4B), INTENT(IN) :: nbits
INTEGER(I4B) :: n,j
INTEGER(I2B), DIMENSION(size(isum)) :: ihi
INTEGER(I2B) :: mb,ihh
n=size(isum)
mb=ishft(1,nbits)-1 Make mask for low-order bits.
karry=0
if (n < NPAR_ICARRY ) then

do j=n,2,-1 Keep going until all carries have cascaded.
ihh=ishft(isum(j),-nbits)
if (ihh /= 0) then

isum(j)=iand(isum(j),mb)
isum(j-1)=isum(j-1)+ihh

end if
end do
ihh=ishft(isum(1),-nbits)
isum(1)=iand(isum(1),mb)
karry=karry+ihh

else
do

ihi=ishft(isum,-nbits) Get high bits.
if (all(ihi == 0)) exit Check if done.
where (ihi /= 0) isum=iand(isum,mb) Remove bits to be carried and add

them to left.where (ihi(2:n) /= 0) isum(1:n-1)=isum(1:n-1)+ihi(2:n)
karry=karry+ihi(1) Final carry.

end do
end if
END SUBROUTINE icarry
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SUBROUTINE mpadd(w,u,v,n)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u,v
INTEGER(I4B), INTENT(IN) :: n

Adds the unsigned radix 256 integers u(1:n) and v(1:n) yielding the unsigned integer
w(1:n+1).

INTEGER(I2B), DIMENSION(n) :: isum
INTEGER(I4B) :: karry
isum=ichar(u(1:n))+ichar(v(1:n))
call icarry(karry,isum,8_I4B)
w(2:n+1)=char(isum)
w(1)=char(karry)
END SUBROUTINE mpadd

SUBROUTINE mpsub(is,w,u,v,n)
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: is
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u,v
INTEGER(I4B), INTENT(IN) :: n

Subtracts the unsigned radix 256 integer v(1:n) from u(1:n) yielding the unsigned integer
w(1:n). If the result is negative (wraps around), is is returned as −1; otherwise it is
returned as 0.

INTEGER(I4B) :: karry
INTEGER(I2B), DIMENSION(n) :: isum
isum=255+ichar(u(1:n))-ichar(v(1:n))
isum(n)=isum(n)+1
call icarry(karry,isum,8_I4B)
w(1:n)=char(isum)
is=karry-1
END SUBROUTINE mpsub

SUBROUTINE mpsad(w,u,n,iv)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u
INTEGER(I4B), INTENT(IN) :: n,iv

Short addition: The integer iv (in the range 0 ≤ iv ≤ 255) is added to the unsigned radix
256 integer u(1:n), yielding w(1:n+1).

INTEGER(I4B) :: karry
INTEGER(I2B), DIMENSION(n) :: isum
isum=ichar(u(1:n))
isum(n)=isum(n)+iv
call icarry(karry,isum,8_I4B)
w(2:n+1)=char(isum)
w(1)=char(karry)
END SUBROUTINE mpsad

SUBROUTINE mpsmu(w,u,n,iv)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u
INTEGER(I4B), INTENT(IN) :: n,iv

Short multiplication: The unsigned radix 256 integer u(1:n) is multiplied by the integer
iv (in the range 0 ≤ iv ≤ 255), yielding w(1:n+1).

INTEGER(I4B) :: karry
INTEGER(I2B), DIMENSION(n) :: isum
isum=ichar(u(1:n))*iv
call icarry(karry,isum,8_I4B)
w(2:n+1)=char(isum)
w(1)=char(karry)
END SUBROUTINE mpsmu

SUBROUTINE mpneg(u,n)
IMPLICIT NONE
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CHARACTER(1), DIMENSION(:), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: n

Ones-complement negate the unsigned radix 256 integer u(1:n).
INTEGER(I4B) :: karry
INTEGER(I2B), DIMENSION(n) :: isum
isum=255-ichar(u(1:n))
isum(n)=isum(n)+1
call icarry(karry,isum,8_I4B)
u(1:n)=char(isum)
END SUBROUTINE mpneg

SUBROUTINE mplsh(u,n)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: n

Left shift u(2..n+1) onto u(1:n).
u(1:n)=u(2:n+1)
END SUBROUTINE mplsh

SUBROUTINE mpmov(u,v,n)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: u
CHARACTER(1), DIMENSION(:), INTENT(IN) :: v
INTEGER(I4B), INTENT(IN) :: n

Move v(1:n) onto u(1:n).
u(1:n)=v(1:n)
END SUBROUTINE mpmov

SUBROUTINE mpsdv(w,u,n,iv,ir)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u
INTEGER(I4B), INTENT(IN) :: n,iv
INTEGER(I4B), INTENT(OUT) :: ir

Short division: The unsigned radix 256 integer u(1:n) is divided by the integer iv (in the
range 0 ≤ iv ≤ 255), yielding a quotient w(1:n) and a remainder ir (with 0 ≤ ir ≤ 255).
Note: Your Numerical Recipes authors don’t know how to parallelize this routine in Fortran
90!

INTEGER(I4B) :: i,j
ir=0
do j=1,n

i=256*ir+ichar(u(j))
w(j)=char(i/iv)
ir=mod(i,iv)

end do
END SUBROUTINE mpsdv
END MODULE mpops

SUBROUTINE mpmul(w,u,v,n,m)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : realft
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n,m
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u,v
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w

! The logical dimensions are: CHARACTER(1) :: w(n+m),u(n),v(m)
REAL(DP), PARAMETER :: RX=256.0

Uses fast Fourier transform to multiply the unsigned radix 256 integers u(1:n) and v(1:m),
yielding a product w(1:n+m).

INTEGER(I4B) :: j,mn,nn
REAL(DP) :: cy,t
REAL(DP), DIMENSION(:), ALLOCATABLE :: a,b,tb
mn=max(m,n)
nn=1 Find the smallest useable power of two for the transform.
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do
if (nn >= mn) exit
nn=nn+nn

end do
nn=nn+nn
allocate(a(nn),b(nn),tb((nn-1)/2))
a(1:n)=ichar(u(1:n)) Move U to a double-precision floating array.
a(n+1:nn)=0.0
b(1:m)=ichar(v(1:m)) Move V to a double-precision floating array.
b(m+1:nn)=0.0
call realft(a(1:nn),1) Perform the convolution: First, the two Fourier trans-

forms.call realft(b(1:nn),1)
b(1)=b(1)*a(1) Then multiply the complex results (real and imaginary

parts).b(2)=b(2)*a(2)
tb=b(3:nn:2)
b(3:nn:2)=tb*a(3:nn:2)-b(4:nn:2)*a(4:nn:2)
b(4:nn:2)=tb*a(4:nn:2)+b(4:nn:2)*a(3:nn:2)
call realft(b(1:nn),-1) Then do the inverse Fourier transform.
b(:)=b(:)/(nn/2)
cy=0.0 Make a final pass to do all the carries.
do j=nn,1,-1

t=b(j)+cy+0.5_dp The 0.5 allows for roundoff error.
b(j)=mod(t,RX)
cy=int(t/RX)

end do
if (cy >= RX) call nrerror(’mpmul: sanity check failed in fftmul’)
w(1)=char(int(cy)) Copy answer to output.
w(2:(n+m))=char(int(b(1:(n+m-1))))
deallocate(a,b,tb)
END SUBROUTINE mpmul

SUBROUTINE mpinv(u,v,n,m)
USE nrtype; USE nrutil, ONLY : poly
USE nr, ONLY : mpmul
USE mpops, ONLY : mpmov,mpneg
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: u
CHARACTER(1), DIMENSION(:), INTENT(IN) :: v
INTEGER(I4B), INTENT(IN) :: n,m
INTEGER(I4B), PARAMETER :: MF=4
REAL(SP), PARAMETER :: BI=1.0_sp/256.0_sp

Character string v(1:m) is interpreted as a radix 256 number with the radix point after
(nonzero) v(1); u(1:n) is set to the most significant digits of its reciprocal, with the radix
point after u(1).

INTEGER(I4B) :: i,j,mm
REAL(SP) :: fu
CHARACTER(1), DIMENSION(:), ALLOCATABLE :: rr,s
allocate(rr(max(n,m)+n+1),s(n))
mm=min(MF,m)
fu=1.0_sp/poly(BI,real(ichar(v(:)),sp)) Use ordinary floating arithmetic to get an

initial approximation.do j=1,n
i=int(fu)
u(j)=char(i)
fu=256.0_sp*(fu-i)

end do
do Iterate Newton’s rule to convergence.

call mpmul(rr,u,v,n,m) Construct 2 − UV in S.
call mpmov(s,rr(2:),n)
call mpneg(s,n)
s(1)=char(ichar(s(1))-254) Multiply SU into U .
call mpmul(rr,s,u,n,n)
call mpmov(u,rr(2:),n)
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if (all(ichar(s(2:n-1)) == 0)) exit If fractional part of S is not zero, it has
not converged to 1.end do

deallocate(rr,s)
END SUBROUTINE mpinv

SUBROUTINE mpdiv(q,r,u,v,n,m)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : mpinv,mpmul
USE mpops, ONLY : mpsad,mpmov,mpsub
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: q,r
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u,v

! The logical dimensions are: CHARACTER(1) :: q(n-m+1),r(m),u(n),v(m)
INTEGER(I4B), INTENT(IN) :: n,m

Divides unsigned radix 256 integers u(1:n) by v(1:m) (with m ≤ n required), yielding a
quotient q(1:n-m+1) and a remainder r(1:m).

INTEGER(I4B), PARAMETER :: MACC=6
INTEGER(I4B) :: is
CHARACTER(1), DIMENSION(:), ALLOCATABLE, TARGET :: rr,s
CHARACTER(1), DIMENSION(:), POINTER :: rr2,s3
allocate(rr(2*(n+MACC)),s(2*(n+MACC)))
rr2=>rr(2:)
s3=>s(3:)
call mpinv(s,v,n+MACC,m) Set S = 1/V .
call mpmul(rr,s,u,n+MACC,n) Set Q = SU .
call mpsad(s,rr,n+n+MACC/2,1)
call mpmov(q,s3,n-m+1)
call mpmul(rr,q,v,n-m+1,m) Multiply and subtract to get the remainder.
call mpsub(is,rr2,u,rr2,n)
if (is /= 0) call nrerror(’MACC too small in mpdiv’)
call mpmov(r,rr(n-m+2:),m)
deallocate(rr,s)
END SUBROUTINE mpdiv

SUBROUTINE mpsqrt(w,u,v,n,m)
USE nrtype; USE nrutil, ONLY : poly
USE nr, ONLY : mpmul
USE mpops, ONLY : mplsh,mpmov,mpneg,mpsdv
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w,u
CHARACTER(1), DIMENSION(:), INTENT(IN) :: v
INTEGER(I4B), INTENT(IN) :: n,m
INTEGER(I4B), PARAMETER :: MF=3
REAL(SP), PARAMETER :: BI=1.0_sp/256.0_sp

Character string v(1:m) is interpreted as a radix 256 number with the radix point after
v(1); w(1:n) is set to its square root (radix point after w(1)), and u(1:n) is set to the
reciprocal thereof (radix point before u(1)). w and u need not be distinct, in which case
they are set to the square root.

INTEGER(I4B) :: i,ir,j,mm
REAL(SP) :: fu
CHARACTER(1), DIMENSION(:), ALLOCATABLE :: r,s
allocate(r(2*n),s(2*n))
mm=min(m,MF)
fu=1.0_sp/sqrt(poly(BI,real(ichar(v(:)),sp))) Use ordinary floating arithmetic

to get an initial approxima-
tion.

do j=1,n
i=int(fu)
u(j)=char(i)
fu=256.0_sp*(fu-i)

end do
do Iterate Newton’s rule to convergence.

call mpmul(r,u,u,n,n) Construct S = (3 − V U2)/2.
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call mplsh(r,n)
call mpmul(s,r,v,n,min(m,n))
call mplsh(s,n)
call mpneg(s,n)
s(1)=char(ichar(s(1))-253)
call mpsdv(s,s,n,2,ir)
if (any(ichar(s(2:n-1)) /= 0)) then

If fractional part of S is not zero, it has not converged to 1.
call mpmul(r,s,u,n,n) Replace U by SU .
call mpmov(u,r(2:),n)
cycle

end if
call mpmul(r,u,v,n,min(m,n)) Get square root from reciprocal and return.
call mpmov(w,r(2:),n)
deallocate(r,s)
RETURN

end do
END SUBROUTINE mpsqrt

SUBROUTINE mp2dfr(a,s,n,m)
USE nrtype
USE mpops, ONLY : mplsh,mpsmu
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), INTENT(OUT) :: m
CHARACTER(1), DIMENSION(:), INTENT(INOUT) :: a
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: s
INTEGER(I4B), PARAMETER :: IAZ=48

Converts a radix 256 fraction a(1:n) (radix point before a(1)) to a decimal fraction
represented as an ascii string s(1:m), where m is a returned value. The input array a(1:n)
is destroyed. NOTE: For simplicity, this routine implements a slow (∝ N2) algorithm. Fast
(∝ N lnN), more complicated, radix conversion algorithms do exist.

INTEGER(I4B) :: j
m=int(2.408_sp*n)
do j=1,m

call mpsmu(a,a,n,10)
s(j)=char(ichar(a(1))+IAZ)
call mplsh(a,n)

end do
END SUBROUTINE mp2dfr

SUBROUTINE mppi(n)
USE nrtype
USE nr, ONLY : mp2dfr,mpinv,mpmul,mpsqrt
USE mpops, ONLY : mpadd,mplsh,mpmov,mpsdv
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), PARAMETER :: IAOFF=48

Demonstrate multiple precision routines by calculating and printing the first n bytes of π.
INTEGER(I4B) :: ir,j,m
CHARACTER(1), DIMENSION(n) :: sx,sxi
CHARACTER(1), DIMENSION(2*n) :: t,y
CHARACTER(1), DIMENSION(3*n) :: s
CHARACTER(1), DIMENSION(n+1) :: x,bigpi
t(1)=char(2) Set T = 2.
t(2:n)=char(0)
call mpsqrt(x,x,t,n,n) Set X0 =

√
2.

call mpadd(bigpi,t,x,n) Set π0 = 2 +
√

2.
call mplsh(bigpi,n)

call mpsqrt(sx,sxi,x,n,n) Set Y0 = 21/4.
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call mpmov(y,sx,n)
do

call mpadd(x,sx,sxi,n) Set Xi+1 = (X
1/2
i + X

−1/2
i )/2.

call mpsdv(x,x(2:),n,2,ir)

call mpsqrt(sx,sxi,x,n,n) Form the temporary T = YiX
1/2
i+1+X

−1/2
i+1 .

call mpmul(t,y,sx,n,n)
call mpadd(t(2:),t(2:),sxi,n)
x(1)=char(ichar(x(1))+1) Increment Xi+1 and Yi by 1.
y(1)=char(ichar(y(1))+1)
call mpinv(s,y,n,n) Set Yi+1 = T/(Yi + 1).
call mpmul(y,t(3:),s,n,n)
call mplsh(y,n)
call mpmul(t,x,s,n,n) Form temporary T = (Xi+1 + 1)/(Yi + 1).
m=mod(255+ichar(t(2)),256) If T = 1 then we have converged.
if (abs(ichar(t(n+1))-m) > 1 .or. any(ichar(t(3:n)) /= m)) then

call mpmul(s,bigpi,t(2:),n,n) Set πi+1 = Tπi.
call mpmov(bigpi,s(2:),n)
cycle

end if
write (*,*) ’pi=’
s(1)=char(ichar(bigpi(1))+IAOFF)
s(2)=’.’
call mp2dfr(bigpi(2:),s(3:),n-1,m)
Convert to decimal for printing. NOTE: The conversion routine, for this demonstration
only, is a slow (∝ N2) algorithm. Fast (∝ N lnN), more complicated, radix conversion
algorithms do exist.

write (*,’(1x,64a1)’) (s(j),j=1,m+1)
RETURN

end do
END SUBROUTINE mppi
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C1. Listing of Utility Modules
(nrtype and nrutil)

C1.1 Numerical Recipes Types (nrtype)

The file supplied as nrtype.f90 contains a single module named nrtype,
which in turn contains definitions for a number of named constants (that is,
PARAMETERs), and a couple of elementary derived data types used by the sparse
matrix routines in this book. Of the named constants, by far the most important are
those that define the KIND types of virtually all the variables used in this book: I4B,
I2B, and I1B for integer variables, SP and DP for real variables (and SPC and DPC

for the corresponding complex cases), and LGT for the default logical type.

MODULE nrtype
Symbolic names for kind types of 4-, 2-, and 1-byte integers:

INTEGER, PARAMETER :: I4B = SELECTED_INT_KIND(9)
INTEGER, PARAMETER :: I2B = SELECTED_INT_KIND(4)
INTEGER, PARAMETER :: I1B = SELECTED_INT_KIND(2)

Symbolic names for kind types of single- and double-precision reals:
INTEGER, PARAMETER :: SP = KIND(1.0)
INTEGER, PARAMETER :: DP = KIND(1.0D0)

Symbolic names for kind types of single- and double-precision complex:
INTEGER, PARAMETER :: SPC = KIND((1.0,1.0))
INTEGER, PARAMETER :: DPC = KIND((1.0D0,1.0D0))

Symbolic name for kind type of default logical:
INTEGER, PARAMETER :: LGT = KIND(.true.)

Frequently used mathematical constants (with precision to spare):
REAL(SP), PARAMETER :: PI=3.141592653589793238462643383279502884197_sp
REAL(SP), PARAMETER :: PIO2=1.57079632679489661923132169163975144209858_sp
REAL(SP), PARAMETER :: TWOPI=6.283185307179586476925286766559005768394_sp
REAL(SP), PARAMETER :: SQRT2=1.41421356237309504880168872420969807856967_sp
REAL(SP), PARAMETER :: EULER=0.5772156649015328606065120900824024310422_sp
REAL(DP), PARAMETER :: PI_D=3.141592653589793238462643383279502884197_dp
REAL(DP), PARAMETER :: PIO2_D=1.57079632679489661923132169163975144209858_dp
REAL(DP), PARAMETER :: TWOPI_D=6.283185307179586476925286766559005768394_dp

Derived data types for sparse matrices, single and double precision (see use in Chapter B2):
TYPE sprs2_sp

INTEGER(I4B) :: n,len
REAL(SP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_sp
TYPE sprs2_dp

INTEGER(I4B) :: n,len
REAL(DP), DIMENSION(:), POINTER :: val
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INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_dp
END MODULE nrtype

About Converting to Higher Precision

You might hope that changing all the Numerical Recipes routines from single
precision to double precision would be as simple as redefining the values of SP and
DP in nrtype. Well . . . not quite.

Converting algorithms to a higher precision is not a purely mechanical task
because of the distinction between “roundoff error” and “truncation error.” (Please
see Volume 1, §1.2, if you are not familiar with these concepts.) While increasing the
precision implied by the kind values SP and DPwill indeed reduce a routine’s roundoff
error, it will not reduce any truncation error that may be intrinsic to the algorithm.
Sometimes, a routine contains “accuracy parameters” that can be adjusted to reduce
the truncation error to the new, desired level. In other cases, however, the truncation
error cannot be so easily reduced; then, a whole new algorithm is needed. Clearly
such new algorithms are beyond the scope of a simple mechanical “conversion.”

If, despite these cautionary words, you want to proceed with converting some
routines to a higher precision, here are some hints:

If your machine has a kind type that is distinct from, and has equal or greater
precision than, the kind type that we use for DP, then, in nrtype, you can simply
redefine DP to this new highest precision and redefine SP to what was previously
DP. For example, DEC machines usually have a “quadruple precision” real type
available, which can be used in this way. You should not need to make any further
edits of nrtype or nrutil.

If, on the other hand, the kind type that we already use for DP is the highest
precision available, then you must leave DP defined as it is, and redefine SP in
nrtype to be this same kind type. Now, however, you will also have to edit
nrutil, because some overloaded routines that were previously distinguishable (by
the different kind types) will now be seen by the compiler as indistinguishable —
and it will object strenuously. Simply delete all the “ dp” function names from the
list of overloaded procedures (i.e., from the MODULE PROCEDURE statements). Note
that it is not necessary to delete the routines from the MODULE itself. Similarly, in the
interface file nr.f90 you must delete the “ dp” interfaces, except for the sprs...
routines. (Since they have TYPE(sprs2 dp) or TYPE(sprs2 sp), they are treated
as distinct even though they have functionally equivalent kind types.)

Finally, the following table gives some suggestions for changing the accuracy
parameters, or constants, in some of the routines. Please note that this table is not
necessarily complete, and that higher-precision performance is not guaranteed for all
the routines, even if you make all the changes indicated. The above edits, and these
suggestions, do, however, work in the majority of cases.
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In routine... change... to...

beschb NUSE1=5,NUSE2=5 NUSE1=7,NUSE2=8

bessi IACC=40 IACC=200

bessik EPS=1.0e-10 dp EPS=epsilon(x)

bessj IACC=40 IACC=160

bessjy EPS=1.0e-10 dp EPS=epsilon(x)

broydn TOLF=1.0e-4 sp TOLF=1.0e-8 sp

TOLMIN=1.0e-6 sp TOLMIN=1.0e-12 sp

fdjac EPS=1.0e-4 sp EPS=1.0e-8 sp

frprmn EPS=1.0e-10 sp EPS=1.0e-18 sp

gauher EPS=3.0e-13 dp EPS=1.0e-14 dp

gaujac EPS=3.0e-14 dp EPS=1.0e-14 dp

gaulag EPS=3.0e-13 dp EPS=1.0e-14 dp

gauleg EPS=3.0e-14 dp EPS=1.0e-14 dp

hypgeo EPS=1.0e-6 sp EPS=1.0e-14 sp

linmin TOL=1.0e-4 sp TOL=1.0e-8 sp

newt TOLF=1.0e-4 sp TOLF=1.0e-8 sp

TOLMIN=1.0e-6 sp TOLMIN=1.0e-12 sp

probks EPS1=0.001 sp EPS1=1.0e-6 sp

EPS2=1.0e-8 sp EPS2=1.0e-16 sp

qromb EPS=1.0e-6 sp EPS=1.0e-10 sp

qromo EPS=1.0e-6 sp EPS=1.0e-10 sp

qroot TINY=1.0e-6 sp TINY=1.0e-14 sp

qsimp EPS=1.0e-6 sp EPS=1.0e-10 sp

qtrap EPS=1.0e-6 sp EPS=1.0e-10 sp

rc ERRTOL=0.04 sp ERRTOL=0.0012 sp

rd ERRTOL=0.05 sp ERRTOL=0.0015 sp

rf ERRTOL=0.08 sp ERRTOL=0.0025 sp

rj ERRTOL=0.05 sp ERRTOL=0.0015 sp

sfroid conv=5.0e-6 sp conv=1.0e-14 sp

shoot EPS=1.0e-6 sp EPS=1.0e-14 sp

shootf EPS=1.0e-6 sp EPS=1.0e-14 sp

simplx EPS=1.0e-6 sp EPS=1.0e-14 sp

sncndn CA=0.0003 sp CA=1.0e-8 sp

sor EPS=1.0e-5 dp EPS=1.0e-13 dp

sphfpt DXX=1.0e-4 sp DXX=1.0e-8 sp

sphoot dx=1.0e-4 sp dx=1.0e-8 sp

svdfit TOL=1.0e-5 sp TOL=1.0e-13 sp

zroots EPS=1.0e-6 sp EPS=1.0e-14 sp
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C1.2 Numerical Recipes Utilities (nrutil)

The file supplied as nrutil.f90 contains a single module named nrutil,
which contains specific implementations for all the Numerical Recipes utility
functions described in detail in Chapter 23.

The specific implementations given are something of a compromise between
demonstrating parallel techniques (when they can be achieved in Fortran 90) and
running efficiently on conventional, serial machines. The parameters at the beginning
of the module (names beginning with NPAR ) are typically related to array lengths
below which the implementations revert to serial operations. On a purely serial
machine, these can be set to large values to suppress many parallel constructions.

The length and repetitiveness of the nrutil.f90 file stems in large part from
its extensive use of overloading. Indeed, the file would be even longer if we
overloaded versions for all the applicable data types that each utility could, in
principle, instantiate. The descriptions in Chapter 23 detail both the full set of
intended data types and shapes for each routine, and also the types and shapes
actually here implemented (which can also be gleaned by examining the file). The
intended result of all this overloading is, in essence, to give the utility routines the
desirable properties of many of the Fortran 90 intrinsic functions, namely, to be
both generic (apply to many data types) and elemental (apply element-by-element
to arbitrary shapes). Fortran 95’s provision of user-defined elemental functions will
reduce the multiplicity of overloading in some of our routines; unfortunately the
necessity to overload for multiple data types will still be present.

Finally, it is worth reemphasizing the following point, already made in Chapter
23: The purpose of the nrutil utilities is to remove from the Numerical Recipes
programs just those programming tasks and “idioms” whose efficient implementation
is most hardware and compiler dependent, so as to allow for specific, efficient
implementations on different machines. One should therefore not expect the utmost
in efficiency from the general purpose, one-size-fits-all, implementation listed here.

Correspondingly, we would encourage the incorporation of efficient nrutil
implementations, and/or comparable capabilities under different names, with as
broad as possible a set of overloaded data types, in libraries associated with specific
compilers or machines. In supportof this goal, we have specifically put this Appendix
C1, and the files nrtype.f90 and nrutil.f90, into the public domain.

MODULE nrutil
TABLE OF CONTENTS OF THE NRUTIL MODULE:

routines that move data:
array copy, swap, reallocate

routines returning a location as an integer value
ifirstloc, imaxloc, iminloc

routines for argument checking and error handling:
assert, assert eq, nrerror

routines relating to polynomials and recurrences
arth, geop, cumsum, cumprod, poly, polyterm,
zroots unity

routines for ”outer” operations on vectors
outerand, outersum, outerdiff, outerprod, outerdiv

routines for scatter-with-combine
scatter add, scatter max

routines for skew operations on matrices
diagadd, diagmult, get diag, put diag,
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unit matrix, lower triangle, upper triangle
miscellaneous routines

vabs
USE nrtype

Parameters for crossover from serial to parallel algorithms (these are used only within this
nrutil module):

IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=8 Each NPAR2 must be ≤ the

corresponding NPAR.INTEGER(I4B), PARAMETER :: NPAR_GEOP=4,NPAR2_GEOP=2
INTEGER(I4B), PARAMETER :: NPAR_CUMSUM=16
INTEGER(I4B), PARAMETER :: NPAR_CUMPROD=8
INTEGER(I4B), PARAMETER :: NPAR_POLY=8
INTEGER(I4B), PARAMETER :: NPAR_POLYTERM=8

Next, generic interfaces for routines with overloaded versions. Naming conventions for ap-
pended codes in the names of overloaded routines are as follows: r=real, d=double pre-
cision, i=integer, c=complex, z=double-precision complex, h=character, l=logical. Any of
r,d,i,c,z,h,l may be followed by v=vector or m=matrix (v,m suffixes are used only when
needed to resolve ambiguities).
Routines that move data:

INTERFACE array_copy
MODULE PROCEDURE array_copy_r, array_copy_d, array_copy_i

END INTERFACE
INTERFACE swap

MODULE PROCEDURE swap_i,swap_r,swap_rv,swap_c, &
swap_cv,swap_cm,swap_z,swap_zv,swap_zm, &
masked_swap_rs,masked_swap_rv,masked_swap_rm

END INTERFACE
INTERFACE reallocate

MODULE PROCEDURE reallocate_rv,reallocate_rm,&
reallocate_iv,reallocate_im,reallocate_hv

END INTERFACE
Routines returning a location as an integer value (ifirstloc, iminloc are not currently over-
loaded and so do not have a generic interface here):

INTERFACE imaxloc
MODULE PROCEDURE imaxloc_r,imaxloc_i

END INTERFACE
Routines for argument checking and error handling (nrerror is not currently overloaded):

INTERFACE assert
MODULE PROCEDURE assert1,assert2,assert3,assert4,assert_v

END INTERFACE
INTERFACE assert_eq

MODULE PROCEDURE assert_eq2,assert_eq3,assert_eq4,assert_eqn
END INTERFACE

Routines relating to polynomials and recurrences (cumprod, zroots unity are not currently
overloaded):

INTERFACE arth
MODULE PROCEDURE arth_r, arth_d, arth_i

END INTERFACE
INTERFACE geop

MODULE PROCEDURE geop_r, geop_d, geop_i, geop_c, geop_dv
END INTERFACE
INTERFACE cumsum

MODULE PROCEDURE cumsum_r,cumsum_i
END INTERFACE
INTERFACE poly

MODULE PROCEDURE poly_rr,poly_rrv,poly_dd,poly_ddv,&
poly_rc,poly_cc,poly_msk_rrv,poly_msk_ddv

END INTERFACE
INTERFACE poly_term

MODULE PROCEDURE poly_term_rr,poly_term_cc
END INTERFACE

Routines for “outer” operations on vectors (outerand, outersum, outerdiv are not currently
overloaded):

INTERFACE outerprod
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MODULE PROCEDURE outerprod_r,outerprod_d
END INTERFACE
INTERFACE outerdiff

MODULE PROCEDURE outerdiff_r,outerdiff_d,outerdiff_i
END INTERFACE

Routines for scatter-with-combine, scatter add, scatter max:
INTERFACE scatter_add

MODULE PROCEDURE scatter_add_r,scatter_add_d
END INTERFACE
INTERFACE scatter_max

MODULE PROCEDURE scatter_max_r,scatter_max_d
END INTERFACE

Routines for skew operations on matrices (unit matrix, lower triangle, upper triangle not
currently overloaded):

INTERFACE diagadd
MODULE PROCEDURE diagadd_rv,diagadd_r

END INTERFACE
INTERFACE diagmult

MODULE PROCEDURE diagmult_rv,diagmult_r
END INTERFACE
INTERFACE get_diag

MODULE PROCEDURE get_diag_rv, get_diag_dv
END INTERFACE
INTERFACE put_diag

MODULE PROCEDURE put_diag_rv, put_diag_r
END INTERFACE

Other routines (vabs is not currently overloaded):
CONTAINS

Routines that move data:
SUBROUTINE array_copy_r(src,dest,n_copied,n_not_copied)

Copy array where size of source not known in advance.
REAL(SP), DIMENSION(:), INTENT(IN) :: src
REAL(SP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)
END SUBROUTINE array_copy_r

SUBROUTINE array_copy_d(src,dest,n_copied,n_not_copied)
REAL(DP), DIMENSION(:), INTENT(IN) :: src
REAL(DP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)
END SUBROUTINE array_copy_d

SUBROUTINE array_copy_i(src,dest,n_copied,n_not_copied)
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: src
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)
END SUBROUTINE array_copy_i

SUBROUTINE swap_i(a,b)
Swap the contents of a and b.

INTEGER(I4B), INTENT(INOUT) :: a,b
INTEGER(I4B) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_i
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SUBROUTINE swap_r(a,b)
REAL(SP), INTENT(INOUT) :: a,b
REAL(SP) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_r

SUBROUTINE swap_rv(a,b)
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
REAL(SP), DIMENSION(SIZE(a)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_rv

SUBROUTINE swap_c(a,b)
COMPLEX(SPC), INTENT(INOUT) :: a,b
COMPLEX(SPC) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_c

SUBROUTINE swap_cv(a,b)
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: a,b
COMPLEX(SPC), DIMENSION(SIZE(a)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_cv

SUBROUTINE swap_cm(a,b)
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: a,b
COMPLEX(SPC), DIMENSION(size(a,1),size(a,2)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_cm

SUBROUTINE swap_z(a,b)
COMPLEX(DPC), INTENT(INOUT) :: a,b
COMPLEX(DPC) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_z

SUBROUTINE swap_zv(a,b)
COMPLEX(DPC), DIMENSION(:), INTENT(INOUT) :: a,b
COMPLEX(DPC), DIMENSION(SIZE(a)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_zv

SUBROUTINE swap_zm(a,b)
COMPLEX(DPC), DIMENSION(:,:), INTENT(INOUT) :: a,b
COMPLEX(DPC), DIMENSION(size(a,1),size(a,2)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_zm

SUBROUTINE masked_swap_rs(a,b,mask)
REAL(SP), INTENT(INOUT) :: a,b
LOGICAL(LGT), INTENT(IN) :: mask
REAL(SP) :: swp
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if (mask) then
swp=a
a=b
b=swp

end if
END SUBROUTINE masked_swap_rs

SUBROUTINE masked_swap_rv(a,b,mask)
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(a)) :: swp
where (mask)

swp=a
a=b
b=swp

end where
END SUBROUTINE masked_swap_rv

SUBROUTINE masked_swap_rm(a,b,mask)
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a,b
LOGICAL(LGT), DIMENSION(:,:), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(a,1),size(a,2)) :: swp
where (mask)

swp=a
a=b
b=swp

end where
END SUBROUTINE masked_swap_rm

FUNCTION reallocate_rv(p,n)
Reallocate a pointer to a new size, preserving its previous contents.

REAL(SP), DIMENSION(:), POINTER :: p, reallocate_rv
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B) :: nold,ierr
allocate(reallocate_rv(n),stat=ierr)
if (ierr /= 0) call &

nrerror(’reallocate_rv: problem in attempt to allocate memory’)
if (.not. associated(p)) RETURN
nold=size(p)
reallocate_rv(1:min(nold,n))=p(1:min(nold,n))
deallocate(p)
END FUNCTION reallocate_rv

FUNCTION reallocate_iv(p,n)
INTEGER(I4B), DIMENSION(:), POINTER :: p, reallocate_iv
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B) :: nold,ierr
allocate(reallocate_iv(n),stat=ierr)
if (ierr /= 0) call &

nrerror(’reallocate_iv: problem in attempt to allocate memory’)
if (.not. associated(p)) RETURN
nold=size(p)
reallocate_iv(1:min(nold,n))=p(1:min(nold,n))
deallocate(p)
END FUNCTION reallocate_iv

FUNCTION reallocate_hv(p,n)
CHARACTER(1), DIMENSION(:), POINTER :: p, reallocate_hv
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B) :: nold,ierr
allocate(reallocate_hv(n),stat=ierr)
if (ierr /= 0) call &

nrerror(’reallocate_hv: problem in attempt to allocate memory’)
if (.not. associated(p)) RETURN
nold=size(p)
reallocate_hv(1:min(nold,n))=p(1:min(nold,n))
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deallocate(p)
END FUNCTION reallocate_hv

FUNCTION reallocate_rm(p,n,m)
REAL(SP), DIMENSION(:,:), POINTER :: p, reallocate_rm
INTEGER(I4B), INTENT(IN) :: n,m
INTEGER(I4B) :: nold,mold,ierr
allocate(reallocate_rm(n,m),stat=ierr)
if (ierr /= 0) call &

nrerror(’reallocate_rm: problem in attempt to allocate memory’)
if (.not. associated(p)) RETURN
nold=size(p,1)
mold=size(p,2)
reallocate_rm(1:min(nold,n),1:min(mold,m))=&

p(1:min(nold,n),1:min(mold,m))
deallocate(p)
END FUNCTION reallocate_rm

FUNCTION reallocate_im(p,n,m)
INTEGER(I4B), DIMENSION(:,:), POINTER :: p, reallocate_im
INTEGER(I4B), INTENT(IN) :: n,m
INTEGER(I4B) :: nold,mold,ierr
allocate(reallocate_im(n,m),stat=ierr)
if (ierr /= 0) call &

nrerror(’reallocate_im: problem in attempt to allocate memory’)
if (.not. associated(p)) RETURN
nold=size(p,1)
mold=size(p,2)
reallocate_im(1:min(nold,n),1:min(mold,m))=&

p(1:min(nold,n),1:min(mold,m))
deallocate(p)
END FUNCTION reallocate_im

Routines returning a location as an integer value:
FUNCTION ifirstloc(mask)

Index of first occurrence of .true. in a logical vector.
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: mask
INTEGER(I4B) :: ifirstloc
INTEGER(I4B), DIMENSION(1) :: loc
loc=maxloc(merge(1,0,mask))
ifirstloc=loc(1)
if (.not. mask(ifirstloc)) ifirstloc=size(mask)+1
END FUNCTION ifirstloc

FUNCTION imaxloc_r(arr)
Index of maxloc on an array.

REAL(SP), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4B) :: imaxloc_r
INTEGER(I4B), DIMENSION(1) :: imax
imax=maxloc(arr(:))
imaxloc_r=imax(1)
END FUNCTION imaxloc_r

FUNCTION imaxloc_i(iarr)
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: iarr
INTEGER(I4B), DIMENSION(1) :: imax
INTEGER(I4B) :: imaxloc_i
imax=maxloc(iarr(:))
imaxloc_i=imax(1)
END FUNCTION imaxloc_i

FUNCTION iminloc(arr)
Index of minloc on an array.

REAL(SP), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4B), DIMENSION(1) :: imin
INTEGER(I4B) :: iminloc
imin=minloc(arr(:))
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iminloc=imin(1)
END FUNCTION iminloc

Routines for argument checking and error handling:
SUBROUTINE assert1(n1,string)

Report and die if any logical is false (used for arg range checking).
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1
if (.not. n1) then

write (*,*) ’nrerror: an assertion failed with this tag:’, &
string

STOP ’program terminated by assert1’
end if
END SUBROUTINE assert1

SUBROUTINE assert2(n1,n2,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1,n2
if (.not. (n1 .and. n2)) then

write (*,*) ’nrerror: an assertion failed with this tag:’, &
string

STOP ’program terminated by assert2’
end if
END SUBROUTINE assert2

SUBROUTINE assert3(n1,n2,n3,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1,n2,n3
if (.not. (n1 .and. n2 .and. n3)) then

write (*,*) ’nrerror: an assertion failed with this tag:’, &
string

STOP ’program terminated by assert3’
end if
END SUBROUTINE assert3

SUBROUTINE assert4(n1,n2,n3,n4,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1,n2,n3,n4
if (.not. (n1 .and. n2 .and. n3 .and. n4)) then

write (*,*) ’nrerror: an assertion failed with this tag:’, &
string

STOP ’program terminated by assert4’
end if
END SUBROUTINE assert4

SUBROUTINE assert_v(n,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, DIMENSION(:), INTENT(IN) :: n
if (.not. all(n)) then

write (*,*) ’nrerror: an assertion failed with this tag:’, &
string

STOP ’program terminated by assert_v’
end if
END SUBROUTINE assert_v

FUNCTION assert_eq2(n1,n2,string)
Report and die if integers not all equal (used for size checking).

CHARACTER(LEN=*), INTENT(IN) :: string
INTEGER, INTENT(IN) :: n1,n2
INTEGER :: assert_eq2
if (n1 == n2) then

assert_eq2=n1
else

write (*,*) ’nrerror: an assert_eq failed with this tag:’, &
string

STOP ’program terminated by assert_eq2’
end if
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END FUNCTION assert_eq2

FUNCTION assert_eq3(n1,n2,n3,string)
CHARACTER(LEN=*), INTENT(IN) :: string
INTEGER, INTENT(IN) :: n1,n2,n3
INTEGER :: assert_eq3
if (n1 == n2 .and. n2 == n3) then

assert_eq3=n1
else

write (*,*) ’nrerror: an assert_eq failed with this tag:’, &
string

STOP ’program terminated by assert_eq3’
end if
END FUNCTION assert_eq3

FUNCTION assert_eq4(n1,n2,n3,n4,string)
CHARACTER(LEN=*), INTENT(IN) :: string
INTEGER, INTENT(IN) :: n1,n2,n3,n4
INTEGER :: assert_eq4
if (n1 == n2 .and. n2 == n3 .and. n3 == n4) then

assert_eq4=n1
else

write (*,*) ’nrerror: an assert_eq failed with this tag:’, &
string

STOP ’program terminated by assert_eq4’
end if
END FUNCTION assert_eq4

FUNCTION assert_eqn(nn,string)
CHARACTER(LEN=*), INTENT(IN) :: string
INTEGER, DIMENSION(:), INTENT(IN) :: nn
INTEGER :: assert_eqn
if (all(nn(2:) == nn(1))) then

assert_eqn=nn(1)
else

write (*,*) ’nrerror: an assert_eq failed with this tag:’, &
string

STOP ’program terminated by assert_eqn’
end if
END FUNCTION assert_eqn

SUBROUTINE nrerror(string)
Report a message, then die.

CHARACTER(LEN=*), INTENT(IN) :: string
write (*,*) ’nrerror: ’,string
STOP ’program terminated by nrerror’
END SUBROUTINE nrerror

Routines relating to polynomials and recurrences:
FUNCTION arth_r(first,increment,n)

Array function returning an arithmetic progression.
REAL(SP), INTENT(IN) :: first,increment
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: arth_r
INTEGER(I4B) :: k,k2
REAL(SP) :: temp
if (n > 0) arth_r(1)=first
if (n <= NPAR_ARTH) then

do k=2,n
arth_r(k)=arth_r(k-1)+increment

end do
else

do k=2,NPAR2_ARTH
arth_r(k)=arth_r(k-1)+increment

end do
temp=increment*NPAR2_ARTH
k=NPAR2_ARTH
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do
if (k >= n) exit
k2=k+k
arth_r(k+1:min(k2,n))=temp+arth_r(1:min(k,n-k))
temp=temp+temp
k=k2

end do
end if
END FUNCTION arth_r

FUNCTION arth_d(first,increment,n)
REAL(DP), INTENT(IN) :: first,increment
INTEGER(I4B), INTENT(IN) :: n
REAL(DP), DIMENSION(n) :: arth_d
INTEGER(I4B) :: k,k2
REAL(DP) :: temp
if (n > 0) arth_d(1)=first
if (n <= NPAR_ARTH) then

do k=2,n
arth_d(k)=arth_d(k-1)+increment

end do
else

do k=2,NPAR2_ARTH
arth_d(k)=arth_d(k-1)+increment

end do
temp=increment*NPAR2_ARTH
k=NPAR2_ARTH
do

if (k >= n) exit
k2=k+k
arth_d(k+1:min(k2,n))=temp+arth_d(1:min(k,n-k))
temp=temp+temp
k=k2

end do
end if
END FUNCTION arth_d

FUNCTION arth_i(first,increment,n)
INTEGER(I4B), INTENT(IN) :: first,increment,n
INTEGER(I4B), DIMENSION(n) :: arth_i
INTEGER(I4B) :: k,k2,temp
if (n > 0) arth_i(1)=first
if (n <= NPAR_ARTH) then

do k=2,n
arth_i(k)=arth_i(k-1)+increment

end do
else

do k=2,NPAR2_ARTH
arth_i(k)=arth_i(k-1)+increment

end do
temp=increment*NPAR2_ARTH
k=NPAR2_ARTH
do

if (k >= n) exit
k2=k+k
arth_i(k+1:min(k2,n))=temp+arth_i(1:min(k,n-k))
temp=temp+temp
k=k2

end do
end if
END FUNCTION arth_i

FUNCTION geop_r(first,factor,n)
Array function returning a geometric progression.

REAL(SP), INTENT(IN) :: first,factor
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INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: geop_r
INTEGER(I4B) :: k,k2
REAL(SP) :: temp
if (n > 0) geop_r(1)=first
if (n <= NPAR_GEOP) then

do k=2,n
geop_r(k)=geop_r(k-1)*factor

end do
else

do k=2,NPAR2_GEOP
geop_r(k)=geop_r(k-1)*factor

end do
temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do

if (k >= n) exit
k2=k+k
geop_r(k+1:min(k2,n))=temp*geop_r(1:min(k,n-k))
temp=temp*temp
k=k2

end do
end if
END FUNCTION geop_r

FUNCTION geop_d(first,factor,n)
REAL(DP), INTENT(IN) :: first,factor
INTEGER(I4B), INTENT(IN) :: n
REAL(DP), DIMENSION(n) :: geop_d
INTEGER(I4B) :: k,k2
REAL(DP) :: temp
if (n > 0) geop_d(1)=first
if (n <= NPAR_GEOP) then

do k=2,n
geop_d(k)=geop_d(k-1)*factor

end do
else

do k=2,NPAR2_GEOP
geop_d(k)=geop_d(k-1)*factor

end do
temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do

if (k >= n) exit
k2=k+k
geop_d(k+1:min(k2,n))=temp*geop_d(1:min(k,n-k))
temp=temp*temp
k=k2

end do
end if
END FUNCTION geop_d

FUNCTION geop_i(first,factor,n)
INTEGER(I4B), INTENT(IN) :: first,factor,n
INTEGER(I4B), DIMENSION(n) :: geop_i
INTEGER(I4B) :: k,k2,temp
if (n > 0) geop_i(1)=first
if (n <= NPAR_GEOP) then

do k=2,n
geop_i(k)=geop_i(k-1)*factor

end do
else

do k=2,NPAR2_GEOP
geop_i(k)=geop_i(k-1)*factor

end do
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temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do

if (k >= n) exit
k2=k+k
geop_i(k+1:min(k2,n))=temp*geop_i(1:min(k,n-k))
temp=temp*temp
k=k2

end do
end if
END FUNCTION geop_i

FUNCTION geop_c(first,factor,n)
COMPLEX(SP), INTENT(IN) :: first,factor
INTEGER(I4B), INTENT(IN) :: n
COMPLEX(SP), DIMENSION(n) :: geop_c
INTEGER(I4B) :: k,k2
COMPLEX(SP) :: temp
if (n > 0) geop_c(1)=first
if (n <= NPAR_GEOP) then

do k=2,n
geop_c(k)=geop_c(k-1)*factor

end do
else

do k=2,NPAR2_GEOP
geop_c(k)=geop_c(k-1)*factor

end do
temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do

if (k >= n) exit
k2=k+k
geop_c(k+1:min(k2,n))=temp*geop_c(1:min(k,n-k))
temp=temp*temp
k=k2

end do
end if
END FUNCTION geop_c

FUNCTION geop_dv(first,factor,n)
REAL(DP), DIMENSION(:), INTENT(IN) :: first,factor
INTEGER(I4B), INTENT(IN) :: n
REAL(DP), DIMENSION(size(first),n) :: geop_dv
INTEGER(I4B) :: k,k2
REAL(DP), DIMENSION(size(first)) :: temp
if (n > 0) geop_dv(:,1)=first(:)
if (n <= NPAR_GEOP) then

do k=2,n
geop_dv(:,k)=geop_dv(:,k-1)*factor(:)

end do
else

do k=2,NPAR2_GEOP
geop_dv(:,k)=geop_dv(:,k-1)*factor(:)

end do
temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do

if (k >= n) exit
k2=k+k
geop_dv(:,k+1:min(k2,n))=geop_dv(:,1:min(k,n-k))*&

spread(temp,2,size(geop_dv(:,1:min(k,n-k)),2))
temp=temp*temp
k=k2

end do
end if
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END FUNCTION geop_dv

RECURSIVE FUNCTION cumsum_r(arr,seed) RESULT(ans)
Cumulative sum on an array, with optional additive seed.

REAL(SP), DIMENSION(:), INTENT(IN) :: arr
REAL(SP), OPTIONAL, INTENT(IN) :: seed
REAL(SP), DIMENSION(size(arr)) :: ans
INTEGER(I4B) :: n,j
REAL(SP) :: sd
n=size(arr)
if (n == 0_i4b) RETURN
sd=0.0_sp
if (present(seed)) sd=seed
ans(1)=arr(1)+sd
if (n < NPAR_CUMSUM) then

do j=2,n
ans(j)=ans(j-1)+arr(j)

end do
else

ans(2:n:2)=cumsum_r(arr(2:n:2)+arr(1:n-1:2),sd)
ans(3:n:2)=ans(2:n-1:2)+arr(3:n:2)

end if
END FUNCTION cumsum_r

RECURSIVE FUNCTION cumsum_i(arr,seed) RESULT(ans)
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4B), OPTIONAL, INTENT(IN) :: seed
INTEGER(I4B), DIMENSION(size(arr)) :: ans
INTEGER(I4B) :: n,j,sd
n=size(arr)
if (n == 0_i4b) RETURN
sd=0_i4b
if (present(seed)) sd=seed
ans(1)=arr(1)+sd
if (n < NPAR_CUMSUM) then

do j=2,n
ans(j)=ans(j-1)+arr(j)

end do
else

ans(2:n:2)=cumsum_i(arr(2:n:2)+arr(1:n-1:2),sd)
ans(3:n:2)=ans(2:n-1:2)+arr(3:n:2)

end if
END FUNCTION cumsum_i

RECURSIVE FUNCTION cumprod(arr,seed) RESULT(ans)
Cumulative product on an array, with optional multiplicative seed.

REAL(SP), DIMENSION(:), INTENT(IN) :: arr
REAL(SP), OPTIONAL, INTENT(IN) :: seed
REAL(SP), DIMENSION(size(arr)) :: ans
INTEGER(I4B) :: n,j
REAL(SP) :: sd
n=size(arr)
if (n == 0_i4b) RETURN
sd=1.0_sp
if (present(seed)) sd=seed
ans(1)=arr(1)*sd
if (n < NPAR_CUMPROD) then

do j=2,n
ans(j)=ans(j-1)*arr(j)

end do
else

ans(2:n:2)=cumprod(arr(2:n:2)*arr(1:n-1:2),sd)
ans(3:n:2)=ans(2:n-1:2)*arr(3:n:2)

end if
END FUNCTION cumprod
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FUNCTION poly_rr(x,coeffs)
Polynomial evaluation.

REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: coeffs
REAL(SP) :: poly_rr
REAL(SP) :: pow
REAL(SP), DIMENSION(:), ALLOCATABLE :: vec
INTEGER(I4B) :: i,n,nn
n=size(coeffs)
if (n <= 0) then

poly_rr=0.0_sp
else if (n < NPAR_POLY) then

poly_rr=coeffs(n)
do i=n-1,1,-1

poly_rr=x*poly_rr+coeffs(i)
end do

else
allocate(vec(n+1))
pow=x
vec(1:n)=coeffs
do

vec(n+1)=0.0_sp
nn=ishft(n+1,-1)
vec(1:nn)=vec(1:n:2)+pow*vec(2:n+1:2)
if (nn == 1) exit
pow=pow*pow
n=nn

end do
poly_rr=vec(1)
deallocate(vec)

end if
END FUNCTION poly_rr

FUNCTION poly_dd(x,coeffs)
REAL(DP), INTENT(IN) :: x
REAL(DP), DIMENSION(:), INTENT(IN) :: coeffs
REAL(DP) :: poly_dd
REAL(DP) :: pow
REAL(DP), DIMENSION(:), ALLOCATABLE :: vec
INTEGER(I4B) :: i,n,nn
n=size(coeffs)
if (n <= 0) then

poly_dd=0.0_dp
else if (n < NPAR_POLY) then

poly_dd=coeffs(n)
do i=n-1,1,-1

poly_dd=x*poly_dd+coeffs(i)
end do

else
allocate(vec(n+1))
pow=x
vec(1:n)=coeffs
do

vec(n+1)=0.0_dp
nn=ishft(n+1,-1)
vec(1:nn)=vec(1:n:2)+pow*vec(2:n+1:2)
if (nn == 1) exit
pow=pow*pow
n=nn

end do
poly_dd=vec(1)
deallocate(vec)

end if
END FUNCTION poly_dd
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FUNCTION poly_rc(x,coeffs)
COMPLEX(SPC), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: coeffs
COMPLEX(SPC) :: poly_rc
COMPLEX(SPC) :: pow
COMPLEX(SPC), DIMENSION(:), ALLOCATABLE :: vec
INTEGER(I4B) :: i,n,nn
n=size(coeffs)
if (n <= 0) then

poly_rc=0.0_sp
else if (n < NPAR_POLY) then

poly_rc=coeffs(n)
do i=n-1,1,-1

poly_rc=x*poly_rc+coeffs(i)
end do

else
allocate(vec(n+1))
pow=x
vec(1:n)=coeffs
do

vec(n+1)=0.0_sp
nn=ishft(n+1,-1)
vec(1:nn)=vec(1:n:2)+pow*vec(2:n+1:2)
if (nn == 1) exit
pow=pow*pow
n=nn

end do
poly_rc=vec(1)
deallocate(vec)

end if
END FUNCTION poly_rc

FUNCTION poly_cc(x,coeffs)
COMPLEX(SPC), INTENT(IN) :: x
COMPLEX(SPC), DIMENSION(:), INTENT(IN) :: coeffs
COMPLEX(SPC) :: poly_cc
COMPLEX(SPC) :: pow
COMPLEX(SPC), DIMENSION(:), ALLOCATABLE :: vec
INTEGER(I4B) :: i,n,nn
n=size(coeffs)
if (n <= 0) then

poly_cc=0.0_sp
else if (n < NPAR_POLY) then

poly_cc=coeffs(n)
do i=n-1,1,-1

poly_cc=x*poly_cc+coeffs(i)
end do

else
allocate(vec(n+1))
pow=x
vec(1:n)=coeffs
do

vec(n+1)=0.0_sp
nn=ishft(n+1,-1)
vec(1:nn)=vec(1:n:2)+pow*vec(2:n+1:2)
if (nn == 1) exit
pow=pow*pow
n=nn

end do
poly_cc=vec(1)
deallocate(vec)

end if
END FUNCTION poly_cc

FUNCTION poly_rrv(x,coeffs)
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REAL(SP), DIMENSION(:), INTENT(IN) :: coeffs,x
REAL(SP), DIMENSION(size(x)) :: poly_rrv
INTEGER(I4B) :: i,n,m
m=size(coeffs)
n=size(x)
if (m <= 0) then

poly_rrv=0.0_sp
else if (m < n .or. m < NPAR_POLY) then

poly_rrv=coeffs(m)
do i=m-1,1,-1

poly_rrv=x*poly_rrv+coeffs(i)
end do

else
do i=1,n

poly_rrv(i)=poly_rr(x(i),coeffs)
end do

end if
END FUNCTION poly_rrv

FUNCTION poly_ddv(x,coeffs)
REAL(DP), DIMENSION(:), INTENT(IN) :: coeffs,x
REAL(DP), DIMENSION(size(x)) :: poly_ddv
INTEGER(I4B) :: i,n,m
m=size(coeffs)
n=size(x)
if (m <= 0) then

poly_ddv=0.0_dp
else if (m < n .or. m < NPAR_POLY) then

poly_ddv=coeffs(m)
do i=m-1,1,-1

poly_ddv=x*poly_ddv+coeffs(i)
end do

else
do i=1,n

poly_ddv(i)=poly_dd(x(i),coeffs)
end do

end if
END FUNCTION poly_ddv

FUNCTION poly_msk_rrv(x,coeffs,mask)
REAL(SP), DIMENSION(:), INTENT(IN) :: coeffs,x
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(x)) :: poly_msk_rrv
poly_msk_rrv=unpack(poly_rrv(pack(x,mask),coeffs),mask,0.0_sp)
END FUNCTION poly_msk_rrv

FUNCTION poly_msk_ddv(x,coeffs,mask)
REAL(DP), DIMENSION(:), INTENT(IN) :: coeffs,x
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: mask
REAL(DP), DIMENSION(size(x)) :: poly_msk_ddv
poly_msk_ddv=unpack(poly_ddv(pack(x,mask),coeffs),mask,0.0_dp)
END FUNCTION poly_msk_ddv

RECURSIVE FUNCTION poly_term_rr(a,b) RESULT(u)
Tabulate cumulants of a polynomial.

REAL(SP), DIMENSION(:), INTENT(IN) :: a
REAL(SP), INTENT(IN) :: b
REAL(SP), DIMENSION(size(a)) :: u
INTEGER(I4B) :: n,j
n=size(a)
if (n <= 0) RETURN
u(1)=a(1)
if (n < NPAR_POLYTERM) then

do j=2,n
u(j)=a(j)+b*u(j-1)

end do
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else
u(2:n:2)=poly_term_rr(a(2:n:2)+a(1:n-1:2)*b,b*b)
u(3:n:2)=a(3:n:2)+b*u(2:n-1:2)

end if
END FUNCTION poly_term_rr

RECURSIVE FUNCTION poly_term_cc(a,b) RESULT(u)
COMPLEX(SPC), DIMENSION(:), INTENT(IN) :: a
COMPLEX(SPC), INTENT(IN) :: b
COMPLEX(SPC), DIMENSION(size(a)) :: u
INTEGER(I4B) :: n,j
n=size(a)
if (n <= 0) RETURN
u(1)=a(1)
if (n < NPAR_POLYTERM) then

do j=2,n
u(j)=a(j)+b*u(j-1)

end do
else

u(2:n:2)=poly_term_cc(a(2:n:2)+a(1:n-1:2)*b,b*b)
u(3:n:2)=a(3:n:2)+b*u(2:n-1:2)

end if
END FUNCTION poly_term_cc

FUNCTION zroots_unity(n,nn)
Complex function returning nn powers of the nth root of unity.

INTEGER(I4B), INTENT(IN) :: n,nn
COMPLEX(SPC), DIMENSION(nn) :: zroots_unity
INTEGER(I4B) :: k
REAL(SP) :: theta
zroots_unity(1)=1.0
theta=TWOPI/n
k=1
do

if (k >= nn) exit
zroots_unity(k+1)=cmplx(cos(k*theta),sin(k*theta),SPC)
zroots_unity(k+2:min(2*k,nn))=zroots_unity(k+1)*&

zroots_unity(2:min(k,nn-k))
k=2*k

end do
END FUNCTION zroots_unity

Routines for “outer” operations on vectors. The order convention is: result(i,j) = first operand(i)
(op) second operand(j).

FUNCTION outerprod_r(a,b)
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b
REAL(SP), DIMENSION(size(a),size(b)) :: outerprod_r
outerprod_r = spread(a,dim=2,ncopies=size(b)) * &

spread(b,dim=1,ncopies=size(a))
END FUNCTION outerprod_r

FUNCTION outerprod_d(a,b)
REAL(DP), DIMENSION(:), INTENT(IN) :: a,b
REAL(DP), DIMENSION(size(a),size(b)) :: outerprod_d
outerprod_d = spread(a,dim=2,ncopies=size(b)) * &

spread(b,dim=1,ncopies=size(a))
END FUNCTION outerprod_d

FUNCTION outerdiv(a,b)
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b
REAL(SP), DIMENSION(size(a),size(b)) :: outerdiv
outerdiv = spread(a,dim=2,ncopies=size(b)) / &

spread(b,dim=1,ncopies=size(a))
END FUNCTION outerdiv

FUNCTION outersum(a,b)
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b
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REAL(SP), DIMENSION(size(a),size(b)) :: outersum
outersum = spread(a,dim=2,ncopies=size(b)) + &

spread(b,dim=1,ncopies=size(a))
END FUNCTION outersum

FUNCTION outerdiff_r(a,b)
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b
REAL(SP), DIMENSION(size(a),size(b)) :: outerdiff_r
outerdiff_r = spread(a,dim=2,ncopies=size(b)) - &

spread(b,dim=1,ncopies=size(a))
END FUNCTION outerdiff_r

FUNCTION outerdiff_d(a,b)
REAL(DP), DIMENSION(:), INTENT(IN) :: a,b
REAL(DP), DIMENSION(size(a),size(b)) :: outerdiff_d
outerdiff_d = spread(a,dim=2,ncopies=size(b)) - &

spread(b,dim=1,ncopies=size(a))
END FUNCTION outerdiff_d

FUNCTION outerdiff_i(a,b)
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: a,b
INTEGER(I4B), DIMENSION(size(a),size(b)) :: outerdiff_i
outerdiff_i = spread(a,dim=2,ncopies=size(b)) - &

spread(b,dim=1,ncopies=size(a))
END FUNCTION outerdiff_i

FUNCTION outerand(a,b)
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: a,b
LOGICAL(LGT), DIMENSION(size(a),size(b)) :: outerand
outerand = spread(a,dim=2,ncopies=size(b)) .and. &

spread(b,dim=1,ncopies=size(a))
END FUNCTION outerand

Routines for scatter-with-combine.
SUBROUTINE scatter_add_r(dest,source,dest_index)
REAL(SP), DIMENSION(:), INTENT(OUT) :: dest
REAL(SP), DIMENSION(:), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: dest_index
INTEGER(I4B) :: m,n,j,i
n=assert_eq2(size(source),size(dest_index),’scatter_add_r’)
m=size(dest)
do j=1,n

i=dest_index(j)
if (i > 0 .and. i <= m) dest(i)=dest(i)+source(j)

end do
END SUBROUTINE scatter_add_r
SUBROUTINE scatter_add_d(dest,source,dest_index)
REAL(DP), DIMENSION(:), INTENT(OUT) :: dest
REAL(DP), DIMENSION(:), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: dest_index
INTEGER(I4B) :: m,n,j,i
n=assert_eq2(size(source),size(dest_index),’scatter_add_d’)
m=size(dest)
do j=1,n

i=dest_index(j)
if (i > 0 .and. i <= m) dest(i)=dest(i)+source(j)

end do
END SUBROUTINE scatter_add_d
SUBROUTINE scatter_max_r(dest,source,dest_index)
REAL(SP), DIMENSION(:), INTENT(OUT) :: dest
REAL(SP), DIMENSION(:), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: dest_index
INTEGER(I4B) :: m,n,j,i
n=assert_eq2(size(source),size(dest_index),’scatter_max_r’)
m=size(dest)
do j=1,n

i=dest_index(j)



C1.2 Numerical Recipes Utilities (nrutil) 1381

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (i > 0 .and. i <= m) dest(i)=max(dest(i),source(j))
end do
END SUBROUTINE scatter_max_r
SUBROUTINE scatter_max_d(dest,source,dest_index)
REAL(DP), DIMENSION(:), INTENT(OUT) :: dest
REAL(DP), DIMENSION(:), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: dest_index
INTEGER(I4B) :: m,n,j,i
n=assert_eq2(size(source),size(dest_index),’scatter_max_d’)
m=size(dest)
do j=1,n

i=dest_index(j)
if (i > 0 .and. i <= m) dest(i)=max(dest(i),source(j))

end do
END SUBROUTINE scatter_max_d

Routines for skew operations on matrices:
SUBROUTINE diagadd_rv(mat,diag)

Adds vector or scalar diag to the diagonal of matrix mat.
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
REAL(SP), DIMENSION(:), INTENT(IN) :: diag
INTEGER(I4B) :: j,n
n = assert_eq2(size(diag),min(size(mat,1),size(mat,2)),’diagadd_rv’)
do j=1,n

mat(j,j)=mat(j,j)+diag(j)
end do
END SUBROUTINE diagadd_rv

SUBROUTINE diagadd_r(mat,diag)
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
REAL(SP), INTENT(IN) :: diag
INTEGER(I4B) :: j,n
n = min(size(mat,1),size(mat,2))
do j=1,n

mat(j,j)=mat(j,j)+diag
end do
END SUBROUTINE diagadd_r

SUBROUTINE diagmult_rv(mat,diag)
Multiplies vector or scalar diag into the diagonal of matrix mat.

REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
REAL(SP), DIMENSION(:), INTENT(IN) :: diag
INTEGER(I4B) :: j,n
n = assert_eq2(size(diag),min(size(mat,1),size(mat,2)),’diagmult_rv’)
do j=1,n

mat(j,j)=mat(j,j)*diag(j)
end do
END SUBROUTINE diagmult_rv

SUBROUTINE diagmult_r(mat,diag)
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
REAL(SP), INTENT(IN) :: diag
INTEGER(I4B) :: j,n
n = min(size(mat,1),size(mat,2))
do j=1,n

mat(j,j)=mat(j,j)*diag
end do
END SUBROUTINE diagmult_r

FUNCTION get_diag_rv(mat)
Return as a vector the diagonal of matrix mat.

REAL(SP), DIMENSION(:,:), INTENT(IN) :: mat
REAL(SP), DIMENSION(size(mat,1)) :: get_diag_rv
INTEGER(I4B) :: j
j=assert_eq2(size(mat,1),size(mat,2),’get_diag_rv’)
do j=1,size(mat,1)

get_diag_rv(j)=mat(j,j)
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end do
END FUNCTION get_diag_rv

FUNCTION get_diag_dv(mat)
REAL(DP), DIMENSION(:,:), INTENT(IN) :: mat
REAL(DP), DIMENSION(size(mat,1)) :: get_diag_dv
INTEGER(I4B) :: j
j=assert_eq2(size(mat,1),size(mat,2),’get_diag_dv’)
do j=1,size(mat,1)

get_diag_dv(j)=mat(j,j)
end do
END FUNCTION get_diag_dv

SUBROUTINE put_diag_rv(diagv,mat)
Set the diagonal of matrix mat to the values of a vector or scalar.

REAL(SP), DIMENSION(:), INTENT(IN) :: diagv
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
INTEGER(I4B) :: j,n
n=assert_eq2(size(diagv),min(size(mat,1),size(mat,2)),’put_diag_rv’)
do j=1,n

mat(j,j)=diagv(j)
end do
END SUBROUTINE put_diag_rv

SUBROUTINE put_diag_r(scal,mat)
REAL(SP), INTENT(IN) :: scal
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
INTEGER(I4B) :: j,n
n = min(size(mat,1),size(mat,2))
do j=1,n

mat(j,j)=scal
end do
END SUBROUTINE put_diag_r

SUBROUTINE unit_matrix(mat)
Set the matrix mat to be a unit matrix (if it is square).

REAL(SP), DIMENSION(:,:), INTENT(OUT) :: mat
INTEGER(I4B) :: i,n
n=min(size(mat,1),size(mat,2))
mat(:,:)=0.0_sp
do i=1,n

mat(i,i)=1.0_sp
end do
END SUBROUTINE unit_matrix

FUNCTION upper_triangle(j,k,extra)
Return an upper triangular logical mask.

INTEGER(I4B), INTENT(IN) :: j,k
INTEGER(I4B), OPTIONAL, INTENT(IN) :: extra
LOGICAL(LGT), DIMENSION(j,k) :: upper_triangle
INTEGER(I4B) :: n
n=0
if (present(extra)) n=extra
upper_triangle=(outerdiff(arth_i(1,1,j),arth_i(1,1,k)) < n)
END FUNCTION upper_triangle

FUNCTION lower_triangle(j,k,extra)
Return a lower triangular logical mask.

INTEGER(I4B), INTENT(IN) :: j,k
INTEGER(I4B), OPTIONAL, INTENT(IN) :: extra
LOGICAL(LGT), DIMENSION(j,k) :: lower_triangle
INTEGER(I4B) :: n
n=0
if (present(extra)) n=extra
lower_triangle=(outerdiff(arth_i(1,1,j),arth_i(1,1,k)) > -n)
END FUNCTION lower_triangle

Other routines:
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FUNCTION vabs(v)
Return the length (ordinary L2 norm) of a vector.

REAL(SP), DIMENSION(:), INTENT(IN) :: v
REAL(SP) :: vabs
vabs=sqrt(dot_product(v,v))
END FUNCTION vabs

END MODULE nrutil
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C2. Alphabetical Listing of
Explicit Interfaces

The file supplied as nr.f90 contains explicit interfaces for all the Numerical
Recipes routines (except those already in the module nrutil). The interfaces are
in alphabetical order, by the generic interface name, if one exists, or by the specific
routine name if there is no generic name.

The file nr.f90 is normally invoked via a USE statement within a main program
or subroutine that references a Numerical Recipes routine. See §21.1 for an example.

MODULE nr
INTERFACE

SUBROUTINE airy(x,ai,bi,aip,bip)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: ai,bi,aip,bip
END SUBROUTINE airy

END INTERFACE
INTERFACE

SUBROUTINE amebsa(p,y,pb,yb,ftol,func,iter,temptr)
USE nrtype
INTEGER(I4B), INTENT(INOUT) :: iter
REAL(SP), INTENT(INOUT) :: yb
REAL(SP), INTENT(IN) :: ftol,temptr
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y,pb
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE amebsa

END INTERFACE
INTERFACE

SUBROUTINE amoeba(p,y,ftol,func,iter)
USE nrtype
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE

1384
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END SUBROUTINE amoeba
END INTERFACE
INTERFACE

SUBROUTINE anneal(x,y,iorder)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: iorder
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
END SUBROUTINE anneal

END INTERFACE
INTERFACE

SUBROUTINE asolve(b,x,itrnsp)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: b
REAL(DP), DIMENSION(:), INTENT(OUT) :: x
INTEGER(I4B), INTENT(IN) :: itrnsp
END SUBROUTINE asolve

END INTERFACE
INTERFACE

SUBROUTINE atimes(x,r,itrnsp)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(:), INTENT(OUT) :: r
INTEGER(I4B), INTENT(IN) :: itrnsp
END SUBROUTINE atimes

END INTERFACE
INTERFACE

SUBROUTINE avevar(data,ave,var)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data
REAL(SP), INTENT(OUT) :: ave,var
END SUBROUTINE avevar

END INTERFACE
INTERFACE

SUBROUTINE balanc(a)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
END SUBROUTINE balanc

END INTERFACE
INTERFACE

SUBROUTINE banbks(a,m1,m2,al,indx,b)
USE nrtype
INTEGER(I4B), INTENT(IN) :: m1,m2
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a,al
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b
END SUBROUTINE banbks

END INTERFACE
INTERFACE

SUBROUTINE bandec(a,m1,m2,al,indx,d)
USE nrtype
INTEGER(I4B), INTENT(IN) :: m1,m2
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: indx
REAL(SP), INTENT(OUT) :: d
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: al
END SUBROUTINE bandec

END INTERFACE
INTERFACE

SUBROUTINE banmul(a,m1,m2,x,b)
USE nrtype
INTEGER(I4B), INTENT(IN) :: m1,m2
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: b
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
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END SUBROUTINE banmul
END INTERFACE
INTERFACE

SUBROUTINE bcucof(y,y1,y2,y12,d1,d2,c)
USE nrtype
REAL(SP), INTENT(IN) :: d1,d2
REAL(SP), DIMENSION(4), INTENT(IN) :: y,y1,y2,y12
REAL(SP), DIMENSION(4,4), INTENT(OUT) :: c
END SUBROUTINE bcucof

END INTERFACE
INTERFACE

SUBROUTINE bcuint(y,y1,y2,y12,x1l,x1u,x2l,x2u,x1,x2,ansy,&
ansy1,ansy2)

USE nrtype
REAL(SP), DIMENSION(4), INTENT(IN) :: y,y1,y2,y12
REAL(SP), INTENT(IN) :: x1l,x1u,x2l,x2u,x1,x2
REAL(SP), INTENT(OUT) :: ansy,ansy1,ansy2
END SUBROUTINE bcuint

END INTERFACE
INTERFACE beschb

SUBROUTINE beschb_s(x,gam1,gam2,gampl,gammi)
USE nrtype
REAL(DP), INTENT(IN) :: x
REAL(DP), INTENT(OUT) :: gam1,gam2,gampl,gammi
END SUBROUTINE beschb_s

SUBROUTINE beschb_v(x,gam1,gam2,gampl,gammi)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(:), INTENT(OUT) :: gam1,gam2,gampl,gammi
END SUBROUTINE beschb_v

END INTERFACE
INTERFACE bessi

FUNCTION bessi_s(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi_s
END FUNCTION bessi_s

FUNCTION bessi_v(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi_v
END FUNCTION bessi_v

END INTERFACE
INTERFACE bessi0

FUNCTION bessi0_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi0_s
END FUNCTION bessi0_s

FUNCTION bessi0_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi0_v
END FUNCTION bessi0_v

END INTERFACE
INTERFACE bessi1

FUNCTION bessi1_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi1_s
END FUNCTION bessi1_s
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FUNCTION bessi1_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi1_v
END FUNCTION bessi1_v

END INTERFACE
INTERFACE

SUBROUTINE bessik(x,xnu,ri,rk,rip,rkp)
USE nrtype
REAL(SP), INTENT(IN) :: x,xnu
REAL(SP), INTENT(OUT) :: ri,rk,rip,rkp
END SUBROUTINE bessik

END INTERFACE
INTERFACE bessj

FUNCTION bessj_s(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj_s
END FUNCTION bessj_s

FUNCTION bessj_v(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessj_v
END FUNCTION bessj_v

END INTERFACE
INTERFACE bessj0

FUNCTION bessj0_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj0_s
END FUNCTION bessj0_s

FUNCTION bessj0_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessj0_v
END FUNCTION bessj0_v

END INTERFACE
INTERFACE bessj1

FUNCTION bessj1_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj1_s
END FUNCTION bessj1_s

FUNCTION bessj1_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessj1_v
END FUNCTION bessj1_v

END INTERFACE
INTERFACE bessjy

SUBROUTINE bessjy_s(x,xnu,rj,ry,rjp,ryp)
USE nrtype
REAL(SP), INTENT(IN) :: x,xnu
REAL(SP), INTENT(OUT) :: rj,ry,rjp,ryp
END SUBROUTINE bessjy_s

SUBROUTINE bessjy_v(x,xnu,rj,ry,rjp,ryp)
USE nrtype
REAL(SP), INTENT(IN) :: xnu
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: rj,rjp,ry,ryp
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END SUBROUTINE bessjy_v
END INTERFACE
INTERFACE bessk

FUNCTION bessk_s(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessk_s
END FUNCTION bessk_s

FUNCTION bessk_v(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessk_v
END FUNCTION bessk_v

END INTERFACE
INTERFACE bessk0

FUNCTION bessk0_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessk0_s
END FUNCTION bessk0_s

FUNCTION bessk0_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessk0_v
END FUNCTION bessk0_v

END INTERFACE
INTERFACE bessk1

FUNCTION bessk1_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessk1_s
END FUNCTION bessk1_s

FUNCTION bessk1_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessk1_v
END FUNCTION bessk1_v

END INTERFACE
INTERFACE bessy

FUNCTION bessy_s(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessy_s
END FUNCTION bessy_s

FUNCTION bessy_v(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessy_v
END FUNCTION bessy_v

END INTERFACE
INTERFACE bessy0

FUNCTION bessy0_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessy0_s
END FUNCTION bessy0_s

FUNCTION bessy0_v(x)
USE nrtype
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REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessy0_v
END FUNCTION bessy0_v

END INTERFACE
INTERFACE bessy1

FUNCTION bessy1_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessy1_s
END FUNCTION bessy1_s

FUNCTION bessy1_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessy1_v
END FUNCTION bessy1_v

END INTERFACE
INTERFACE beta

FUNCTION beta_s(z,w)
USE nrtype
REAL(SP), INTENT(IN) :: z,w
REAL(SP) :: beta_s
END FUNCTION beta_s

FUNCTION beta_v(z,w)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: z,w
REAL(SP), DIMENSION(size(z)) :: beta_v
END FUNCTION beta_v

END INTERFACE
INTERFACE betacf

FUNCTION betacf_s(a,b,x)
USE nrtype
REAL(SP), INTENT(IN) :: a,b,x
REAL(SP) :: betacf_s
END FUNCTION betacf_s

FUNCTION betacf_v(a,b,x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,x
REAL(SP), DIMENSION(size(x)) :: betacf_v
END FUNCTION betacf_v

END INTERFACE
INTERFACE betai

FUNCTION betai_s(a,b,x)
USE nrtype
REAL(SP), INTENT(IN) :: a,b,x
REAL(SP) :: betai_s
END FUNCTION betai_s

FUNCTION betai_v(a,b,x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,x
REAL(SP), DIMENSION(size(a)) :: betai_v
END FUNCTION betai_v

END INTERFACE
INTERFACE bico

FUNCTION bico_s(n,k)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n,k
REAL(SP) :: bico_s
END FUNCTION bico_s

FUNCTION bico_v(n,k)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n,k
REAL(SP), DIMENSION(size(n)) :: bico_v
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END FUNCTION bico_v
END INTERFACE
INTERFACE

FUNCTION bnldev(pp,n)
USE nrtype
REAL(SP), INTENT(IN) :: pp
INTEGER(I4B), INTENT(IN) :: n
REAL(SP) :: bnldev
END FUNCTION bnldev

END INTERFACE
INTERFACE

FUNCTION brent(ax,bx,cx,func,tol,xmin)
USE nrtype
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: brent
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END FUNCTION brent

END INTERFACE
INTERFACE

SUBROUTINE broydn(x,check)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
LOGICAL(LGT), INTENT(OUT) :: check
END SUBROUTINE broydn

END INTERFACE
INTERFACE

SUBROUTINE bsstep(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE bsstep

END INTERFACE
INTERFACE

SUBROUTINE caldat(julian,mm,id,iyyy)
USE nrtype
INTEGER(I4B), INTENT(IN) :: julian
INTEGER(I4B), INTENT(OUT) :: mm,id,iyyy
END SUBROUTINE caldat

END INTERFACE
INTERFACE

FUNCTION chder(a,b,c)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(size(c)) :: chder
END FUNCTION chder
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END INTERFACE
INTERFACE chebev

FUNCTION chebev_s(a,b,c,x)
USE nrtype
REAL(SP), INTENT(IN) :: a,b,x
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP) :: chebev_s
END FUNCTION chebev_s

FUNCTION chebev_v(a,b,c,x)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: c,x
REAL(SP), DIMENSION(size(x)) :: chebev_v
END FUNCTION chebev_v

END INTERFACE
INTERFACE

FUNCTION chebft(a,b,n,func)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: chebft
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END FUNCTION chebft

END INTERFACE
INTERFACE

FUNCTION chebpc(c)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(size(c)) :: chebpc
END FUNCTION chebpc

END INTERFACE
INTERFACE

FUNCTION chint(a,b,c)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(size(c)) :: chint
END FUNCTION chint

END INTERFACE
INTERFACE

SUBROUTINE choldc(a,p)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: p
END SUBROUTINE choldc

END INTERFACE
INTERFACE

SUBROUTINE cholsl(a,p,b,x)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(IN) :: p,b
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
END SUBROUTINE cholsl

END INTERFACE
INTERFACE

SUBROUTINE chsone(bins,ebins,knstrn,df,chsq,prob)
USE nrtype



1392 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTEGER(I4B), INTENT(IN) :: knstrn
REAL(SP), INTENT(OUT) :: df,chsq,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: bins,ebins
END SUBROUTINE chsone

END INTERFACE
INTERFACE

SUBROUTINE chstwo(bins1,bins2,knstrn,df,chsq,prob)
USE nrtype
INTEGER(I4B), INTENT(IN) :: knstrn
REAL(SP), INTENT(OUT) :: df,chsq,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: bins1,bins2
END SUBROUTINE chstwo

END INTERFACE
INTERFACE

SUBROUTINE cisi(x,ci,si)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: ci,si
END SUBROUTINE cisi

END INTERFACE
INTERFACE

SUBROUTINE cntab1(nn,chisq,df,prob,cramrv,ccc)
USE nrtype
INTEGER(I4B), DIMENSION(:,:), INTENT(IN) :: nn
REAL(SP), INTENT(OUT) :: chisq,df,prob,cramrv,ccc
END SUBROUTINE cntab1

END INTERFACE
INTERFACE

SUBROUTINE cntab2(nn,h,hx,hy,hygx,hxgy,uygx,uxgy,uxy)
USE nrtype
INTEGER(I4B), DIMENSION(:,:), INTENT(IN) :: nn
REAL(SP), INTENT(OUT) :: h,hx,hy,hygx,hxgy,uygx,uxgy,uxy
END SUBROUTINE cntab2

END INTERFACE
INTERFACE

FUNCTION convlv(data,respns,isign)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data
REAL(SP), DIMENSION(:), INTENT(IN) :: respns
INTEGER(I4B), INTENT(IN) :: isign
REAL(SP), DIMENSION(size(data)) :: convlv
END FUNCTION convlv

END INTERFACE
INTERFACE

FUNCTION correl(data1,data2)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), DIMENSION(size(data1)) :: correl
END FUNCTION correl

END INTERFACE
INTERFACE

SUBROUTINE cosft1(y)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
END SUBROUTINE cosft1

END INTERFACE
INTERFACE

SUBROUTINE cosft2(y,isign)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE cosft2

END INTERFACE
INTERFACE
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SUBROUTINE covsrt(covar,maska)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: covar
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: maska
END SUBROUTINE covsrt

END INTERFACE
INTERFACE

SUBROUTINE cyclic(a,b,c,alpha,beta,r,x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN):: a,b,c,r
REAL(SP), INTENT(IN) :: alpha,beta
REAL(SP), DIMENSION(:), INTENT(OUT):: x
END SUBROUTINE cyclic

END INTERFACE
INTERFACE

SUBROUTINE daub4(a,isign)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE daub4

END INTERFACE
INTERFACE dawson

FUNCTION dawson_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: dawson_s
END FUNCTION dawson_s

FUNCTION dawson_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: dawson_v
END FUNCTION dawson_v

END INTERFACE
INTERFACE

FUNCTION dbrent(ax,bx,cx,func,dbrent_dfunc,tol,xmin)
USE nrtype
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: dbrent
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

FUNCTION dbrent_dfunc(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: dbrent_dfunc
END FUNCTION dbrent_dfunc

END INTERFACE
END FUNCTION dbrent

END INTERFACE
INTERFACE

SUBROUTINE ddpoly(c,x,pd)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(:), INTENT(OUT) :: pd
END SUBROUTINE ddpoly

END INTERFACE
INTERFACE

FUNCTION decchk(string,ch)
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USE nrtype
CHARACTER(1), DIMENSION(:), INTENT(IN) :: string
CHARACTER(1), INTENT(OUT) :: ch
LOGICAL(LGT) :: decchk
END FUNCTION decchk

END INTERFACE
INTERFACE

SUBROUTINE dfpmin(p,gtol,iter,fret,func,dfunc)
USE nrtype
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: gtol
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(p)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP) :: func
END FUNCTION func

FUNCTION dfunc(p)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP), DIMENSION(size(p)) :: dfunc
END FUNCTION dfunc

END INTERFACE
END SUBROUTINE dfpmin

END INTERFACE
INTERFACE

FUNCTION dfridr(func,x,h,err)
USE nrtype
REAL(SP), INTENT(IN) :: x,h
REAL(SP), INTENT(OUT) :: err
REAL(SP) :: dfridr
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END FUNCTION dfridr

END INTERFACE
INTERFACE

SUBROUTINE dftcor(w,delta,a,b,endpts,corre,corim,corfac)
USE nrtype
REAL(SP), INTENT(IN) :: w,delta,a,b
REAL(SP), INTENT(OUT) :: corre,corim,corfac
REAL(SP), DIMENSION(:), INTENT(IN) :: endpts
END SUBROUTINE dftcor

END INTERFACE
INTERFACE

SUBROUTINE dftint(func,a,b,w,cosint,sinint)
USE nrtype
REAL(SP), INTENT(IN) :: a,b,w
REAL(SP), INTENT(OUT) :: cosint,sinint
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE dftint
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END INTERFACE
INTERFACE

SUBROUTINE difeq(k,k1,k2,jsf,is1,isf,indexv,s,y)
USE nrtype
INTEGER(I4B), INTENT(IN) :: is1,isf,jsf,k,k1,k2
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indexv
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: s
REAL(SP), DIMENSION(:,:), INTENT(IN) :: y
END SUBROUTINE difeq

END INTERFACE
INTERFACE

FUNCTION eclass(lista,listb,n)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: lista,listb
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), DIMENSION(n) :: eclass
END FUNCTION eclass

END INTERFACE
INTERFACE

FUNCTION eclazz(equiv,n)
USE nrtype
INTERFACE

FUNCTION equiv(i,j)
USE nrtype
LOGICAL(LGT) :: equiv
INTEGER(I4B), INTENT(IN) :: i,j
END FUNCTION equiv

END INTERFACE
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), DIMENSION(n) :: eclazz
END FUNCTION eclazz

END INTERFACE
INTERFACE

FUNCTION ei(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: ei
END FUNCTION ei

END INTERFACE
INTERFACE

SUBROUTINE eigsrt(d,v)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: v
END SUBROUTINE eigsrt

END INTERFACE
INTERFACE elle

FUNCTION elle_s(phi,ak)
USE nrtype
REAL(SP), INTENT(IN) :: phi,ak
REAL(SP) :: elle_s
END FUNCTION elle_s

FUNCTION elle_v(phi,ak)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: phi,ak
REAL(SP), DIMENSION(size(phi)) :: elle_v
END FUNCTION elle_v

END INTERFACE
INTERFACE ellf

FUNCTION ellf_s(phi,ak)
USE nrtype
REAL(SP), INTENT(IN) :: phi,ak
REAL(SP) :: ellf_s
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END FUNCTION ellf_s

FUNCTION ellf_v(phi,ak)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: phi,ak
REAL(SP), DIMENSION(size(phi)) :: ellf_v
END FUNCTION ellf_v

END INTERFACE
INTERFACE ellpi

FUNCTION ellpi_s(phi,en,ak)
USE nrtype
REAL(SP), INTENT(IN) :: phi,en,ak
REAL(SP) :: ellpi_s
END FUNCTION ellpi_s

FUNCTION ellpi_v(phi,en,ak)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: phi,en,ak
REAL(SP), DIMENSION(size(phi)) :: ellpi_v
END FUNCTION ellpi_v

END INTERFACE
INTERFACE

SUBROUTINE elmhes(a)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
END SUBROUTINE elmhes

END INTERFACE
INTERFACE erf

FUNCTION erf_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erf_s
END FUNCTION erf_s

FUNCTION erf_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erf_v
END FUNCTION erf_v

END INTERFACE
INTERFACE erfc

FUNCTION erfc_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erfc_s
END FUNCTION erfc_s

FUNCTION erfc_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erfc_v
END FUNCTION erfc_v

END INTERFACE
INTERFACE erfcc

FUNCTION erfcc_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erfcc_s
END FUNCTION erfcc_s

FUNCTION erfcc_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erfcc_v
END FUNCTION erfcc_v

END INTERFACE
INTERFACE
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SUBROUTINE eulsum(sum,term,jterm)
USE nrtype
REAL(SP), INTENT(INOUT) :: sum
REAL(SP), INTENT(IN) :: term
INTEGER(I4B), INTENT(IN) :: jterm
END SUBROUTINE eulsum

END INTERFACE
INTERFACE

FUNCTION evlmem(fdt,d,xms)
USE nrtype
REAL(SP), INTENT(IN) :: fdt,xms
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP) :: evlmem
END FUNCTION evlmem

END INTERFACE
INTERFACE expdev

SUBROUTINE expdev_s(harvest)
USE nrtype
REAL(SP), INTENT(OUT) :: harvest
END SUBROUTINE expdev_s

SUBROUTINE expdev_v(harvest)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
END SUBROUTINE expdev_v

END INTERFACE
INTERFACE

FUNCTION expint(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: expint
END FUNCTION expint

END INTERFACE
INTERFACE factln

FUNCTION factln_s(n)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP) :: factln_s
END FUNCTION factln_s

FUNCTION factln_v(n)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n
REAL(SP), DIMENSION(size(n)) :: factln_v
END FUNCTION factln_v

END INTERFACE
INTERFACE factrl

FUNCTION factrl_s(n)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP) :: factrl_s
END FUNCTION factrl_s

FUNCTION factrl_v(n)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n
REAL(SP), DIMENSION(size(n)) :: factrl_v
END FUNCTION factrl_v

END INTERFACE
INTERFACE

SUBROUTINE fasper(x,y,ofac,hifac,px,py,jmax,prob)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(IN) :: ofac,hifac
INTEGER(I4B), INTENT(OUT) :: jmax
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REAL(SP), INTENT(OUT) :: prob
REAL(SP), DIMENSION(:), POINTER :: px,py
END SUBROUTINE fasper

END INTERFACE
INTERFACE

SUBROUTINE fdjac(x,fvec,df)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: fvec
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: df
END SUBROUTINE fdjac

END INTERFACE
INTERFACE

SUBROUTINE fgauss(x,a,y,dyda)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,a
REAL(SP), DIMENSION(:), INTENT(OUT) :: y
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dyda
END SUBROUTINE fgauss

END INTERFACE
INTERFACE

SUBROUTINE fit(x,y,a,b,siga,sigb,chi2,q,sig)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: a,b,siga,sigb,chi2,q
REAL(SP), DIMENSION(:), OPTIONAL, INTENT(IN) :: sig
END SUBROUTINE fit

END INTERFACE
INTERFACE

SUBROUTINE fitexy(x,y,sigx,sigy,a,b,siga,sigb,chi2,q)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sigx,sigy
REAL(SP), INTENT(OUT) :: a,b,siga,sigb,chi2,q
END SUBROUTINE fitexy

END INTERFACE
INTERFACE

SUBROUTINE fixrts(d)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d
END SUBROUTINE fixrts

END INTERFACE
INTERFACE

FUNCTION fleg(x,n)
USE nrtype
REAL(SP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: fleg
END FUNCTION fleg

END INTERFACE
INTERFACE

SUBROUTINE flmoon(n,nph,jd,frac)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n,nph
INTEGER(I4B), INTENT(OUT) :: jd
REAL(SP), INTENT(OUT) :: frac
END SUBROUTINE flmoon

END INTERFACE
INTERFACE four1

SUBROUTINE four1_dp(data,isign)
USE nrtype
COMPLEX(DPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four1_dp
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SUBROUTINE four1_sp(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four1_sp

END INTERFACE
INTERFACE

SUBROUTINE four1_alt(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four1_alt

END INTERFACE
INTERFACE

SUBROUTINE four1_gather(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four1_gather

END INTERFACE
INTERFACE

SUBROUTINE four2(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B),INTENT(IN) :: isign
END SUBROUTINE four2

END INTERFACE
INTERFACE

SUBROUTINE four2_alt(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four2_alt

END INTERFACE
INTERFACE

SUBROUTINE four3(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: data
INTEGER(I4B),INTENT(IN) :: isign
END SUBROUTINE four3

END INTERFACE
INTERFACE

SUBROUTINE four3_alt(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four3_alt

END INTERFACE
INTERFACE

SUBROUTINE fourcol(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE fourcol

END INTERFACE
INTERFACE

SUBROUTINE fourcol_3d(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE fourcol_3d

END INTERFACE
INTERFACE

SUBROUTINE fourn_gather(data,nn,isign)
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USE nrtype
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: nn
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE fourn_gather

END INTERFACE
INTERFACE fourrow

SUBROUTINE fourrow_dp(data,isign)
USE nrtype
COMPLEX(DPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE fourrow_dp

SUBROUTINE fourrow_sp(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE fourrow_sp

END INTERFACE
INTERFACE

SUBROUTINE fourrow_3d(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE fourrow_3d

END INTERFACE
INTERFACE

FUNCTION fpoly(x,n)
USE nrtype
REAL(SP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: fpoly
END FUNCTION fpoly

END INTERFACE
INTERFACE

SUBROUTINE fred2(a,b,t,f,w,g,ak)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(OUT) :: t,f,w
INTERFACE

FUNCTION g(t)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: t
REAL(SP), DIMENSION(size(t)) :: g
END FUNCTION g

FUNCTION ak(t,s)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: t,s
REAL(SP), DIMENSION(size(t),size(s)) :: ak
END FUNCTION ak

END INTERFACE
END SUBROUTINE fred2

END INTERFACE
INTERFACE

FUNCTION fredin(x,a,b,t,f,w,g,ak)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: x,t,f,w
REAL(SP), DIMENSION(size(x)) :: fredin
INTERFACE

FUNCTION g(t)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: t
REAL(SP), DIMENSION(size(t)) :: g
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END FUNCTION g

FUNCTION ak(t,s)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: t,s
REAL(SP), DIMENSION(size(t),size(s)) :: ak
END FUNCTION ak

END INTERFACE
END FUNCTION fredin

END INTERFACE
INTERFACE

SUBROUTINE frenel(x,s,c)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: s,c
END SUBROUTINE frenel

END INTERFACE
INTERFACE

SUBROUTINE frprmn(p,ftol,iter,fret)
USE nrtype
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
END SUBROUTINE frprmn

END INTERFACE
INTERFACE

SUBROUTINE ftest(data1,data2,f,prob)
USE nrtype
REAL(SP), INTENT(OUT) :: f,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
END SUBROUTINE ftest

END INTERFACE
INTERFACE

FUNCTION gamdev(ia)
USE nrtype
INTEGER(I4B), INTENT(IN) :: ia
REAL(SP) :: gamdev
END FUNCTION gamdev

END INTERFACE
INTERFACE gammln

FUNCTION gammln_s(xx)
USE nrtype
REAL(SP), INTENT(IN) :: xx
REAL(SP) :: gammln_s
END FUNCTION gammln_s

FUNCTION gammln_v(xx)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), DIMENSION(size(xx)) :: gammln_v
END FUNCTION gammln_v

END INTERFACE
INTERFACE gammp

FUNCTION gammp_s(a,x)
USE nrtype
REAL(SP), INTENT(IN) :: a,x
REAL(SP) :: gammp_s
END FUNCTION gammp_s

FUNCTION gammp_v(a,x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(size(a)) :: gammp_v
END FUNCTION gammp_v

END INTERFACE
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INTERFACE gammq
FUNCTION gammq_s(a,x)
USE nrtype
REAL(SP), INTENT(IN) :: a,x
REAL(SP) :: gammq_s
END FUNCTION gammq_s

FUNCTION gammq_v(a,x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(size(a)) :: gammq_v
END FUNCTION gammq_v

END INTERFACE
INTERFACE gasdev

SUBROUTINE gasdev_s(harvest)
USE nrtype
REAL(SP), INTENT(OUT) :: harvest
END SUBROUTINE gasdev_s

SUBROUTINE gasdev_v(harvest)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
END SUBROUTINE gasdev_v

END INTERFACE
INTERFACE

SUBROUTINE gaucof(a,b,amu0,x,w)
USE nrtype
REAL(SP), INTENT(IN) :: amu0
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
END SUBROUTINE gaucof

END INTERFACE
INTERFACE

SUBROUTINE gauher(x,w)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
END SUBROUTINE gauher

END INTERFACE
INTERFACE

SUBROUTINE gaujac(x,w,alf,bet)
USE nrtype
REAL(SP), INTENT(IN) :: alf,bet
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
END SUBROUTINE gaujac

END INTERFACE
INTERFACE

SUBROUTINE gaulag(x,w,alf)
USE nrtype
REAL(SP), INTENT(IN) :: alf
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
END SUBROUTINE gaulag

END INTERFACE
INTERFACE

SUBROUTINE gauleg(x1,x2,x,w)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
END SUBROUTINE gauleg

END INTERFACE
INTERFACE

SUBROUTINE gaussj(a,b)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a,b
END SUBROUTINE gaussj

END INTERFACE
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INTERFACE gcf
FUNCTION gcf_s(a,x,gln)
USE nrtype
REAL(SP), INTENT(IN) :: a,x
REAL(SP), OPTIONAL, INTENT(OUT) :: gln
REAL(SP) :: gcf_s
END FUNCTION gcf_s

FUNCTION gcf_v(a,x,gln)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(:), OPTIONAL, INTENT(OUT) :: gln
REAL(SP), DIMENSION(size(a)) :: gcf_v
END FUNCTION gcf_v

END INTERFACE
INTERFACE

FUNCTION golden(ax,bx,cx,func,tol,xmin)
USE nrtype
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: golden
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END FUNCTION golden

END INTERFACE
INTERFACE gser

FUNCTION gser_s(a,x,gln)
USE nrtype
REAL(SP), INTENT(IN) :: a,x
REAL(SP), OPTIONAL, INTENT(OUT) :: gln
REAL(SP) :: gser_s
END FUNCTION gser_s

FUNCTION gser_v(a,x,gln)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(:), OPTIONAL, INTENT(OUT) :: gln
REAL(SP), DIMENSION(size(a)) :: gser_v
END FUNCTION gser_v

END INTERFACE
INTERFACE

SUBROUTINE hqr(a,wr,wi)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: wr,wi
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
END SUBROUTINE hqr

END INTERFACE
INTERFACE

SUBROUTINE hunt(xx,x,jlo)
USE nrtype
INTEGER(I4B), INTENT(INOUT) :: jlo
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
END SUBROUTINE hunt

END INTERFACE
INTERFACE

SUBROUTINE hypdrv(s,ry,rdyds)
USE nrtype
REAL(SP), INTENT(IN) :: s
REAL(SP), DIMENSION(:), INTENT(IN) :: ry
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REAL(SP), DIMENSION(:), INTENT(OUT) :: rdyds
END SUBROUTINE hypdrv

END INTERFACE
INTERFACE

FUNCTION hypgeo(a,b,c,z)
USE nrtype
COMPLEX(SPC), INTENT(IN) :: a,b,c,z
COMPLEX(SPC) :: hypgeo
END FUNCTION hypgeo

END INTERFACE
INTERFACE

SUBROUTINE hypser(a,b,c,z,series,deriv)
USE nrtype
COMPLEX(SPC), INTENT(IN) :: a,b,c,z
COMPLEX(SPC), INTENT(OUT) :: series,deriv
END SUBROUTINE hypser

END INTERFACE
INTERFACE

FUNCTION icrc(crc,buf,jinit,jrev)
USE nrtype
CHARACTER(1), DIMENSION(:), INTENT(IN) :: buf
INTEGER(I2B), INTENT(IN) :: crc,jinit
INTEGER(I4B), INTENT(IN) :: jrev
INTEGER(I2B) :: icrc
END FUNCTION icrc

END INTERFACE
INTERFACE

FUNCTION igray(n,is)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n,is
INTEGER(I4B) :: igray
END FUNCTION igray

END INTERFACE
INTERFACE

RECURSIVE SUBROUTINE index_bypack(arr,index,partial)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: index
INTEGER, OPTIONAL, INTENT(IN) :: partial
END SUBROUTINE index_bypack

END INTERFACE
INTERFACE indexx

SUBROUTINE indexx_sp(arr,index)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: index
END SUBROUTINE indexx_sp
SUBROUTINE indexx_i4b(iarr,index)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: iarr
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: index
END SUBROUTINE indexx_i4b

END INTERFACE
INTERFACE

FUNCTION interp(uc)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(IN) :: uc
REAL(DP), DIMENSION(2*size(uc,1)-1,2*size(uc,1)-1) :: interp
END FUNCTION interp

END INTERFACE
INTERFACE

FUNCTION rank(indx)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
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INTEGER(I4B), DIMENSION(size(indx)) :: rank
END FUNCTION rank

END INTERFACE
INTERFACE

FUNCTION irbit1(iseed)
USE nrtype
INTEGER(I4B), INTENT(INOUT) :: iseed
INTEGER(I4B) :: irbit1
END FUNCTION irbit1

END INTERFACE
INTERFACE

FUNCTION irbit2(iseed)
USE nrtype
INTEGER(I4B), INTENT(INOUT) :: iseed
INTEGER(I4B) :: irbit2
END FUNCTION irbit2

END INTERFACE
INTERFACE

SUBROUTINE jacobi(a,d,v,nrot)
USE nrtype
INTEGER(I4B), INTENT(OUT) :: nrot
REAL(SP), DIMENSION(:), INTENT(OUT) :: d
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: v
END SUBROUTINE jacobi

END INTERFACE
INTERFACE

SUBROUTINE jacobn(x,y,dfdx,dfdy)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dfdx
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dfdy
END SUBROUTINE jacobn

END INTERFACE
INTERFACE

FUNCTION julday(mm,id,iyyy)
USE nrtype
INTEGER(I4B), INTENT(IN) :: mm,id,iyyy
INTEGER(I4B) :: julday
END FUNCTION julday

END INTERFACE
INTERFACE

SUBROUTINE kendl1(data1,data2,tau,z,prob)
USE nrtype
REAL(SP), INTENT(OUT) :: tau,z,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
END SUBROUTINE kendl1

END INTERFACE
INTERFACE

SUBROUTINE kendl2(tab,tau,z,prob)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: tab
REAL(SP), INTENT(OUT) :: tau,z,prob
END SUBROUTINE kendl2

END INTERFACE
INTERFACE

FUNCTION kermom(y,m)
USE nrtype
REAL(DP), INTENT(IN) :: y
INTEGER(I4B), INTENT(IN) :: m
REAL(DP), DIMENSION(m) :: kermom
END FUNCTION kermom

END INTERFACE
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INTERFACE
SUBROUTINE ks2d1s(x1,y1,quadvl,d1,prob)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x1,y1
REAL(SP), INTENT(OUT) :: d1,prob
INTERFACE

SUBROUTINE quadvl(x,y,fa,fb,fc,fd)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd
END SUBROUTINE quadvl

END INTERFACE
END SUBROUTINE ks2d1s

END INTERFACE
INTERFACE

SUBROUTINE ks2d2s(x1,y1,x2,y2,d,prob)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x1,y1,x2,y2
REAL(SP), INTENT(OUT) :: d,prob
END SUBROUTINE ks2d2s

END INTERFACE
INTERFACE

SUBROUTINE ksone(data,func,d,prob)
USE nrtype
REAL(SP), INTENT(OUT) :: d,prob
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE ksone

END INTERFACE
INTERFACE

SUBROUTINE kstwo(data1,data2,d,prob)
USE nrtype
REAL(SP), INTENT(OUT) :: d,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
END SUBROUTINE kstwo

END INTERFACE
INTERFACE

SUBROUTINE laguer(a,x,its)
USE nrtype
INTEGER(I4B), INTENT(OUT) :: its
COMPLEX(SPC), INTENT(INOUT) :: x
COMPLEX(SPC), DIMENSION(:), INTENT(IN) :: a
END SUBROUTINE laguer

END INTERFACE
INTERFACE

SUBROUTINE lfit(x,y,sig,a,maska,covar,chisq,funcs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sig
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: maska
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: covar
REAL(SP), INTENT(OUT) :: chisq
INTERFACE

SUBROUTINE funcs(x,arr)
USE nrtype
REAL(SP),INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: arr
END SUBROUTINE funcs
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END INTERFACE
END SUBROUTINE lfit

END INTERFACE
INTERFACE

SUBROUTINE linbcg(b,x,itol,tol,itmax,iter,err)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: b
REAL(DP), DIMENSION(:), INTENT(INOUT) :: x
INTEGER(I4B), INTENT(IN) :: itol,itmax
REAL(DP), INTENT(IN) :: tol
INTEGER(I4B), INTENT(OUT) :: iter
REAL(DP), INTENT(OUT) :: err
END SUBROUTINE linbcg

END INTERFACE
INTERFACE

SUBROUTINE linmin(p,xi,fret)
USE nrtype
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), TARGET, INTENT(INOUT) :: p,xi
END SUBROUTINE linmin

END INTERFACE
INTERFACE

SUBROUTINE lnsrch(xold,fold,g,p,x,f,stpmax,check,func)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xold,g
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
REAL(SP), INTENT(IN) :: fold,stpmax
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
REAL(SP), INTENT(OUT) :: f
LOGICAL(LGT), INTENT(OUT) :: check
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP) :: func
REAL(SP), DIMENSION(:), INTENT(IN) :: x
END FUNCTION func

END INTERFACE
END SUBROUTINE lnsrch

END INTERFACE
INTERFACE

FUNCTION locate(xx,x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), INTENT(IN) :: x
INTEGER(I4B) :: locate
END FUNCTION locate

END INTERFACE
INTERFACE

FUNCTION lop(u)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(IN) :: u
REAL(DP), DIMENSION(size(u,1),size(u,1)) :: lop
END FUNCTION lop

END INTERFACE
INTERFACE

SUBROUTINE lubksb(a,indx,b)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b
END SUBROUTINE lubksb

END INTERFACE
INTERFACE

SUBROUTINE ludcmp(a,indx,d)
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USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: indx
REAL(SP), INTENT(OUT) :: d
END SUBROUTINE ludcmp

END INTERFACE
INTERFACE

SUBROUTINE machar(ibeta,it,irnd,ngrd,machep,negep,iexp,minexp,&
maxexp,eps,epsneg,xmin,xmax)

USE nrtype
INTEGER(I4B), INTENT(OUT) :: ibeta,iexp,irnd,it,machep,maxexp,&

minexp,negep,ngrd
REAL(SP), INTENT(OUT) :: eps,epsneg,xmax,xmin
END SUBROUTINE machar

END INTERFACE
INTERFACE

SUBROUTINE medfit(x,y,a,b,abdev)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: a,b,abdev
END SUBROUTINE medfit

END INTERFACE
INTERFACE

SUBROUTINE memcof(data,xms,d)
USE nrtype
REAL(SP), INTENT(OUT) :: xms
REAL(SP), DIMENSION(:), INTENT(IN) :: data
REAL(SP), DIMENSION(:), INTENT(OUT) :: d
END SUBROUTINE memcof

END INTERFACE
INTERFACE

SUBROUTINE mgfas(u,maxcyc)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: maxcyc
END SUBROUTINE mgfas

END INTERFACE
INTERFACE

SUBROUTINE mglin(u,ncycle)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: ncycle
END SUBROUTINE mglin

END INTERFACE
INTERFACE

SUBROUTINE midexp(funk,aa,bb,s,n)
USE nrtype
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
END SUBROUTINE midexp

END INTERFACE
INTERFACE

SUBROUTINE midinf(funk,aa,bb,s,n)
USE nrtype
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
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INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
END SUBROUTINE midinf

END INTERFACE
INTERFACE

SUBROUTINE midpnt(func,a,b,s,n)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE midpnt

END INTERFACE
INTERFACE

SUBROUTINE midsql(funk,aa,bb,s,n)
USE nrtype
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
END SUBROUTINE midsql

END INTERFACE
INTERFACE

SUBROUTINE midsqu(funk,aa,bb,s,n)
USE nrtype
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
END SUBROUTINE midsqu

END INTERFACE
INTERFACE

RECURSIVE SUBROUTINE miser(func,regn,ndim,npts,dith,ave,var)
USE nrtype
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP) :: func
REAL(SP), DIMENSION(:), INTENT(IN) :: x
END FUNCTION func
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END INTERFACE
REAL(SP), DIMENSION(:), INTENT(IN) :: regn
INTEGER(I4B), INTENT(IN) :: ndim,npts
REAL(SP), INTENT(IN) :: dith
REAL(SP), INTENT(OUT) :: ave,var
END SUBROUTINE miser

END INTERFACE
INTERFACE

SUBROUTINE mmid(y,dydx,xs,htot,nstep,yout,derivs)
USE nrtype
INTEGER(I4B), INTENT(IN) :: nstep
REAL(SP), INTENT(IN) :: xs,htot
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE mmid

END INTERFACE
INTERFACE

SUBROUTINE mnbrak(ax,bx,cx,fa,fb,fc,func)
USE nrtype
REAL(SP), INTENT(INOUT) :: ax,bx
REAL(SP), INTENT(OUT) :: cx,fa,fb,fc
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE mnbrak

END INTERFACE
INTERFACE

SUBROUTINE mnewt(ntrial,x,tolx,tolf,usrfun)
USE nrtype
INTEGER(I4B), INTENT(IN) :: ntrial
REAL(SP), INTENT(IN) :: tolx,tolf
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
INTERFACE

SUBROUTINE usrfun(x,fvec,fjac)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: fvec
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: fjac
END SUBROUTINE usrfun

END INTERFACE
END SUBROUTINE mnewt

END INTERFACE
INTERFACE

SUBROUTINE moment(data,ave,adev,sdev,var,skew,curt)
USE nrtype
REAL(SP), INTENT(OUT) :: ave,adev,sdev,var,skew,curt
REAL(SP), DIMENSION(:), INTENT(IN) :: data
END SUBROUTINE moment

END INTERFACE
INTERFACE

SUBROUTINE mp2dfr(a,s,n,m)
USE nrtype
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INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), INTENT(OUT) :: m
CHARACTER(1), DIMENSION(:), INTENT(INOUT) :: a
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: s
END SUBROUTINE mp2dfr

END INTERFACE
INTERFACE

SUBROUTINE mpdiv(q,r,u,v,n,m)
USE nrtype
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: q,r
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u,v
INTEGER(I4B), INTENT(IN) :: n,m
END SUBROUTINE mpdiv

END INTERFACE
INTERFACE

SUBROUTINE mpinv(u,v,n,m)
USE nrtype
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: u
CHARACTER(1), DIMENSION(:), INTENT(IN) :: v
INTEGER(I4B), INTENT(IN) :: n,m
END SUBROUTINE mpinv

END INTERFACE
INTERFACE

SUBROUTINE mpmul(w,u,v,n,m)
USE nrtype
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u,v
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w
INTEGER(I4B), INTENT(IN) :: n,m
END SUBROUTINE mpmul

END INTERFACE
INTERFACE

SUBROUTINE mppi(n)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
END SUBROUTINE mppi

END INTERFACE
INTERFACE

SUBROUTINE mprove(a,alud,indx,b,x)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a,alud
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
REAL(SP), DIMENSION(:), INTENT(IN) :: b
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
END SUBROUTINE mprove

END INTERFACE
INTERFACE

SUBROUTINE mpsqrt(w,u,v,n,m)
USE nrtype
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w,u
CHARACTER(1), DIMENSION(:), INTENT(IN) :: v
INTEGER(I4B), INTENT(IN) :: n,m
END SUBROUTINE mpsqrt

END INTERFACE
INTERFACE

SUBROUTINE mrqcof(x,y,sig,a,maska,alpha,beta,chisq,funcs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,a,sig
REAL(SP), DIMENSION(:), INTENT(OUT) :: beta
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: alpha
REAL(SP), INTENT(OUT) :: chisq
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: maska
INTERFACE

SUBROUTINE funcs(x,a,yfit,dyda)
USE nrtype
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REAL(SP), DIMENSION(:), INTENT(IN) :: x,a
REAL(SP), DIMENSION(:), INTENT(OUT) :: yfit
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dyda
END SUBROUTINE funcs

END INTERFACE
END SUBROUTINE mrqcof

END INTERFACE
INTERFACE

SUBROUTINE mrqmin(x,y,sig,a,maska,covar,alpha,chisq,funcs,alamda)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sig
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: covar,alpha
REAL(SP), INTENT(OUT) :: chisq
REAL(SP), INTENT(INOUT) :: alamda
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: maska
INTERFACE

SUBROUTINE funcs(x,a,yfit,dyda)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,a
REAL(SP), DIMENSION(:), INTENT(OUT) :: yfit
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dyda
END SUBROUTINE funcs

END INTERFACE
END SUBROUTINE mrqmin

END INTERFACE
INTERFACE

SUBROUTINE newt(x,check)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
LOGICAL(LGT), INTENT(OUT) :: check
END SUBROUTINE newt

END INTERFACE
INTERFACE

SUBROUTINE odeint(ystart,x1,x2,eps,h1,hmin,derivs,rkqs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: ystart
REAL(SP), INTENT(IN) :: x1,x2,eps,h1,hmin
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

SUBROUTINE rkqs(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext

INTERFACE
SUBROUTINE derivs(x,y,dydx)

USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE rkqs

END INTERFACE
END SUBROUTINE odeint
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END INTERFACE
INTERFACE

SUBROUTINE orthog(anu,alpha,beta,a,b)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: anu,alpha,beta
REAL(SP), DIMENSION(:), INTENT(OUT) :: a,b
END SUBROUTINE orthog

END INTERFACE
INTERFACE

SUBROUTINE pade(cof,resid)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(INOUT) :: cof
REAL(SP), INTENT(OUT) :: resid
END SUBROUTINE pade

END INTERFACE
INTERFACE

FUNCTION pccheb(d)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP), DIMENSION(size(d)) :: pccheb
END FUNCTION pccheb

END INTERFACE
INTERFACE

SUBROUTINE pcshft(a,b,d)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d
END SUBROUTINE pcshft

END INTERFACE
INTERFACE

SUBROUTINE pearsn(x,y,r,prob,z)
USE nrtype
REAL(SP), INTENT(OUT) :: r,prob,z
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
END SUBROUTINE pearsn

END INTERFACE
INTERFACE

SUBROUTINE period(x,y,ofac,hifac,px,py,jmax,prob)
USE nrtype
INTEGER(I4B), INTENT(OUT) :: jmax
REAL(SP), INTENT(IN) :: ofac,hifac
REAL(SP), INTENT(OUT) :: prob
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), DIMENSION(:), POINTER :: px,py
END SUBROUTINE period

END INTERFACE
INTERFACE plgndr

FUNCTION plgndr_s(l,m,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: l,m
REAL(SP), INTENT(IN) :: x
REAL(SP) :: plgndr_s
END FUNCTION plgndr_s

FUNCTION plgndr_v(l,m,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: l,m
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: plgndr_v
END FUNCTION plgndr_v

END INTERFACE
INTERFACE

FUNCTION poidev(xm)
USE nrtype
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REAL(SP), INTENT(IN) :: xm
REAL(SP) :: poidev
END FUNCTION poidev

END INTERFACE
INTERFACE

FUNCTION polcoe(x,y)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), DIMENSION(size(x)) :: polcoe
END FUNCTION polcoe

END INTERFACE
INTERFACE

FUNCTION polcof(xa,ya)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), DIMENSION(size(xa)) :: polcof
END FUNCTION polcof

END INTERFACE
INTERFACE

SUBROUTINE poldiv(u,v,q,r)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: u,v
REAL(SP), DIMENSION(:), INTENT(OUT) :: q,r
END SUBROUTINE poldiv

END INTERFACE
INTERFACE

SUBROUTINE polin2(x1a,x2a,ya,x1,x2,y,dy)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: ya
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), INTENT(OUT) :: y,dy
END SUBROUTINE polin2

END INTERFACE
INTERFACE

SUBROUTINE polint(xa,ya,x,y,dy)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: y,dy
END SUBROUTINE polint

END INTERFACE
INTERFACE

SUBROUTINE powell(p,xi,ftol,iter,fret)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: xi
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), INTENT(OUT) :: fret
END SUBROUTINE powell

END INTERFACE
INTERFACE

FUNCTION predic(data,d,nfut)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data,d
INTEGER(I4B), INTENT(IN) :: nfut
REAL(SP), DIMENSION(nfut) :: predic
END FUNCTION predic

END INTERFACE
INTERFACE

FUNCTION probks(alam)
USE nrtype
REAL(SP), INTENT(IN) :: alam
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REAL(SP) :: probks
END FUNCTION probks

END INTERFACE
INTERFACE psdes

SUBROUTINE psdes_s(lword,rword)
USE nrtype
INTEGER(I4B), INTENT(INOUT) :: lword,rword
END SUBROUTINE psdes_s

SUBROUTINE psdes_v(lword,rword)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: lword,rword
END SUBROUTINE psdes_v

END INTERFACE
INTERFACE

SUBROUTINE pwt(a,isign)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE pwt

END INTERFACE
INTERFACE

SUBROUTINE pwtset(n)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
END SUBROUTINE pwtset

END INTERFACE
INTERFACE pythag

FUNCTION pythag_dp(a,b)
USE nrtype
REAL(DP), INTENT(IN) :: a,b
REAL(DP) :: pythag_dp
END FUNCTION pythag_dp

FUNCTION pythag_sp(a,b)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: pythag_sp
END FUNCTION pythag_sp

END INTERFACE
INTERFACE

SUBROUTINE pzextr(iest,xest,yest,yz,dy)
USE nrtype
INTEGER(I4B), INTENT(IN) :: iest
REAL(SP), INTENT(IN) :: xest
REAL(SP), DIMENSION(:), INTENT(IN) :: yest
REAL(SP), DIMENSION(:), INTENT(OUT) :: yz,dy
END SUBROUTINE pzextr

END INTERFACE
INTERFACE

SUBROUTINE qrdcmp(a,c,d,sing)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: c,d
LOGICAL(LGT), INTENT(OUT) :: sing
END SUBROUTINE qrdcmp

END INTERFACE
INTERFACE

FUNCTION qromb(func,a,b)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qromb
INTERFACE

FUNCTION func(x)
USE nrtype
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REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END FUNCTION qromb

END INTERFACE
INTERFACE

FUNCTION qromo(func,a,b,choose)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qromo
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTERFACE

SUBROUTINE choose(funk,aa,bb,s,n)
USE nrtype
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
END SUBROUTINE choose

END INTERFACE
END FUNCTION qromo

END INTERFACE
INTERFACE

SUBROUTINE qroot(p,b,c,eps)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP), INTENT(INOUT) :: b,c
REAL(SP), INTENT(IN) :: eps
END SUBROUTINE qroot

END INTERFACE
INTERFACE

SUBROUTINE qrsolv(a,c,d,b)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(IN) :: c,d
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b
END SUBROUTINE qrsolv

END INTERFACE
INTERFACE

SUBROUTINE qrupdt(r,qt,u,v)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: r,qt
REAL(SP), DIMENSION(:), INTENT(INOUT) :: u
REAL(SP), DIMENSION(:), INTENT(IN) :: v
END SUBROUTINE qrupdt

END INTERFACE
INTERFACE

FUNCTION qsimp(func,a,b)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qsimp
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INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END FUNCTION qsimp

END INTERFACE
INTERFACE

FUNCTION qtrap(func,a,b)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qtrap
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END FUNCTION qtrap

END INTERFACE
INTERFACE

SUBROUTINE quadct(x,y,xx,yy,fa,fb,fc,fd)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP), DIMENSION(:), INTENT(IN) :: xx,yy
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd
END SUBROUTINE quadct

END INTERFACE
INTERFACE

SUBROUTINE quadmx(a)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: a
END SUBROUTINE quadmx

END INTERFACE
INTERFACE

SUBROUTINE quadvl(x,y,fa,fb,fc,fd)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd
END SUBROUTINE quadvl

END INTERFACE
INTERFACE

FUNCTION ran(idum)
INTEGER(selected_int_kind(9)), INTENT(INOUT) :: idum
REAL :: ran
END FUNCTION ran

END INTERFACE
INTERFACE ran0

SUBROUTINE ran0_s(harvest)
USE nrtype
REAL(SP), INTENT(OUT) :: harvest
END SUBROUTINE ran0_s

SUBROUTINE ran0_v(harvest)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
END SUBROUTINE ran0_v

END INTERFACE
INTERFACE ran1

SUBROUTINE ran1_s(harvest)
USE nrtype
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REAL(SP), INTENT(OUT) :: harvest
END SUBROUTINE ran1_s

SUBROUTINE ran1_v(harvest)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
END SUBROUTINE ran1_v

END INTERFACE
INTERFACE ran2

SUBROUTINE ran2_s(harvest)
USE nrtype
REAL(SP), INTENT(OUT) :: harvest
END SUBROUTINE ran2_s

SUBROUTINE ran2_v(harvest)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
END SUBROUTINE ran2_v

END INTERFACE
INTERFACE ran3

SUBROUTINE ran3_s(harvest)
USE nrtype
REAL(SP), INTENT(OUT) :: harvest
END SUBROUTINE ran3_s

SUBROUTINE ran3_v(harvest)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
END SUBROUTINE ran3_v

END INTERFACE
INTERFACE

SUBROUTINE ratint(xa,ya,x,y,dy)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: y,dy
END SUBROUTINE ratint

END INTERFACE
INTERFACE

SUBROUTINE ratlsq(func,a,b,mm,kk,cof,dev)
USE nrtype
REAL(DP), INTENT(IN) :: a,b
INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(:), INTENT(OUT) :: cof
REAL(DP), INTENT(OUT) :: dev
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE ratlsq

END INTERFACE
INTERFACE ratval

FUNCTION ratval_s(x,cof,mm,kk)
USE nrtype
REAL(DP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(mm+kk+1), INTENT(IN) :: cof
REAL(DP) :: ratval_s
END FUNCTION ratval_s

FUNCTION ratval_v(x,cof,mm,kk)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: x
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INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(mm+kk+1), INTENT(IN) :: cof
REAL(DP), DIMENSION(size(x)) :: ratval_v
END FUNCTION ratval_v

END INTERFACE
INTERFACE rc

FUNCTION rc_s(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: rc_s
END FUNCTION rc_s

FUNCTION rc_v(x,y)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), DIMENSION(size(x)) :: rc_v
END FUNCTION rc_v

END INTERFACE
INTERFACE rd

FUNCTION rd_s(x,y,z)
USE nrtype
REAL(SP), INTENT(IN) :: x,y,z
REAL(SP) :: rd_s
END FUNCTION rd_s

FUNCTION rd_v(x,y,z)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,z
REAL(SP), DIMENSION(size(x)) :: rd_v
END FUNCTION rd_v

END INTERFACE
INTERFACE realft

SUBROUTINE realft_dp(data,isign,zdata)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
COMPLEX(DPC), DIMENSION(:), OPTIONAL, TARGET :: zdata
END SUBROUTINE realft_dp

SUBROUTINE realft_sp(data,isign,zdata)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
COMPLEX(SPC), DIMENSION(:), OPTIONAL, TARGET :: zdata
END SUBROUTINE realft_sp

END INTERFACE
INTERFACE

RECURSIVE FUNCTION recur1(a,b) RESULT(u)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b
REAL(SP), DIMENSION(size(a)) :: u
END FUNCTION recur1

END INTERFACE
INTERFACE

FUNCTION recur2(a,b,c)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,c
REAL(SP), DIMENSION(size(a)) :: recur2
END FUNCTION recur2

END INTERFACE
INTERFACE

SUBROUTINE relax(u,rhs)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), DIMENSION(:,:), INTENT(IN) :: rhs
END SUBROUTINE relax
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END INTERFACE
INTERFACE

SUBROUTINE relax2(u,rhs)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), DIMENSION(:,:), INTENT(IN) :: rhs
END SUBROUTINE relax2

END INTERFACE
INTERFACE
FUNCTION resid(u,rhs)

USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(IN) :: u,rhs
REAL(DP), DIMENSION(size(u,1),size(u,1)) :: resid
END FUNCTION resid

END INTERFACE
INTERFACE rf

FUNCTION rf_s(x,y,z)
USE nrtype
REAL(SP), INTENT(IN) :: x,y,z
REAL(SP) :: rf_s
END FUNCTION rf_s

FUNCTION rf_v(x,y,z)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,z
REAL(SP), DIMENSION(size(x)) :: rf_v
END FUNCTION rf_v

END INTERFACE
INTERFACE rj

FUNCTION rj_s(x,y,z,p)
USE nrtype
REAL(SP), INTENT(IN) :: x,y,z,p
REAL(SP) :: rj_s
END FUNCTION rj_s

FUNCTION rj_v(x,y,z,p)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,z,p
REAL(SP), DIMENSION(size(x)) :: rj_v
END FUNCTION rj_v

END INTERFACE
INTERFACE

SUBROUTINE rk4(y,dydx,x,h,yout,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx
REAL(SP), INTENT(IN) :: x,h
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE rk4

END INTERFACE
INTERFACE

SUBROUTINE rkck(y,dydx,x,h,yout,yerr,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx
REAL(SP), INTENT(IN) :: x,h
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout,yerr
INTERFACE

SUBROUTINE derivs(x,y,dydx)
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USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE rkck

END INTERFACE
INTERFACE

SUBROUTINE rkdumb(vstart,x1,x2,nstep,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: vstart
REAL(SP), INTENT(IN) :: x1,x2
INTEGER(I4B), INTENT(IN) :: nstep
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE rkdumb

END INTERFACE
INTERFACE

SUBROUTINE rkqs(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE rkqs

END INTERFACE
INTERFACE

SUBROUTINE rlft2(data,spec,speq,isign)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: data
COMPLEX(SPC), DIMENSION(:,:), INTENT(OUT) :: spec
COMPLEX(SPC), DIMENSION(:), INTENT(OUT) :: speq
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE rlft2

END INTERFACE
INTERFACE

SUBROUTINE rlft3(data,spec,speq,isign)
USE nrtype
REAL(SP), DIMENSION(:,:,:), INTENT(INOUT) :: data
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(OUT) :: spec
COMPLEX(SPC), DIMENSION(:,:), INTENT(OUT) :: speq
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE rlft3

END INTERFACE
INTERFACE

SUBROUTINE rotate(r,qt,i,a,b)
USE nrtype
REAL(SP), DIMENSION(:,:), TARGET, INTENT(INOUT) :: r,qt
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INTEGER(I4B), INTENT(IN) :: i
REAL(SP), INTENT(IN) :: a,b
END SUBROUTINE rotate

END INTERFACE
INTERFACE

SUBROUTINE rsolv(a,d,b)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b
END SUBROUTINE rsolv

END INTERFACE
INTERFACE

FUNCTION rstrct(uf)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(IN) :: uf
REAL(DP), DIMENSION((size(uf,1)+1)/2,(size(uf,1)+1)/2) :: rstrct
END FUNCTION rstrct

END INTERFACE
INTERFACE

FUNCTION rtbis(func,x1,x2,xacc)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtbis
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END FUNCTION rtbis

END INTERFACE
INTERFACE

FUNCTION rtflsp(func,x1,x2,xacc)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtflsp
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END FUNCTION rtflsp

END INTERFACE
INTERFACE

FUNCTION rtnewt(funcd,x1,x2,xacc)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtnewt
INTERFACE

SUBROUTINE funcd(x,fval,fderiv)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: fval,fderiv
END SUBROUTINE funcd

END INTERFACE
END FUNCTION rtnewt

END INTERFACE
INTERFACE

FUNCTION rtsafe(funcd,x1,x2,xacc)
USE nrtype



Appendix C2. Alphabetical Listing of Explicit Interfaces 1423

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtsafe
INTERFACE

SUBROUTINE funcd(x,fval,fderiv)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: fval,fderiv
END SUBROUTINE funcd

END INTERFACE
END FUNCTION rtsafe

END INTERFACE
INTERFACE

FUNCTION rtsec(func,x1,x2,xacc)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtsec
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END FUNCTION rtsec

END INTERFACE
INTERFACE

SUBROUTINE rzextr(iest,xest,yest,yz,dy)
USE nrtype
INTEGER(I4B), INTENT(IN) :: iest
REAL(SP), INTENT(IN) :: xest
REAL(SP), DIMENSION(:), INTENT(IN) :: yest
REAL(SP), DIMENSION(:), INTENT(OUT) :: yz,dy
END SUBROUTINE rzextr

END INTERFACE
INTERFACE

FUNCTION savgol(nl,nrr,ld,m)
USE nrtype
INTEGER(I4B), INTENT(IN) :: nl,nrr,ld,m
REAL(SP), DIMENSION(nl+nrr+1) :: savgol
END FUNCTION savgol

END INTERFACE
INTERFACE

SUBROUTINE scrsho(func)
USE nrtype
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE scrsho

END INTERFACE
INTERFACE

FUNCTION select(k,arr)
USE nrtype
INTEGER(I4B), INTENT(IN) :: k
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
REAL(SP) :: select
END FUNCTION select

END INTERFACE
INTERFACE

FUNCTION select_bypack(k,arr)
USE nrtype
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INTEGER(I4B), INTENT(IN) :: k
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
REAL(SP) :: select_bypack
END FUNCTION select_bypack

END INTERFACE
INTERFACE

SUBROUTINE select_heap(arr,heap)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
REAL(SP), DIMENSION(:), INTENT(OUT) :: heap
END SUBROUTINE select_heap

END INTERFACE
INTERFACE

FUNCTION select_inplace(k,arr)
USE nrtype
INTEGER(I4B), INTENT(IN) :: k
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
REAL(SP) :: select_inplace
END FUNCTION select_inplace

END INTERFACE
INTERFACE

SUBROUTINE simplx(a,m1,m2,m3,icase,izrov,iposv)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: m1,m2,m3
INTEGER(I4B), INTENT(OUT) :: icase
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: izrov,iposv
END SUBROUTINE simplx

END INTERFACE
INTERFACE

SUBROUTINE simpr(y,dydx,dfdx,dfdy,xs,htot,nstep,yout,derivs)
USE nrtype
REAL(SP), INTENT(IN) :: xs,htot
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx,dfdx
REAL(SP), DIMENSION(:,:), INTENT(IN) :: dfdy
INTEGER(I4B), INTENT(IN) :: nstep
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE simpr

END INTERFACE
INTERFACE

SUBROUTINE sinft(y)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
END SUBROUTINE sinft

END INTERFACE
INTERFACE

SUBROUTINE slvsm2(u,rhs)
USE nrtype
REAL(DP), DIMENSION(3,3), INTENT(OUT) :: u
REAL(DP), DIMENSION(3,3), INTENT(IN) :: rhs
END SUBROUTINE slvsm2

END INTERFACE
INTERFACE

SUBROUTINE slvsml(u,rhs)
USE nrtype
REAL(DP), DIMENSION(3,3), INTENT(OUT) :: u
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REAL(DP), DIMENSION(3,3), INTENT(IN) :: rhs
END SUBROUTINE slvsml

END INTERFACE
INTERFACE

SUBROUTINE sncndn(uu,emmc,sn,cn,dn)
USE nrtype
REAL(SP), INTENT(IN) :: uu,emmc
REAL(SP), INTENT(OUT) :: sn,cn,dn
END SUBROUTINE sncndn

END INTERFACE
INTERFACE

FUNCTION snrm(sx,itol)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: sx
INTEGER(I4B), INTENT(IN) :: itol
REAL(DP) :: snrm
END FUNCTION snrm

END INTERFACE
INTERFACE

SUBROUTINE sobseq(x,init)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
INTEGER(I4B), OPTIONAL, INTENT(IN) :: init
END SUBROUTINE sobseq

END INTERFACE
INTERFACE

SUBROUTINE solvde(itmax,conv,slowc,scalv,indexv,nb,y)
USE nrtype
INTEGER(I4B), INTENT(IN) :: itmax,nb
REAL(SP), INTENT(IN) :: conv,slowc
REAL(SP), DIMENSION(:), INTENT(IN) :: scalv
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indexv
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: y
END SUBROUTINE solvde

END INTERFACE
INTERFACE

SUBROUTINE sor(a,b,c,d,e,f,u,rjac)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(IN) :: a,b,c,d,e,f
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), INTENT(IN) :: rjac
END SUBROUTINE sor

END INTERFACE
INTERFACE

SUBROUTINE sort(arr)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
END SUBROUTINE sort

END INTERFACE
INTERFACE

SUBROUTINE sort2(arr,slave)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr,slave
END SUBROUTINE sort2

END INTERFACE
INTERFACE

SUBROUTINE sort3(arr,slave1,slave2)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr,slave1,slave2
END SUBROUTINE sort3

END INTERFACE
INTERFACE

SUBROUTINE sort_bypack(arr)
USE nrtype
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REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
END SUBROUTINE sort_bypack

END INTERFACE
INTERFACE

SUBROUTINE sort_byreshape(arr)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
END SUBROUTINE sort_byreshape

END INTERFACE
INTERFACE

SUBROUTINE sort_heap(arr)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
END SUBROUTINE sort_heap

END INTERFACE
INTERFACE

SUBROUTINE sort_pick(arr)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
END SUBROUTINE sort_pick

END INTERFACE
INTERFACE

SUBROUTINE sort_radix(arr)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
END SUBROUTINE sort_radix

END INTERFACE
INTERFACE

SUBROUTINE sort_shell(arr)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
END SUBROUTINE sort_shell

END INTERFACE
INTERFACE

SUBROUTINE spctrm(p,k,ovrlap,unit,n_window)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: p
INTEGER(I4B), INTENT(IN) :: k
LOGICAL(LGT), INTENT(IN) :: ovrlap
INTEGER(I4B), OPTIONAL, INTENT(IN) :: n_window,unit
END SUBROUTINE spctrm

END INTERFACE
INTERFACE

SUBROUTINE spear(data1,data2,d,zd,probd,rs,probrs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: d,zd,probd,rs,probrs
END SUBROUTINE spear

END INTERFACE
INTERFACE sphbes

SUBROUTINE sphbes_s(n,x,sj,sy,sjp,syp)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: sj,sy,sjp,syp
END SUBROUTINE sphbes_s

SUBROUTINE sphbes_v(n,x,sj,sy,sjp,syp)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: sj,sy,sjp,syp
END SUBROUTINE sphbes_v

END INTERFACE
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INTERFACE
SUBROUTINE splie2(x1a,x2a,ya,y2a)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: ya
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: y2a
END SUBROUTINE splie2

END INTERFACE
INTERFACE

FUNCTION splin2(x1a,x2a,ya,y2a,x1,x2)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: ya,y2a
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP) :: splin2
END FUNCTION splin2

END INTERFACE
INTERFACE

SUBROUTINE spline(x,y,yp1,ypn,y2)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(IN) :: yp1,ypn
REAL(SP), DIMENSION(:), INTENT(OUT) :: y2
END SUBROUTINE spline

END INTERFACE
INTERFACE

FUNCTION splint(xa,ya,y2a,x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya,y2a
REAL(SP), INTENT(IN) :: x
REAL(SP) :: splint
END FUNCTION splint

END INTERFACE
INTERFACE sprsax

SUBROUTINE sprsax_dp(sa,x,b)
USE nrtype
TYPE(sprs2_dp), INTENT(IN) :: sa
REAL(DP), DIMENSION (:), INTENT(IN) :: x
REAL(DP), DIMENSION (:), INTENT(OUT) :: b
END SUBROUTINE sprsax_dp

SUBROUTINE sprsax_sp(sa,x,b)
USE nrtype
TYPE(sprs2_sp), INTENT(IN) :: sa
REAL(SP), DIMENSION (:), INTENT(IN) :: x
REAL(SP), DIMENSION (:), INTENT(OUT) :: b
END SUBROUTINE sprsax_sp

END INTERFACE
INTERFACE sprsdiag

SUBROUTINE sprsdiag_dp(sa,b)
USE nrtype
TYPE(sprs2_dp), INTENT(IN) :: sa
REAL(DP), DIMENSION(:), INTENT(OUT) :: b
END SUBROUTINE sprsdiag_dp

SUBROUTINE sprsdiag_sp(sa,b)
USE nrtype
TYPE(sprs2_sp), INTENT(IN) :: sa
REAL(SP), DIMENSION(:), INTENT(OUT) :: b
END SUBROUTINE sprsdiag_sp

END INTERFACE
INTERFACE sprsin

SUBROUTINE sprsin_sp(a,thresh,sa)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
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REAL(SP), INTENT(IN) :: thresh
TYPE(sprs2_sp), INTENT(OUT) :: sa
END SUBROUTINE sprsin_sp

SUBROUTINE sprsin_dp(a,thresh,sa)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(IN) :: a
REAL(DP), INTENT(IN) :: thresh
TYPE(sprs2_dp), INTENT(OUT) :: sa
END SUBROUTINE sprsin_dp

END INTERFACE
INTERFACE

SUBROUTINE sprstp(sa)
USE nrtype
TYPE(sprs2_sp), INTENT(INOUT) :: sa
END SUBROUTINE sprstp

END INTERFACE
INTERFACE sprstx

SUBROUTINE sprstx_dp(sa,x,b)
USE nrtype
TYPE(sprs2_dp), INTENT(IN) :: sa
REAL(DP), DIMENSION (:), INTENT(IN) :: x
REAL(DP), DIMENSION (:), INTENT(OUT) :: b
END SUBROUTINE sprstx_dp

SUBROUTINE sprstx_sp(sa,x,b)
USE nrtype
TYPE(sprs2_sp), INTENT(IN) :: sa
REAL(SP), DIMENSION (:), INTENT(IN) :: x
REAL(SP), DIMENSION (:), INTENT(OUT) :: b
END SUBROUTINE sprstx_sp

END INTERFACE
INTERFACE

SUBROUTINE stifbs(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE stifbs

END INTERFACE
INTERFACE

SUBROUTINE stiff(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs
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END INTERFACE
END SUBROUTINE stiff

END INTERFACE
INTERFACE

SUBROUTINE stoerm(y,d2y,xs,htot,nstep,yout,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: y,d2y
REAL(SP), INTENT(IN) :: xs,htot
INTEGER(I4B), INTENT(IN) :: nstep
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE stoerm

END INTERFACE
INTERFACE svbksb

SUBROUTINE svbksb_dp(u,w,v,b,x)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(IN) :: u,v
REAL(DP), DIMENSION(:), INTENT(IN) :: w,b
REAL(DP), DIMENSION(:), INTENT(OUT) :: x
END SUBROUTINE svbksb_dp

SUBROUTINE svbksb_sp(u,w,v,b,x)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: u,v
REAL(SP), DIMENSION(:), INTENT(IN) :: w,b
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
END SUBROUTINE svbksb_sp

END INTERFACE
INTERFACE svdcmp

SUBROUTINE svdcmp_dp(a,w,v)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(DP), DIMENSION(:), INTENT(OUT) :: w
REAL(DP), DIMENSION(:,:), INTENT(OUT) :: v
END SUBROUTINE svdcmp_dp

SUBROUTINE svdcmp_sp(a,w,v)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: w
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: v
END SUBROUTINE svdcmp_sp

END INTERFACE
INTERFACE

SUBROUTINE svdfit(x,y,sig,a,v,w,chisq,funcs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sig
REAL(SP), DIMENSION(:), INTENT(OUT) :: a,w
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: v
REAL(SP), INTENT(OUT) :: chisq
INTERFACE

FUNCTION funcs(x,n)
USE nrtype
REAL(SP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: funcs
END FUNCTION funcs

END INTERFACE
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END SUBROUTINE svdfit
END INTERFACE
INTERFACE

SUBROUTINE svdvar(v,w,cvm)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: v
REAL(SP), DIMENSION(:), INTENT(IN) :: w
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: cvm
END SUBROUTINE svdvar

END INTERFACE
INTERFACE

FUNCTION toeplz(r,y)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: r,y
REAL(SP), DIMENSION(size(y)) :: toeplz
END FUNCTION toeplz

END INTERFACE
INTERFACE

SUBROUTINE tptest(data1,data2,t,prob)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: t,prob
END SUBROUTINE tptest

END INTERFACE
INTERFACE

SUBROUTINE tqli(d,e,z)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d,e
REAL(SP), DIMENSION(:,:), OPTIONAL, INTENT(INOUT) :: z
END SUBROUTINE tqli

END INTERFACE
INTERFACE

SUBROUTINE trapzd(func,a,b,s,n)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE trapzd

END INTERFACE
INTERFACE

SUBROUTINE tred2(a,d,e,novectors)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: d,e
LOGICAL(LGT), OPTIONAL, INTENT(IN) :: novectors
END SUBROUTINE tred2

END INTERFACE
! On a purely serial machine, for greater efficiency, remove
! the generic name tridag from the following interface,
! and put it on the next one after that.

INTERFACE tridag
RECURSIVE SUBROUTINE tridag_par(a,b,c,r,u)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,c,r
REAL(SP), DIMENSION(:), INTENT(OUT) :: u
END SUBROUTINE tridag_par

END INTERFACE
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INTERFACE
SUBROUTINE tridag_ser(a,b,c,r,u)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,c,r
REAL(SP), DIMENSION(:), INTENT(OUT) :: u
END SUBROUTINE tridag_ser

END INTERFACE
INTERFACE

SUBROUTINE ttest(data1,data2,t,prob)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: t,prob
END SUBROUTINE ttest

END INTERFACE
INTERFACE

SUBROUTINE tutest(data1,data2,t,prob)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: t,prob
END SUBROUTINE tutest

END INTERFACE
INTERFACE

SUBROUTINE twofft(data1,data2,fft1,fft2)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
COMPLEX(SPC), DIMENSION(:), INTENT(OUT) :: fft1,fft2
END SUBROUTINE twofft

END INTERFACE
INTERFACE

FUNCTION vander(x,q)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: x,q
REAL(DP), DIMENSION(size(x)) :: vander
END FUNCTION vander

END INTERFACE
INTERFACE

SUBROUTINE vegas(region,func,init,ncall,itmx,nprn,tgral,sd,chi2a)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: region
INTEGER(I4B), INTENT(IN) :: init,ncall,itmx,nprn
REAL(SP), INTENT(OUT) :: tgral,sd,chi2a
INTERFACE

FUNCTION func(pt,wgt)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: pt
REAL(SP), INTENT(IN) :: wgt
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE vegas

END INTERFACE
INTERFACE

SUBROUTINE voltra(t0,h,t,f,g,ak)
USE nrtype
REAL(SP), INTENT(IN) :: t0,h
REAL(SP), DIMENSION(:), INTENT(OUT) :: t
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: f
INTERFACE

FUNCTION g(t)
USE nrtype
REAL(SP), INTENT(IN) :: t
REAL(SP), DIMENSION(:), POINTER :: g
END FUNCTION g
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FUNCTION ak(t,s)
USE nrtype
REAL(SP), INTENT(IN) :: t,s
REAL(SP), DIMENSION(:,:), POINTER :: ak
END FUNCTION ak

END INTERFACE
END SUBROUTINE voltra

END INTERFACE
INTERFACE

SUBROUTINE wt1(a,isign,wtstep)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
INTERFACE

SUBROUTINE wtstep(a,isign)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE wtstep

END INTERFACE
END SUBROUTINE wt1

END INTERFACE
INTERFACE

SUBROUTINE wtn(a,nn,isign,wtstep)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: nn
INTEGER(I4B), INTENT(IN) :: isign
INTERFACE

SUBROUTINE wtstep(a,isign)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE wtstep

END INTERFACE
END SUBROUTINE wtn

END INTERFACE
INTERFACE

FUNCTION wwghts(n,h,kermom)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: h
REAL(SP), DIMENSION(n) :: wwghts
INTERFACE

FUNCTION kermom(y,m)
USE nrtype
REAL(DP), INTENT(IN) :: y
INTEGER(I4B), INTENT(IN) :: m
REAL(DP), DIMENSION(m) :: kermom
END FUNCTION kermom

END INTERFACE
END FUNCTION wwghts

END INTERFACE
INTERFACE

SUBROUTINE zbrac(func,x1,x2,succes)
USE nrtype
REAL(SP), INTENT(INOUT) :: x1,x2
LOGICAL(LGT), INTENT(OUT) :: succes
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
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END INTERFACE
END SUBROUTINE zbrac

END INTERFACE
INTERFACE

SUBROUTINE zbrak(func,x1,x2,n,xb1,xb2,nb)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), INTENT(OUT) :: nb
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), POINTER :: xb1,xb2
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE zbrak

END INTERFACE
INTERFACE

FUNCTION zbrent(func,x1,x2,tol)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,tol
REAL(SP) :: zbrent
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END FUNCTION zbrent

END INTERFACE
INTERFACE

SUBROUTINE zrhqr(a,rtr,rti)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: rtr,rti
END SUBROUTINE zrhqr

END INTERFACE
INTERFACE

FUNCTION zriddr(func,x1,x2,xacc)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: zriddr
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END FUNCTION zriddr

END INTERFACE
INTERFACE

SUBROUTINE zroots(a,roots,polish)
USE nrtype
COMPLEX(SPC), DIMENSION(:), INTENT(IN) :: a
COMPLEX(SPC), DIMENSION(:), INTENT(OUT) :: roots
LOGICAL(LGT), INTENT(IN) :: polish
END SUBROUTINE zroots

END INTERFACE
END MODULE nr
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C3. Index of Programs and
Dependencies

The following table lists, in alphabetical order, all the routines in Volume 2
of Numerical Recipes. When a routine requires subsidiary routines, either from
this book or else user-supplied, the full dependency tree is shown: A routine
calls directly all routines to which it is connected by a solid line in the column
immediately to its right; it calls indirectly the connected routines in all columns to
its right. Typographical conventions: Routines from this book are in typewriter
font (e.g., eulsum, gammln). The smaller, slanted font is used for the second and
subsequent occurrences of a routine in a single dependency tree. (When you are
getting routines from the Numerical Recipes machine-readable media or hypertext
archives, you need specify names only in the larger, upright font.) User-supplied
routines are indicated by the use of text font and square brackets, e.g., [funcv].
Consult the text for individual specifications of these routines. The right-hand side
of the table lists chapter and page numbers for each program.

airy bessik . . . . . . . . . . B6 (p. 1121)
bessjy beschb chebev

amebsa ran1 ran state . . . . . . . B10 (p. 1222)
[func]

amoeba [func] . . . . . . . . . . . B10 (p. 1208)

anneal ran1 ran state . . . . . . . B10 (p. 1219)

arcmak . . . . . . . . . . . . . . B20 (p. 1349)

arcode arcmak . . . . . . . . . . . B20 (p. 1350)

avevar . . . . . . . . . . . . . . B14 (p. 1270)

badluk julday . . . . . . . . . . . B1 (p. 1011)
flmoon

balanc . . . . . . . . . . . . . . B11 (p. 1230)

banbks . . . . . . . . . . . . . . B2 (p. 1021)

bandec . . . . . . . . . . . . . . B2 (p. 1020)

banmul . . . . . . . . . . . . . . B2 (p. 1019)

bcucof . . . . . . . . . . . . . . B3 (p. 1049)

bcuint bcucof . . . . . . . . . . . B3 (p. 1050)

beschb chebev . . . . . . . . . . . B6 (p. 1118)

1434
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bessi bessi0 . . . . . . . . . . . B6 (p. 1114)

bessi0 . . . . . . . . . . . . . . B6 (p. 1109)

bessi1 . . . . . . . . . . . . . . B6 (p. 1111)

bessik beschb chebev . . . . . . . B6 (p. 1118)

bessj bessj0 . . . . . . . . . . . B6 (p. 1106)
bessj1

bessj0 . . . . . . . . . . . . . . B6 (p. 1101)

bessj1 . . . . . . . . . . . . . . B6 (p. 1103)

bessjy beschb chebev . . . . . . . B6 (p. 1115)

bessk bessk0 bessi0 . . . . . . . . B6 (p. 1113)
bessk1 bessi1

bessk0 bessi0 . . . . . . . . . . . B6 (p. 1110)

bessk1 bessi1 . . . . . . . . . . . B6 (p. 1112)

bessy bessy1 bessj1 . . . . . . . . B6 (p. 1105)
bessy0 bessj0

bessy0 bessj0 . . . . . . . . . . . B6 (p. 1102)

bessy1 bessj1 . . . . . . . . . . . B6 (p. 1104)

beta gammln . . . . . . . . . . . . B6 (p. 1089)

betacf . . . . . . . . . . . . . . B6 (p. 1099)

betai gammln . . . . . . . . . . . B6 (p. 1098)
betacf

bico factln gammln . . . . . . . . B6 (p. 1087)

bnldev ran1 ran state . . . . . . . B7 (p. 1155)
gammln

brent [func] . . . . . . . . . . . . B10 (p. 1204)

broydn fmin . . . . . . . . . . B9 (p. 1199)
fdjac [funcv]
qrdcmp

qrupdt rotate

pythag

rsolv

lnsrch fmin [funcv]

bsstep mmid [derivs] . . . . . . . B16 (p. 1303)
pzextr

caldat . . . . . . . . . . . . . . B1 (p. 1013)

chder . . . . . . . . . . . . . . . B5 (p. 1077)

chebev . . . . . . . . . . . . . . B5 (p. 1076)

chebft [func] . . . . . . . . . . . B5 (p. 1076)

chebpc . . . . . . . . . . . . . . B5 (p. 1078)

chint . . . . . . . . . . . . . . . B5 (p. 1078)

chixy . . . . . . . . . . . . . . . B15 (p. 1287)



1436 Appendix C3. Index of Programs and Dependencies

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

choldc . . . . . . . . . . . . . . B2 (p. 1038)

cholsl . . . . . . . . . . . . . . B2 (p. 1039)

chsone gammq gser . . . . . . . B14 (p. 1272)
gcf gammln

chstwo gammq gser . . . . . . . B14 (p. 1272)
gcf gammln

cisi . . . . . . . . . . . . . . . B6 (p. 1125)

cntab1 gammq gser . . . . . . . B14 (p. 1275)
gcf gammln

cntab2 . . . . . . . . . . . . . . B14 (p. 1275)

convlv realft four1 fourrow . . . . B13 (p. 1253)

correl realft four1 fourrow . . . . B13 (p. 1254)

cosft1 realft four1 fourrow . . . . B12 (p. 1245)

cosft2 realft four1 fourrow . . . . B12 (p. 1246)

covsrt . . . . . . . . . . . . . . B15 (p. 1289)

cyclic tridag . . . . . . . . . . . B2 (p. 1030)

daub4 . . . . . . . . . . . . . . . B13 (p. 1264)

dawson . . . . . . . . . . . . . . B6 (p. 1127)

dbrent [func] . . . . . . . . . . . B10 (p. 1205)
[dfunc]

ddpoly . . . . . . . . . . . . . . B5 (p. 1071)

decchk . . . . . . . . . . . . . . B20 (p. 1345)

dfpmin [func] . . . . . . . . . . . B10 (p. 1215)
[dfunc]
lnsrch [func]

dfridr [func] . . . . . . . . . . . B5 (p. 1075)

dftcor . . . . . . . . . . . . . . B13 (p. 1261)

dftint [func] . . . . . . . . . . . B13 (p. 1263)
realft four1 fourrow

polint

dftcor

difeq . . . . . . . . . . . . . . . B17 (p. 1320)

dlinmin mnbrak . . . . . . . . . B10 (p. 1212)
dbrent [func]

[dfunc]

eclass . . . . . . . . . . . . . . B8 (p. 1180)

eclazz [equiv] . . . . . . . . . . . B8 (p. 1180)

ei . . . . . . . . . . . . . . . . B6 (p. 1097)

eigsrt . . . . . . . . . . . . . . B11 (p. 1227)

elle rf . . . . . . . . . . . . . B6 (p. 1136)
rd
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ellf rf . . . . . . . . . . . . . B6 (p. 1135)

ellpi rf . . . . . . . . . . . . . B6 (p. 1136)
rj rc

rf

elmhes . . . . . . . . . . . . . . B11 (p. 1231)

erf gammp gser . . . . . . . . B6 (p. 1094)
gcf gammln

erfc gammp gser . . . . . . . . B6 (p. 1094)
gcf gammln

gammq gser

gcf gammln

erfcc . . . . . . . . . . . . . . . B6 (p. 1095)

eulsum . . . . . . . . . . . . . . B5 (p. 1070)

evlmem . . . . . . . . . . . . . . B13 (p. 1258)

expdev ran1 ran state . . . . . . . B7 (p. 1151)

expint . . . . . . . . . . . . . . B6 (p. 1096)

factln gammln . . . . . . . . . . . B6 (p. 1088)

factrl gammln . . . . . . . . . . . B6 (p. 1086)

fasper avevar . . . . . . . . . . . B13 (p. 1259)
realft four1 fourrow

fdjac [funcv] . . . . . . . . . . . B9 (p. 1197)

fgauss . . . . . . . . . . . . . . B15 (p. 1294)

fit gammq gser . . . . . . . . B15 (p. 1285)
gcf gammln

fitexy avevar . . . . . . . . . . . B15 (p. 1286)
fit gammq gser

gcf gammln

chixy

mnbrak

brent

gammq gser

gcf gammln

zbrent chixy

fixrts zroots laguer . . . . . . . B13 (p. 1257)
indexx

fleg . . . . . . . . . . . . . . . B15 (p. 1291)

flmoon . . . . . . . . . . . . . . B1 (p. 1010)

fmin [funcv] . . . . . . . . . . . . B9 (p. 1198)

four1 fourrow . . . . . . . . . . . B12 (p. 1239)

four1 alt fourcol . . . . . . . . . B12 (p. 1240)

four1 gather . . . . . . . . . . . . B12 (p. 1250)

four2 fourrow . . . . . . . . . . . B12 (p. 1241)
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four2 alt fourcol . . . . . . . . . B12 (p. 1242)

four3 fourrow 3d . . . . . . . . B12 (p. 1246)

four3 alt fourcol 3d . . . . . . . B12 (p. 1247)

fourcol . . . . . . . . . . . . . . B12 (p. 1237)

fourcol 3d . . . . . . . . . . . . . B12 (p. 1238)

fourn gather . . . . . . . . . . . . B12 (p. 1251)

fourrow . . . . . . . . . . . . . . B12 (p. 1235)

fourrow 3d . . . . . . . . . . . . . B12 (p. 1236)

fpoly . . . . . . . . . . . . . . . B15 (p. 1291)

fred2 gauleg . . . . . . . . . . . B18 (p. 1325)
[ak]
[g]
ludcmp

lubksb

fredex quadmx wwghts kermom . . . . B18 (p. 1331)
ludcmp

lubksb

fredin [ak] . . . . . . . . . . . . B18 (p. 1326)
[g]

frenel . . . . . . . . . . . . . . B6 (p. 1123)

frprmn [func] . . . . . . . . . . . B10 (p. 1214)
[dfunc]
linmin mnbrak

brent [func]

ftest avevar . . . . . . . . . . . B14 (p. 1271)
betai gammln

betacf

gamdev ran1 ran state . . . . . . . B7 (p. 1153)

gammln . . . . . . . . . . . . . . B6 (p. 1085)

gammp gser . . . . . . . . . . B6 (p. 1089)
gcf gammln

gammq gser . . . . . . . . . . B6 (p. 1090)
gcf gammln

gasdev ran1 ran state . . . . . . . B7 (p. 1152)

gaucof tqli pythag . . . . . . . . B4 (p. 1064)
eigsrt

gauher . . . . . . . . . . . . . . B4 (p. 1062)

gaujac gammln . . . . . . . . . . . B4 (p. 1063)

gaulag gammln . . . . . . . . . . . B4 (p. 1060)

gauleg . . . . . . . . . . . . . . B4 (p. 1059)

gaussj . . . . . . . . . . . . . . B2 (p. 1014)

gcf gammln . . . . . . . . . . . . B6 (p. 1092)
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golden [func] . . . . . . . . . . . B10 (p. 1202)

gser gammln . . . . . . . . . . . . B6 (p. 1090)

hqr . . . . . . . . . . . . . . . B11 (p. 1232)

hufdec hufmak . . . . . . . . . . . B20 (p. 1349)

hufenc hufmak . . . . . . . . . . . B20 (p. 1348)

hufmak . . . . . . . . . . . . . . B20 (p. 1346)

hunt . . . . . . . . . . . . . . . B3 (p. 1046)

hypdrv . . . . . . . . . . . . . . B6 (p. 1139)

hypgeo hypser . . . . . . . . . . . B6 (p. 1138)
odeint bsstep mmid

pzextr

hypdrv

hypser . . . . . . . . . . . . . . B6 (p. 1139)

icrc . . . . . . . . . . . . . . . B20 (p. 1344)

igray . . . . . . . . . . . . . . . B20 (p. 1344)

index bypack . . . . . . . . . . . . B8 (p. 1176)

indexx . . . . . . . . . . . . . . B8 (p. 1173)

interp . . . . . . . . . . . . . . B19 (p. 1337)

irbit1 . . . . . . . . . . . . . . B7 (p. 1159)

irbit2 . . . . . . . . . . . . . . B7 (p. 1160)

jacobi . . . . . . . . . . . . . . B11 (p. 1225)

jacobn . . . . . . . . . . . . . . B16 (p. 1309)

julday . . . . . . . . . . . . . . B1 (p. 1011)

kendl1 erfcc . . . . . . . . . . . B14 (p. 1279)

kendl2 erfcc . . . . . . . . . . . B14 (p. 1279)

kermom . . . . . . . . . . . . . . B18 (p. 1329)

ks2d1s quadct . . . . . . . . . . . B14 (p. 1281)
quadvl

pearsn betai gammln

betacf

probks

ks2d2s quadct . . . . . . . . . . . B14 (p. 1283)
pearsn betai gammln

betacf

probks

ksone sort . . . . . . . . . . . . B14 (p. 1273)
[func]
probks

kstwo sort2 . . . . . . . . . . . . B14 (p. 1273)
probks

laguer . . . . . . . . . . . . . . B9 (p. 1191)
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lfit [funcs] . . . . . . . . . . . . B15 (p. 1288)
gaussj

covsrt

linbcg atimes . . . . . . . . . . . B2 (p. 1034)
snrm

asolve

linmin mnbrak . . . . . . . . . B10 (p. 1211)
brent [func]

lnsrch [func] . . . . . . . . . . . B9 (p. 1195)

locate . . . . . . . . . . . . . . B3 (p. 1045)

lop . . . . . . . . . . . . . . . B19 (p. 1342)

lubksb . . . . . . . . . . . . . . B2 (p. 1017)

ludcmp . . . . . . . . . . . . . . B2 (p. 1016)

machar . . . . . . . . . . . . . . B20 (p. 1343)

medfit select . . . . . . . . . . . B15 (p. 1294)

memcof . . . . . . . . . . . . . . B13 (p. 1256)

mgfas rstrct . . . . . . . . . . . B19 (p. 1339)
slvsm2

interp

relax2

lop

mglin rstrct . . . . . . . . . . . B19 (p. 1334)
slvsml

interp

relax

resid

midexp [funk] . . . . . . . . . . . B4 (p. 1058)

midinf [funk] . . . . . . . . . . . B4 (p. 1056)

midpnt [func] . . . . . . . . . . . B4 (p. 1054)

midsql [funk] . . . . . . . . . . . B4 (p. 1057)

midsqu [funk] . . . . . . . . . . . B4 (p. 1057)

miser ran1 ran state . . . . . . . B7 (p. 1164)
[func]

mmid [derivs] . . . . . . . . . . B16 (p. 1302)

mnbrak [func] . . . . . . . . . . . B10 (p. 1201)

mnewt [usrfun] . . . . . . . . . . B9 (p. 1194)
ludcmp

lubksb

moment . . . . . . . . . . . . . . B14 (p. 1269)

mp2dfr mpops . . . . . . . . . . . B20 (p. 1357)
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mpdiv mpinv mpmul realft four1 fourrow B20 (p. 1356)
mpops

mpmul realft four1 fourrow

mpops

mpinv mpmul realft four1 fourrow . B20 (p. 1355)
mpops

mpmul realft four1 fourrow . . . . B20 (p. 1354)

mpops . . . . . . . . . . . . . . . B20 (p. 1352)

mppi mpsqrt mpmul realft four1 fourrow B20 (p. 1357)
mpops

mpops

mpmul realft four1 fourrow

mpinv mpmul realft four1 fourrow

mp2dfr mpops

mprove lubksb . . . . . . . . . . . B2 (p. 1022)

mpsqrt mpmul realft four1 fourrow . B20 (p. 1356)
mpops

mrqmin gaussj . . . . . . . . . . . B15 (p. 1292)
covsrt

[funcs]

newt fmin . . . . . . . . . . . B9 (p. 1196)
fdjac [funcv]
ludcmp

lubksb

lnsrch fmin [funcv]

odeint [derivs] . . . . . . . . . B16 (p. 1300)
rkqs [derivs]

rkck [derivs]

orthog . . . . . . . . . . . . . . B4 (p. 1064)

pade ludcmp . . . . . . . . . . . . B5 (p. 1080)
lubksb

mprove lubksb

pccheb . . . . . . . . . . . . . . B5 (p. 1080)

pcshft . . . . . . . . . . . . . . B5 (p. 1079)

pearsn betai gammln . . . . . . . . B14 (p. 1276)
betacf

period avevar . . . . . . . . . . . B13 (p. 1258)

plgndr . . . . . . . . . . . . . . B6 (p. 1122)

poidev ran1 ran state . . . . . . . B7 (p. 1154)
gammln

polcoe . . . . . . . . . . . . . . B3 (p. 1047)

polcof polint . . . . . . . . . . . B3 (p. 1048)

poldiv . . . . . . . . . . . . . . B5 (p. 1072)
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polin2 polint . . . . . . . . . . . B3 (p. 1049)

polint . . . . . . . . . . . . . . B3 (p. 1043)

powell [func] . . . . . . . . . . . B10 (p. 1210)
linmin mnbrak

brent [func]

predic . . . . . . . . . . . . . . B13 (p. 1257)

probks . . . . . . . . . . . . . . B14 (p. 1274)

psdes . . . . . . . . . . . . . . . B7 (p. 1156)

pwt pwtset . . . . . . . . . . . . B13 (p. 1266)

pwtset . . . . . . . . . . . . . . B13 (p. 1265)

pythag . . . . . . . . . . . . . . B2 (p. 1029)

pzextr . . . . . . . . . . . . . . B16 (p. 1305)

qrdcmp . . . . . . . . . . . . . . B2 (p. 1039)

qromb trapzd [func] . . . . . . . . B4 (p. 1054)
polint

qromo midpnt [func] . . . . . . . . B4 (p. 1055)
polint

qroot poldiv . . . . . . . . . . . B9 (p. 1193)

qrsolv rsolv . . . . . . . . . . . B2 (p. 1040)

qrupdt rotate . . . . . . . . . . . B2 (p. 1041)
pythag

qsimp trapzd [func] . . . . . . . . B4 (p. 1053)

qtrap trapzd [func] . . . . . . . . B4 (p. 1053)

quad3d polint . . . . . . . . . . . B4 (p. 1065)
[func]
[y1]
[y2]
[z1]
[z2]

quadct . . . . . . . . . . . . . . B14 (p. 1282)

quadmx wwghts kermom . . . . . . . B18 (p. 1330)

quadvl . . . . . . . . . . . . . . B14 (p. 1282)

ran . . . . . . . . . . . . . . . B7 (p. 1142)

ran0 ran state . . . . . . . . . . . B7 (p. 1148)

ran1 ran state . . . . . . . . . . . B7 (p. 1149)

ran2 ran state . . . . . . . . . . . B7 (p. 1150)

ran3 ran state . . . . . . . . . . . B7 (p. 1158)

ran state . . . . . . . . . . . . . B7 (p. 1144)

rank . . . . . . . . . . . . . . . B8 (p. 1176)

ratint . . . . . . . . . . . . . . B3 (p. 1043)
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ratlsq [func] . . . . . . . . . . . B5 (p. 1081)
svdcmp pythag

svbksb

ratval

ratval . . . . . . . . . . . . . . B5 (p. 1072)

rc . . . . . . . . . . . . . . . . B6 (p. 1134)

rd . . . . . . . . . . . . . . . . B6 (p. 1130)

realft four1 fourrow . . . . . . . B12 (p. 1243)

recur1 . . . . . . . . . . . . . . B5 (p. 1073)

recur2 . . . . . . . . . . . . . . B5 (p. 1074)

relax . . . . . . . . . . . . . . . B19 (p. 1338)

relax2 . . . . . . . . . . . . . . B19 (p. 1341)

resid . . . . . . . . . . . . . . . B19 (p. 1338)

rf . . . . . . . . . . . . . . . . B6 (p. 1128)

rj rc . . . . . . . . . . . . . . B6 (p. 1131)
rf

rk4 [derivs] . . . . . . . . . . . B16 (p. 1297)

rkck [derivs] . . . . . . . . . . B16 (p. 1299)

rkdumb [derivs] . . . . . . . . . B16 (p. 1297)
rk4 [derivs]

rkqs rkck [derivs] . . . . . . . B16 (p. 1298)

rlft2 four2 fourrow . . . . . . . . B12 (p. 1248)

rlft3 four3 fourrow 3d . . . . . B12 (p. 1249)

rotate . . . . . . . . . . . . . . B2 (p. 1041)

rsolv . . . . . . . . . . . . . . . B2 (p. 1040)

rstrct . . . . . . . . . . . . . . B19 (p. 1337)

rtbis [func] . . . . . . . . . . . . B9 (p. 1184)

rtflsp [func] . . . . . . . . . . . B9 (p. 1185)

rtnewt [funcd] . . . . . . . . . . . B9 (p. 1189)

rtsafe [funcd] . . . . . . . . . . . B9 (p. 1190)

rtsec [func] . . . . . . . . . . . . B9 (p. 1186)

rzextr . . . . . . . . . . . . . . B16 (p. 1306)

savgol ludcmp . . . . . . . . . . . B14 (p. 1283)
lubksb

scrsho [func] . . . . . . . . . . . B9 (p. 1182)

select . . . . . . . . . . . . . . B8 (p. 1177)

select bypack . . . . . . . . . . . . B8 (p. 1178)

select heap sort . . . . . . . . . . B8 (p. 1179)

select inplace select . . . . . . . . B8 (p. 1178)
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sfroid plgndr . . . . . . . . . . . B17 (p. 1319)
solvde difeq

shoot [load] . . . . . . . . . . . . B17 (p. 1314)
odeint [derivs]

rkqs rkck [derivs]
[score]

shootf [load1] . . . . . . . . . . . B17 (p. 1315)
odeint [derivs]

rkqs rkck [derivs]
[score]
[load2]

simplx . . . . . . . . . . . . . . B10 (p. 1216)

simpr ludcmp . . . . . . . . . . . B16 (p. 1310)
lubksb

[derivs]

sinft realft four1 fourrow . . . . B12 (p. 1245)

slvsm2 . . . . . . . . . . . . . . B19 (p. 1342)

slvsml . . . . . . . . . . . . . . B19 (p. 1337)

sncndn . . . . . . . . . . . . . . B6 (p. 1137)

snrm . . . . . . . . . . . . . . . B2 (p. 1036)

sobseq . . . . . . . . . . . . . . B7 (p. 1160)

solvde difeq . . . . . . . . . . . B17 (p. 1316)

sor . . . . . . . . . . . . . . . B19 (p. 1332)

sort . . . . . . . . . . . . . . . B8 (p. 1169)

sort2 indexx . . . . . . . . . . . B8 (p. 1170)

sort3 indexx . . . . . . . . . . . B8 (p. 1175)

sort bypack . . . . . . . . . . . . . B8 (p. 1171)

sort byreshape . . . . . . . . . . . . B8 (p. 1168)

sort heap . . . . . . . . . . . . . B8 (p. 1171)

sort pick . . . . . . . . . . . . . B8 (p. 1167)

sort radix . . . . . . . . . . . . . B8 (p. 1172)

sort shell . . . . . . . . . . . . . B8 (p. 1168)

spctrm four1 fourrow . . . . . . . B13 (p. 1254)

spear sort2 . . . . . . . . . . . . B14 (p. 1277)
erfcc

betai gammln

betacf

sphbes bessjy beschb chebev . . . . B6 (p. 1121)
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sphfpt newt fdjac shootf (q.v.) . . . B17 (p. 1322)
lnsrch

fmin shootf (q.v.)
ludcmp

lubksb

sphoot newt fdjac shoot (q.v.) . . . . B17 (p. 1321)
lnsrch

fmin shoot (q.v.)
ludcmp

lubksb

splie2 spline tridag . . . . . . . B3 (p. 1050)

splin2 splint locate . . . . . . . B3 (p. 1051)
spline tridag

spline tridag . . . . . . . . . . . B3 (p. 1044)

splint locate . . . . . . . . . . . B3 (p. 1045)

sprsax . . . . . . . . . . . . . . B2 (p. 1032)

sprsdiag . . . . . . . . . . . . . . B2 (p. 1033)

sprsin . . . . . . . . . . . . . . B2 (p. 1031)

sprstp . . . . . . . . . . . . . . B2 (p. 1033)

sprstx . . . . . . . . . . . . . . B2 (p. 1032)

stifbs jacobn . . . . . . . . . . . B16 (p. 1311)
simpr ludcmp

lubksb

pzextr

stiff jacobn . . . . . . . . . . . B16 (p. 1308)
ludcmp

lubksb

stoerm [derivs] . . . . . . . . . B16 (p. 1307)

svbksb . . . . . . . . . . . . . . B2 (p. 1022)

svdcmp pythag . . . . . . . . . . . B2 (p. 1023)

svdfit [funcs] . . . . . . . . . . . B15 (p. 1290)
svdcmp pythag

svbksb

svdvar . . . . . . . . . . . . . . B15 (p. 1290)

toeplz . . . . . . . . . . . . . . B2 (p. 1038)

tptest avevar . . . . . . . . . . . B14 (p. 1271)
betai gammln

betacf

tqli pythag . . . . . . . . . . . . B11 (p. 1228)

trapzd [func] . . . . . . . . . . . B4 (p. 1052)

tred2 . . . . . . . . . . . . . . . B11 (p. 1227)

tridag . . . . . . . . . . . . . . B2 (p. 1018)
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ttest avevar . . . . . . . . . . . B14 (p. 1269)
betai gammln

betacf

tutest avevar . . . . . . . . . . . B14 (p. 1270)
betai gammln

betacf

twofft four1 fourrow . . . . . . . B12 (p. 1242)

vander . . . . . . . . . . . . . . B2 (p. 1037)

vegas ran1 ran state . . . . . . . B7 (p. 1161)
[func]

voltra [g] . . . . . . . . . . . . B18 (p. 1326)
[ak]
ludcmp

lubksb

wt1 daub4 . . . . . . . . . . . . B13 (p. 1264)

wtn daub4 . . . . . . . . . . . . B13 (p. 1267)

wwghts kermom . . . . . . . . . . . B18 (p. 1328)

zbrac [func] . . . . . . . . . . . . B9 (p. 1183)

zbrak [func] . . . . . . . . . . . . B9 (p. 1184)

zbrent [func] . . . . . . . . . . . B9 (p. 1188)

zrhqr balanc . . . . . . . . . . . B9 (p. 1193)
hqr

indexx

zriddr [func] . . . . . . . . . . . B9 (p. 1187)

zroots laguer . . . . . . . . . . . B9 (p. 1192)
indexx
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In this index, page numbers 1 through 934 refer to Volume 1, Numerical Recipes in Fortran 77, while
page numbers 935 through 1446 refer to Volume 2, Numerical Recipes in Fortran 90. Front matter in
Volume 1 is indicated by page numbers in the range 1/i through 1/xxxi, while front matter in Volume
2 is indicated 2/i through 2/xx.

Abstract data types 2/xiii, 1030
Accelerated convergence of series 160ff.,

1070
Accuracy 19f.

achievable in minimization 392, 397, 404
achievable in root finding 346f.
contrasted with fidelity 832, 840
CPU different from memory 181
vs. stability 704, 729, 830, 844

Accuracy parameters 1362f.
Acknowledgments 1/xvi, 2/ix
Ada 2/x
Adams-Bashford-Moulton method 741
Adams’ stopping criterion 366
Adaptive integration 123, 135, 703, 708ff.,

720, 726, 731f., 737, 742ff., 788, 1298ff.,
1303, 1308f.

Monte Carlo 306ff., 1161ff.
Addition, multiple precision 907, 1353
Addition theorem, elliptic integrals 255
ADI (alternating direction implicit) method

847, 861f., 906
Adjoint operator 867
Adobe Illustrator 1/xvi, 2/xx
Advective equation 826
AGM (arithmetic geometric mean) 906
Airy function 204, 234, 243f.

routine for 244f., 1121
Aitken’s delta squared process 160
Aitken’s interpolation algorithm 102
Algol 2/x, 2/xiv
Algorithms, non-numerical 881ff., 1343ff.
Aliasing 495, 569

see also Fourier transform
all() intrinsic function 945, 948
All-poles model 566

see also Maximum entropy method (MEM)
All-zeros model 566

see also Periodogram
Allocatable array 938, 941, 952ff., 1197,

1212, 1266, 1293, 1306, 1336
allocate statement 938f., 941, 953f., 1197,

1266, 1293, 1306, 1336
allocated() intrinsic function 938, 952ff.,

1197, 1266, 1293
Allocation status 938, 952ff., 961, 1197,

1266, 1293

Alpha AXP 2/xix
Alternating-direction implicit method (ADI)

847, 861f., 906
Alternating series 160f., 1070
Alternative extended Simpson’s rule 128
American National Standards Institute (ANSI)

2/x, 2/xiii
Amoeba 403

see also Simplex, method of Nelder and
Mead

Amplification factor 828, 830, 832, 840, 845f.
Amplitude error 831
Analog-to-digital converter 812, 886
Analyticity 195
Analyze/factorize/operate package 64, 824
Anderson-Darling statistic 621
Andrew’s sine 697
Annealing, method of simulated 387f., 436ff.,

1219ff.
assessment 447
for continuous variables 437, 443ff., 1222
schedule 438
thermodynamic analogy 437
traveling salesman problem 438ff., 1219ff.

ANSI (American National Standards Institute)
2/x, 2/xiii

Antonov-Saleev variant of Sobol’ sequence
300, 1160

any() intrinsic function 945, 948
APL (computer language) 2/xi
Apple 1/xxiii

Macintosh 2/xix, 4, 886
Approximate inverse of matrix 49
Approximation of functions 99, 1043

by Chebyshev polynomials 185f., 513,
1076ff.

Padé approximant 194ff., 1080f.
by rational functions 197ff., 1081f.
by wavelets 594f., 782
see also Fitting

Argument
keyword 2/xiv, 947f., 1341
optional 2/xiv, 947f., 1092, 1228, 1230,

1256, 1272, 1275, 1340
Argument checking 994f., 1086, 1090, 1092,

1370f.

1447
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Arithmetic
arbitrary precision 881, 906ff., 1352ff.
floating point 881, 1343
IEEE standard 276, 882, 1343
rounding 882, 1343

Arithmetic coding 881, 902ff., 1349ff.
Arithmetic-geometric mean (AGM) method

906
Arithmetic-if statement 2/xi
Arithmetic progression 971f., 996, 1072,

1127, 1365, 1371f.
Array 953ff.

allocatable 938, 941, 952ff., 1197, 1212,
1266, 1293, 1306, 1336

allocated with pointer 941
allocation 953
array manipulation functions 950
array sections 939, 941, 943ff.
of arrays 2/xii, 956, 1336
associated pointer 953f.
assumed-shape 942
automatic 938, 954, 1197, 1212, 1336
centered subarray of 113
conformable to a scalar 942f., 965, 1094
constructor 2/xii, 968, 971, 1022, 1052,

1055, 1127
copying 991, 1034, 1327f., 1365f.
cumulative product 997f., 1072, 1086,

1375
cumulative sum 997, 1280f., 1365, 1375
deallocation 938, 953f., 1197, 1266, 1293
disassociated pointer 953
extents 938, 949
in Fortran 90 941
increasing storage for 955, 1070, 1302
index loss 967f.
index table 1173ff.
indices 942
inquiry functions 948ff.
intrinsic procedures 2/xiii, 948ff.
of length 0 944
of length 1 949
location of first “true” 993, 1041, 1369
location of maximum value 993, 1015,

1017, 1365, 1369
location of minimum value 993, 1369f.
manipulation functions 950, 1247
masked swapping of elements in two arrays

1368
operations on 942, 949, 964ff., 969, 1026,

1040, 1050, 1200, 1326
outer product 949, 1076
parallel features 941ff., 964ff., 985
passing variable number of arguments to

function 1022
of pointers forbidden 956, 1337
rank 938, 949
reallocation 955, 992, 1070f., 1365, 1368f.
reduction functions 948ff.
shape 938, 944, 949
size 938
skew sections 945, 985
stride 944
subscript bounds 942
subscript triplet 944

swapping elements of two arrays 991,
1015, 1365ff.

target 938
three-dimensional, in Fortran 90 1248
transformational functions 948ff.
unary and binary functions 949
undefined status 952ff., 961, 1266, 1293
zero-length 944

Array section 2/xiii, 943ff., 960
matches by shape 944
pointer alias 939, 944f., 1286, 1333
skew 2/xii, 945, 960, 985, 1284
vs. eoshift 1078

array copy() utility function 988, 991, 1034,
1153, 1278, 1328

arth() utility function 972, 974, 988, 996,
1072, 1086, 1127

replaces do-list 968
Artificial viscosity 831, 837
Ascending transformation, elliptic integrals

256
ASCII character set 6, 888, 896, 902
Assembly language 269
assert() utility function 988, 994, 1086, 1090,

1249
assert eq() utility function 988, 995, 1022
associated() intrinsic function 952f.
Associated Legendre polynomials 246ff., 764,

1122f., 1319
recurrence relation for 247
relation to Legendre polynomials 246

Association, measures of 604, 622ff., 1275
Assumed-shape array 942
Asymptotic series 161

exponential integral 218
Attenuation factors 583, 1261
Autocorrelation 492

in linear prediction 558
use of FFT 538f., 1254
Wiener-Khinchin theorem 492, 566f.

AUTODIN-II polynomial 890
Automatic array 938, 954, 1197, 1212, 1336

specifying size of 938, 954
Automatic deallocation 2/xv, 961
Autonomous differential equations 729f.
Autoregressive model (AR) see Maximum en-

tropy method (MEM)
Average deviation of distribution 605, 1269
Averaging kernel, in Backus-Gilbert method

807

Backsubstitution 33ff., 39, 42, 92, 1017
in band diagonal matrix 46, 1021
in Cholesky decomposition 90, 1039
complex equations 41
direct for computing A−1 · B 40
with QR decomposition 93, 1040
relaxation solution of boundary value prob-

lems 755, 1316
in singular value decomposition 56, 1022f.

Backtracking 419
in quasi-Newton methods 376f., 1195

Backus-Gilbert method 806ff.
Backus, John 2/x
Backward deflation 363
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Bader-Deuflhard method 730, 735, 1310f.
Bairstow’s method 364, 370, 1193
Balancing 476f., 1230f.
Band diagonal matrix 42ff., 1019

backsubstitution 46, 1021
LU decomposition 45, 1020
multiply by vector 44, 1019
storage 44, 1019

Band-pass filter 551, 554f.
wavelets 584, 592f.

Bandwidth limited function 495
Bank accounts, checksum for 894
Bar codes, checksum for 894
Bartlett window 547, 1254ff.
Base case, of recursive procedure 958
Base of representation 19, 882, 1343
BASIC, Numerical Recipes in 1, 2/x, 2/xviii
Basis functions in general linear least squares

665
Bayes’ Theorem 810
Bayesian

approach to inverse problems 799, 810f.,
816f.

contrasted with frequentist 810
vs. historic maximum entropy method

816f.
views on straight line fitting 664

Bays’ shuffle 270
Bernoulli number 132
Bessel functions 223ff., 234ff., 936, 1101ff.

asymptotic form 223f., 229f.
complex 204
continued fraction 234, 239
double precision 223
fractional order 223, 234ff., 1115ff.
Miller’s algorithm 175, 228, 1106
modified 229ff.
modified, fractional order 239ff.
modified, normalization formula 232, 240
modified, routines for 230ff., 1109ff.
normalization formula 175
parallel computation of 1107ff.
recurrence relation 172, 224, 232, 234
reflection formulas 236
reflection formulas, modified functions

241
routines for 225ff., 236ff., 1101ff.
routines for modified functions 241ff.,

1118
series for 160, 223
series for Kν 241
series for Yν 235
spherical 234, 245, 1121f.
turning point 234
Wronskian 234, 239

Best-fit parameters 650, 656, 660, 698, 1285ff.
see also Fitting

Beta function 206ff., 1089
incomplete see Incomplete beta function

BFGS algorithm see Broyden-Fletcher-Goldfarb-
Shanno algorithm

Bias, of exponent 19
Bias, removal in linear prediction 563
Biconjugacy 77

Biconjugate gradient method
elliptic partial differential equations 824
preconditioning 78f., 824, 1037
for sparse system 77, 599, 1034ff.

Bicubic interpolation 118f., 1049f.
Bicubic spline 120f., 1050f.
Big-endian 293
Bilinear interpolation 117
Binary constant, initialization 959
Binomial coefficients 206ff., 1087f.

recurrences for 209
Binomial probability function 208

cumulative 222f.
deviates from 281, 285f., 1155

Binormal distribution 631, 690
Biorthogonality 77
Bisection 111, 359, 1045f.

compared to minimum bracketing 390ff.
minimum finding with derivatives 399
root finding 343, 346f., 352f., 390, 469,

1184f.
BISYNCH 890
Bit 18

manipulation functions see Bitwise logical
functions

reversal in fast Fourier transform (FFT)
499f., 525

bit size() intrinsic function 951
Bitwise logical functions 2/xiii, 17, 287,

890f., 951
Block-by-block method 788
Block of statements 7
Bode’s rule 126
Boltzmann probability distribution 437
Boltzmann’s constant 437
Bootstrap method 686f.
Bordering method for Toeplitz matrix 85f.
Borwein and Borwein method for π 906,

1357
Boundary 155f., 425f., 745
Boundary conditions

for differential equations 701f.
initial value problems 702
in multigrid method 868f.
partial differential equations 508, 819ff.,

848ff.
for spheroidal harmonics 764
two-point boundary value problems 702,

745ff., 1314ff.
Boundary value problems see Differential

equations; Elliptic partial differential
equations; Two-point boundary value
problems

Box-Muller algorithm for normal deviate 279f.,
1152

Bracketing
of function minimum 343, 390ff., 402,

1201f.
of roots 341, 343ff., 353f., 362, 364, 369,

390, 1183f.
Branch cut, for hypergeometric function 203
Branching 9
Break iteration 14
Brenner, N.M. 500, 517
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Brent’s method
minimization 389, 395ff., 660f., 1204ff.,

1286
minimization, using derivative 389, 399,

1205
root finding 341, 349, 660f., 1188f., 1286

Broadcast (parallel capability) 965ff.
Broyden-Fletcher-Goldfarb-Shanno algorithm

390, 418ff., 1215
Broyden’s method 373, 382f., 386, 1199f.

singular Jacobian 386
btest() intrinsic function 951
Bubble sort 321, 1168
Bugs 4

in compilers 1/xvii
how to report 1/iv, 2/iv

Bulirsch-Stoer
algorithm for rational function interpolation

105f., 1043
method (differential equations) 202, 263,

702f., 706, 716, 718ff., 726, 740, 1138,
1303ff.

method (differential equations), stepsize
control 719, 726

for second order equations 726, 1307
Burg’s LP algorithm 561, 1256
Byte 18

C (programming language) 13, 2/viii
and case construct 1010
Numerical Recipes in 1, 2/x, 2/xvii

C++ 1/xiv, 2/viii, 2/xvi, 7f.
class templates 1083, 1106

Calendar algorithms 1f., 13ff., 1010ff.
Calibration 653
Capital letters in programs 3, 937
Cards, sorting a hand of 321
Carlson’s elliptic integrals 255f., 1128ff.
case construct 2/xiv, 1010

trapping errors 1036
Cash-Karp parameters 710, 1299f.
Cauchy probability distribution see Lorentzian

probability distribution
Cauchy problem for partial differential equa-

tions 818f.
Cayley’s representation of exp(−iHt) 844
CCITT (Comité Consultatif International Télé-

graphique et Téléphonique) 889f., 901
CCITT polynomial 889f.
ceiling() intrinsic function 947
Center of mass 295ff.
Central limit theorem 652f.
Central tendency, measures of 604ff., 1269
Change of variable

in integration 137ff., 788, 1056ff.
in Monte Carlo integration 298
in probability distribution 279

Character functions 952
Character variables, in Fortran 90 1183
Characteristic polynomial

digital filter 554
eigensystems 449, 469
linear prediction 559
matrix with a specified 368, 1193
of recurrence relation 175

Characteristics of partial differential equations
818

Chebyshev acceleration in successive over-
relaxation (SOR) 859f., 1332

Chebyshev approximation 84, 124, 183, 184ff.,
1076ff.

Clenshaw-Curtis quadrature 190
Clenshaw’s recurrence formula 187, 1076
coefficients for 185f., 1076
contrasted with Padé approximation 195
derivative of approximated function 183,

189, 1077f.
economization of series 192f., 195, 1080
for error function 214, 1095
even function 188
and fast cosine transform 513
gamma functions 236, 1118
integral of approximated function 189,

1078
odd function 188
polynomial fits derived from 191, 1078
rational function 197ff., 1081f.
Remes exchange algorithm for filter 553

Chebyshev polynomials 184ff., 1076ff.
continuous orthonormality 184
discrete orthonormality 185
explicit formulas for 184
formula for xk in terms of 193, 1080

Check digit 894, 1345f.
Checksum 881, 888

cyclic redundancy (CRC) 888ff., 1344f.
Cherry, sundae without a 809
Chi-by-eye 651
Chi-square fitting see Fitting; Least squares

fitting
Chi-square probability function 209ff., 215,

615, 654, 798, 1272
as boundary of confidence region 688f.
related to incomplete gamma function 215

Chi-square test 614f.
for binned data 614f., 1272
chi-by-eye 651
and confidence limit estimation 688f.
for contingency table 623ff., 1275
degrees of freedom 615f.
for inverse problems 797
least squares fitting 653ff., 1285
nonlinear models 675ff., 1292
rule of thumb 655
for straight line fitting 655ff., 1285
for straight line fitting, errors in both coor-

dinates 660, 1286ff.
for two binned data sets 616, 1272
unequal size samples 617

Chip rate 290
Chirp signal 556
Cholesky decomposition 89f., 423, 455, 1038

backsubstitution 90, 1039
operation count 90
pivoting 90
solution of normal equations 668

Circulant 585
Class, data type 7
Clenshaw-Curtis quadrature 124, 190, 512f.
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Clenshaw’s recurrence formula 176f., 191,
1078

for Chebyshev polynomials 187, 1076
stability 176f.

Clocking errors 891
CM computers (Thinking Machines Inc.) 964
CM Fortran 2/xv
cn function 261, 1137f.
Coarse-grid correction 864f.
Coarse-to-fine operator 864, 1337
Coding

arithmetic 902ff., 1349ff.
checksums 888, 1344
decoding a Huffman-encoded message

900, 1349
Huffman 896f., 1346ff.
run-length 901
variable length code 896, 1346ff.
Ziv-Lempel 896
see also Arithmetic coding; Huffman cod-

ing
Coefficients

binomial 208, 1087f.
for Gaussian quadrature 140ff., 1059ff.
for Gaussian quadrature, nonclassical weight

function 151ff., 788f., 1064
for quadrature formulas 125ff., 789, 1328

Cohen, Malcolm 2/xiv
Column degeneracy 22
Column operations on matrix 29, 31f.
Column totals 624
Combinatorial minimization see Annealing
Comité Consultatif International Télégraphique

et Téléphonique (CCITT) 889f., 901
Common block

obsolescent 2/xif.
superseded by internal subprogram 957,

1067
superseded by module 940, 953, 1298,

1320, 1322, 1324, 1330
Communication costs, in parallel processing

969, 981, 1250
Communication theory, use in adaptive integra-

tion 721
Communications protocol 888
Comparison function for rejection method

281
Compilers 964, 1364

CM Fortran 968
DEC (Digital Equipment Corp.) 2/viii
IBM (International Business Machines)

2/viii
Microsoft Fortran PowerStation 2/viii
NAG (Numerical Algorithms Group) 2/viii,

2/xiv
for parallel supercomputers 2/viii

Complementary error function 1094f.
see Error function

Complete elliptic integral see Elliptic integrals
Complex arithmetic 171f.

avoidance of in path integration 203
cubic equations 179f.
for linear equations 41
quadratic equations 178

Complex error function 252

Complex plane
fractal structure for Newton’s rule 360f.
path integration for function evaluation

201ff., 263, 1138
poles in 105, 160, 202f., 206, 554, 566,

718f.
Complex systems of linear equations 41f.
Compression of data 596f.
Concordant pair for Kendall’s tau 637, 1281
Condition number 53, 78
Confidence level 687, 691ff.
Confidence limits

bootstrap method 687f.
and chi-square 688f.
confidence region, confidence interval 687
on estimated model parameters 684ff.
by Monte Carlo simulation 684ff.
from singular value decomposition (SVD)

693f.
Confluent hypergeometric function 204, 239
Conformable arrays 942f., 1094
Conjugate directions 408f., 414ff., 1210
Conjugate gradient method

biconjugate 77, 1034
compared to variable metric method 418
elliptic partial differential equations 824
for minimization 390, 413ff., 804, 815,

1210, 1214
minimum residual method 78
preconditioner 78f., 1037
for sparse system 77ff., 599, 1034
and wavelets 599

Conservative differential equations 726, 1307
Constrained linear inversion method 799ff.
Constrained linear optimization see Linear pro-

gramming
Constrained optimization 387
Constraints, deterministic 804ff.
Constraints, linear 423
CONTAINS statement 954, 957, 1067, 1134,

1202
Contingency coefficient C 625, 1275
Contingency table 622ff., 638, 1275f.

statistics based on chi-square 623ff., 1275
statistics based on entropy 626ff., 1275f.

Continued fraction 163ff.
Bessel functions 234
convergence criterion 165
equivalence transformation 166
evaluation 163ff.
evaluation along with normalization condi-

tion 240
even and odd parts 166, 211, 216
even part 249, 251
exponential integral 216
Fresnel integral 248f.
incomplete beta function 219f., 1099f.
incomplete gamma function 211, 1092f.
Lentz’s method 165, 212
modified Lentz’s method 165
Pincherle’s theorem 175
ratio of Bessel functions 239
rational function approximation 164, 211,

219f.
recurrence for evaluating 164f.
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and recurrence relation 175
sine and cosine integrals 250f.
Steed’s method 164f.
tangent function 164
typography for 163

Continuous variable (statistics) 623
Control structures 7ff., 2/xiv

bad 15
named 959, 1219, 1305

Convergence
accelerated, for series 160ff., 1070
of algorithm for pi 906
criteria for 347, 392, 404, 483, 488, 679,

759
eigenvalues accelerated by shifting 470f.
golden ratio 349, 399
of golden section search 392f.
of Levenberg-Marquardt method 679
linear 346, 393
of QL method 470f.
quadratic 49, 351, 356, 409f., 419, 906
rate 346f., 353, 356
recurrence relation 175
of Ridders’ method 351
series vs. continued fraction 163f.
and spectral radius 856ff., 862

Conversion intrinsic functions 946f.
Convex sets, use in inverse problems 804
Convolution

denoted by asterisk 492
finite impulse response (FIR) 531
of functions 492, 503f.
of large data sets 536f.
for multiple precision arithmetic 909,

1354
multiplication as 909, 1354
necessity for optimal filtering 535
overlap-add method 537
overlap-save method 536f.
and polynomial interpolation 113
relation to wavelet transform 585
theorem 492, 531ff., 546
theorem, discrete 531ff.
treatment of end effects 533
use of FFT 523, 531ff., 1253
wraparound problem 533

Cooley-Tukey FFT algorithm 503, 1250
parallel version 1239f.

Co-processor, floating point 886
Copyright rules 1/xx, 2/xix
Cornwell-Evans algorithm 816
Corporate promotion ladder 328
Corrected two-pass algorithm 607, 1269
Correction, in multigrid method 863
Correlation coefficient (linear) 630ff., 1276
Correlation function 492

autocorrelation 492, 539, 558
and Fourier transforms 492
theorem 492, 538
treatment of end effects 538f.
using FFT 538f., 1254
Wiener-Khinchin theorem 492, 566f.

Correlation, statistical 603f., 622
Kendall’s tau 634, 637ff., 1279

linear correlation coefficient 630ff., 658,
1276

linear related to least square fitting 630,
658

nonparametric or rank statistical 633ff.,
1277

among parameters in a fit 657, 667, 670
in random number generators 268
Spearman rank-order coefficient 634f.,

1277
sum squared difference of ranks 634,

1277
Cosine function, recurrence 172
Cosine integral 248, 250ff., 1125f.

continued fraction 250
routine for 251f., 1125
series 250

Cosine transform see Fast Fourier transform
(FFT); Fourier transform

Coulomb wave function 204, 234
count() intrinsic function 948
Courant condition 829, 832ff., 836

multidimensional 846
Courant-Friedrichs-Lewy stability criterion see

Courant condition
Covariance

a priori 700
in general linear least squares 667, 671,

1288ff.
matrix, by Cholesky decomposition 91,

667
matrix, of errors 796, 808
matrix, is inverse of Hessian matrix 679
matrix, when it is meaningful 690ff.
in nonlinear models 679, 681, 1292
relation to chi-square 690ff.
from singular value decomposition (SVD)

693f.
in straight line fitting 657

cpu time() intrinsic function (Fortran 95) 961
CR method see Cyclic reduction (CR)
Cramer’s V 625, 1275
Crank-Nicholson method 840, 844, 846
Cray computers 964
CRC (cyclic redundancy check) 888ff., 1344f.
CRC-12 890
CRC-16 polynomial 890
CRC-CCITT 890
Creativity, essay on 9
Critical (Nyquist) sampling 494, 543
Cross (denotes matrix outer product) 66
Crosstabulation analysis 623

see also Contingency table
Crout’s algorithm 36ff., 45, 1017
cshift() intrinsic function 950

communication bottleneck 969
Cubic equations 178ff., 360
Cubic spline interpolation 107ff., 1044f.

see also Spline
cumprod() utility function 974, 988, 997,

1072, 1086
cumsum() utility function 974, 989, 997,

1280, 1305
Cumulant, of a polynomial 977, 999, 1071f.,

1192
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Cumulative binomial distribution 222f.
Cumulative Poisson function 214

related to incomplete gamma function 214
Curvature matrix see Hessian matrix
cycle statement 959, 1219
Cycle, in multigrid method 865
Cyclic Jacobi method 459, 1225
Cyclic reduction (CR) 848f., 852ff.

linear recurrences 974
tridiagonal systems 976, 1018

Cyclic redundancy check (CRC) 888ff., 1344f.
Cyclic tridiagonal systems 67, 1030

D .C. (direct current) 492
Danielson-Lanczos lemma 498f., 525, 1235ff.
DAP Fortran 2/xi
Data

assigning keys to 889
continuous vs. binned 614
entropy 626ff., 896, 1275
essay on 603
fitting 650ff., 1285ff.
fraudulent 655
glitches in 653
iid (independent and identically distributed)

686
modeling 650ff., 1285ff.
serial port 892
smoothing 604, 644ff., 1283f.
statistical tests 603ff., 1269ff.
unevenly or irregularly sampled 569, 574,

648f., 1258ff.
use of CRCs in manipulating 889
windowing 545ff., 1254
see also Statistical tests

Data compression 596f., 881
arithmetic coding 902ff., 1349ff.
cosine transform 513
Huffman coding 896f., 902, 1346ff.
linear predictive coding (LPC) 563ff.
lossless 896

Data Encryption Standard (DES) 290ff., 1144,
1147f., 1156ff.

Data hiding 956ff., 1209, 1293, 1296
Data parallelism 941, 964ff., 985
DATA statement 959

for binary, octal, hexadecimal constants
959

repeat count feature 959
superseded by initialization expression

943, 959, 1127
Data type 18, 936

accuracy parameters 1362f.
character 1183
derived 2/xiii, 937, 1030, 1336, 1346
derived, for array of arrays 956, 1336
derived, initialization 2/xv
derived, for Numerical Recipes 1361
derived, storage allocation 955
DP (double precision) 1361f.
DPC (double precision complex) 1361
I1B (1 byte integer) 1361
I2B (2 byte integer) 1361
I4B (4 byte integer) 1361

intrinsic 937
LGT (default logical type) 1361
nrtype.f90 1361f.
passing complex as real 1140
SP (single precision) 1361f.
SPC (single precision complex) 1361
user-defined 1346

DAUB4 584ff., 588, 590f., 594, 1264f.
DAUB6 586
DAUB12 598
DAUB20 590f., 1265
Daubechies wavelet coefficients 584ff., 588,

590f., 594, 598, 1264ff.
Davidon-Fletcher-Powell algorithm 390, 418ff.,

1215
Dawson’s integral 252ff., 600, 1127f.

approximation for 252f.
routine for 253f., 1127

dble() intrinsic function (deprecated) 947
deallocate statement 938f., 953f., 1197, 1266,

1293
Deallocation, of allocatable array 938, 953f.,

1197, 1266, 1293
Debugging 8
DEC (Digital Equipment Corp.) 1/xxiii, 2/xix,

886
Alpha AXP 2/viii
Fortran 90 compiler 2/viii
quadruple precision option 1362
VAX 4

Decomposition see Cholesky decomposition;
LU decomposition; QR decomposition;
Singular value decomposition (SVD)

Deconvolution 535, 540, 1253
see also Convolution; Fast Fourier trans-

form (FFT); Fourier transform
Defect, in multigrid method 863
Deferred approach to the limit see Richard-

son’s deferred approach to the limit
Deflation

of matrix 471
of polynomials 362ff., 370f., 977

Degeneracy of linear algebraic equations 22,
53, 57, 670

Degenerate kernel 785
Degenerate minimization principle 795
Degrees of freedom 615f., 654, 691
Dekker, T.J. 353
Demonstration programs 3, 936
Deprecated features

common block 2/xif., 940, 953, 957,
1067, 1298, 1320, 1322, 1324, 1330

dble() intrinsic function 947
EQUIVALENCE statement 2/xif., 1161,

1286
statement function 1057, 1256

Derivatives
computation via Chebyshev approximation

183, 189, 1077f.
computation via Savitzky-Golay filters

183, 645
matrix of first partial see Jacobian determi-

nant
matrix of second partial see Hessian ma-

trix
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numerical computation 180ff., 379, 645,
732, 750, 771, 1075, 1197, 1309

of polynomial 167, 978, 1071f.
use in optimization 388f., 399, 1205ff.

Derived data type see Data type, derived
DES see Data Encryption Standard
Descending transformation, elliptic integrals

256
Descent direction 376, 382, 419
Descriptive statistics 603ff., 1269ff.

see also Statistical tests
Design matrix 645, 665, 795, 801, 1082
Determinant 25, 41
Deviates, random see Random deviates
DFP algorithm see Davidon-Fletcher-Powell

algorithm
diagadd() utility function 985, 989, 1004
diagmult() utility function 985, 989, 1004,

1294
Diagonal dominance 43, 679, 780, 856
Difference equations, finite see Finite differ-

ence equations (FDEs)
Difference operator 161
Differential equations 701ff., 1297ff.

accuracy vs. stability 704, 729
Adams-Bashforth-Moulton schemes 741
adaptive stepsize control 703, 708ff., 719,

726, 731, 737, 742f., 1298ff., 1303ff.,
1308f., 1311ff.

algebraically difficult sets 763
backward Euler’s method 729
Bader-Deuflhard method for stiff 730,

735, 1310f.
boundary conditions 701f., 745ff., 749,

751f., 771, 1314ff.
Bulirsch-Stoer method 202, 263, 702, 706,

716, 718ff., 740, 1138, 1303
Bulirsch-Stoer method for conservative

equations 726, 1307
comparison of methods 702f., 739f., 743
conservative 726, 1307
danger of too small stepsize 714
eigenvalue problem 748, 764ff., 770ff.,

1319ff.
embedded Runge-Kutta method 709f.,

731, 1298, 1308
equivalence of multistep and multivalue

methods 743
Euler’s method 702, 704, 728f.
forward Euler’s method 728
free boundary problem 748, 776
high-order implicit methods 730ff., 1308ff.
implicit differencing 729, 740, 1308
initial value problems 702
internal boundary conditions 775ff.
internal singular points 775ff.
interpolation on right-hand sides 111
Kaps-Rentrop method for stiff 730, 1308
local extrapolation 709
modified midpoint method 716f., 719,

1302f.
multistep methods 740ff.
multivalue methods 740
order of method 704f., 719

path integration for function evaluation
201ff., 263, 1138

predictor-corrector methods 702, 730,
740ff.

reduction to first-order sets 701, 745
relaxation method 746f., 753ff., 1316ff.
relaxation method, example of 764ff.,

1319ff.
r.h.s. independent of x 729f.
Rosenbrock methods for stiff 730, 1308f.
Runge-Kutta method 702, 704ff., 708ff.,

731, 740, 1297f., 1308
Runge-Kutta method, high-order 705,

1297
Runge-Kutta-Fehlberg method 709ff.,

1298
scaling stepsize to required accuracy 709
second order 726, 1307
semi-implicit differencing 730
semi-implicit Euler method 730, 735f.
semi-implicit extrapolation method 730,

735f., 1311ff.
semi-implicit midpoint rule 735f., 1310f.
shooting method 746, 749ff., 1314ff.
shooting method, example 770ff., 1321ff.
similarity to Volterra integral equations

786
singular points 718f., 751, 775ff., 1315f.,

1323ff.
step doubling 708f.
stepsize control 703, 708ff., 719, 726,

731, 737, 742f., 1298, 1303ff., 1308f.
stiff 703, 727ff., 1308ff.
stiff methods compared 739
Stoermer’s rule 726, 1307
see also Partial differential equations; Two-

point boundary value problems
Diffusion equation 818, 838ff., 855

Crank-Nicholson method 840, 844, 846
Forward Time Centered Space (FTCS)

839ff., 855
implicit differencing 840
multidimensional 846

Digamma function 216
Digital filtering see Filter
Dihedral group D5 894
dim optional argument 948
Dimensional expansion 965ff.
Dimensions (units) 678
Diminishing increment sort 322, 1168
Dirac delta function 284, 780
Direct method see Periodogram
Direct methods for linear algebraic equations

26, 1014
Direct product see Outer product of matrices
Direction of largest decrease 410f.
Direction numbers, Sobol’s sequence 300
Direction-set methods for minimization 389,

406f., 1210ff.
Dirichlet boundary conditions 820, 840, 850,

856, 858
Disclaimer of warranty 1/xx, 2/xvii
Discordant pair for Kendall’s tau 637, 1281
Discrete convolution theorem 531ff.
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Discrete Fourier transform (DFT) 495ff.,
1235ff.

as approximate continuous transform 497
see also Fast Fourier transform (FFT)

Discrete optimization 436ff., 1219ff.
Discriminant 178, 457
Diskettes

are ANSI standard 3
how to order 1/xxi, 2/xvii

Dispersion 831
DISPO see Savitzky-Golay filters
Dissipation, numerical 830
Divergent series 161
Divide and conquer algorithm 1226, 1229
Division

complex 171
multiple precision 910f., 1356
of polynomials 169, 362, 370, 1072

dn function 261, 1137f.
Do-list, implied 968, 971, 1127
Do-loop 2/xiv
Do-until iteration 14
Do-while iteration 13
Dogleg step methods 386
Domain of integration 155f.
Dominant solution of recurrence relation 174
Dot (denotes matrix multiplication) 23
dot product() intrinsic function 945, 949,

969, 1216
Double exponential error distribution 696
Double precision

converting to 1362
as refuge of scoundrels 882
use in iterative improvement 47, 1022

Double root 341
Downhill simplex method see Simplex, method

of Nelder and Mead
DP, defined 937
Driver programs 3
Dual viewpoint, in multigrid method 875
Duplication theorem, elliptic integrals 256
DWT (discrete wavelet transform) see Wavelet

transform
Dynamical allocation of storage 2/xiii, 869,

938, 941f., 953ff., 1327, 1336
garbage collection 956
increasing 955, 1070, 1302

E ardley, D.M. 338
EBCDIC 890
Economization of power series 192f., 195,

1080
Eigensystems 449ff., 1225ff.

balancing matrix 476f., 1230f.
bounds on eigenvalues 50
calculation of few eigenvalues 454, 488
canned routines 454f.
characteristic polynomial 449, 469
completeness 450
defective 450, 476, 489
deflation 471
degenerate eigenvalues 449ff.
elimination method 453, 478, 1231
factorization method 453

fast Givens reduction 463
generalized eigenproblem 455
Givens reduction 462f.
Hermitian matrix 475
Hessenberg matrix 453, 470, 476ff., 488,

1232
Householder transformation 453, 462ff.,

469, 473, 475, 478, 1227f., 1231
ill-conditioned eigenvalues 477
implicit shifts 472ff., 1228f.
and integral equations 779, 785
invariance under similarity transform 452
inverse iteration 455, 469, 476, 487ff.,

1230
Jacobi transformation 453, 456ff., 462,

475, 489, 1225f.
left eigenvalues 451
list of tasks 454f.
multiple eigenvalues 489
nonlinear 455
nonsymmetric matrix 476ff., 1230ff.
operation count of balancing 476
operation count of Givens reduction 463
operation count of Householder reduction

467
operation count of inverse iteration 488
operation count of Jacobi method 460
operation count of QL method 470, 473
operation count of QR method for Hessen-

berg matrices 484
operation count of reduction to Hessenberg

form 479
orthogonality 450
parallel algorithms 1226, 1229
polynomial roots and 368, 1193
QL method 469ff., 475, 488f.
QL method with implicit shifts 472ff.,

1228f.
QR method 52, 453, 456, 469ff., 1228
QR method for Hessenberg matrices 480ff.,

1232ff.
real, symmetric matrix 150, 467, 785,

1225, 1228
reduction to Hessenberg form 478f., 1231
right eigenvalues 451
shifting eigenvalues 449, 470f., 480
special matrices 454
termination criterion 484, 488
tridiagonal matrix 453, 469ff., 488, 1228

Eigenvalue and eigenvector, defined 449
Eigenvalue problem for differential equations

748, 764ff., 770ff., 1319ff.
Eigenvalues and polynomial root finding 368,

1193
EISPACK 454, 475
Electromagnetic potential 519
ELEMENTAL attribute (Fortran 95) 961,

1084
Elemental functions 2/xiii, 2/xv, 940, 942,

946f., 961, 986, 1015, 1083, 1097f.
Elimination see Gaussian elimination
Ellipse in confidence limit estimation 688
Elliptic integrals 254ff., 906

addition theorem 255
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Carlson’s forms and algorithms 255f.,
1128ff.

Cauchy principal value 256f.
duplication theorem 256
Legendre 254ff., 260f., 1135ff.
routines for 257ff., 1128ff.
symmetric form 255
Weierstrass 255

Elliptic partial differential equations 818,
1332ff.

alternating-direction implicit method (ADI)
861f., 906

analyze/factorize/operate package 824
biconjugate gradient method 824
boundary conditions 820
comparison of rapid methods 854
conjugate gradient method 824
cyclic reduction 848f., 852ff.
Fourier analysis and cyclic reduction (FACR)

848ff., 854
Gauss-Seidel method 855, 864ff., 876,

1338, 1341
incomplete Cholesky conjugate gradient

method (ICCG) 824
Jacobi’s method 855f., 864
matrix methods 824
multigrid method 824, 862ff., 1009, 1334ff.
rapid (Fourier) method 824, 848ff.
relaxation method 823, 854ff., 1332
strongly implicit procedure 824
successive over-relaxation (SOR) 857ff.,

862, 866, 1332
elsewhere construct 943
Emacs, GNU 1/xvi
Embedded Runge-Kutta method 709f., 731,

1298, 1308
Encapsulation, in programs 7
Encryption 290, 1156
enddo statement 12, 17
Entropy 896

of data 626ff., 811, 1275
EOM (end of message) 902
eoshift() intrinsic function 950

communication bottleneck 969
vector shift argument 1019f.
vs. array section 1078

epsilon() intrinsic function 951, 1189
Equality constraints 423
Equations

cubic 178ff., 360
normal (fitting) 645, 666ff., 800, 1288
quadratic 20, 178
see also Differential equations; Partial dif-

ferential equations; Root finding
Equivalence classes 337f., 1180
EQUIVALENCE statement 2/xif., 1161, 1286
Equivalence transformation 166
Error

checksums for preventing 891
clocking 891
double exponential distribution 696
local truncation 875
Lorentzian distribution 696f.
in multigrid method 863
nonnormal 653, 690, 694ff.

relative truncation 875
roundoff 180f., 881, 1362
series, advantage of an even 132f., 717,

1362
systematic vs. statistical 653, 1362
truncation 20f., 180, 399, 709, 881, 1362
varieties found by check digits 895
varieties of, in PDEs 831ff.
see also Roundoff error

Error function 213f., 601, 1094f.
approximation via sampling theorem 601
Chebyshev approximation 214, 1095
complex 252
for Fisher’s z-transformation 632, 1276
relation to Dawson’s integral 252, 1127
relation to Fresnel integrals 248
relation to incomplete gamma function

213
routine for 214, 1094
for significance of correlation 631, 1276
for sum squared difference of ranks 635,

1277
Error handling in programs 2/xii, 2/xvi, 3,

994f., 1036, 1370f.
Estimation of parameters see Fitting; Maxi-

mum likelihood estimate
Estimation of power spectrum 542ff., 565ff.,

1254ff., 1258
Euler equation (fluid flow) 831
Euler-Maclaurin summation formula 132, 135
Euler’s constant 216ff., 250
Euler’s method for differential equations 702,

704, 728f.
Euler’s transformation 160f., 1070

generalized form 162f.
Evaluation of functions see Function
Even and odd parts, of continued fraction

166, 211, 216
Even parity 888
Exception handling in programs see Error han-

dling in programs
exit statement 959, 1219
Explicit differencing 827
Exponent in floating point format 19, 882,

1343
exponent intrinsic function 1107
Exponential deviate 278, 1151f.
Exponential integral 215ff., 1096f.

asymptotic expansion 218
continued fraction 216
recurrence relation 172
related to incomplete gamma function 215
relation to cosine integral 250
routine for Ei(x) 218, 1097
routine for En(x) 217, 1096
series 216

Exponential probability distribution 570
Extended midpoint rule 124f., 129f., 135,

1054f.
Extended Simpson’s rule 128, 788, 790
Extended Simpson’s three-eighths rule 789
Extended trapezoidal rule 125, 127, 130ff.,

135, 786, 1052ff., 1326
roundoff error 132

Extirpolation (so-called) 574, 1261
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Extrapolation 99ff.
in Bulirsch-Stoer method 718ff., 726,

1305ff.
differential equations 702
by linear prediction 557ff., 1256f.
local 709
maximum entropy method as type of 567
polynomial 724, 726, 740, 1305f.
rational function 718ff., 726, 1306f.
relation to interpolation 101
for Romberg integration 134
see also Interpolation

Extremization see Minimization

F -distribution probability function 222
F-test for differences of variances 611, 613,

1271
FACR see Fourier analysis and cyclic reduc-

tion (FACR)
Facsimile standard 901
Factorial

double (denoted “!!”) 247
evaluation of 159, 1072, 1086
relation to gamma function 206
routine for 207f., 1086ff.

False position 347ff., 1185f.
Family tree 338
FAS (full approximation storage algorithm)

874, 1339ff.
Fast Fourier transform (FFT) 498ff., 881,

981, 1235f.
alternative algorithms 503f.
as approximation to continuous transform

497
Bartlett window 547, 1254
bit reversal 499f., 525
and Clenshaw-Curtis quadrature 190
column-parallel algorithm 981, 1237ff.
communication bottleneck 969, 981, 1250
convolution 503f., 523, 531ff., 909, 1253,

1354
convolution of large data sets 536f.
Cooley-Tukey algorithm 503, 1250
Cooley-Tukey algorithm, parallel 1239f.
correlation 538f., 1254
cosine transform 190, 511ff., 851, 1245f.
cosine transform, second form 513, 852,

1246
Danielson-Lanczos lemma 498f., 525
data sets not a power of 2 503
data smoothing 645
data windowing 545ff., 1254
decimation-in-frequency algorithm 503
decimation-in-time algorithm 503
discrete autocorrelation 539, 1254
discrete convolution theorem 531ff.
discrete correlation theorem 538
at double frequency 575
effect of caching 982
endpoint corrections 578f., 1261ff.
external storage 525
figures of merit for data windows 548
filtering 551ff.
FIR filter 553
four-step framework 983, 1239

Fourier integrals 577ff., 1261
Fourier integrals, infinite range 583
Hamming window 547
Hann window 547
history 498
IIR filter 553ff.
image processing 803, 805
integrals using 124
inverse of cosine transform 512ff.
inverse of sine transform 511
large data sets 525
leakage 544
memory-local algorithm 528
multidimensional 515ff., 1236f., 1241,

1246, 1251
for multiple precision arithmetic 906
for multiple precision multiplication 909,

1354
number-theoretic transforms 503f.
operation count 498
optimal (Wiener) filtering 539ff., 558
order of storage in 501
parallel algorithms 981ff., 1235ff.
partial differential equations 824, 848ff.
Parzen window 547
periodicity of 497
periodogram 543ff., 566
power spectrum estimation 542ff., 1254ff.
for quadrature 124
of real data in 2D and 3D 519ff., 1248f.
of real functions 504ff., 519ff., 1242f.,

1248f.
related algorithms 503f.
row-parallel algorithm 981, 1235f.
Sande-Tukey algorithm 503
sine transform 508ff., 850, 1245
Singleton’s algorithm 525
six-step framework 983, 1240
square window 546, 1254
timing 982
treatment of end effects in convolution

533
treatment of end effects in correlation

538f.
Tukey’s trick for frequency doubling 575
use in smoothing data 645
used for Lomb periodogram 574, 1259
variance of power spectrum estimate 544f.,

549
virtual memory machine 528
Welch window 547, 1254
Winograd algorithms 503
see also Discrete Fourier transform (DFT);

Fourier transform; Spectral density
Faure sequence 300
Fax (facsimile) Group 3 standard 901
Feasible vector 424
FFT see Fast Fourier transform (FFT)
Field, in data record 329
Figure-of-merit function 650
Filon’s method 583
Filter 551ff.

acausal 552
bilinear transformation method 554
causal 552, 644
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characteristic polynomial 554
data smoothing 644f., 1283f.
digital 551ff.
DISPO 644
by fast Fourier transform (FFT) 523,

551ff.
finite impulse response (FIR) 531, 552
homogeneous modes of 554
infinite impulse response (IIR) 552ff., 566
Kalman 700
linear 552ff.
low-pass for smoothing 644ff., 1283f.
nonrecursive 552
optimal (Wiener) 535, 539ff., 558, 644
quadrature mirror 585, 593
realizable 552, 554f.
recursive 552ff., 566
Remes exchange algorithm 553
Savitzky-Golay 183, 644ff., 1283f.
stability of 554f.
in the time domain 551ff.

Fine-to-coarse operator 864, 1337
Finite difference equations (FDEs) 753, 763,

774
alternating-direction implicit method (ADI)

847, 861f.
art not science 829
Cayley’s form for unitary operator 844
Courant condition 829, 832ff., 836
Courant condition (multidimensional) 846
Crank-Nicholson method 840, 844, 846
eigenmodes of 827f.
explicit vs. implicit schemes 827
forward Euler 826f.
Forward Time Centered Space (FTCS)

827ff., 839ff., 843, 855
implicit scheme 840
Lax method 828ff., 836
Lax method (multidimensional) 845f.
mesh drifting instability 834f.
numerical derivatives 181
partial differential equations 821ff.
in relaxation methods 753ff.
staggered leapfrog method 833f.
two-step Lax-Wendroff method 835ff.
upwind differencing 832f., 837
see also Partial differential equations

Finite element methods, partial differential
equations 824

Finite impulse response (FIR) 531
Finkelstein, S. 1/xvi, 2/ix
FIR (finite impulse response) filter 552
Fisher’s z-transformation 631f., 1276
Fitting 650ff., 1285ff.

basis functions 665
by Chebyshev approximation 185f., 1076
chi-square 653ff., 1285ff.
confidence levels related to chi-square val-

ues 691ff.
confidence levels from singular value de-

composition (SVD) 693f.
confidence limits on fitted parameters 684ff.
covariance matrix not always meaningful

651, 690
degeneracy of parameters 674

an exponential 674
freezing parameters in 668, 700
Gaussians, a sum of 682, 1294
general linear least squares 665ff., 1288,

1290f.
Kalman filter 700
K–S test, caution regarding 621f.
least squares 651ff., 1285
Legendre polynomials 674, 1291f.
Levenberg-Marquardt method 678ff., 816,

1292f.
linear regression 655ff., 1285ff.
maximum likelihood estimation 652f.,

694ff.
Monte Carlo simulation 622, 654, 684ff.
multidimensional 675
nonlinear models 675ff., 1292f.
nonlinear models, advanced methods 683
nonlinear problems that are linear 674
nonnormal errors 656, 690, 694ff.
polynomial 83, 114, 191, 645, 665, 674,

1078, 1291
by rational Chebyshev approximation 197ff.,

1081f.
robust methods 694ff., 1294
of sharp spectral features 566
standard (probable) errors on fitted pa-

rameters 657f., 661, 667, 671, 684ff.,
1285f., 1288, 1290

straight line 655ff., 667f., 698, 1285ff.,
1294ff.

straight line, errors in both coordinates
660ff., 1286ff.

see also Error; Least squares fitting; Max-
imum likelihood estimate; Robust esti-
mation

Five-point difference star 867
Fixed point format 18
Fletcher-Powell algorithm see Davidon-Fletcher-

Powell algorithm
Fletcher-Reeves algorithm 390, 414ff., 1214
Floating point co-processor 886
Floating point format 18ff., 882, 1343

care in numerical derivatives 181
IEEE 276, 882, 1343

floor() intrinsic function 948
Flux-conservative initial value problems 825ff.
FMG (full multigrid method) 863, 868, 1334ff.
FOR iteration 9f., 12
forall statement 2/xii, 2/xv, 960, 964, 986

access to associated index 968
skew array sections 985, 1007

Formats of numbers 18ff., 882, 1343
Fortran 9

arithmetic-if statement 2/xi
COMMON block 2/xif., 953, 957
deprecated features 2/xif., 947, 1057,

1161, 1256, 1286
dynamical allocation of storage 869, 1336
EQUIVALENCE statement 2/xif., 1161,

1286
evolution of 2/xivff.
exception handling 2/xii, 2/xvi
filenames 935
Fortran 2000 (planned) 2/xvi
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Fortran 95 2/xv, 945, 947, 1084, 1100,
1364

HPF (High-Performance Fortran) 2/xvf.
Numerical Recipes in 2/x, 2/xvii, 1
obsolescent features 2/xif.
side effects 960
see also Fortran 90

Fortran D 2/xv
Fortran 77 1/xix

bit manipulation functions 17
hexadecimal constants 17

Fortran 8x 2/xi, 2/xiii
Fortran 90 3

abstract data types 2/xiii, 1030
all() intrinsic function 945, 948
allocatable array 938, 941, 953ff., 1197,

1212, 1266, 1293, 1306, 1336
allocate statement 938f., 941, 953f., 1197,

1266, 1293, 1306, 1336
allocated() intrinsic function 938, 952ff.,

1197, 1266, 1293
any() intrinsic function 945, 948
array allocation and deallocation 953
array of arrays 2/xii, 956, 1336
array constructor 2/xii, 968, 971, 1022,

1052, 1055, 1127
array constructor with implied do-list 968,

971
array extents 938, 949
array features 941ff., 953ff.
array intrinsic procedures 2/xiii, 948ff.
array of length 0 944
array of length 1 949
array manipulation functions 950
array parallel operations 964f.
array rank 938, 949
array reallocation 955
array section 2/xiif., 2/xiii, 939, 941ff.,

960, 1078, 1284, 1286, 1333
array shape 938, 949
array size 938, 942
array transpose 981f.
array unary and binary functions 949
associated() intrinsic function 952f.
associated pointer 953f.
assumed-shape array 942
automatic array 938, 954, 1197, 1212,

1336
backwards-compatibility 935, 946
bit manipulation functions 2/xiii, 951
bit size() intrinsic function 951
broadcasts 965f.
btest() intrinsic function 951
case construct 1010, 1036
case insensitive 937
ceiling() intrinsic function 947
character functions 952
character variables 1183
cmplx function 1125
communication bottlenecks 969, 981,

1250
compatibility with Fortran 77 935, 946
compilers 2/viii, 2/xiv, 1364
compiling 936
conformable arrays 942f., 1094

CONTAINS statement 954, 957, 985,
1067, 1134, 1202

control structure 2/xiv, 959, 1219, 1305
conversion elemental functions 946
count() intrinsic function 948
cshift() intrinsic function 950, 969
cycle statement 959, 1219
data hiding 956ff., 1209
data parallelism 964
DATA statement 959
data types 937, 1336, 1346, 1361
deallocate statement 938f., 953f., 1197,

1266, 1293
deallocating array 938, 953f., 1197, 1266,

1293
defined types 956
deprecated features 947, 1057, 1161,

1256, 1286
derived types 937, 955
dimensional expansion 965ff.
do-loop 2/xiv
dot product() intrinsic function 945, 949,

969, 1216
dynamical allocation of storage 2/xiii,

938, 941f., 953ff., 1327, 1336
elemental functions 940, 942, 946f., 951,

1015, 1083, 1364
elsewhere construct 943
eoshift() intrinsic function 950, 969, 1019f.,

1078
epsilon() intrinsic function 951, 1189
evolution 2/xivff., 959, 987f.
example 936
exit statement 959, 1219
exponent() intrinsic function 1107
floor() intrinsic function 948
Fortran tip icon 1009
garbage collection 956
gather-scatter operations 2/xiif., 969, 981,

984, 1002, 1032, 1034, 1250
generic interface 2/xiii, 1083
generic procedures 939, 1015, 1083, 1094,

1096, 1364
global variables 955, 957, 1210
history 2/xff.
huge() intrinsic function 951
iand() intrinsic function 951
ibclr() intrinsic function 951
ibits() intrinsic function 951
ibset() intrinsic function 951
ieor() intrinsic function 951
IMPLICIT NONE statement 2/xiv, 936
implied do-list 968, 971, 1127
index loss 967f.
initialization expression 943, 959, 1012,

1127
inquiry functions 948
integer model 1144, 1149, 1156
INTENT attribute 1072, 1092
interface 939, 942, 1067, 1084, 1384
internal subprogram 2/xii, 2/xiv, 957,

1057, 1067, 1202f., 1256, 1302
interprocessor communication 969, 981,

1250
intrinsic data types 937
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intrinsic procedures 939, 945ff., 987, 1016
ior() intrinsic function 951
ishft() intrinsic function 951
ishftc() intrinsic function 951
ISO (International Standards Organization)

2/xf., 2/xiiif.
keyword argument 2/xiv, 947f., 1341
kind() intrinsic function 951
KIND parameter 937, 946, 1125, 1144,

1192, 1254, 1261, 1284, 1361
language features 935ff.
lbound() intrinsic function 949
lexical comparison 952
linear algebra 969f., 1000ff., 1018f., 1026,

1040, 1200, 1326
linear recurrence 971, 988
linking 936
literal constant 937, 1361
logo for tips 2/viii, 1009
mask 948, 967f., 1006f., 1038, 1102,

1200, 1226, 1305, 1333f., 1368, 1378,
1382

matmul() intrinsic function 945, 949, 969,
1026, 1040, 1050, 1076, 1200, 1216,
1290, 1326

maxexponent() intrinsic function 1107
maxloc() intrinsic function 949, 961,

992f., 1015
maxval() intrinsic function 945, 948, 961,

1016, 1273
memory leaks 953, 956, 1327
memory management 938, 953ff.
merge() intrinsic function 945, 950, 1010,

1094f., 1099f.
Metcalf and Reid (M&R) 935
minloc() intrinsic function 949, 961, 992f.
minval() intrinsic function 948, 961
missing language features 983ff., 987ff.
modularization 956f.
MODULE facility 2/xiii, 936f., 939f.,

953f., 957, 1067, 1298, 1320, 1322,
1324, 1330, 1346

MODULE subprograms 940
modulo() intrinsic function 946, 1156
named constant 940, 1012, 1361
named control structure 959, 1219, 1305
nearest() intrinsic function 952, 1146
nested where construct forbidden 943
not() intrinsic function 951
nullify statement 953f., 1070, 1302
numerical representation functions 951
ONLY option 941, 957, 1067
operator overloading 2/xiif.
operator, user-defined 2/xii
optional argument 2/xiv, 947f., 1092,

1228, 1230, 1256, 1272, 1275, 1340
outer product 969f.
overloading 940, 1083, 1102
pack() intrinsic function 945, 950, 964,

969, 991, 1170, 1176, 1178
pack, for selective evaluation 1087
parallel extensions 2/xv, 959ff., 964, 981,

984, 987, 1002, 1032
parallel programming 963ff.
PARAMETER attribute 1012

pointer 2/xiiif., 938f., 941, 944f., 952ff.,
1067, 1070, 1197, 1210, 1212, 1266,
1302, 1327, 1336

pointer to function (missing) 1067
portability 963
present() intrinsic function 952
PRIVATE attribute 957, 1067
product() intrinsic function 948
programming conventions 937
PUBLIC attribute 957, 1067
quick start 936
radix() intrinsic function 1231
random number() intrinsic function 1141,

1143
random seed() intrinsic function 1141
real() intrinsic function 947, 1125
RECURSIVE keyword 958, 1065, 1067
recursive procedure 2/xiv, 958, 1065,

1067, 1166
reduction functions 948
reshape() intrinsic function 950, 969, 1247
RESULT keyword 958, 1073
SAVE attribute 953f., 958f., 1052, 1070,

1266, 1293
scale() intrinsic function 1107
scatter-with-combine (missing function)

984
scope 956ff.
scoping units 939
select case statement 2/xiv, 1010, 1036
shape() intrinsic function 938, 949
size() intrinsic function 938, 942, 945,

948
skew sections 985
sparse matrix representation 1030
specification statement 2/xiv
spread() intrinsic function 945, 950, 966ff.,

969, 1000, 1094, 1290f.
statement functions deprecated 1057
stride (of an array) 944
structure constructor 2/xii
subscript triplet 944
sum() intrinsic function 945, 948, 966
tiny() intrinsic function 952
transformational functions 948
transpose() intrinsic function 950, 960,

969, 981, 1247
tricks 1009, 1072, 1146, 1274, 1278, 1280
truncation elemental functions 946
type checking 1140
ubound() intrinsic function 949
undefined pointer 953
unpack() intrinsic function 950, 964, 969
USE statement 936, 939f., 954, 957, 1067,

1384
utility functions 987ff.
vector subscripts 2/xiif., 969, 981, 984,

1002, 1032, 1034, 1250
visibility 956ff., 1209, 1293, 1296
WG5 technical committee 2/xi, 2/xiii,

2/xvf.
where construct 943, 985, 1060, 1291
X3J3 Committee 2/viii, 2/xff., 2/xv, 947,

959, 964, 968, 990
zero-length array 944
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see also Intrinsic procedures
see also Fortran

Fortran 95 947, 959ff.
allocatable variables 961
blocks 960
cpu time() intrinsic function 961
elemental functions 2/xiii, 2/xv, 940, 961,

986, 1015, 1083f., 1097f.
forall statement 2/xii, 2/xv, 960, 964, 968,

986, 1007
initialization of derived data type 2/xv
initialization of pointer 2/xv, 961
minor changes from Fortran 90 961
modified intrinsic functions 961
nested where construct 2/xv, 960, 1100
pointer association status 961
pointers 961
PURE attribute 2/xv, 960f., 964, 986
SAVE attribute 961
side effects 960
and skew array section 945, 985
see also Fortran

Fortran 2000 2/xvi
Forward deflation 363
Forward difference operator 161
Forward Euler differencing 826f.
Forward Time Centered Space see FTCS
Four-step framework, for FFT 983, 1239
Fourier analysis and cyclic reduction (FACR)

848f., 854
Fourier integrals

attenuation factors 583, 1261
endpoint corrections 578f., 1261
tail integration by parts 583
use of fast Fourier transform (FFT) 577ff.,

1261ff.
Fourier transform 99, 490ff., 1235ff.

aliasing 495, 569
approximation of Dawson’s integral 253
autocorrelation 492
basis functions compared 508f.
contrasted with wavelet transform 584,

594
convolution 492, 503f., 531ff., 909, 1253,

1354
correlation 492, 538f., 1254
cosine transform 190, 511ff., 851, 1245f.
cosine transform, second form 513, 852,

1246
critical sampling 494, 543, 545
definition 490
discrete Fourier transform (DFT) 184,

495ff.
Gaussian function 600
image processing 803, 805
infinite range 583
inverse of discrete Fourier transform 497
method for partial differential equations

848ff.
missing data 569
missing data, fast algorithm 574f., 1259
Nyquist frequency 494ff., 520, 543, 545,

569, 571
optimal (Wiener) filtering 539ff., 558
Parseval’s theorem 492, 498, 544

power spectral density (PSD) 492f.
power spectrum estimation by FFT 542ff.,

1254ff.
power spectrum estimation by maximum

entropy method 565ff., 1258
properties of 491f.
sampling theorem 495, 543, 545, 600
scalings of 491
significance of a peak in 570
sine transform 508ff., 850, 1245
symmetries of 491
uneven sampling, fast algorithm 574f.,

1259
unevenly sampled data 569ff., 574, 1258
and wavelets 592f.
Wiener-Khinchin theorem 492, 558, 566f.
see also Fast Fourier transform (FFT);

Spectral density
Fractal region 360f.
Fractional step methods 847f.
Fredholm alternative 780
Fredholm equations 779f.

eigenvalue problems 780, 785
error estimate in solution 784
first kind 779
Fredholm alternative 780
homogeneous, second kind 785, 1325
homogeneous vs. inhomogeneous 779f.
ill-conditioned 780
infinite range 789
inverse problems 780, 795ff.
kernel 779f.
nonlinear 781
Nystrom method 782ff., 789, 1325
product Nystrom method 789, 1328ff.
second kind 779f., 782ff., 1325, 1331
with singularities 788, 1328ff.
with singularities, worked example 792,

1328ff.
subtraction of singularity 789
symmetric kernel 785
see also Inverse problems

Frequency domain 490
Frequency spectrum see Fast Fourier transform

(FFT)
Frequentist, contrasted with Bayesian 810
Fresnel integrals 248ff.

asymptotic form 249
continued fraction 248f.
routine for 249f., 1123
series 248

Friday the Thirteenth 14f., 1011f.
FTCS (forward time centered space) 827ff.,

839ff., 843
stability of 827ff., 839ff., 855

Full approximation storage (FAS) algorithm
874, 1339ff.

Full moon 14f., 936, 1011f.
Full multigrid method (FMG) 863, 868, 1334ff.
Full Newton methods, nonlinear least squares

683
Full pivoting 29, 1014
Full weighting 867
Function

Airy 204, 243f., 1121
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approximation 99ff., 184ff., 1043, 1076ff.
associated Legendre polynomial 246ff.,

764, 1122f., 1319
autocorrelation of 492
bandwidth limited 495
Bessel 172, 204, 223ff., 234, 1101ff.,

1115ff.
beta 209, 1089
binomial coefficients 208f., 1087f.
branch cuts of 202f.
chi-square probability 215, 798
complex 202
confluent hypergeometric 204, 239
convolution of 492
correlation of 492
cosine integral 250f., 1123f.
Coulomb wave 204, 234
cumulative binomial probability 222f.
cumulative Poisson 209ff.
Dawson’s integral 252ff., 600, 1127f.
digamma 216
elliptic integrals 254ff., 906, 1128ff.
error 213f., 248, 252, 601, 631, 635,

1094f., 1127, 1276f.
evaluation 159ff., 1070ff.
evaluation by path integration 201ff., 263,

1138
exponential integral 172, 215ff., 250,

1096f.
F-distribution probability 222
Fresnel integral 248ff., 1123
gamma 206, 1085
hypergeometric 202f., 263ff., 1138ff.
incomplete beta 219ff., 610, 1098ff., 1269
incomplete gamma 209ff., 615, 654, 657f.,

1089ff., 1272, 1285
inverse hyperbolic 178, 255
inverse trigonometric 255
Jacobian elliptic 261, 1137f.
Kolmogorov-Smirnov probability 618f.,

640, 1274, 1281
Legendre polynomial 172, 246, 674, 1122,

1291
logarithm 255
modified Bessel 229ff., 1109ff.
modified Bessel, fractional order 239ff.,

1118ff.
overloading 1083
parallel evaluation 986, 1009, 1084, 1087,

1090, 1102, 1128, 1134
path integration to evaluate 201ff.
pathological 99f., 343
Poisson cumulant 214
representations of 490
routine for plotting a 342, 1182
sine and cosine integrals 248, 250ff.,

1125f.
sn, dn, cn 261, 1137f.
spherical harmonics 246ff., 1122
spheroidal harmonic 764ff., 770ff., 1319ff.,

1323ff.
Student’s probability 221f.
variable number of arguments 1022
Weber 204

Functional iteration, for implicit equations
740f.

FWHM (full width at half maximum) 548f.

Gamma deviate 282f., 1153f.
Gamma function 206ff., 1085

incomplete see Incomplete gamma func-
tion

Garbage collection 956
Gather-scatter operations 2/xiif., 984, 1002,

1032, 1034
communication bottleneck 969, 981, 1250
many-to-one 984, 1002, 1032, 1034

Gauss-Chebyshev integration 141, 144, 512f.
Gauss-Hermite integration 144, 789

abscissas and weights 147, 1062
normalization 147

Gauss-Jacobi integration 144
abscissas and weights 148, 1063

Gauss-Jordan elimination 27ff., 33, 64, 1014f.
operation count 34, 39
solution of normal equations 667, 1288
storage requirements 30

Gauss-Kronrod quadrature 154
Gauss-Laguerre integration 144, 789, 1060
Gauss-Legendre integration 145f., 1059

see also Gaussian integration
Gauss-Lobatto quadrature 154, 190, 512
Gauss-Radau quadrature 154
Gauss-Seidel method (relaxation) 855, 857,

864ff., 1338
nonlinear 876, 1341

Gauss transformation 256
Gaussian (normal) distribution 267, 652, 798

central limit theorem 652f.
deviates from 279f., 571, 1152
kurtosis of 606
multivariate 690
semi-invariants of 608
tails compared to Poisson 653
two-dimensional (binormal) 631
variance of skewness of 606

Gaussian elimination 33f., 51, 55, 1014f.
fill-in 45, 64
integral equations 786, 1326
operation count 34
outer product variant 1017
in reduction to Hessenberg form 478,

1231
relaxation solution of boundary value prob-

lems 753ff., 777, 1316
Gaussian function

Hardy’s theorem on Fourier transforms
600

see also Gaussian (normal) distribution
Gaussian integration 127, 140ff., 789, 1059ff.

calculation of abscissas and weights 142ff.,
1009, 1059ff.

error estimate in solution 784
extensions of 153f.
Golub-Welsch algorithm for weights and

abscissas 150, 1064
for integral equations 781, 783, 1325
from known recurrence relation 150, 1064
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nonclassical weight function 151ff., 788f.,
1064f., 1328f.

and orthogonal polynomials 142, 1009,
1061

parallel calculation of formulas 1009,
1061

preassigned nodes 153f.
weight function logx 153
weight functions 140ff., 788f., 1059ff.,

1328f.
Gear’s method (stiff ODEs) 730
Geiger counter 266
Generalized eigenvalue problems 455
Generalized minimum residual method (GM-

RES) 78
Generic interface see Interface, generic
Generic procedures 939, 1083, 1094, 1096,

1364
elemental 940, 942, 946f., 1015, 1083

Geometric progression 972, 996f., 1365,
1372ff.

geop() utility function 972, 974, 989, 996,
1127

Geophysics, use of Backus-Gilbert method
809

Gerchberg-Saxton algorithm 805
get diag() utility function 985, 989, 1005,

1226
Gilbert and Sullivan 714
Givens reduction 462f., 473

fast 463
operation count 463

Glassman, A.J. 180
Global optimization 387f., 436ff., 650, 1219ff.

continuous variables 443f., 1222
Global variables 940, 953f., 1210

allocatable array method 954, 1197, 1212,
1266, 1287, 1298

communicated via internal subprogram
954, 957f., 1067, 1226

danger of 957, 1209, 1293, 1296
pointer method 954, 1197, 1212, 1266,

1287, 1302
Globally convergent

minimization 418ff., 1215
root finding 373, 376ff., 382, 749f., 752,

1196, 1314f.
GMRES (generalized minimum residual method)

78
GNU Emacs 1/xvi
Godunov’s method 837
Golden mean (golden ratio) 21, 349, 392f.,

399
Golden section search 341, 389ff., 395, 1202ff.
Golub-Welsch algorithm, for Gaussian quadra-

ture 150, 1064
Goodness-of-fit 650, 654, 657f., 662, 690,

1285
GOTO statements, danger of 9, 959
Gram-Schmidt

biorthogonalization 415f.
orthogonalization 94, 450f., 1039
SVD as alternative to 58

Graphics, function plotting 342, 1182f.
Gravitational potential 519

Gray code 300, 881, 886ff., 1344
Greenbaum, A. 79
Gregorian calendar 13, 16, 1011, 1013
Grid square 116f.
Group, dihedral 894, 1345
Guard digits 882, 1343

Half weighting 867, 1337
Halton’s quasi-random sequence 300
Hamming window 547
Hamming’s motto 341
Hann window 547
Harmonic analysis see Fourier transform
Hashing 293, 1144, 1148, 1156

for random number seeds 1147f.
HDLC checksum 890
Heap (data structure) 327f., 336, 897, 1179
Heapsort 320, 327f., 336, 1171f., 1179
Helmholtz equation 852
Hermite polynomials 144, 147

approximation of roots 1062
Hermitian matrix 450ff., 475
Hertz (unit of frequency) 490
Hessenberg matrix 94, 453, 470, 476ff., 488,

1231
see also Matrix

Hessian matrix 382, 408, 415f., 419f., 676ff.,
803, 815

is inverse of covariance matrix 667, 679
second derivatives in 676

Hexadecimal constants 17f., 276, 293
initialization 959

Hierarchically band diagonal matrix 598
Hierarchy of program structure 6ff.
High-order not same as high-accuracy 100f.,

124, 389, 399, 705, 709, 741
High-pass filter 551
High-Performance Fortran (HPF) 2/xvf., 964,

981, 984
scatter-with-add 1032

Hilbert matrix 83
Home page, Numerical Recipes 1/xx, 2/xvii
Homogeneous linear equations 53
Hook step methods 386
Hotelling’s method for matrix inverse 49, 598
Householder transformation 52, 453, 462ff.,

469, 473, 475, 478, 481ff., 1227f.
operation count 467
in QR decomposition 92, 1039

HPF see High-Performance Fortran
Huffman coding 564, 881, 896f., 902, 1346ff.
huge() intrinsic function 951
Hyperbolic functions, explicit formulas for

inverse 178
Hyperbolic partial differential equations 818

advective equation 826
flux-conservative initial value problems

825ff.
Hypergeometric function 202f., 263ff.

routine for 264f., 1138
Hypothesis, null 603

I2B, defined 937
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I4B, defined 937
iand() intrinsic function 951
ibclr() intrinsic function 951
ibits() intrinsic function 951
IBM 1/xxiii, 2/xix

bad random number generator 268
Fortran 90 compiler 2/viii
PC 4, 276, 293, 886
PC-RT 4
radix base for floating point arithmetic

476
RS6000 2/viii, 4

IBM checksum 894
ibset() intrinsic function 951
ICCG (incomplete Cholesky conjugate gradient

method) 824
ICF (intrinsic correlation function) model 817
Identity (unit) matrix 25
IEEE floating point format 276, 882f., 1343
ieor() intrinsic function 951
if statement, arithmetic 2/xi
if structure 12f.
ifirstloc() utility function 989, 993, 1041,

1346
IIR (infinite impulse response) filter 552ff.,

566
Ill-conditioned integral equations 780
Image processing 519, 803

cosine transform 513
fast Fourier transform (FFT) 519, 523,

803
as an inverse problem 803
maximum entropy method (MEM) 809ff.
from modulus of Fourier transform 805
wavelet transform 596f., 1267f.

imaxloc() utility function 989, 993, 1017
iminloc() utility function 989, 993, 1046,

1076
Implicit

function theorem 340
pivoting 30, 1014
shifts in QL method 472ff.

Implicit differencing 827
for diffusion equation 840
for stiff equations 729, 740, 1308

IMPLICIT NONE statement 2/xiv, 936
Implied do-list 968, 971, 1127
Importance sampling, in Monte Carlo 306f.
Improper integrals 135ff., 1055
Impulse response function 531, 540, 552
IMSL 1/xxiii, 2/xx, 26, 64, 205, 364, 369,

454
In-place selection 335, 1178f.
Included file, superseded by module 940
Incomplete beta function 219ff., 1098ff.

for F-test 613, 1271
routine for 220f., 1097
for Student’s t 610, 613, 1269

Incomplete Cholesky conjugate gradient method
(ICCG) 824

Incomplete gamma function 209ff., 1089ff.
for chi-square 615, 654, 657f., 1272, 1285
deviates from 282f., 1153
in mode estimation 610
routine for 211f., 1089

Increment of linear congruential generator
268

Indentation of blocks 9
Index 934ff., 1446ff.

this entry 1464
Index loss 967f., 1038
Index table 320, 329f., 1173ff., 1176
Inequality constraints 423
Inheritance 8
Initial value problems 702, 818f.

see also Differential equations;
Partial differential equations

Initialization of derived data type 2/xv
Initialization expression 943, 959, 1012, 1127
Injection operator 864, 1337
Instability see Stability
Integer model, in Fortran 90 1144, 1149,

1156
Integer programming 436
Integral equations 779ff.

adaptive stepsize control 788
block-by-block method 788
correspondence with linear algebraic equa-

tions 779ff.
degenerate kernel 785
eigenvalue problems 780, 785
error estimate in solution 784
Fredholm 779f., 782ff., 1325, 1331
Fredholm alternative 780
homogeneous, second kind 785, 1325
ill-conditioned 780
infinite range 789
inverse problems 780, 795ff.
kernel 779
nonlinear 781, 787
Nystrom method 782ff., 789, 1325
product Nystrom method 789, 1328ff.
with singularities 788ff., 1328ff.
with singularities, worked example 792,

1328ff.
subtraction of singularity 789
symmetric kernel 785
unstable quadrature 787f.
Volterra 780f., 786ff., 1326f.
wavelets 782
see also Inverse problems

Integral operator, wavelet approximation of
597, 782

Integration of functions 123ff., 1052ff.
cosine integrals 250, 1125
Fourier integrals 577ff., 1261
Fourier integrals, infinite range 583
Fresnel integrals 248, 1123
Gauss-Hermite 147f., 1062
Gauss-Jacobi 148, 1063
Gauss-Laguerre 146, 1060
Gauss-Legendre 145, 1059
integrals that are elliptic integrals 254
path integration 201ff.
sine integrals 250, 1125
see also Quadrature

Integro-differential equations 782
INTENT attribute 1072, 1092
Interface (Fortran 90) 939, 942, 1067
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for communication between program parts
957, 1209, 1293, 1296

explicit 939, 942, 1067, 1384
generic 2/xiii, 940, 1015, 1083, 1094,

1096
implicit 939
for Numerical Recipes 1384ff.

Interface block 939, 1084, 1384
Interface, in programs 2, 8
Intermediate value theorem 343
Internal subprogram (Fortran 90) 2/xiv, 954,

957, 1067, 1202f., 1226
nesting of 2/xii
resembles C macro 1302
supersedes statement function 1057, 1256

International Standards Organization (ISO)
2/xf., 2/xiii

Internet, availability of code over 1/xx, 2/xvii
Interpolation 99ff.

Aitken’s algorithm 102
avoid 2-stage method 100
avoid in Fourier analysis 569
bicubic 118f., 1049f.
bilinear 117
caution on high-order 100
coefficients of polynomial 100, 113ff.,

191, 575, 1047f., 1078
for computing Fourier integrals 578
error estimates for 100
of functions with poles 104ff., 1043f.
inverse quadratic 353, 395ff., 1204
multidimensional 101f., 116ff., 1049ff.
in multigrid method 866, 1337
Neville’s algorithm 102f., 182, 1043
Nystrom 783, 1326
offset arrays 104, 113
operation count for 100
operator 864, 1337
order of 100
and ordinary differential equations 101
oscillations of polynomial 100, 116, 389,

399
parabolic, for minimum finding 395, 1204
polynomial 99, 102ff., 182, 1043
rational Chebyshev approximation 197ff.,

1081
rational function 99, 104ff., 194ff., 225,

718ff., 726, 1043f., 1080, 1306
reverse (extirpolation) 574, 1261
spline 100, 107ff., 120f., 1044f., 1050f.
trigonometric 99
see also Fitting

Interprocessor communication 969, 981
Interval variable (statistics) 623
Intrinsic correlation function (ICF) model 817
Intrinsic data types 937
Intrinsic procedures

array inquiry 938, 942, 948ff.
array manipulation 950
array reduction 948
array unary and binary functions 949
backwards-compatibility 946
bit manipulation 2/xiii, 951
character 952
cmplx 1254

conversion elemental 946
elemental 940, 942, 946f., 951, 1083,

1364
generic 939, 1083f., 1364
lexical comparison 952
numeric inquiry 2/xiv, 1107, 1231, 1343
numerical 946, 951f.
numerical representation 951
pack used for sorting 1171
random number 1143
real 1254
top 10 945
truncation 946f.
see also Fortran 90

Inverse hyperbolic function 178, 255
Inverse iteration see Eigensystems
Inverse problems 779, 795ff.

Backus-Gilbert method 806ff.
Bayesian approach 799, 810f., 816f.
central idea 799
constrained linear inversion method 799ff.
data inversion 807
deterministic constraints 804ff.
in geophysics 809
Gerchberg-Saxton algorithm 805
incomplete Fourier coefficients 813
and integral equations 780
linear regularization 799ff.
maximum entropy method (MEM) 810,

815f.
MEM demystified 814
Phillips-Twomey method 799ff.
principal solution 797
regularization 796ff.
regularizing operator 798
stabilizing functional 798
Tikhonov-Miller regularization 799ff.
trade-off curve 795
trade-off curve, Backus-Gilbert method

809
two-dimensional regularization 803
use of conjugate gradient minimization

804, 815
use of convex sets 804
use of Fourier transform 803, 805
Van Cittert’s method 804

Inverse quadratic interpolation 353, 395ff.,
1204

Inverse response kernel, in Backus-Gilbert
method 807

Inverse trigonometric function 255
ior() intrinsic function 951
ISBN (International Standard Book Number)

checksum 894
ishft() intrinsic function 951
ishftc() intrinsic function 951
ISO (International Standards Organization)

2/xf., 2/xiii
Iterated integrals 155
Iteration 9f.

functional 740f.
to improve solution of linear algebraic

equations 47ff., 195, 1022
for linear algebraic equations 26
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required for two-point boundary value
problems 745

in root finding 340f.
Iteration matrix 856
ITPACK 71
Iverson, John 2/xi

Jacobi matrix, for Gaussian quadrature 150,
1064

Jacobi polynomials, approximation of roots
1064

Jacobi transformation (or rotation) 94, 453,
456ff., 462, 475, 489, 1041, 1225

Jacobian determinant 279, 774
Jacobian elliptic functions 261, 1137f.
Jacobian matrix 374, 376, 379, 382, 731,

1197f., 1309
singular in Newton’s rule 386

Jacobi’s method (relaxation) 855ff., 864
Jenkins-Traub method 369
Julian Day 1, 13, 16, 936, 1010ff.
Jump transposition errors 895

K -S test see Kolmogorov-Smirnov test
Kalman filter 700
Kanji 2/xii
Kaps-Rentrop method 730, 1308
Kendall’s tau 634, 637ff., 1279
Kennedy, Ken 2/xv
Kepler’s equation 1061
Kermit checksum 889
Kernel 779

averaging, in Backus-Gilbert method 807
degenerate 785
finite rank 785
inverse response 807
separable 785
singular 788f., 1328
symmetric 785

Keys used in sorting 329, 889
Keyword argument 2/xiv, 947f., 1341
kind() intrinsic function 951
KIND parameter 946, 1261, 1284

and cmplx() intrinsic function 1125, 1192,
1254

default 937
for Numerical Recipes 1361
for random numbers 1144
and real() intrinsic function 1125

Kolmogorov-Smirnov test 614, 617ff., 694,
1273f.

two-dimensional 640, 1281ff.
variants 620ff., 640, 1281

Kuiper’s statistic 621
Kurtosis 606, 608, 1269

L-estimate 694
Labels, statement 9
Lag 492, 538, 553
Lagged Fibonacci generator 1142, 1148ff.
Lagrange multiplier 795
Lagrange’s formula for polynomial interpola-

tion 84, 102f., 575, 578

Laguerre polynomials, approximation of roots
1061

Laguerre’s method 341, 365f., 1191f.
Lanczos lemma 498f.
Lanczos method for gamma function 206,

1085
Landen transformation 256
LAPACK 26, 1230
Laplace’s equation 246, 818

see also Poisson equation
Las Vegas 625
Latin square or hypercube 305f.
Laurent series 566
Lax method 828ff., 836, 845f.

multidimensional 845f.
Lax-Wendroff method 835ff.
lbound() intrinsic function 949
Leakage in power spectrum estimation 544,

548
Leakage width 548f.
Leapfrog method 833f.
Least squares filters see Savitzky-Golay filters
Least squares fitting 645, 651ff., 655ff., 660ff.,

665ff., 1285f., 1288f.
contrasted to general minimization prob-

lems 684ff.
degeneracies in 671f., 674
Fourier components 570
as M-estimate for normal errors 696
as maximum likelihood estimator 652
as method for smoothing data 645, 1283
Fourier components 1258
freezing parameters in 668, 700
general linear case 665ff., 1288, 1290f.
Levenberg-Marquardt method 678ff., 816,

1292f.
Lomb periodogram 570, 1258
multidimensional 675
nonlinear 386, 675ff., 816, 1292
nonlinear, advanced methods 683
normal equations 645, 666f., 800, 1288
normal equations often singular 670, 674
optimal (Wiener) filtering 540f.
QR method in 94, 668
for rational Chebyshev approximation

199f., 1081f.
relation to linear correlation 630, 658
Savitzky-Golay filter as 645, 1283
singular value decomposition (SVD) 25f.,

51ff., 199f., 670ff., 1081, 1290
skewed by outliers 653
for spectral analysis 570, 1258
standard (probable) errors on fitted parame-

ters 667, 671
weighted 652
see also Fitting

L’Ecuyer’s long period random generator 271,
273

Least squares fitting
standard (probable) errors on fitted parame-

ters 1288, 1290
weighted 1285

Left eigenvalues or eigenvectors 451
Legal matters 1/xx, 2/xvii
Legendre elliptic integral see Elliptic integrals
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Legendre polynomials 246, 1122
fitting data to 674, 1291f.
recurrence relation 172
shifted monic 151
see also Associated Legendre polynomials;

Spherical harmonics
Lehmer-Schur algorithm 369
Lemarie’s wavelet 593
Lentz’s method for continued fraction 165,

212
Lepage, P. 309
Leptokurtic distribution 606
Levenberg-Marquardt algorithm 386, 678ff.,

816, 1292
advanced implementation 683

Levinson’s method 86, 1038
Lewis, H.W. 275
Lexical comparison functions 952
LGT, defined 937
License information 1/xx, 2/xviiff.
Limbo 356
Limit cycle, in Laguerre’s method 365
Line minimization see Minimization, along a

ray
Line search see Minimization, along a ray
Linear algebra, intrinsic functions for paral-

lelization 969f., 1026, 1040, 1200,
1326

Linear algebraic equations 22ff., 1014
band diagonal 43ff., 1019
biconjugate gradient method 77, 1034ff.
Cholesky decomposition 89f., 423, 455,

668, 1038f.
complex 41
computing A−1 · B 40
conjugate gradient method 77ff., 599,

1034
cyclic tridiagonal 67, 1030
direct methods 26, 64, 1014, 1030
Fortran 90 vs. library routines 1016
Gauss-Jordan elimination 27ff., 1014
Gaussian elimination 33f., 1014f.
Hilbert matrix 83
Hotelling’s method 49, 598
and integral equations 779ff., 783, 1325
iterative improvement 47ff., 195, 1022
iterative methods 26, 77ff., 1034
large sets of 23
least squares solution 53ff., 57f., 199f.,

671, 1081, 1290
LU decomposition 34ff., 195, 386, 732,

783, 786, 801, 1016, 1022, 1325f.
nonsingular 23
overdetermined 25f., 199, 670, 797
partitioned 70
QR decomposition 91f., 382, 386, 668,

1039f., 1199
row vs. column elimination 31f.
Schultz’s method 49, 598
Sherman-Morrison formula 65ff., 83
singular 22, 53, 58, 199, 670
singular value decomposition (SVD) 51ff.,

199f., 670ff., 797, 1022, 1081, 1290
sparse 23, 43, 63ff., 732, 804, 1020f.,

1030

summary of tasks 25f.
Toeplitz 82, 85ff., 195, 1038
tridiagonal 26, 42f., 64, 109, 150, 453f.,

462ff., 469ff., 488, 839f., 853, 861f.,
1018f., 1227ff.

Vandermonde 82ff., 114, 1037, 1047
wavelet solution 597ff., 782
Woodbury formula 68ff., 83
see also Eigensystems

Linear congruential random number generator
267ff., 1142

choice of constants for 274ff.
Linear constraints 423
Linear convergence 346, 393
Linear correlation (statistics) 630ff., 1276
Linear dependency

constructing orthonormal basis 58, 94
of directions in N -dimensional space 409
in linear algebraic equations 22f.

Linear equations see Differential equations;
Integral equations; Linear algebraic
equations

Linear inversion method, constrained 799ff.
Linear prediction 557ff.

characteristic polynomial 559
coefficients 557ff., 1256
compared to maximum entropy method

558
compared with regularization 801
contrasted to polynomial extrapolation

560
related to optimal filtering 558
removal of bias in 563
stability 559f., 1257

Linear predictive coding (LPC) 563ff.
Linear programming 387, 423ff., 1216ff.

artificial variables 429
auxiliary objective function 430
basic variables 426
composite simplex algorithm 435
constraints 423
convergence criteria 432
degenerate feasible vector 429
dual problem 435
equality constraints 423
feasible basis vector 426
feasible vector 424
fundamental theorem 426
inequality constraints 423
left-hand variables 426
nonbasic variables 426
normal form 426
objective function 424
optimal feasible vector 424
pivot element 428f.
primal-dual algorithm 435
primal problem 435
reduction to normal form 429ff.
restricted normal form 426ff.
revised simplex method 435
right-hand variables 426
simplex method 402, 423ff., 431ff., 1216ff.
slack variables 429
tableau 427
vertex of simplex 426
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Linear recurrence see Recurrence relation
Linear regression 655ff., 660ff., 1285ff.

see also Fitting
Linear regularization 799ff.
LINPACK 26
Literal constant 937, 1361
Little-endian 293
Local extrapolation 709
Local extremum 387f., 437
Localization of roots see Bracketing
Logarithmic function 255
Lomb periodogram method of spectral analysis

569f., 1258f.
fast algorithm 574f., 1259

Loops 9f.
Lorentzian probability distribution 282, 696f.
Low-pass filter 551, 644f., 1283f.
Lower subscript 944
lower triangle() utility function 989, 1007,

1200
LP coefficients see Linear prediction
LPC (linear predictive coding) 563ff.
LU decomposition 34ff., 47f., 51, 55, 64, 97,

374, 667, 732, 1016, 1022
for A−1 · B 40
backsubstitution 39, 1017
band diagonal matrix 43ff., 1020
complex equations 41f.
Crout’s algorithm 36ff., 45, 1017
for integral equations 783, 786, 1325f.
for inverse iteration of eigenvectors 488
for inverse problems 801
for matrix determinant 41
for matrix inverse 40, 1016
for nonlinear sets of equations 374, 386,

1196
operation count 36, 39
outer product Gaussian elimination 1017
for Padé approximant 195, 1080
pivoting 37f., 1017
repeated backsubstitution 40, 46
solution of linear algebraic equations 40,

1017
solution of normal equations 667
for Toeplitz matrix 87

Lucifer 290

M&R (Metcalf and Reid) 935
M-estimates 694ff.

how to compute 697f.
local 695ff.
see also Maximum likelihood estimate

Machine accuracy 19f., 881f., 1189, 1343
Macintosh, see Apple Macintosh
Maehly’s procedure 364, 371
Magic

in MEM image restoration 814
in Padé approximation 195

Mantissa in floating point format 19, 882,
909, 1343

Marginals 624
Marquardt method (least squares fitting) 678ff.,

816, 1292f.
Marsaglia shift register 1142, 1148ff.
Marsaglia, G. 1142, 1149

mask 1006f., 1102, 1200, 1226, 1305, 1333f.,
1368, 1378, 1382

optional argument 948
optional argument, facilitates parallelism

967f., 1038
Mass, center of 295ff.
MasterCard checksum 894
Mathematical Center (Amsterdam) 353
Mathematical intrinsic functions 946, 951f.
matmul() intrinsic function 945, 949, 969,

1026, 1040, 1050, 1076, 1200, 1216,
1290, 1326

Matrix 23ff.
add vector to diagonal 1004, 1234, 1366,

1381
approximation of 58f., 598f.
band diagonal 42ff., 64, 1019
band triangular 64
banded 26, 454
bidiagonal 52
block diagonal 64, 754
block triangular 64
block tridiagonal 64
bordered 64
characteristic polynomial 449, 469
Cholesky decomposition 89f., 423, 455,

668, 1038f.
column augmented 28, 1014
complex 41
condition number 53, 78
create unit matrix 1006, 1382
curvature 677
cyclic banded 64
cyclic tridiagonal 67, 1030
defective 450, 476, 489
of derivatives see Hessian matrix; Jacobian

determinant
design (fitting) 645, 665, 801, 1082
determinant of 25, 41
diagonal of sparse matrix 1033ff.
diagonalization 452ff., 1225ff.
elementary row and column operations

28f.
finite differencing of partial differential

equations 821ff.
get diagonal 985, 1005, 1226f., 1366,

1381f.
Hermitian 450, 454, 475
Hermitian conjugate 450
Hessenberg 94, 453, 470, 476ff., 488,

1231ff.
Hessian see Hessian matrix
hierarchically band diagonal 598
Hilbert 83
identity 25
ill-conditioned 53, 56, 114
indexed storage of 71f., 1030
and integral equations 779, 783, 1325
inverse 25, 27, 34, 40, 65ff., 70, 95ff.,

1014, 1016f.
inverse, approximate 49
inverse by Hotelling’s method 49, 598
inverse by Schultz’s method 49, 598
inverse multiplied by a matrix 40
iteration for inverse 49, 598
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Jacobi transformation 453, 456ff., 462,
1225f.

Jacobian 731, 1309
logical dimension 24
lower triangular 34f., 89, 781, 1016
lower triangular mask 1007, 1200, 1382
multiplication denoted by dot 23
multiplication, intrinsic function 949, 969,

1026, 1040, 1050, 1200, 1326
norm 50
normal 450ff.
nullity 53
nullspace 25, 53f., 449, 795
orthogonal 91, 450, 463ff., 587
orthogonal transformation 452, 463ff.,

469, 1227
orthonormal basis 58, 94
outer product denoted by cross 66, 420
partitioning for determinant 70
partitioning for inverse 70
pattern multiply of sparse 74
physical dimension 24
positive definite 26, 89f., 668, 1038
QR decomposition 91f., 382, 386, 668,

1039, 1199
range 53
rank 53
residual 49
row and column indices 23
row vs. column operations 31f.
self-adjoint 450
set diagonal elements 1005, 1200, 1366,

1382
similarity transform 452ff., 456, 476, 478,

482
singular 53f., 58, 449
singular value decomposition 26, 51ff.,

797
sparse 23, 63ff., 71, 598, 732, 754, 804,

1030ff.
special forms 26
splitting in relaxation method 856f.
spread 808
square root of 423, 455
symmetric 26, 89, 450, 454, 462ff., 668,

785, 1038, 1225, 1227
threshold multiply of sparse 74, 1031
Toeplitz 82, 85ff., 195, 1038
transpose() intrinsic function 950
transpose of sparse 73f., 1033
triangular 453
tridiagonal 26, 42f., 64, 109, 150, 453f.,

462ff., 469ff., 488, 839f., 853, 861f.,
1018f., 1227ff.

tridiagonal with fringes 822
unitary 450
updating 94, 382, 386, 1041, 1199
upper triangular 34f., 91, 1016
upper triangular mask 1006, 1226, 1305,

1382
Vandermonde 82ff., 114, 1037, 1047
see also Eigensystems

Matrix equations see Linear algebraic equa-
tions

Matterhorn 606

maxexponent() intrinsic function 1107
Maximization see Minimization
Maximum entropy method (MEM) 565ff.,

1258
algorithms for image restoration 815f.
Bayesian 816f.
Cornwell-Evans algorithm 816
demystified 814
historic vs. Bayesian 816f.
image restoration 809ff.
intrinsic correlation function (ICF) model

817
for inverse problems 809ff.
operation count 567
see also Linear prediction

Maximum likelihood estimate (M-estimates)
690, 694ff.

and Bayes’ Theorem 811
chi-square test 690
defined 652
how to compute 697f.
mean absolute deviation 696, 698, 1294
relation to least squares 652

maxloc() intrinsic function 949, 992f., 1015
modified in Fortran 95 961

maxval() intrinsic function 945, 948, 961,
1016, 1273

Maxwell’s equations 825f.
Mean(s)

of distribution 604f., 608f., 1269
statistical differences between two 609ff.,

1269f.
Mean absolute deviation of distribution 605,

696, 1294
related to median 698

Measurement errors 650
Median 320

calculating 333
of distribution 605, 608f.
as L-estimate 694
role in robust straight line fitting 698
by selection 698, 1294

Median-of-three, in Quicksort 324
MEM see Maximum entropy method (MEM)
Memory leak 953, 956, 1071, 1327
Memory management 938, 941f., 953ff.,

1327, 1336
merge construct 945, 950, 1099f.

for conditional scalar expression 1010,
1094f.

contrasted with where 1023
parallelization 1011

Merge-with-dummy-values idiom 1090
Merit function 650

in general linear least squares 665
for inverse problems 797
nonlinear models 675
for straight line fitting 656, 698
for straight line fitting, errors in both coor-

dinates 660, 1286
Mesh-drift instability 834f.
Mesokurtic distribution 606
Metcalf, Michael 2/viii

see also M&R
Method of regularization 799ff.
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Metropolis algorithm 437f., 1219
Microsoft 1/xxii, 2/xix
Microsoft Fortran PowerStation 2/viii
Midpoint method see Modified midpoint method;

Semi-implicit midpoint rule
Mikado, or Town of Titipu 714
Miller’s algorithm 175, 228, 1106
MIMD machines (Multiple Instruction Multiple

Data) 964, 985, 1071, 1084
Minimal solution of recurrence relation 174
Minimax polynomial 186, 198, 1076
Minimax rational function 198
Minimization 387ff.

along a ray 77, 376f., 389, 406ff., 412f.,
415f., 418, 1195f., 1211, 1213

annealing, method of simulated 387f.,
436ff., 1219ff.

bracketing of minimum 390ff., 402, 1201f.
Brent’s method 389, 395ff., 399, 660f.,

1204ff., 1286
Broyden-Fletcher-Goldfarb-Shanno algo-

rithm 390, 418ff., 1215
chi-square 653ff., 675ff., 1285, 1292
choice of methods 388f.
combinatorial 436f., 1219
conjugate gradient method 390, 413ff.,

804, 815, 1210, 1214
convergence rate 393, 409
Davidon-Fletcher-Powell algorithm 390,

418ff., 1215
degenerate 795
direction-set methods 389, 406ff., 1210ff.
downhill simplex method 389, 402ff.,

444, 697f., 1208, 1222ff.
finding best-fit parameters 650
Fletcher-Reeves algorithm 390, 414ff.,

1214
functional 795
global 387f., 443f., 650, 1219, 1222
globally convergent multidimensional 418,

1215
golden section search 390ff., 395, 1202ff.
multidimensional 388f., 402ff., 1208ff.,

1214
in nonlinear model fitting 675f., 1292
Polak-Ribiere algorithm 389, 414ff., 1214
Powell’s method 389, 402, 406ff., 1210ff.
quasi-Newton methods 376, 390, 418ff.,

1215
and root finding 375
scaling of variables 420
by searching smaller subspaces 815
steepest descent method 414, 804
termination criterion 392, 404
use in finding double roots 341
use for sparse linear systems 77ff.
using derivatives 389f., 399ff., 1205ff.
variable metric methods 390, 418ff., 1215
see also Linear programming

Minimum residual method, for sparse system
78

minloc() intrinsic function 949, 992f.
modified in Fortran 95 961

MINPACK 683
minval() intrinsic function 948, 961

MIPS 886
Missing data problem 569
Mississippi River 438f., 447
MMP (massively multiprocessor) machines

965ff., 974, 981, 984, 1016ff., 1021,
1045, 1226ff., 1250

Mode of distribution 605, 609
Modeling of data see Fitting
Model-trust region 386, 683
Modes, homogeneous, of recursive filters 554
Modified Bessel functions see Bessel func-

tions
Modified Lentz’s method, for continued frac-

tions 165
Modified midpoint method 716ff., 720, 1302f.
Modified moments 152
Modula-2 7
Modular arithmetic, without overflow 269,

271, 275
Modular programming 2/xiii, 7f., 956ff.,

1209, 1293, 1296, 1346
MODULE facility 2/xiii, 936f., 939f., 957,

1067, 1298, 1320, 1322, 1324, 1330,
1346

initializing random number generator 1144ff.
in nr.f90 936, 941f., 1362, 1384ff.
in nrtype.f90 936f., 1361f.
in nrutil.f90 936, 1070, 1362, 1364ff.
sparse matrix 1031
undefined variables on exit 953, 1266

Module subprogram 940
modulo() intrinsic function 946, 1156
Modulus of linear congruential generator 268
Moments

of distribution 604ff., 1269
filter that preserves 645
modified problem of 151f.
problem of 83
and quadrature formulas 791, 1328
semi-invariants 608

Monic polynomial 142f.
Monotonicity constraint, in upwind differenc-

ing 837
Monte Carlo 155ff., 267

adaptive 306ff., 1161ff.
bootstrap method 686f.
comparison of sampling methods 309
exploration of binary tree 290
importance sampling 306f.
integration 124, 155ff., 295ff., 306ff.,

1161
integration, recursive 314ff., 1164ff.
integration, using Sobol’ sequence 304
integration, VEGAS algorithm 309ff.,

1161
and Kolmogorov-Smirnov statistic 622,

640
partial differential equations 824
quasi-random sequences in 299ff.
quick and dirty 686f.
recursive 306ff., 314ff., 1161, 1164ff.
significance of Lomb periodogram 570
simulation of data 654, 684ff., 690
stratified sampling 308f., 314, 1164
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Moon, calculate phases of 1f., 14f., 936,
1010f.

Mother functions 584
Mother Nature 684, 686
Moving average (MA) model 566
Moving window averaging 644
Mozart 9
MS 1/xxii, 2/xix
Muller’s method 364, 372
Multidimensional

confidence levels of fitting 688f.
data, use of binning 623
Fourier transform 515ff., 1241, 1246,

1251
Fourier transform, real data 519ff., 1248f.
initial value problems 844ff.
integrals 124, 155ff., 295ff., 306ff., 1065ff.,

1161ff.
interpolation 116ff., 1049ff.
Kolmogorov-Smirnov test 640, 1281
least squares fitting 675
minimization 402ff., 406ff., 413ff., 1208ff.,

1214f., 1222ff.
Monte Carlo integration 295ff., 306ff.,

1161ff.
normal (Gaussian) distribution 690
optimization 388f.
partial differential equations 844ff.
root finding 340ff., 358, 370, 372ff., 746,

749f., 752, 754, 1194ff., 1314ff.
search using quasi-random sequence 300
secant method 373, 382f., 1199f.
wavelet transform 595, 1267f.

Multigrid method 824, 862ff., 1334ff.
avoid SOR 866
boundary conditions 868f.
choice of operators 868
coarse-to-fine operator 864, 1337
coarse-grid correction 864f.
cycle 865
dual viewpoint 875
fine-to-coarse operator 864, 1337
full approximation storage (FAS) algorithm

874, 1339ff.
full multigrid method (FMG) 863, 868,

1334ff.
full weighting 867
Gauss-Seidel relaxation 865f., 1338
half weighting 867, 1337
importance of adjoint operator 867
injection operator 864, 1337
interpolation operator 864, 1337
line relaxation 866
local truncation error 875
Newton’s rule 874, 876, 1339, 1341
nonlinear equations 874ff., 1339ff.
nonlinear Gauss-Seidel relaxation 876,

1341
odd-even ordering 866, 869, 1338
operation count 862
prolongation operator 864, 1337
recursive nature 865, 1009, 1336
relative truncation error 875
relaxation as smoothing operator 865
restriction operator 864, 1337

speeding up FMG algorithm 873
stopping criterion 875f.
straight injection 867
symbol of operator 866f.
use of Richardson extrapolation 869
V-cycle 865, 1336
W-cycle 865, 1336
zebra relaxation 866

Multiple precision arithmetic 906ff., 1352ff.
Multiple roots 341, 362
Multiplication, complex 171
Multiplication, multiple precision 907, 909,

1353f.
Multiplier of linear congruential generator

268
Multistep and multivalue methods (ODEs)

740ff.
see also Differential Equations; Predictor-

corrector methods
Multivariate normal distribution 690
Murphy’s Law 407
Musical scores 5f.

NAG 1/xxiii, 2/xx, 26, 64, 205, 454
Fortran 90 compiler 2/viii, 2/xiv

Named constant 940
initialization 1012
for Numerical Recipes 1361

Named control structure 959, 1219, 1305
National Science Foundation (U.S.) 1/xvii,

1/xix, 2/ix
Natural cubic spline 109, 1044f.
Navier-Stokes equation 830f.
nearest() intrinsic function 952, 1146
Needle, eye of (minimization) 403
Negation, multiple precision 907, 1353f.
Negentropy 811, 896
Nelder-Mead minimization method 389, 402,

1208
Nested iteration 868
Neumann boundary conditions 820, 840, 851,

858
Neutrino 640
Neville’s algorithm 102f., 105, 134, 182,

1043
Newton-Cotes formulas 125ff., 140
Newton-Raphson method see Newton’s rule
Newton’s rule 143f., 180, 341, 355ff., 362,

364, 469, 1059, 1189
with backtracking 376, 1196
caution on use of numerical derivatives

356ff.
fractal domain of convergence 360f.
globally convergent multidimensional 373,

376ff., 382, 749f., 752, 1196, 1199,
1314f.

for matrix inverse 49, 598
in multidimensions 370, 372ff., 749f.,

752, 754, 1194ff., 1314ff.
in nonlinear multigrid 874, 876, 1339,

1341
nonlinear Volterra equations 787
for reciprocal of number 911, 1355
safe 359, 1190
scaling of variables 381
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singular Jacobian 386
solving stiff ODEs 740
for square root of number 912, 1356

Niederreiter sequence 300
NL2SOL 683
Noise

bursty 889
effect on maximum entropy method 567
equivalent bandwidth 548
fitting data which contains 647f., 650
model, for optimal filtering 541

Nominal variable (statistics) 623
Nonexpansive projection operator 805
Non-interfering directions see Conjugate direc-

tions
Nonlinear eigenvalue problems 455
Nonlinear elliptic equations, multigrid method

874ff., 1339ff.
Nonlinear equations, in MEM inverse prob-

lems 813
Nonlinear equations, roots of 340ff.
Nonlinear instability 831
Nonlinear integral equations 781, 787
Nonlinear programming 436
Nonnegativity constraints 423
Nonparametric statistics 633ff., 1277ff.
Nonpolynomial complete (NP-complete) 438
Norm, of matrix 50
Normal (Gaussian) distribution 267, 652, 682,

798, 1294
central limit theorem 652f.
deviates from 279f., 571, 1152
kurtosis of 607
multivariate 690
semi-invariants of 608
tails compared to Poisson 653
two-dimensional (binormal) 631
variance of skewness of 606

Normal equations (fitting) 26, 645, 666ff.,
795, 800, 1288

often are singular 670
Normalization

of Bessel functions 175
of floating-point representation 19, 882,

1343
of functions 142, 765
of modified Bessel functions 232

not() intrinsic function 951
Notch filter 551, 555f.
NP-complete problem 438
nr.f90 (module file) 936, 1362, 1384ff.
nrerror() utility function 989, 995
nrtype.f90 (module file) 936f.

named constants 1361
nrutil.f90 (module file) 936, 1070, 1362,

1364ff.
table of contents 1364

Null hypothesis 603
nullify statement 953f., 1070, 1302
Nullity 53
Nullspace 25, 53f., 449, 795
Number-theoretic transforms 503f.
Numeric inquiry functions 2/xiv, 1107, 1231,

1343
Numerical derivatives 180ff., 645, 1075

Numerical integration see Quadrature
Numerical intrinsic functions 946, 951f.
Numerical Recipes

compatibility with First Edition 4
Example Book 3
Fortran 90 types 936f., 1361
how to get programs 1/xx, 2/xvii
how to report bugs 1/iv, 2/iv
interface blocks (Fortran 90) 937, 941f.,

1084, 1384ff.
no warranty on 1/xx, 2/xvii
plan of two-volume edition 1/xiii
table of dependencies 921ff., 1434ff.
as trademark 1/xxiii, 2/xx
utility functions (Fortran 90) 936f., 945,

968, 970, 972ff., 977, 984, 987ff., 1015,
1071f., 1361ff.

Numerical Recipes Software 1/xv, 1/xxiiff.,
2/xviiff.

address and fax number 1/iv, 1/xxii, 2/iv,
2/xix

Web home page 1/xx, 2/xvii
Nyquist frequency 494ff., 520, 543, 545,

569ff.
Nystrom method 782f., 789, 1325

product version 789, 1331

Object extensibility 8
Objective function 424
Object-oriented programming 2/xvi, 2, 8
Oblateness parameter 764
Obsolete features see Fortran, Obsolescent fea-

tures
Octal constant, initialization 959
Odd-even ordering

allows parallelization 1333
in Gauss-Seidel relaxation 866, 869, 1338
in successive over-relaxation (SOR) 859,

1332
Odd parity 888
OEM information 1/xxii
One-sided power spectral density 492
ONLY option, for USE statement 941, 957,

1067
Operation count

balancing 476
Bessel function evaluation 228
bisection method 346
Cholesky decomposition 90
coefficients of interpolating polynomial

114f.
complex multiplication 97
cubic spline interpolation 109
evaluating polynomial 168
fast Fourier transform (FFT) 498
Gauss-Jordan elimination 34, 39
Gaussian elimination 34
Givens reduction 463
Householder reduction 467
interpolation 100
inverse iteration 488
iterative improvement 48
Jacobi transformation 460
Kendall’s tau 637
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linear congruential generator 268
LU decomposition 36, 39
matrix inversion 97
matrix multiplication 96
maximum entropy method 567
multidimensional minimization 413f.
multigrid method 862
multiplication 909
polynomial evaluation 97f., 168
QL method 470, 473
QR decomposition 92
QR method for Hessenberg matrices 484
reduction to Hessenberg form 479
selection by partitioning 333
sorting 320ff.
Spearman rank-order coefficient 638
Toeplitz matrix 83
Vandermonde matrix 83

Operator overloading 2/xiif., 7
Operator splitting 823, 847f., 861
Operator, user-defined 2/xii
Optimal feasible vector 424
Optimal (Wiener) filtering 535, 539ff., 558,

644
compared with regularization 801

Optimization see Minimization
Optimization of code 2/xiii
Optional argument 2/xiv, 947f., 1092, 1228,

1230, 1256, 1272, 1275, 1340
dim 948
mask 948, 968, 1038
testing for 952

Ordering Numerical Recipes 1/xxf., 2/xviif.
Ordinal variable (statistics) 623
Ordinary differential equations see Differential

equations
Orthogonal see Orthonormal functions; Or-

thonormal polynomials
Orthogonal transformation 452, 463ff., 469,

584, 1227
Orthonormal basis, constructing 58, 94, 1039
Orthonormal functions 142, 246
Orthonormal polynomials

Chebyshev 144, 184ff., 1076ff.
construct for arbitrary weight 151ff., 1064
in Gauss-Hermite integration 147, 1062
and Gaussian quadrature 142, 1009, 1061
Gaussian weights from recurrence 150,

1064
Hermite 144, 1062
Jacobi 144, 1063
Laguerre 144, 1060
Legendre 144, 1059
weight function logx 153

Orthonormality 51, 142, 463
Outer product Gaussian elimination 1017
Outer product of matrices (denoted by cross)

66, 420, 949, 969f., 989, 1000ff., 1017,
1026, 1040, 1076, 1200, 1216, 1275

outerand() utility function 989, 1002, 1015
outerdiff() utility function 989, 1001
outerdiv() utility function 989, 1001
outerprod() utility function 970, 989, 1000,

1017, 1026, 1040, 1076, 1200, 1216,
1275

outersum() utility function 989, 1001
Outgoing wave boundary conditions 820
Outlier 605, 653, 656, 694, 697

see also Robust estimation
Overcorrection 857
Overflow 882, 1343

how to avoid in modulo multiplication
269

in complex arithmetic 171
Overlap-add and overlap-save methods 536f.
Overloading

operator 2/xiif.
procedures 940, 1015, 1083, 1094, 1096

Overrelaxation parameter 857, 1332
choice of 858

Pack() intrinsic function 945, 950, 964, 991,
1031

communication bottleneck 969
for index table 1176
for partition-exchange 1170
for selection 1178
for selective evaluation 1087

Pack-unpack idiom 1087, 1134, 1153
Padé approximant 194ff., 1080f.
Padé approximation 105
Parabolic interpolation 395, 1204
Parabolic partial differential equations 818,

838ff.
Parallel axis theorem 308
Parallel programming 2/xv, 941, 958ff., 962ff.,

965f., 968f., 987
array operations 964f.
array ranking 1278f.
band diagonal linear equations 1021
Bessel functions 1107ff.
broadcasts 965ff.
C and C++ 2/viii
communication costs 969, 981, 1250
counting do-loops 1015
cyclic reduction 974
deflation 977ff.
design matrix 1082
dimensional expansion 965ff.
eigensystems 1226, 1229f.
fast Fourier transform (FFT) 981, 1235ff.,

1250
in Fortran 90 963ff.
Fortran 90 tricks 1009, 1274, 1278, 1280
function evaluation 986, 1009, 1084f.,

1087, 1090, 1102, 1128, 1134
Gaussian quadrature 1009, 1061
geometric progressions 972
index loss 967f., 1038
index table 1176f.
interprocessor communication 981
Kendall’s tau 1280
linear algebra 969f., 1000ff., 1018f., 1026,

1040, 1200, 1326
linear recurrence 973f., 1073ff.
logo 2/viii, 1009
masks 967f., 1006f., 1038, 1102, 1200,

1226, 1305, 1333f., 1368, 1378, 1382
merge statement 1010
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MIMD (multiple instruction, multiple data)
964, 985f., 1084

MMP (massively multiprocessor) machines
965ff., 974, 984, 1016ff., 1226ff., 1250

nrutil.f90 (module file) 1364ff.
odd-even ordering 1333
one-dimensional FFT 982f.
parallel note icon 1009
partial differential equations 1333
in-place selection 1178f.
polynomial coefficients from roots 980
polynomial evaluation 972f., 977, 998
random numbers 1009, 1141ff.
recursive doubling 973f., 976f., 979, 988,

999, 1071ff.
scatter-with-combine 984, 1002f., 1032f.
second order recurrence 974f., 1074
SIMD (Single Instruction Multiple Data)

964, 985f., 1009, 1084f.
singular value decomposition (SVD) 1026
sorting 1167ff., 1171, 1176f.
special functions 1009
SSP (small-scale parallel) machines 965ff.,

984, 1010ff., 1016ff., 1059f., 1226ff.,
1250

subvector scaling 972, 974, 996, 1000
successive over-relaxation (SOR) 1333
supercomputers 2/viii, 962
SVD algorithm 1026
synthetic division 977ff., 999, 1048, 1071f.,

1079, 1192
tridiagonal systems 975f., 1018, 1229f.
utilities 1364ff.
vector reduction 972f., 977, 998
vs. serial programming 965, 987

PARAMETER attribute 1012
Parameters in fitting function 651, 684ff.
Parity bit 888
Park and Miller minimal standard random gen-

erator 269, 1142
Parkinson’s Law 328
Parseval’s Theorem 492, 544

discrete form 498
Partial differential equations 818ff., 1332ff.

advective equation 826
alternating-direction implicit method (ADI)

847, 861f.
amplification factor 828, 834
analyze/factorize/operate package 824
artificial viscosity 831, 837
biconjugate gradient method 824
boundary conditions 819ff.
boundary value problems 819, 848
Cauchy problem 818f.
caution on high-order methods 844f.
Cayley’s form 844
characteristics 818
Chebyshev acceleration 859f., 1332
classification of 818f.
comparison of rapid methods 854
conjugate gradient method 824
Courant condition 829, 832ff., 836
Courant condition (multidimensional) 846
Crank-Nicholson method 840, 842, 844,

846

cyclic reduction (CR) method 848f., 852ff.
diffusion equation 818, 838ff., 846, 855
Dirichlet boundary conditions 508, 820,

840, 850, 856, 858
elliptic, defined 818
error, varieties of 831ff.
explicit vs. implicit differencing 827
FACR method 854
finite difference method 821ff.
finite element methods 824
flux-conservative initial value problems

825ff.
forward Euler differencing 826f.
Forward Time Centered Space (FTCS)

827ff., 839ff., 843, 855
Fourier analysis and cyclic reduction (FACR)

848ff., 854
Gauss-Seidel method (relaxation) 855,

864ff., 876, 1338, 1341
Godunov’s method 837
Helmholtz equation 852
hyperbolic 818, 825f.
implicit differencing 840
incomplete Cholesky conjugate gradient

method (ICCG) 824
inhomogeneous boundary conditions 850f.
initial value problems 818f.
initial value problems, recommendations on

838ff.
Jacobi’s method (relaxation) 855ff., 864
Laplace’s equation 818
Lax method 828ff., 836, 845f.
Lax method (multidimensional) 845f.
matrix methods 824
mesh-drift instability 834f.
Monte Carlo methods 824
multidimensional initial value problems

844ff.
multigrid method 824, 862ff., 1009, 1334ff.
Neumann boundary conditions 508, 820,

840, 851, 858
nonlinear diffusion equation 842
nonlinear instability 831
numerical dissipation or viscosity 830
operator splitting 823, 847f., 861
outgoing wave boundary conditions 820
parabolic 818, 838ff.
parallel computing 1333
periodic boundary conditions 850, 858
piecewise parabolic method (PPM) 837
Poisson equation 818, 852
rapid (Fourier) methods 508ff., 824, 848ff.
relaxation methods 823, 854ff., 1332f.
Schrödinger equation 842ff.
second-order accuracy 833ff., 840
shock 831, 837
sparse matrices from 64
spectral methods 825
spectral radius 856ff., 862
stability vs. accuracy 830
stability vs. efficiency 821
staggered grids 513, 852
staggered leapfrog method 833f.
strongly implicit procedure 824
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successive over-relaxation (SOR) 857ff.,
862, 866, 1332f.

time splitting 847f., 861
two-step Lax-Wendroff method 835ff.
upwind differencing 832f., 837
variational methods 824
varieties of error 831ff.
von Neumann stability analysis 827f.,

830, 833f., 840
wave equation 818, 825f.
see also Elliptic partial differential equa-

tions; Finite difference equations (FDEs)
Partial pivoting 29
Partition-exchange 323, 333

and pack() intrinsic function 1170
Partitioned matrix, inverse of 70
Party tricks 95ff., 168
Parzen window 547
Pascal, Numerical Recipes in 2/x, 2/xvii, 1
Pass-the-buck idiom 1102, 1128
Path integration, for function evaluation 201ff.,

263, 1138
Pattern multiply of sparse matrices 74
PBCG (preconditioned biconjugate gradient

method) 78f., 824
PC methods see Predictor-corrector methods
PCGPACK 71
PDEs see Partial differential equations
Pearson’s r 630ff., 1276
PECE method 741
Pentagon, symmetries of 895
Percentile 320
Period of linear congruential generator 268
Periodic boundary conditions 850, 858
Periodogram 543ff., 566, 1258ff.

Lomb’s normalized 569f., 574f., 1258ff.
variance of 544f.

Perl (programming language) 1/xvi
Perron’s theorems, for convergence of recur-

rence relations 174f.
Perturbation methods for matrix inversion

65ff.
Phase error 831
Phase-locked loop 700
Phi statistic 625
Phillips-Twomey method 799ff.
Pi, computation of 906ff., 1352ff., 1357f.
Piecewise parabolic method (PPM) 837
Pincherle’s theorem 175
Pivot element 29, 33, 757

in linear programming 428f.
Pivoting 27, 29ff., 46, 66, 90, 1014

full 29, 1014
implicit 30, 38, 1014, 1017
in LU decomposition 37f., 1017
partial 29, 33, 37f., 1017
and QR decomposition 92
in reduction to Hessenberg form 478
in relaxation method 757
as row and column operations 32
for tridiagonal systems 43

Pixel 519, 596, 803, 811
PL/1 2/x
Planck’s constant 842

Plane rotation see Givens reduction; Jacobi
transformation (or rotation)

Platykurtic distribution 606
Plotting of functions 342, 1182f.
POCS (projection onto convex sets) 805
Poetry 5f.
Pointer (Fortran 90) 2/xiiif., 938f., 944f.,

953ff., 1197, 1212, 1266
as alias 939, 944f., 1286, 1333
allocating an array 941
allocating storage for derived type 955
for array of arrays 956, 1336
array of, forbidden 956, 1337
associated with target 938f., 944f., 952f.,

1197
in Fortran 95 961
to function, forbidden 1067, 1210
initialization to null 2/xv, 961
returning array of unknown size 955f.,

1184, 1259, 1261, 1327
undefined status 952f., 961, 1070, 1266,

1302
Poisson equation 519, 818, 852
Poisson probability function

cumulative 214
deviates from 281, 283ff., 571, 1154
semi-invariants of 608
tails compared to Gaussian 653

Poisson process 278, 282ff., 1153
Polak-Ribiere algorithm 390, 414ff., 1214
Poles see Complex plane, poles in
Polishing of roots 356, 363ff., 370f., 1193
poly() utility function 973, 977, 989, 998,

1072, 1096, 1192, 1258, 1284
Polymorphism 8
Polynomial interpolation 99, 102ff., 1043

Aitken’s algorithm 102
in Bulirsch-Stoer method 724, 726, 1305
coefficients for 113ff., 1047f.
Lagrange’s formula 84, 102f.
multidimensional 116ff., 1049ff.
Neville’s algorithm 102f., 105, 134, 182,

1043
pathology in determining coefficients for

116
in predictor-corrector method 740
smoothing filters 645
see also Interpolation

Polynomials 167ff.
algebraic manipulations 169, 1072
approximate roots of Hermite polynomials

1062
approximate roots of Jacobi polynomials

1064
approximate roots of Laguerre polynomials

1061
approximating modified Bessel functions

230
approximation from Chebyshev coefficients

191, 1078f.
AUTODIN-II 890
CCITT 889f.
characteristic 368, 1193
characteristic, for digital filters 554, 559,

1257
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characteristic, for eigenvalues of matrix
449, 469

Chebyshev 184ff., 1076ff.
coefficients from roots 980
CRC-16 890
cumulants of 977, 999, 1071f., 1192,

1365, 1378f.
deflation 362ff., 370f., 977
derivatives of 167, 978, 1071
division 84, 169, 362, 370, 977, 1072
evaluation of 167, 972, 977, 998f., 1071,

1258, 1365, 1376ff.
evaluation of derivatives 167, 978, 1071
extrapolation in Bulirsch-Stoer method

724, 726, 1305f.
extrapolation in Romberg integration 134
fitting 83, 114, 191, 645, 665, 674, 1078f.,

1291
generator for CRC 889
ill-conditioned 362
masked evaluation of 1378
matrix method for roots 368, 1193
minimax 186, 198, 1076
monic 142f.
multiplication 169
operation count for 168
orthonormal 142, 184, 1009, 1061
parallel operations on 977ff., 998f., 1071f.,

1192
primitive modulo 2 287ff., 301f., 889
roots of 178ff., 362ff., 368, 1191ff.
shifting of 192f., 978, 1079
stopping criterion in root finding 366

poly term() utility function 974, 977, 989,
999, 1071f., 1192

Port, serial data 892
Portability 3, 963
Portable random number generator see Ran-

dom number generator
Positive definite matrix, testing for 90
Positivity constraints 423
Postal Service (U.S.), barcode 894
PostScript 1/xvi, 1/xxiii, 2/xx
Powell’s method 389, 402, 406ff., 1210ff.
Power (in a signal) 492f.
Power series 159ff., 167, 195

economization of 192f., 1061, 1080
Padé approximant of 194ff., 1080f.

Power spectral density see Fourier transform;
Spectral density

Power spectrum estimation see Fourier trans-
form; Spectral density

PowerStation, Microsoft Fortran 2/xix
PPM (piecewise parabolic method) 837
Precision

converting to double 1362
floating point 882, 937, 1343, 1361ff.
multiple 906ff., 1352ff., 1362

Preconditioned biconjugate gradient method
(PBCG) 78f.

Preconditioning, in conjugate gradient methods
824

Predictor-corrector methods 702, 730, 740ff.
Adams-Bashforth-Moulton schemes 741
adaptive order methods 744

compared to other methods 740
fallacy of multiple correction 741
with fixed number of iterations 741
functional iteration vs. Newton’s rule 742
multivalue compared with multistep 742ff.
starting and stopping 742, 744
stepsize control 742f.

present() intrinsic function 952
Prime numbers 915
Primitive polynomials modulo 2 287ff., 301f.,

889
Principal directions 408f., 1210
Principal solution, of inverse problem 797
PRIVATE attribute 957, 1067
Prize, $1000 offered 272, 1141, 1150f.
Probability see Random number generator;

Statistical tests
Probability density, change of variables in

278f.
Procedure see Program(s); Subprogram
Process loss 548
product() intrinsic function 948
Product Nystrom method 789, 1331
Program(s)

as black boxes 1/xviii, 6, 26, 52, 205,
341, 406

dependencies 921ff., 1434ff.
encapsulation 7
interfaces 2, 8
modularization 7f.
organization 5ff.
type declarations 2
typography of 2f., 12, 937
validation 3f.

Programming, serial vs. parallel 965, 987
Projection onto convex sets (POCS) 805
Projection operator, nonexpansive 805
Prolongation operator 864, 1337
Protocol, for communications 888
PSD (power spectral density) see Fourier

transform; Spectral density
Pseudo-random numbers 266ff., 1141ff.
PUBLIC attribute 957, 1067
Puns, particularly bad 167, 744, 747
PURE attribute 2/xv, 960f., 964, 986
put diag() utility function 985, 990, 1005,

1200
Pyramidal algorithm 586, 1264
Pythagoreans 392

QL see Eigensystems
QR see Eigensystems
QR decomposition 91f., 382, 386, 1039f.,

1199
backsubstitution 92, 1040
and least squares 668
operation count 92
pivoting 92
updating 94, 382, 386, 1041, 1199
use for orthonormal basis 58, 94

Quadratic
convergence 49, 256, 351, 356, 409f.,

419, 906
equations 20, 178, 391, 457



Index to Volumes 1 and 2 1477

interpolation 353, 364
programming 436

Quadrature 123ff., 1052ff.
adaptive 123, 190, 788
alternative extended Simpson’s rule 128
arbitrary weight function 151ff., 789,

1064, 1328
automatic 154
Bode’s rule 126
change of variable in 137ff., 788, 1056ff.
by Chebyshev fitting 124, 189, 1078
classical formulas for 124ff.
Clenshaw-Curtis 124, 190, 512f.
closed formulas 125, 127f.
and computer science 881
by cubic splines 124
error estimate in solution 784
extended midpoint rule 129f., 135, 1054f.
extended rules 127ff., 134f., 786, 788ff.,

1326, 1328
extended Simpson’s rule 128
Fourier integrals 577ff., 1261ff.
Fourier integrals, infinite range 583
Gauss-Chebyshev 144, 512f.
Gauss-Hermite 144, 789, 1062
Gauss-Jacobi 144, 1063
Gauss-Kronrod 154
Gauss-Laguerre 144, 789, 1060
Gauss-Legendre 144, 783, 789, 1059,

1325
Gauss-Lobatto 154, 190, 512
Gauss-Radau 154
Gaussian integration 127, 140ff., 781,

783, 788f., 1009, 1059ff., 1325, 1328f.
Gaussian integration, nonclassical weight

function 151ff., 788f., 1064f., 1328f.
for improper integrals 135ff., 789, 1055,

1328
for integral equations 781f., 786, 1325ff.
Monte Carlo 124, 155ff., 295ff., 306ff.,

1161ff.
multidimensional 124, 155ff., 1052, 1065ff.
multidimensional, by recursion 1052,

1065
Newton-Cotes formulas 125ff., 140
open formulas 125ff., 129f., 135
related to differential equations 123
related to predictor-corrector methods 740
Romberg integration 124, 134f., 137, 182,

717, 788, 1054f., 1065, 1067
semi-open formulas 130
Simpson’s rule 126, 133, 136f., 583, 782,

788ff., 1053
Simpson’s three-eighths rule 126, 789f.
singularity removal 137ff., 788, 1057ff.,

1328ff.
singularity removal, worked example 792,

1328ff.
trapezoidal rule 125, 127, 130ff., 134f.,

579, 583, 782, 786, 1052ff., 1326f.
using FFTs 124
weight function logx 153
see also Integration of functions

Quadrature mirror filter 585, 593

Quantum mechanics, Uncertainty Principle
600

Quartile value 320
Quasi-Newton methods for minimization 390,

418ff., 1215
Quasi-random sequence 299ff., 318, 881, 888

Halton’s 300
for Monte Carlo integration 304, 309, 318
Sobol’s 300ff., 1160
see also Random number generator

Quicksort 320, 323ff., 330, 333, 1169f.
Quotient-difference algorithm 164

R-estimates 694
Radioactive decay 278
Radix base for floating point arithmetic 476,

882, 907, 913, 1231, 1343, 1357
Radix conversion 902, 906, 913, 1357
radix() intrinsic function 1231
Radix sort 1172
Ramanujan’s identity for π 915
Random bits, generation of 287ff., 1159f.
Random deviates 266ff., 1141ff.

binomial 285f., 1155
exponential 278, 1151f.
gamma distribution 282f., 1153
Gaussian 267, 279f., 571, 798, 1152f.
normal 267, 279f., 571, 1152f.
Poisson 283ff., 571, 1154f.
quasi-random sequences 299ff., 881, 888,

1160f.
uniform 267ff., 1158f., 1166
uniform integer 270, 274ff.

Random number generator 266ff., 1141ff.
bitwise operations 287
Box-Muller algorithm 279, 1152
Data Encryption Standard 290ff., 1144,

1156ff.
good choices for modulus, multiplier and

increment 274ff.
initializing 1144ff.
for integer-valued probability distribution

283f., 1154
integer vs. real implementation 273
L’Ecuyer’s long period 271f.
lagged Fibonacci generator 1142, 1148ff.
linear congruential generator 267ff., 1142
machine language 269
Marsaglia shift register 1142, 1148ff.
Minimal Standard, Park and Miller’s 269,

1142
nonrandomness of low-order bits 268f.
parallel 1009
perfect 272, 1141, 1150f.
planes, numbers lie on 268
portable 269ff., 1142
primitive polynomials modulo 2 287ff.
pseudo-DES 291, 1144, 1156ff.
quasi-random sequences 299ff., 881, 888,

1160f.
quick and dirty 274
quicker and dirtier 275
in Quicksort 324
random access to nth number 293
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random bits 287ff., 1159f.
recommendations 276f.
rejection method 281ff.
serial 1141f.
shuffling procedure 270, 272
in simulated annealing method 438
spectral test 274
state space 1143f.
state space exhaustion 1141
subtractive method 273, 1143
system-supplied 267f.
timings 276f., 1151
transformation method 277ff.
trick for trigonometric functions 280

Random numbers see Monte Carlo; Random
deviates

Random walk 20
random number() intrinsic function 1141,

1143
random seed() intrinsic function 1141
RANDU, infamous routine 268
Range 53f.
Rank (matrix) 53

kernel of finite 785
Rank (sorting) 320, 332, 1176
Rank (statistics) 633ff., 694f., 1277

Kendall’s tau 637ff., 1279
Spearman correlation coefficient 634f.,

1277ff.
sum squared differences of 634, 1277

Ratio variable (statistics) 623
Rational Chebyshev approximation 197ff.,

1081f.
Rational function 99, 167ff., 194ff., 1080f.

approximation for Bessel functions 225
approximation for continued fraction 164,

211, 219f.
Chebyshev approximation 197ff., 1081f.
evaluation of 170, 1072f.
extrapolation in Bulirsch-Stoer method

718ff., 726, 1306f.
interpolation and extrapolation using 99,

104ff., 194ff., 718ff., 726
as power spectrum estimate 566
interpolation and extrapolation using 1043f.,

1080ff., 1306
minimax 198

Re-entrant procedure 1052
real() intrinsic function, ambiguity of 947
Realizable (causal) 552, 554f.
reallocate() utility function 955, 990, 992,

1070, 1302
Rearranging see Sorting
Reciprocal, multiple precision 910f., 1355f.
Record, in data file 329
Recurrence relation 172ff., 971ff.

arithmetic progression 971f., 996
associated Legendre polynomials 247
Bessel function 172, 224, 227f., 234
binomial coefficients 209
Bulirsch-Stoer 105f.
characteristic polynomial of tridiagonal

matrix 469
Clenshaw’s recurrence formula 176f.
and continued fraction 175

continued fraction evaluation 164f.
convergence 175
cosine function 172, 500
cyclic reduction 974
dominant solution 174
exponential integrals 172
gamma function 206
generation of random bits 287f.
geometric progression 972, 996
Golden Mean 21
Legendre polynomials 172
minimal vs. dominant solution 174
modified Bessel function 232
Neville’s 103, 182
orthonormal polynomials 142
Perron’s theorems 174f.
Pincherle’s theorem 175
for polynomial cumulants 977, 999, 1071f.
polynomial interpolation 103, 183
primitive polynomials modulo 2 287f.
random number generator 268
rational function interpolation 105f., 1043
recursive doubling 973, 977, 988, 999,

1071f., 1073
second order 974f., 1074
sequence of trig functions 173
sine function 172, 500
spherical harmonics 247
stability of 21, 173ff., 177, 224f., 227f.,

232, 247, 975
trig functions 572
weight of Gaussian quadrature 144f.

Recursion
in Fortran 90 958
in multigrid method 865, 1009, 1336

Recursive doubling 973f., 979
cumulants of polynomial 977, 999, 1071f.
linear recurrences 973, 988, 1073
tridiagonal systems 976

RECURSIVE keyword 958, 1065, 1067
Recursive Monte Carlo integration 306ff.,

1161
Recursive procedure 2/xiv, 958, 1065, 1067,

1166
as parallelization tool 958
base case 958
for multigrid method 1009, 1336
re-entrant 1052

Recursive stratified sampling 314ff., 1164ff.
Red-black see Odd-even ordering
Reduction functions 948ff.
Reduction of variance in Monte Carlo integra-

tion 299, 306ff.
References (explanation) 4f.
References (general bibliography) 916ff.,

1359f.
Reflection formula for gamma function 206
Regula falsi (false position) 347ff., 1185f.
Regularity condition 775
Regularization

compared with optimal filtering 801
constrained linear inversion method 799ff.
of inverse problems 796ff.
linear 799ff.
nonlinear 813
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objective criterion 802
Phillips-Twomey method 799ff.
Tikhonov-Miller 799ff.
trade-off curve 799
two-dimensional 803
zeroth order 797
see also Inverse problems

Regularizing operator 798
Reid, John 2/xiv, 2/xvi
Rejection method for random number genera-

tor 281ff.
Relaxation method

for algebraically difficult sets 763
automated allocation of mesh points 774f.,

777
computation of spheroidal harmonics 764ff.,

1319ff.
for differential equations 746f., 753ff.,

1316ff.
elliptic partial differential equations 823,

854ff., 1332f.
example 764ff., 1319ff.
Gauss-Seidel method 855, 864ff., 876,

1338, 1341
internal boundary conditions 775ff.
internal singular points 775ff.
Jacobi’s method 855f., 864
successive over-relaxation (SOR) 857ff.,

862, 866, 1332f.
see also Multigrid method

Remes algorithms
exchange algorithm 553
for minimax rational function 199

reshape() intrinsic function 950
communication bottleneck 969
order keyword 1050, 1246

Residual 49, 54, 78
in multigrid method 863, 1338

Resolution function, in Backus-Gilbert method
807

Response function 531
Restriction operator 864, 1337
RESULT keyword 958, 1073
Reward, $1000 offered 272, 1141, 1150f.
Richardson’s deferred approach to the limit

134, 137, 182, 702, 718ff., 726, 788,
869

see also Bulirsch-Stoer method
Richtmyer artificial viscosity 837
Ridders’ method, for numerical derivatives

182, 1075
Ridders’ method, root finding 341, 349, 351,

1187
Riemann shock problem 837
Right eigenvalues and eigenvectors 451
Rise/fall time 548f.
Robust estimation 653, 694ff., 700, 1294

Andrew’s sine 697
average deviation 605
double exponential errors 696
Kalman filtering 700
Lorentzian errors 696f.
mean absolute deviation 605
nonparametric correlation 633ff., 1277
Tukey’s biweight 697

use of a priori covariances 700
see also Statistical tests

Romberg integration 124, 134f., 137, 182,
717, 788, 1054f., 1065

Root finding 143, 340ff., 1009, 1059
advanced implementations of Newton’s rule

386
Bairstow’s method 364, 370, 1193
bisection 343, 346f., 352f., 359, 390, 469,

698, 1184f.
bracketing of roots 341, 343ff., 353f.,

362, 364, 369, 1183f.
Brent’s method 341, 349, 660f., 1188f.,

1286
Broyden’s method 373, 382f., 386, 1199
compared with multidimensional minimiza-

tion 375
complex analytic functions 364
in complex plane 204
convergence criteria 347, 374
deflation of polynomials 362ff., 370f.,

1192
without derivatives 354
double root 341
eigenvalue methods 368, 1193
false position 347ff., 1185f.
Jenkins-Traub method 369
Laguerre’s method 341, 366f., 1191f.
Lehmer-Schur algorithm 369
Maehly’s procedure 364, 371
matrix method 368, 1193
Muller’s method 364, 372
multiple roots 341
Newton’s rule 143f., 180, 341, 355ff.,

362, 364, 370, 372ff., 376, 469, 740,
749f., 754, 787, 874, 876, 911f., 1059,
1189, 1194, 1196, 1314ff., 1339, 1341,
1355f.

pathological cases 343, 356, 362, 372
polynomials 341, 362ff., 449, 1191f.
in relaxation method 754, 1316
Ridders’ method 341, 349, 351, 1187
root-polishing 356, 363ff., 369ff., 1193
safe Newton’s rule 359, 1190
secant method 347ff., 358, 364, 399,

1186f.
in shooting method 746, 749f., 1314f.
singular Jacobian in Newton’s rule 386
stopping criterion for polynomials 366
use of minimum finding 341
using derivatives 355ff., 1189
zero suppression 372
see also Roots

Root polishing 356, 363ff., 369ff., 1193
Roots

Chebyshev polynomials 184
complex nth root of unity 999f., 1379
cubic equations 179f.
Hermite polynomials, approximate 1062
Jacobi polynomials, approximate 1064
Laguerre polynomials, approximate 1061
multiple 341, 364ff., 1192
nonlinear equations 340ff.
polynomials 341, 362ff., 449, 1191f.
quadratic equations 178
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reflection in unit circle 560, 1257
square, multiple precision 912, 1356
see also Root finding

Rosenbrock method 730, 1308
compared with semi-implicit extrapolation

739
stepsize control 731, 1308f.

Roundoff error 20, 881, 1362
bracketing a minimum 399
compile time vs. run time 1012
conjugate gradient method 824
eigensystems 458, 467, 470, 473, 476,

479, 483
extended trapezoidal rule 132
general linear least squares 668, 672
graceful 883, 1343
hardware aspects 882, 1343
Householder reduction 466
IEEE standard 882f., 1343
interpolation 100
least squares fitting 658, 668
Levenberg-Marquardt method 679
linear algebraic equations 23, 27, 29, 47,

56, 84, 1022
linear predictive coding (LPC) 564
magnification of 20, 47, 1022
maximum entropy method (MEM) 567
measuring 881f., 1343
multidimensional minimization 418, 422
multiple roots 362
numerical derivatives 180f.
recurrence relations 173
reduction to Hessenberg form 479
series 164f.
straight line fitting 658
variance 607

Row degeneracy 22
Row-indexed sparse storage 71f., 1030

transpose 73f.
Row operations on matrix 28, 31f.
Row totals 624
RSS algorithm 314ff., 1164
RST properties (reflexive, symmetric, transi-

tive) 338
Runge-Kutta method 702, 704ff., 731, 740,

1297ff., 1308
Cash-Karp parameters 710, 1299f.
embedded 709f., 731, 1298, 1308
high-order 705
quality control 722
stepsize control 708ff.

Run-length encoding 901
Runge-Kutta method

high-order 1297
stepsize control 1298f.

Rybicki, G.B. 84ff., 114, 145, 252, 522, 574,
600

S-box for Data Encryption Standard 1148
Sampling

importance 306f.
Latin square or hypercube 305f.
recursive stratified 314ff., 1164
stratified 308f.
uneven or irregular 569, 648f., 1258

Sampling theorem 495, 543
for numerical approximation 600ff.

Sande-Tukey FFT algorithm 503
SAVE attribute 953f., 958f., 961, 1052, 1070,

1266, 1293
redundant use of 958f.

SAVE statements 3
Savitzky-Golay filters

for data smoothing 644ff., 1283f.
for numerical derivatives 183, 645

scale() intrinsic function 1107
Scallop loss 548
Scatter-with-combine functions 984, 1002f.,

1032, 1366, 1380f.
scatter add() utility function 984, 990, 1002,

1032
scatter max() utility function 984, 990, 1003
Schonfelder, Lawrie 2/xi
Schrage’s algorithm 269
Schrödinger equation 842ff.
Schultz’s method for matrix inverse 49, 598
Scope 956ff., 1209, 1293, 1296
Scoping unit 939
SDLC checksum 890
Searching

with correlated values 111, 1046f.
an ordered table 110f., 1045f.
selection 333, 1177f.

Secant method 341, 347ff., 358, 364, 399,
1186f.

Broyden’s method 382f., 1199f.
multidimensional (Broyden’s) 373, 382f.,

1199
Second Euler-Maclaurin summation formula

135f.
Second order differential equations 726, 1307
Seed of random number generator 267, 1146f.
select case statement 2/xiv, 1010, 1036
Selection 320, 333, 1177f.

find m largest elements 336, 1179f.
heap algorithm 336, 1179
for median 698, 1294
operation count 333
by packing 1178
parallel algorithms 1178
by partition-exchange 333, 1177f.
without rearrangement 335, 1178f.
timings 336
use to find median 609

Semi-implicit Euler method 730, 735f.
Semi-implicit extrapolation method 730,

735f., 1310f.
compared with Rosenbrock method 739
stepsize control 737, 1311f.

Semi-implicit midpoint rule 735f., 1310f.
Semi-invariants of a distribution 608
Sentinel, in Quicksort 324, 333
Separable kernel 785
Separation of variables 246
Serial computing

convergence of quadrature 1060
random numbers 1141
sorting 1167

Serial data port 892
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Series 159ff.
accelerating convergence of 159ff.
alternating 160f., 1070
asymptotic 161
Bessel function Kν 241
Bessel function Yν 235
Bessel functions 160, 223
cosine integral 250
divergent 161
economization 192f., 195, 1080
Euler’s transformation 160f., 1070
exponential integral 216, 218
Fresnel integral 248
hypergeometric 202, 263, 1138
incomplete beta function 219
incomplete gamma function 210, 1090f.
Laurent 566
relation to continued fractions 163f.
roundoff error in 164f.
sine and cosine integrals 250
sine function 160
Taylor 355f., 408, 702, 709, 754, 759
transformation of 160ff., 1070
van Wijngaarden’s algorithm 161, 1070

Shaft encoder 886
Shakespeare 9
Shampine’s Rosenbrock parameters 732, 1308
shape() intrinsic function 938, 949
Shell algorithm (Shell’s sort) 321ff., 1168
Sherman-Morrison formula 65ff., 83, 382
Shifting of eigenvalues 449, 470f., 480
Shock wave 831, 837
Shooting method

computation of spheroidal harmonics 772,
1321ff.

for differential equations 746, 749ff.,
770ff., 1314ff., 1321ff.

for difficult cases 753, 1315f.
example 770ff., 1321ff.
interior fitting point 752, 1315f., 1323ff.

Shuffling to improve random number generator
270, 272

Side effects
prevented by data hiding 957, 1209, 1293,

1296
and PURE subprograms 960

Sidelobe fall-off 548
Sidelobe level 548
sign() intrinsic function, modified in Fortran 95

961
Signal, bandwidth limited 495
Significance (numerical) 19
Significance (statistical) 609f.

one- vs. two-sided 632
peak in Lomb periodogram 570
of 2-d K-S test 640, 1281
two-tailed 613

SIMD machines (Single Instruction Multiple
Data) 964, 985f., 1009, 1084f.

Similarity transform 452ff., 456, 476, 478,
482

Simplex
defined 402
method in linear programming 389, 402,

423ff., 431ff., 1216ff.

method of Nelder and Mead 389, 402ff.,
444, 697f., 1208f., 1222ff.

use in simulated annealing 444, 1222ff.
Simpson’s rule 124ff., 128, 133, 136f., 583,

782, 788f., 1053f.
Simpson’s three-eighths rule 126, 789f.
Simulated annealing see Annealing, method of

simulated
Simulation see Monte Carlo
Sine function

evaluated from tan(θ/2) 173
recurrence 172
series 160

Sine integral 248, 250ff., 1123, 1125f.
continued fraction 250
series 250
see also Cosine integral

Sine transform see Fast Fourier transform
(FFT); Fourier transform

Singleton’s algorithm for FFT 525
Singular value decomposition (SVD) 23, 25,

51ff., 1022
approximation of matrices 58f.
backsubstitution 56, 1022f.
and bases for nullspace and range 53
confidence levels from 693f.
covariance matrix 693f.
fewer equations than unknowns 57
for inverse problems 797
and least squares 54ff., 199f., 668, 670ff.,

1081, 1290f.
in minimization 410
more equations than unknowns 57f.
parallel algorithms 1026
and rational Chebyshev approximation

199f., 1081f.
of square matrix 53ff., 1023
use for ill-conditioned matrices 56, 58,

449
use for orthonormal basis 58, 94

Singularities
of hypergeometric function 203, 263
in integral equations 788ff., 1328
in integral equations, worked example

792, 1328ff.
in integrands 135ff., 788, 1055, 1328ff.
removal in numerical integration 137ff.,

788, 1057ff., 1328ff.
Singularity, subtraction of the 789
SIPSOL 824
Six-step framework, for FFT 983, 1240
size() intrinsic function 938, 942, 945, 948
Skew array section 2/xii, 945, 960, 985, 1284
Skewness of distribution 606, 608, 1269
Smoothing

of data 114, 644ff., 1283f.
of data in integral equations 781
importance in multigrid method 865

sn function 261, 1137f.
Snyder, N.L. 1/xvi
Sobol’s quasi-random sequence 300ff., 1160f.
Sonata 9
Sonnet 9
Sorting 320ff., 1167ff.

bubble sort 1168
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bubble sort cautioned against 321
compared to selection 333
covariance matrix 669, 681, 1289
eigenvectors 461f., 1227
Heapsort 320, 327f., 336, 1171f., 1179
index table 320, 329f., 1170, 1173ff.,

1176
operation count 320ff.
by packing 1171
parallel algorithms 1168, 1171f., 1176
Quicksort 320, 323ff., 330, 333, 1169f.
radix sort 1172
rank table 320, 332, 1176
ranking 329, 1176
by reshaping array slices 1168
Shell’s method 321ff., 1168
straight insertion 321f., 461f., 1167, 1227

SP, defined 937
SPARC or SPARCstation 1/xxii, 2/xix, 4
Sparse linear equations 23, 63ff., 732, 1030

band diagonal 43, 1019ff.
biconjugate gradient method 77, 599,

1034
data type for 1030
indexed storage 71f., 1030
in inverse problems 804
minimum residual method 78
named patterns 64, 822
partial differential equations 822ff.
relaxation method for boundary value prob-

lems 754, 1316
row-indexed storage 71f., 1030
wavelet transform 584, 598
see also Matrix

Spearman rank-order coefficient 634f., 694f.,
1277

Special functions see Function
Spectral analysis see Fourier transform; Peri-

odogram
Spectral density 541

and data windowing 545ff.
figures of merit for data windows 548f.
normalization conventions 542f.
one-sided PSD 492
periodogram 543ff., 566, 1258ff.
power spectral density (PSD) 492f.
power spectral density per unit time 493
power spectrum estimation by FFT 542ff.,

1254ff.
power spectrum estimation by MEM 565ff.,

1258
two-sided PSD 493
variance reduction in spectral estimation

545
Spectral lines, how to smooth 644
Spectral methods for partial differential equa-

tions 825
Spectral radius 856ff., 862
Spectral test for random number generator

274
Spectrum see Fourier transform
Spherical Bessel functions 234

routine for 245, 1121
Spherical harmonics 246ff.

orthogonality 246

routine for 247f., 1122
stable recurrence for 247
table of 246
see also Associated Legendre polynomials

Spheroidal harmonics 764ff., 770ff., 1319ff.
boundary conditions 765
normalization 765
routine for 768ff., 1319ff., 1323ff.

Spline 100
cubic 107ff., 1044f.
gives tridiagonal system 109
natural 109, 1044f.
operation count 109
two-dimensional (bicubic) 120f., 1050f.

spread() intrinsic function 945, 950, 969,
1000, 1094, 1290f.

and dimensional expansion 966ff.
Spread matrix 808
Spread spectrum 290
Square root, complex 172
Square root, multiple precision 912, 1356f.
Square window 546, 1254ff.
SSP (small-scale parallel) machines 965ff.,

972, 974, 984, 1011, 1016ff., 1021,
1059f., 1226ff., 1250

Stability 20f.
of Clenshaw’s recurrence 177
Courant condition 829, 832ff., 836, 846
diffusion equation 840
of Gauss-Jordan elimination 27, 29
of implicit differencing 729, 840
mesh-drift in PDEs 834f.
nonlinear 831, 837
partial differential equations 820, 827f.
of polynomial deflation 363
in quadrature solution of Volterra equation

787f.
of recurrence relations 173ff., 177, 224f.,

227f., 232, 247
and stiff differential equations 728f.
von Neumann analysis for PDEs 827f.,

830, 833f., 840
see also Accuracy

Stabilized Kolmogorov-Smirnov test 621
Stabilizing functional 798
Staggered leapfrog method 833f.
Standard (probable) errors 1288, 1290
Standard deviation

of a distribution 605, 1269
of Fisher’s z 632
of linear correlation coefficient 630
of sum squared difference of ranks 635,

1277
Standard (probable) errors 610, 656, 661,

667, 671, 684
Stars, as text separator 1009
Statement function, superseded by internal sub-

program 1057, 1256
Statement labels 9
Statistical error 653
Statistical tests 603ff., 1269ff.

Anderson-Darling 621
average deviation 605, 1269
bootstrap method 686f.
chi-square 614f., 623ff., 1272, 1275f.
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contingency coefficient C 625, 1275
contingency tables 622ff., 638, 1275f.
correlation 603f.
Cramer’s V 625, 1275
difference of distributions 614ff., 1272
difference of means 609ff., 1269f.
difference of variances 611, 613, 1271
entropy measures of association 626ff.,

1275f.
F-test 611, 613, 1271
Fisher’s z-transformation 631f., 1276
general paradigm 603
Kendall’s tau 634, 637ff., 1279
Kolmogorov-Smirnov 614, 617ff., 640,

694, 1273f., 1281
Kuiper’s statistic 621
kurtosis 606, 608, 1269
L-estimates 694
linear correlation coefficient 630ff., 1276
M-estimates 694ff.
mean 603ff., 608ff., 1269f.
measures of association 604, 622ff., 1275
measures of central tendency 604ff., 1269
median 605, 694
mode 605
moments 604ff., 608, 1269
nonparametric correlation 633ff., 1277
Pearson’s r 630ff., 1276
for periodic signal 570
phi statistic 625
R-estimates 694
rank correlation 633ff., 1277
robust 605, 634, 694ff.
semi-invariants 608
for shift vs. for spread 620f.
significance 609f., 1269ff.
significance, one- vs. two-sided 613, 632
skewness 606, 608, 1269
Spearman rank-order coefficient 634f.,

694f., 1277
standard deviation 605, 1269
strength vs. significance 609f., 622
Student’s t 610, 631, 1269
Student’s t, for correlation 631
Student’s t, paired samples 612, 1271
Student’s t, Spearman rank-order coeffi-

cient 634, 1277
Student’s t, unequal variances 611, 1270
sum squared difference of ranks 635,

1277
Tukey’s trimean 694
two-dimensional 640, 1281ff.
variance 603ff., 607f., 612f., 1269ff.
Wilcoxon 694
see also Error; Robust estimation

Steak, without sizzle 809
Steed’s method

Bessel functions 234, 239
continued fractions 164f.

Steepest descent method 414
in inverse problems 804

Step
doubling 130, 708f., 1052
tripling 136, 1055

Stieltjes, procedure of 151

Stiff equations 703, 727ff., 1308ff.
Kaps-Rentrop method 730, 1308
methods compared 739
predictor-corrector method 730
r.h.s. independent of x 729f.
Rosenbrock method 730, 1308
scaling of variables 730
semi-implicit extrapolation method 730,

1310f.
semi-implicit midpoint rule 735f., 1310f.

Stiff functions 100, 399
Stirling’s approximation 206, 812
Stoermer’s rule 726, 1307
Stopping criterion, in multigrid method 875f.
Stopping criterion, in polynomial root finding

366
Storage

band diagonal matrix 44, 1019
sparse matrices 71f., 1030

Storage association 2/xiv
Straight injection 867
Straight insertion 321f., 461f., 1167, 1227
Straight line fitting 655ff., 667f., 1285ff.

errors in both coordinates 660ff., 1286ff.
robust estimation 698, 1294ff.

Strassen’s fast matrix algorithms 96f.
Stratified sampling, Monte Carlo 308f., 314
Stride (of an array) 944

communication bottleneck 969
Strongly implicit procedure (SIPSOL) 824
Structure constructor 2/xii
Structured programming 5ff.
Student’s probability distribution 221f.
Student’s t-test

for correlation 631
for difference of means 610, 1269
for difference of means (paired samples)

612, 1271
for difference of means (unequal variances)

611, 1270
for difference of ranks 635, 1277
Spearman rank-order coefficient 634,

1277
Sturmian sequence 469
Sub-random sequences see Quasi-random se-

quence
Subprogram 938

for data hiding 957, 1209, 1293, 1296
internal 954, 957, 1057, 1067, 1226, 1256
in module 940
undefined variables on exit 952f., 961,

1070, 1266, 1293, 1302
Subscript triplet (for array) 944
Subtraction, multiple precision 907, 1353
Subtractive method for random number genera-

tor 273, 1143
Subvector scaling 972, 974, 996, 1000
Successive over-relaxation (SOR) 857ff., 862,

1332f.
bad in multigrid method 866
Chebyshev acceleration 859f., 1332f.
choice of overrelaxation parameter 858
with logical mask 1333f.
parallelization 1333

sum() intrinsic function 945, 948, 966
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Sum squared difference of ranks 634, 1277
Sums see Series
Sun 1/xxii, 2/xix, 886

SPARCstation 1/xxii, 2/xix, 4
Supernova 1987A 640
SVD see Singular value decomposition (SVD)
swap() utility function 987, 990f., 1015, 1210
Symbol, of operator 866f.
Synthetic division 84, 167, 362, 370

parallel algorithms 977ff., 999, 1048,
1071f., 1079, 1192

repeated 978f.
Systematic errors 653

T ableau (interpolation) 103, 183
Tangent function, continued fraction 163
Target, for pointer 938f., 945, 952f.
Taylor series 180, 355f., 408, 702, 709, 742,

754, 759
Test programs 3
Thermodynamics, analogy for simulated an-

nealing 437
Thinking Machines, Inc. 964
Threshold multiply of sparse matrices 74,

1031
Tides 560f.
Tikhonov-Miller regularization 799ff.
Time domain 490
Time splitting 847f., 861
tiny() intrinsic function 952
Toeplitz matrix 82, 85ff., 195, 1038

LU decomposition 87
new, fast algorithms 88f.
nonsymmetric 86ff., 1038

Tongue twisters 333
Torus 297f., 304
Trade-off curve 795, 809
Trademarks 1/xxii, 2/xixf.
Transformation

Gauss 256
Landen 256
method for random number generator 277ff.

Transformational functions 948ff.
Transforms, number theoretic 503f.
Transport error 831ff.
transpose() intrinsic function 950, 960, 969,

981, 1050, 1246
Transpose of sparse matrix 73f.
Trapezoidal rule 125, 127, 130ff., 134f., 579,

583, 782, 786, 1052, 1326f.
Traveling salesman problem 438ff., 1219ff.
Tridiagonal matrix 42, 63, 150, 453f., 488,

839f., 1018f.
in alternating-direction implicit method

(ADI) 861f.
from cubic spline 109
cyclic 67, 1030
in cyclic reduction 853
eigenvalues 469ff., 1228
with fringes 822
from operator splitting 861f.
parallel algorithm 975, 1018, 1229f.
recursive splitting 1229f.
reduction of symmetric matrix to 462ff.,

470, 1227f.

serial algorithm 1018f.
see also Matrix

Trigonometric
functions, linear sequences 173
functions, recurrence relation 172, 572
functions, tan(θ/2) as minimal 173
interpolation 99
solution of cubic equation 179f.

Truncation error 20f., 399, 709, 881, 1362
in multigrid method 875
in numerical derivatives 180

Tukey’s biweight 697
Tukey’s trimean 694
Turbo Pascal (Borland) 8
Twin errors 895
Two-dimensional see Multidimensional
Two-dimensional K–S test 640, 1281ff.
Two-pass algorithm for variance 607, 1269
Two-point boundary value problems 702,

745ff., 1314ff.
automated allocation of mesh points 774f.,

777
boundary conditions 745ff., 749, 751f.,

771, 1314ff.
difficult cases 753, 1315f.
eigenvalue problem for differential equa-

tions 748, 764ff., 770ff., 1319ff.
free boundary problem 748, 776
grid (mesh) points 746f., 754, 774f., 777
internal boundary conditions 775ff.
internal singular points 775ff.
linear requires no iteration 751
multiple shooting 753
problems reducible to standard form 748
regularity condition 775
relaxation method 746f., 753ff., 1316ff.
relaxation method, example of 764ff.,

1319
shooting to a fitting point 751ff., 1315f.,

1323ff.
shooting method 746, 749ff., 770ff., 1314ff.,

1321ff.
shooting method, example of 770ff., 1321ff.
singular endpoints 751, 764, 771, 1315f.,

1319ff.
see also Elliptic partial differential equa-

tions
Two-sided exponential error distribution 696
Two-sided power spectral density 493
Two-step Lax-Wendroff method 835ff.
Two-volume edition, plan of 1/xiii
Two’s complement arithmetic 1144
Type declarations, explicit vs. implicit 2

Ubound() intrinsic function 949
ULTRIX 1/xxiii, 2/xix
Uncertainty coefficient 628
Uncertainty principle 600
Undefined status, of arrays and pointers 952f.,

961, 1070, 1266, 1293, 1302
Underflow, in IEEE arithmetic 883, 1343
Underrelaxation 857
Uniform deviates see Random deviates, uni-

form
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Unitary (function) 843f.
Unitary (matrix) see Matrix
unit matrix() utility function 985, 990, 1006,

1216, 1226, 1325
UNIX 1/xxiii, 2/viii, 2/xix, 4, 17, 276, 293,

886
Upper Hessenberg matrix see Hessenberg ma-

trix
U.S. Postal Service barcode 894
unpack() intrinsic function 950, 964

communication bottleneck 969
Upper subscript 944
upper triangle() utility function 990, 1006,

1226, 1305
Upwind differencing 832f., 837
USE statement 936, 939f., 954, 957, 1067,

1384
USES keyword in program listings 2
Utility functions 987ff., 1364ff.

add vector to matrix diagonal 1004, 1234,
1366, 1381

alphabetical listing 988ff.
argument checking 994f., 1370f.
arithmetic progression 996, 1072, 1127,

1365, 1371f.
array reallocation 992, 1070f., 1365, 1368f.
assertion of numerical equality 995, 1022,

1365, 1370f.
compared to intrinsics 990ff.
complex nth root of unity 999f., 1379
copying arrays 991, 1034, 1327f., 1365f.
create unit matrix 1006, 1382
cumulative product of an array 997f.,

1072, 1086, 1375
cumulative sum of an array 997, 1280f.,

1365, 1375
data types 1361
elemental functions 1364
error handling 994f., 1036, 1370f.
generic functions 1364
geometric progression 996f., 1365, 1372ff.
get diagonal of matrix 1005, 1226f., 1366,

1381f.
length of a vector 1008, 1383
linear recurrence 996
location in an array 992ff., 1015, 1017ff.
location of first logical “true” 993, 1041,

1369
location of maximum array value 993,

1015, 1017, 1365, 1369
location of minimum array value 993,

1369f.
logical assertion 994, 1086, 1090, 1092,

1365, 1370
lower triangular mask 1007, 1200, 1382
masked polynomial evaluation 1378
masked swap of elements in two arrays

1368
moving data 990ff., 1015
multiply vector into matrix diagonal 1004f.,

1366, 1381
nrutil.f90 (module file) 1364ff.
outer difference of vectors 1001, 1366,

1380
outer logical and of vectors 1002

outer operations on vectors 1000ff., 1379f.
outer product of vectors 1000f., 1076,

1365f., 1379
outer quotient of vectors 1001, 1379
outer sum of vectors 1001, 1379f.
overloading 1364
partial cumulants of a polynomial 999,

1071, 1192f., 1365, 1378f.
polynomial evaluation 996, 998f., 1258,

1365, 1376ff.
scatter-with-add 1002f., 1032f., 1366,

1380f.
scatter-with-combine 1002f., 1032f., 1380f.
scatter-with-max 1003f., 1366, 1381
set diagonal elements of matrix 1005,

1200, 1366, 1382
skew operation on matrices 1004ff., 1381ff.
swap elements of two arrays 991, 1015,

1365ff.
upper triangular mask 1006, 1226, 1305,

1382

V -cycle 865, 1336
vabs() utility function 990, 1008, 1290
Validation of Numerical Recipes procedures

3f.
Valley, long or narrow 403, 407, 410
Van Cittert’s method 804
Van Wijngaarden-Dekker-Brent method see

Brent’s method
Vandermonde matrix 82ff., 114, 1037, 1047
Variable length code 896, 1346ff.
Variable metric method 390, 418ff., 1215

compared to conjugate gradient method
418

Variable step-size integration 123, 135, 703,
707ff., 720, 726, 731, 737, 742ff., 1298ff.,
1303, 1308f., 1311ff.

Variance(s)
correlation 605
of distribution 603ff., 608, 611, 613, 1269
pooled 610
reduction of (in Monte Carlo) 299, 306ff.
statistical differences between two 609,

1271
two-pass algorithm for computing 607,

1269
see also Covariance

Variational methods, partial differential equa-
tions 824

VAX 275, 293
Vector(s)

length 1008, 1383
norms 1036
outer difference 1001, 1366, 1380
outer operations 1000ff., 1379f.
outer product 1000f., 1076, 1365f., 1379

Vector reduction 972, 977, 998
Vector subscripts 2/xiif., 984, 1002, 1032,

1034
communication bottleneck 969, 981, 1250

VEGAS algorithm for Monte Carlo 309ff.,
1161

Verhoeff’s algorithm for checksums 894f.,
1345
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Viète’s formulas for cubic roots 179
Vienna Fortran 2/xv
Virus, computer 889
Viscosity

artificial 831, 837
numerical 830f., 837

Visibility 956ff., 1209, 1293, 1296
VMS 1/xxii, 2/xix
Volterra equations 780f., 1326

adaptive stepsize control 788
analogy with ODEs 786
block-by-block method 788
first kind 781, 786
nonlinear 781, 787
second kind 781, 786ff., 1326f.
unstable quadrature 787f.

von Neuman, John 963, 965
von Neumann-Richtmyer artificial viscosity

837
von Neumann stability analysis for PDEs 827f.,

830, 833f., 840
Vowellish (coding example) 896f., 902

W -cycle 865, 1336
Warranty, disclaimer of 1/xx, 2/xvii
Wave equation 246, 818, 825f.
Wavelet transform 584ff., 1264ff.

appearance of wavelets 590ff.
approximation condition of order p 585
coefficient values 586, 589, 1265
contrasted with Fourier transform 584,

594
Daubechies wavelet filter coefficients 584ff.,

588, 590f., 594, 598, 1264ff.
detail information 585
discrete wavelet transform (DWT) 586f.,

1264
DWT (discrete wavelet transform) 586f.,

1264ff.
eliminating wrap-around 587
fast solution of linear equations 597ff.
filters 592f.
and Fourier domain 592f.
image processing 596f.
for integral equations 782
inverse 587
Lemarie’s wavelet 593
of linear operator 597ff.
mother-function coefficient 587
mother functions 584
multidimensional 595, 1267f.
nonsmoothness of wavelets 591
pyramidal algorithm 586, 1264
quadrature mirror filter 585
smooth information 585
truncation 594f.
wavelet filter coefficient 584, 587
wavelets 584, 590ff.

Wavelets see Wavelet transform
Weber function 204
Weighted Kolmogorov-Smirnov test 621
Weighted least-squares fitting see Least squares

fitting

Weighting, full vs. half in multigrid 867
Weights for Gaussian quadrature 140ff., 788f.,

1059ff., 1328f.
nonclassical weight function 151ff., 788f.,

1064f., 1328f.
Welch window 547, 1254ff.
WG5 (ISO/IEC JTC1/SC22/WG5 Committee)

2/xiff.
where construct 943, 1291

contrasted with merge 1023
for iteration of a vector 1060
nested 2/xv, 943, 960, 1100
not MIMD 985

While iteration 13
Wiener filtering 535, 539ff., 558, 644

compared to regularization 801
Wiener-Khinchin theorem 492, 558, 566f.
Wilcoxon test 694
Window function

Bartlett 547, 1254ff.
flat-topped 549
Hamming 547
Hann 547
Parzen 547
square 544, 546, 1254ff.
Welch 547, 1254ff.

Windowing for spectral estimation 1255f.
Windows 95 2/xix
Windows NT 2/xix
Winograd Fourier transform algorithms 503
Woodbury formula 68ff., 83
Wordlength 18
Workspace, reallocation in Fortran 90 1070f.
World Wide Web, Numerical Recipes site

1/xx, 2/xvii
Wraparound

in integer arithmetic 1146, 1148
order for storing spectrum 501
problem in convolution 533

Wronskian, of Bessel functions 234, 239

X .25 protocol 890
X3J3 Committee 2/viii, 2/xff., 2/xv, 947, 959,

964, 968, 990
XMODEM checksum 889
X-ray diffraction pattern, processing of 805

Y ale Sparse Matrix Package 64, 71

Z -transform 554, 559, 565
Z-transformation, Fisher’s 631f., 1276
Zaman, A. 1149
Zealots 814
Zebra relaxation 866
Zero contours 372
Zero-length array 944
Zeroth-order regularization 796ff.
Zip code, barcode for 894
Ziv-Lempel compression 896
zroots unity() utility function 974, 990, 999


