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7.3 Rejection Method: Gamma, Poisson,
Binomial Deviates

The rejection method is a powerful, general technique for generating random
deviates whose distribution functionp(x)dx (probability of a value occurring between
x and x + dx) is known and computable. The rejection method does not require
that the cumulative distribution function [indefinite integral of p(x)] be readily
computable, much less the inverse of that function — which was required for the
transformation method in the previous section.

The rejection method is based on a simple geometrical argument:
Draw a graph of the probability distribution p(x) that you wish to generate, so

that the area under the curve in any range of x corresponds to the desired probability
of generating an x in that range. If we had some way of choosing a random point in
two dimensions, with uniform probability in the area under your curve, then the x
value of that random point would have the desired distribution.

Now, on the same graph, draw any other curve f(x) which has finite (not
infinite) area and lies everywhere above your original probability distribution. (This
is always possible, because your original curve encloses only unit area, by definition
of probability.) We will call this f(x) the comparison function. Imagine now
that you have some way of choosing a random point in two dimensions that is
uniform in the area under the comparison function. Whenever that point lies outside
the area under the original probability distribution, we will reject it and choose
another random point. Whenever it lies inside the area under the original probability
distribution, we will accept it. It should be obvious that the accepted points are
uniform in the accepted area, so that their x values have the desired distribution. It
should also be obvious that the fraction of points rejected just depends on the ratio
of the area of the comparison function to the area of the probability distribution
function, not on the details of shape of either function. For example, a comparison
function whose area is less than 2 will reject fewer than half the points, even if it
approximates the probability function very badly at some values of x, e.g., remains
finite in some region where x is zero.

It remains only to suggest how to choose a uniform random point in two
dimensions under the comparison function f(x). A variant of the transformation
method (§7.2) does nicely: Be sure to have chosen a comparison function whose
indefinite integral is known analytically, and is also analytically invertible to give x
as a function of “area under the comparison function to the left of x.” Now pick a
uniform deviate between 0 and A, where A is the total area under f(x), and use it
to get a corresponding x. Then pick a uniform deviate between 0 and f(x) as the y
value for the two-dimensional point. You should be able to convince yourself that the
point (x, y) is uniformly distributed in the area under the comparison function f(x).

An equivalent procedure is to pick the second uniform deviate between zero
and one, and accept or reject according to whether it is respectively less than or
greater than the ratio p(x)/f(x).

So, to summarize, the rejection method for some given p(x) requires that one
find, once and for all, some reasonably good comparison function f(x). Thereafter,
each deviate generated requires two uniform random deviates, one evaluation of f (to
get the coordinate y), and one evaluation of p (to decide whether to accept or reject
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Figure 7.3.1. Rejection method for generating a random deviate x from a known probability distribution
p(x) that is everywhere less than some other function f(x). The transformation method is first used to
generate a random deviate x of the distribution f (compare Figure 7.2.1). A second uniform deviate is
used to decide whether to accept or reject that x. If it is rejected, a new deviate of f is found; and so on.
The ratio of accepted to rejected points is the ratio of the area under p to the area between p and f .

the point x, y). Figure 7.3.1 illustrates the procedure. Then, of course, this procedure
must be repeated, on the average, A times before the final deviate is obtained.

Gamma Distribution

The gamma distribution of integer order a > 0 is the waiting time to the ath
event in a Poisson random process of unit mean. For example, when a = 1, it is just
the exponential distribution of §7.2, the waiting time to the first event.

A gamma deviate has probability pa(x)dx of occurring with a value between
x and x + dx, where

pa(x)dx =
xa−1e−x

Γ(a)
dx x > 0 (7.3.1)

To generate deviates of (7.3.1) for small values of a, it is best to add up a
exponentially distributed waiting times, i.e., logarithms of uniform deviates. Since
the sum of logarithms is the logarithm of the product, one really has only to generate
the product of a uniform deviates, then take the log.

For larger values of a, the distribution (7.3.1) has a typically “bell-shaped”
form, with a peak at x = a and a half-width of about

√
a.

We will be interested in several probability distributions with this same qual-
itative form. A useful comparison function in such cases is derived from the
Lorentzian distribution

p(y)dy =
1

π

(
1

1 + y2

)
dy (7.3.2)

whose inverse indefinite integral is just the tangent function. It follows that the
x-coordinate of an area-uniform random point under the comparison function

f(x) =
c0

1 + (x− x0)2/a2
0

(7.3.3)
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for any constants a0, c0, and x0, can be generated by the prescription

x = a0 tan(πU) + x0 (7.3.4)

whereU is a uniform deviate between 0 and 1. Thus, for some specific “bell-shaped”
p(x) probability distribution, we need only find constants a0, c0, x0, with the product
a0c0 (which determines the area) as small as possible, such that (7.3.3) is everywhere
greater than p(x).

Ahrens has done this for the gamma distribution, yielding the following
algorithm (as described in Knuth [1]):

FUNCTION gamdev(ia,idum)
INTEGER ia,idum
REAL gamdev

C USES ran1
Returns a deviate distributed as a gamma distribution of integer order ia, i.e., a waiting
time to the iath event in a Poisson process of unit mean, using ran1(idum) as the source
of uniform deviates.

INTEGER j
REAL am,e,s,v1,v2,x,y,ran1
if(ia.lt.1)pause ’bad argument in gamdev’
if(ia.lt.6)then Use direct method, adding waiting times.

x=1.
do 11 j=1,ia

x=x*ran1(idum)
enddo 11

x=-log(x)
else Use rejection method.

1 v1=ran1(idum) These four lines generate the tangent of a random angle, i.e.,
are equivalent to y = tan(3.14159265 * ran1(idum)).v2=2.*ran1(idum)-1.

if(v1**2+v2**2.gt.1.)goto 1
y=v2/v1
am=ia-1
s=sqrt(2.*am+1.)
x=s*y+am We decide whether to reject x:

if(x.le.0.)goto 1 Reject in region of zero probability.
e=(1.+y**2)*exp(am*log(x/am)-s*y) Ratio of prob. fn. to comparison fn.

if(ran1(idum).gt.e)goto 1 Reject on basis of a second uniform de-
viate.endif

gamdev=x
return
END

Poisson Deviates

The Poisson distribution is conceptually related to the gamma distribution. It
gives the probability of a certain integer number m of unit rate Poisson random
events occurring in a given interval of time x, while the gamma distribution was the
probability of waiting time between x and x+dx to themth event. Note thatm takes
on only integer values ≥ 0, so that the Poisson distribution, viewed as a continuous
distribution function px(m)dm, is zero everywhere except where m is an integer
≥ 0. At such places, it is infinite, such that the integrated probability over a region
containing the integer is some finite number. The total probability at an integer j is

Prob(j) =

∫ j+ε

j−ε
px(m)dm =

xje−x

j!
(7.3.5)
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Figure 7.3.2. Rejection method as applied to an integer-valued distribution. The method is performed
on the step function shown as a dashed line, yielding a real-valued deviate. This deviate is rounded
down to the next lower integer, which is output.

At first sight this might seem an unlikely candidate distribution for the rejection
method, since no continuous comparison function can be larger than the infinitely
tall, but infinitely narrow, Dirac delta functions in px(m). However, there is a trick
that we can do: Spread the finite area in the spike at j uniformly into the interval
between j and j + 1. This defines a continuous distribution qx(m)dm given by

qx(m)dm =
x[m]e−x

[m]!
dm (7.3.6)

where [m] represents the largest integer less than m. If we now use the rejection
method to generate a (noninteger) deviate from (7.3.6), and then take the integer
part of that deviate, it will be as if drawn from the desired distribution (7.3.5). (See
Figure 7.3.2.) This trick is general for any integer-valued probability distribution.

For x large enough, the distribution (7.3.6) is qualitatively bell-shaped (albeit
with a bell made out of small, square steps), and we can use the same kind of
Lorentzian comparison function as was already used above. For small x, we can
generate independent exponential deviates (waiting times between events); when the
sum of these first exceeds x, then the number of events that would have occurred in
waiting time x becomes known and is one less than the number of terms in the sum.

These ideas produce the following routine:

FUNCTION poidev(xm,idum)
INTEGER idum
REAL poidev,xm,PI
PARAMETER (PI=3.141592654)

C USES gammln,ran1
Returns as a floating-point number an integer value that is a random deviate drawn from a
Poisson distribution of mean xm, using ran1(idum) as a source of uniform random deviates.
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REAL alxm,em,g,oldm,sq,t,y,gammln,ran1
SAVE alxm,g,oldm,sq
DATA oldm /-1./ Flag for whether xm has changed since last call.
if (xm.lt.12.)then Use direct method.

if (xm.ne.oldm) then
oldm=xm
g=exp(-xm) If xm is new, compute the exponential.

endif
em=-1
t=1.

2 em=em+1. Instead of adding exponential deviates it is equivalent to mul-
tiply uniform deviates. We never actually have to take the
log, merely compare to the pre-computed exponential.

t=t*ran1(idum)
if (t.gt.g) goto 2

else Use rejection method.
if (xm.ne.oldm) then If xm has changed since the last call, then precompute some

functions that occur below.oldm=xm
sq=sqrt(2.*xm)
alxm=log(xm)
g=xm*alxm-gammln(xm+1.) The function gammln is the natural log of the gamma

function, as given in §6.1.endif
1 y=tan(PI*ran1(idum)) y is a deviate from a Lorentzian comparison function.

em=sq*y+xm em is y, shifted and scaled.
if (em.lt.0.) goto 1 Reject if in regime of zero probability.
em=int(em) The trick for integer-valued distributions.
t=0.9*(1.+y**2)*exp(em*alxm-gammln(em+1.)-g) The ratio of the desired distribu-

tion to the comparison function; we accept or re-
ject by comparing it to another uniform deviate.
The factor 0.9 is chosen so that t never exceeds
1.

if (ran1(idum).gt.t) goto 1
endif
poidev=em
return
END

Binomial Deviates

If an event occurs with probability q, and we make n trials, then the number
of times m that it occurs has the binomial distribution,

∫ j+ε

j−ε
pn,q(m)dm =

(
n

j

)
qj(1− q)n−j (7.3.7)

The binomial distribution is integer valued, with m taking on possible values
from 0 to n. It depends on two parameters, n and q, so is correspondingly a
bit harder to implement than our previous examples. Nevertheless, the techniques
already illustrated are sufficiently powerful to do the job:

FUNCTION bnldev(pp,n,idum)
INTEGER idum,n
REAL bnldev,pp,PI

C USES gammln,ran1
PARAMETER (PI=3.141592654)

Returns as a floating-point number an integer value that is a random deviate drawn from
a binomial distribution of n trials each of probability pp, using ran1(idum) as a source
of uniform random deviates.

INTEGER j,nold
REAL am,em,en,g,oldg,p,pc,pclog,plog,pold,sq,t,y,gammln,ran1
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SAVE nold,pold,pc,plog,pclog,en,oldg
DATA nold /-1/, pold /-1./ Arguments from previous calls.
if(pp.le.0.5)then The binomial distribution is invariant under changing pp to

1.-pp, if we also change the answer to n minus itself;
we’ll remember to do this below.

p=pp
else

p=1.-pp
endif
am=n*p This is the mean of the deviate to be produced.
if (n.lt.25)then Use the direct method while n is not too large. This can

require up to 25 calls to ran1.bnldev=0.
do 11 j=1,n

if(ran1(idum).lt.p)bnldev=bnldev+1.
enddo 11

else if (am.lt.1.) then If fewer than one event is expected out of 25 or more tri-
als, then the distribution is quite accurately Poisson. Use
direct Poisson method.

g=exp(-am)
t=1.
do 12 j=0,n

t=t*ran1(idum)
if (t.lt.g) goto 1

enddo 12

j=n
1 bnldev=j

else Use the rejection method.
if (n.ne.nold) then If n has changed, then compute useful quantities.

en=n
oldg=gammln(en+1.)
nold=n

endif
if (p.ne.pold) then If p has changed, then compute useful quantities.

pc=1.-p
plog=log(p)
pclog=log(pc)
pold=p

endif
sq=sqrt(2.*am*pc) The following code should by now seem familiar: rejection

method with a Lorentzian comparison function.2 y=tan(PI*ran1(idum))
em=sq*y+am
if (em.lt.0..or.em.ge.en+1.) goto 2 Reject.
em=int(em) Trick for integer-valued distribution.
t=1.2*sq*(1.+y**2)*exp(oldg-gammln(em+1.)

* -gammln(en-em+1.)+em*plog+(en-em)*pclog)
if (ran1(idum).gt.t) goto 2 Reject. This happens about 1.5 times per deviate, on

average.bnldev=em
endif
if (p.ne.pp) bnldev=n-bnldev Remember to undo the symmetry transformation.
return
END

See Devroye [2] and Bratley [3] for many additional algorithms.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), pp. 120ff. [1]

Devroye, L. 1986, Non-Uniform Random Variate Generation (New York: Springer-Verlag), §X.4.
[2]

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-
Verlag). [3].
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7.4 Generation of Random Bits

This topic is not very useful for programming in high-level languages, but
it can be quite useful when you have access to the machine-language level of a
machine or when you are in a position to build special-purpose hardware out of
readily available chips.

The problem is how to generate single random bits, with 0 and 1 equally
probable. Of course you can just generate uniform random deviates between zero
and one and use their high-order bit (i.e., test if they are greater than or less than
0.5). However this takes a lot of arithmetic; there are special-purpose applications,
such as real-time signal processing, where you want to generate bits very much
faster than that.

One method for generating random bits, with two variant implementations, is
based on “primitive polynomials modulo 2.” The theory of these polynomials is
beyond our scope (although §7.7 and §20.3 will give you small tastes of it). Here,
suffice it to say that there are special polynomials among those whose coefficients
are zero or one. An example is

x18 + x5 + x2 + x1 + x0 (7.4.1)

which we can abbreviate by just writing the nonzero powers of x, e.g.,

(18, 5, 2, 1, 0)

Every primitive polynomial modulo 2 of order n (=18 above) defines a
recurrence relation for obtaining a new random bit from the n preceding ones. The
recurrence relation is guaranteed to produce a sequence of maximal length, i.e.,
cycle through all possible sequences of n bits (except all zeros) before it repeats.
Therefore one can seed the sequence with any initial bit pattern (except all zeros),
and get 2n − 1 random bits before the sequence repeats.

Let the bits be numbered from 1 (most recently generated) throughn (generated
n steps ago), and denoted a1, a2, . . . , an. We want to give a formula for a new bit
a0. After generating a0 we will shift all the bits by one, so that the old an is finally
lost, and the new a0 becomes a1. We then apply the formula again, and so on.

“Method I” is the easiest to implement in hardware, requiring only a single shift
register n bits long and a few XOR (“exclusive or” or bit addition mod 2) gates. For
the primitive polynomial given above, the recurrence formula is

a0 = a18 XOR a5 XOR a2 XOR a1 (7.4.2)

The terms that are XOR’d together can be thought of as “taps” on the shift register,
XOR’d into the register’s input. More generally, there is precisely one term for
each nonzero coefficient in the primitive polynomial except the constant (zero bit)
term. So the first term will always be an for a primitive polynomial of degree n,
while the last term might or might not be a1, depending on whether the primitive
polynomial has a term in x1.

It is rather cumbersome to illustrate the method in FORTRAN. Assume that iand
is a bitwise AND function, not is bitwise complement, ishft( ,1) is leftshift by
one bit, ior is bitwise OR. (These are available in many FORTRAN implementations.)
Then we have the following routine.


