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9.1 Bracketing and Bisection

We will say that a root is bracketed in the interval (a, b) if f(a) and f(b)
have opposite signs. If the function is continuous, then at least one root must lie in
that interval (the intermediate value theorem). If the function is discontinuous, but
bounded, then instead of a root there might be a step discontinuity which crosses
zero (see Figure 9.1.1). For numerical purposes, that might as well be a root, since
the behavior is indistinguishable from the case of a continuous function whose zero
crossing occurs in between two “adjacent” floating-point numbers in a machine’s
finite-precision representation. Only for functions with singularities is there the
possibility that a bracketed root is not really there, as for example

f(x) =
1

x− c (9.1.1)

Some root-finding algorithms (e.g., bisection in this section) will readily converge
to c in (9.1.1). Luckily there is not much possibility of your mistaking c, or any
number x close to it, for a root, since mere evaluation of |f(x)| will give a very
large, rather than a very small, result.

If you are given a function in a black box, there is no sure way of bracketing
its roots, or of even determining that it has roots. If you like pathological examples,
think about the problem of locating the two real roots of equation (3.0.1), which dips
below zero only in the ridiculously small interval of about x = π ± 10−667.

In the next chapter we will deal with the related problem of bracketing a
function’s minimum. There it is possible to give a procedure that always succeeds;
in essence, “Go downhill, taking steps of increasing size, until your function starts
back uphill.” There is no analogous procedure for roots. The procedure “go downhill
until your function changes sign,” can be foiled by a function that has a simple
extremum. Nevertheless, if you are prepared to deal with a “failure” outcome, this
procedure is often a good first start; success is usual if your function has opposite
signs in the limit x → ±∞.
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Figure 9.1.1. Some situations encountered while root finding: (a) shows an isolated root x1 bracketed
by two points a and b at which the function has opposite signs; (b) illustrates that there is not necessarily
a sign change in the function near a double root (in fact, there is not necessarily a root!); (c) is a
pathological function with many roots; in (d) the function has opposite signs at points a and b, but the
points bracket a singularity, not a root.
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SUBROUTINE zbrac(func,x1,x2,succes)
INTEGER NTRY
REAL x1,x2,func,FACTOR
EXTERNAL func
PARAMETER (FACTOR=1.6,NTRY=50)

Given a function func and an initial guessed range x1 to x2, the routine expands the range
geometrically until a root is bracketed by the returned values x1 and x2 (in which case
succes returns as .true.) or until the range becomes unacceptably large (in which case
succes returns as .false.).

INTEGER j
REAL f1,f2
LOGICAL succes
if(x1.eq.x2)pause ’you have to guess an initial range in zbrac’
f1=func(x1)
f2=func(x2)
succes=.true.
do 11 j=1,NTRY

if(f1*f2.lt.0.)return
if(abs(f1).lt.abs(f2))then

x1=x1+FACTOR*(x1-x2)
f1=func(x1)

else
x2=x2+FACTOR*(x2-x1)
f2=func(x2)

endif
enddo 11

succes=.false.
return
END

Alternatively, you might want to “look inward” on an initial interval, rather
than “look outward” from it, asking if there are any roots of the function f(x) in
the interval from x1 to x2 when a search is carried out by subdivision into n equal
intervals. The following subroutine returns brackets for up to nb distinct intervals
which each contain one or more roots.

SUBROUTINE zbrak(fx,x1,x2,n,xb1,xb2,nb)
INTEGER n,nb
REAL x1,x2,xb1(nb),xb2(nb),fx
EXTERNAL fx

Given a function fx defined on the interval from x1-x2 subdivide the interval into n equally
spaced segments, and search for zero crossings of the function. nb is input as the maxi-
mum number of roots sought, and is reset to the number of bracketing pairs xb1(1:nb),
xb2(1:nb) that are found.

INTEGER i,nbb
REAL dx,fc,fp,x
nbb=0
x=x1
dx=(x2-x1)/n Determine the spacing appropriate to the mesh.
fp=fx(x)
do 11 i=1,n Loop over all intervals

x=x+dx
fc=fx(x)
if(fc*fp.le.0.) then If a sign change occurs then record values for the bounds.

nbb=nbb+1
xb1(nbb)=x-dx
xb2(nbb)=x
if(nbb.eq.nb)goto 1

endif
fp=fc

enddo 11
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1 continue
nb=nbb
return
END

Bisection Method

Once we know that an interval contains a root, several classical procedures are
available to refine it. These proceed with varying degrees of speed and sureness
towards the answer. Unfortunately, the methods that are guaranteed to converge plod
along most slowly, while those that rush to the solution in the best cases can also dash
rapidly to infinity without warning if measures are not taken to avoid such behavior.

The bisection method is one that cannot fail. It is thus not to be sneered at
as a method for otherwise badly behaved problems. The idea is simple. Over
some interval the function is known to pass through zero because it changes sign.
Evaluate the function at the interval’s midpoint and examine its sign. Use the
midpoint to replace whichever limit has the same sign. After each iteration the
bounds containing the root decrease by a factor of two. If after n iterations the root
is known to be within an interval of size εn, then after the next iteration it will be
bracketed within an interval of size

εn+1 = εn/2 (9.1.2)

neither more nor less. Thus, we know in advance the number of iterations required
to achieve a given tolerance in the solution,

n = log2

ε0
ε

(9.1.3)

where ε0 is the size of the initially bracketing interval, ε is the desired ending
tolerance.

Bisection must succeed. If the interval happens to contain two or more roots,
bisection will find one of them. If the interval contains no roots and merely straddles
a singularity, it will converge on the singularity.

When a method converges as a factor (less than 1) times the previous uncertainty
to the first power (as is the case for bisection), it is said to converge linearly. Methods
that converge as a higher power,

εn+1 = constant× (εn)m m > 1 (9.1.4)

are said to converge superlinearly. In other contexts “linear” convergence would be
termed “exponential,” or “geometrical.” That is not too bad at all: Linear convergence
means that successive significant figures are won linearly with computational effort.

It remains to discuss practical criteria for convergence. It is crucial to keep in
mind that computers use a fixed number of binary digits to represent floating-point
numbers. While your function might analytically pass through zero, it is possible
that its computed value is never zero, for any floating-point argument. One must
decide what accuracy on the root is attainable: Convergence to within 10−6 in
absolute value is reasonable when the root lies near 1, but certainly unachievable if
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the root lies near 1026. One might thus think to specify convergence by a relative
(fractional) criterion, but this becomes unworkable for roots near zero. To be most
general, the routines below will require you to specify an absolute tolerance, such that
iterations continue until the interval becomes smaller than this tolerance in absolute
units. Usually you may wish to take the tolerance to be ε(|x1|+ |x2|)/2 where ε is the
machine precision and x1 and x2 are the initial brackets. When the root lies near zero
you ought to consider carefully what reasonable tolerance means for your function.
The following routine quits after 40 bisections in any event, with 2−40 ≈ 10−12.

FUNCTION rtbis(func,x1,x2,xacc)
INTEGER JMAX
REAL rtbis,x1,x2,xacc,func
EXTERNAL func
PARAMETER (JMAX=40) Maximum allowed number of bisections.

Using bisection, find the root of a function func known to lie between x1 and x2. The
root, returned as rtbis, will be refined until its accuracy is ±xacc.

INTEGER j
REAL dx,f,fmid,xmid
fmid=func(x2)
f=func(x1)
if(f*fmid.ge.0.) pause ’root must be bracketed in rtbis’
if(f.lt.0.)then Orient the search so that f>0 lies at x+dx.

rtbis=x1
dx=x2-x1

else
rtbis=x2
dx=x1-x2

endif
do 11 j=1,JMAX Bisection loop.

dx=dx*.5
xmid=rtbis+dx
fmid=func(xmid)
if(fmid.le.0.)rtbis=xmid
if(abs(dx).lt.xacc .or. fmid.eq.0.) return

enddo 11

pause ’too many bisections in rtbis’
END

9.2 Secant Method, False Position Method,
and Ridders’ Method

For functions that are smooth near a root, the methods known respectively
as false position (or regula falsi) and secant method generally converge faster than
bisection. In both of these methods the function is assumed to be approximately
linear in the local region of interest, and the next improvement in the root is taken as
the point where the approximating line crosses the axis. After each iteration one of
the previous boundary points is discarded in favor of the latest estimate of the root.

The only difference between the methods is that secant retains the most recent
of the prior estimates (Figure 9.2.1; this requires an arbitrary choice on the first
iteration), while false position retains that prior estimate for which the function value


