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Preface

The book develops a general methodological framework for teaching Compu-
tational Linear Algebra (in the part concerning Linear Programming) so that
some minimum learning outcomes are achieved for all students and at the
same time student-dependent learning outcomes due to individual creativity
and effort are also possible.

Although the theoretical ideas and pivotal concepts behind the book, such as
motivation, feedback, reinforcement and others, are well known, specific im-
plementation of these ideas may present a real challenge to practical teachers.
The book reflects a comprehensive detailed view of one aspect of differentiated
teaching: behavior modification. This aspect is taken as a prime necessity in
circumstances when Computational Mathematics is being taught to a large
student audience. The methodological conditions and technological practices
necessary to implement such an approach are discussed below in the Preface.

Key words: Mathematics Education in Universities, Creativity in Mathemat-
ics Education, Competitions in Mathematics Education, Linear Programming.

Introduction

As Russian mathematician Yakov Tsypkin wrote jokingly in the preface to one of
his works, reading mathematical books results in the three levels of knowledge. The
first level means that a reader has understood the author’s argumentation. The second
level means that the reader has become capable of reproducing the author’s arguments.
And the third level means that the reader has acquired a capacity to refute the author’s
argumentation.

This joke reflects the fact that mathematics as a subject has a specific feature that it
can not simply be put in memory. It means that a mathematics student can not stop at
the first level of understanding. He needs to reach at least the second level. To do this the
student has to pass all the information through his mind by solving a large number of tasks
independently, thus as we say “adjust his head and hand”. But even this is not enough,
because as Hungarian mathematician Alfred Renyi said, “who learns the solution without
understanding the matter can not use it properly”. Independence, critical approach and
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creativeness – these are the third level features and only such knowledge has real value
when learning mathematics.

Of late years, mathematics community has been really feeling the need for novel
teaching methods to stir the students to greater activity. One would expect a wealth of
methods to choose from and apply. But upon examining methods that are practically
being used, one finds a lack of appealing and interesting approaches that would create
and hold students’ interest and make them continue to study.

Here it is pertinent to note that mathematics has another feature. Mathematics may
be defined as “chamber” science by the nature and mathematicians are often told to
be “piece-goods”. However many universities traditionally practice teaching to a large
student audience. For example, large audience-oriented teaching has become the trait
of some universities to the extent that the large audience have been assigned a special
term,“a stream”.

It is almost evident that the great size of the stream stands on the way, – it erects
obstacles to awaken and hold students’ interest in learning mathematics. It is a handicap
to independent thinking, as many of students get used to “flow over the stream” and
prefer to be as ordinary as their classmates. How can teacher transform this obstacle into
advantage? How can he encourage students’ independence? How can we help them to
understand their outstanding abilities? And finally, how can we prove that mathematics
is a live, beautiful science but not a collection of incontestable proofs, unquestionable
facts and irrefutable arguments?

Fortunately, mathematics itself often prompts us how to achieve these goals. One of
such methods termed the Frontal Competitive Approach (FCA) is discussed below. We
consider it mainly in circumstances when the subject is being taught to a large student
audience where students’ behavior modification is a prime necessity.

Main idea of FCA

It may be explained by the definition itself. “Frontal” means general, involving all
students to meet one common goal. “Competitive” means opportunity for a success due to
individual’s creative and non-standard solutions or actions. To implement FCA we need
to do the following: (1) Organize creative environment. (2) Encourage students’ creative
potential. (3) Give start to students’ instinct of competition. (4) Ensure transparency of
assessment.

Let us examine these components in detail in the context of teaching Computational
Mathematics.

Creative environment

Most of the existing educational materials on Computational Mathematics provide
main theoretical data and sometimes theoretical instructions on how to program a nu-
merical method or algorithm. However, it seems to be inadequate to the end. We believe
that the true understanding of a numerical method may be achieved if: (a) a student
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completes assignments related to a challenging programming project; (b) each project re-
sults in practical use of that particular method assigned for the student; (c) the student
conducts a set of extensive computational experiments with the program he developed
independently; and finally (d) frontal rating of the projects is carried out by the teacher
together with the students.

Programming in itself is beneficial for student due to a number of reasons. First,
it provides an opportunity to understand and learn a numerical method “from inside”.
This is quite different from utilizing ready-made software and significant for any creative
professional. Second, it improves student’s computer proficiency, as it requires keen
programming. And finally, it develops general analytic and solution seeking performance
and implants practical skill to attack and solve computationally oriented problems.

To organize creative environment while teaching numerical methods to a large au-
dience requires to make programming assignments as varied as possible in terms of the
methods’ algorithmic significance rather than their initial data. However, the number of
variations on every method is usually limited. In these conditions, finding as many as
possible versions of every numerical method becomes a matter of great methodological
importance for each teacher.

Organizing creative environment means, also, that we should evaluate any laboratory
programming project as a single study objective which possesses all the features of a
completed software product. Among them are modular structure, convenient interface,
efficient utilizing computer resources (memory and time), and possibility to implement
a wide plan of computational experiments. This differs definitely from a widely used
technique when the students work on one and the same ready-made software when they
only enter their initial data and wait passively for a result. The approach we apply makes
them perform valuable creative operations, stimulates each student’s competitiveness,
prevents cheating and helps to improve overall class performance.

A classic example of how to find as many as possible variant forms of a numeri-
cal method is the topic “Elimination and Matrix Inversion Methods”. First of all, the
teacher should systemize a set of Gauss and Gauss-Jordan elimination specific charac-
teristics. They are: (1) direction of elimination of unknowns, (2) mode of access to the
matrix entries, (3) mode of updating the active sub-matrix, (4) pivoting strategy etc.
Then independence of these characteristics will result in a significant number of different
variants of assignments on the same topic being studied.

Over the course on many years, our work is focused on the possible ways of applying
FCA to teaching numerical methods in Linear Algebra, Least Squares, Optimal Filtering,
Optimal Control, and Linear Programming. As a result, we recommend that teachers
use our textbooks that offer a good choice of various project assignments. This book
presents a collection of 70 different case study assignments in standard Linear Program-
ming methods.
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Student’s creative potential

Lectures usually prove one variant of a numerical method in a certain topic. For
example, we prove: LU -factorization theorem, LU -factorization theorem with the choice
of pivots, LU -factorization algorithm replacing the original matrix by factors L and U ,
and so on. However, practically always for each proven theorem or algorithm there
exists a dual variant. In our case the dual variants are those with UL−factorization
(LDU and UDL factorizations are also possible). Therefore it will be expedient if each
assignment contains formulation and proof of the theorem/algorithm for the assigned
variant, which has to be made independently. Thus students are trained to understand
subject of mathematics in a wider sense, their creative abilities and potential become
more active and may be well evaluated especially for the gifted students. The same
approach may be used while teaching Linear Programming methods, too.

Instinct of competition

As a rule, students of mathematical departments are very eager to gain and demon-
strate professional knowledge of computers and modern programming technology. They
are not interested in “hanging about” the initial level of computer proficiency. More to it,
they express definitely their wish to show their skills for creating “outstanding” software.
FCA ideally supports this instinct of competition. Indeed, multiplicity of assignment
variants fortunately comprises two features of the variants: their resemblance and dif-
ference. Due to the resemblance between variants students’ projects can be compared,
and due to the difference they are of individual nature. Teachers applying FCA note
surprising cases when a student who has got already a credit on the project, for example
in sparse system solution, continues upgrading the software by changing access mode to
matrix entries in order to achieve faster operation. Sometimes students arrange a kind
of competition between them, in whose software has better interface or faster operation.
Sometimes in holidays we hold a presentation of the best programs developed by the
students. At first we required that a software should be written in Pascal but now we
accept usage of various tools: Visual Basic, Delphi, Builder C++ etc.

Transparency of assessment

Teacher’s role in FCA application is very important. Besides all above mentioned, a
teacher should put forward a precise and definite system of requirements and evaluation
criteria for students’ projects. A student should know definitely what mark and for what
work quantity and quality he will get. Starting his work student chooses by himself the
level of assessment he initially pretends for. System of assignments should be designed
in such a way that allows each student to move independently from one assessment
level to another according to his own work. For example, the system of assignments on
simplex method given in this book, contains 70 different variants divided into three groups
dependent on their complexity: basic level (20 variants), advanced level (30 variants),
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and higher level (20 variants). The marks are given accordingly: sufficient, good, and
excellent. This transparency of assessment have a notable effect on the students’ activity.

Technological summary of FCA

Some general tools indicative of the FCA are the following.
1. Creative environment. A broad assortment of assignments and tasks is offered to

students together with the clearly differentiated scenarios of their accomplishment.
2. Goal setting. A clear formulation of both short-term and long-term goals is offered:

(1) marked improvement of programming skills together with the deeper understanding
a particular numerical method, and (2) profound understanding the subject of Compu-
tational Mathematics and ability to attack computationally oriented problems.

3. Challenge. The environment including non-trivial assignments and tasks with
increasing levels of difficulty, challenges the student to keep self-independent working.

4. Student-controlled navigation. Putting the locus of control in the hands of the
student has a great psychological effect: even the weak students put in a claim for higher
grades and try to move to the upper level of difficulty while choosing the assignment.

5. Competition. Competition by “playing” against others appears to be naturally
embedded in the teaching process because the above tools are in excellent agreement
with this human instinct.

6. Rewards. Rewards, such as higher grades or “automatic” credit for the course, may
be offered as students show an obvious increment in skill and success.

Conclusion

Designing efficient education process in a large audience is complicated and time
consuming. This book is intended to touch on a few basic teaching tools to exploit when
motivating students to learn Computational Mathematics. Called FCA and applied in
practice, this approach has proved that students have a generally positive response to
it. Individual, self-dependent work within a large audience encourages students’ sound
competition, desire for creative solutions and better performance indices.

9



Chapter 1.

General Definitions

The material of this first chapter is introductory: its goal is to recall those
basic concepts which the student may know from Calculus and Linear Algebra
and must thoroughly understand before proceeding.

Given any two objects x and y, the ordered pair is (x, y) where x is distinguished
as the first element and y as the second element of the pair. A set of ordered pairs is
called a relation. For example, if the set of ordered pairs of real numbers whose values
are equal is denoted by A, we write down this relation as A = {(x, y) ∈ R × R : x = y}.
If A is a relation then the domain of A, abbreviated dmn A, is given by

dmn A = {x : (x, y) ∈ A for some y}

If A is a relation then the range of A, abbreviated rng A, is given by

rng A = {y : (x, y) ∈ A for some x}

A function f is a relation having the property that whenever (x, y) ∈ f and (x, y∗) ∈ f ,
then y = y∗. A sequence is a function whose domain is a set of intergers. A finite
sequence is one whose domain is a finite set of integers, usually {1, 2, . . . , n} for some
positive integer n. It is also called an n-tuple. The set of real valued sequences with
domain {1, 2, . . . , n} is denoted by Rn. Each element of Rn is a real n-tuple, or a real
sequence of n elements, or an n-dimensional vector. An n-vector x is written as
x = (x1, x2, . . . xn).

Definition 1.1. A point, or a vector in Rn is a sequence of n real numbers: x =
(x1, x2, . . . xn).

The j-th position of n-vector x = (x1, x2, . . . xn) is called the jth coordinate, and
xj is called the jth coordinate value of x, or the jth component of x. Thus, vector
x = (x1, x2, . . . xn) is a real valued n-tuple.
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While using vector-matrix operations, it is customarily to identify a vector with a one-
column matrix. We shall do this too, although for saving space within the text, it is more
convenient to write the vector components in row form, as done in the above. But if it is
necessary to emphasize that vectors written as x = (x1, x2, . . . xn) are thought of as n×1
matrices, the transpose symbol will be used: x = (x1, x2, . . . xn)T or xT = (x1, x2 . . . xn).

Definition 1.2. Given two distinct points P and Q represented by two vectors p, q ∈ Rn,
line segment

←−
PQ is the set of points defined by

Θp + (1−Θ)q, 0 ≤ Θ ≤ 1

The equivalent expression q +Θ(p− q), 0 ≤ Θ ≤ 1, has a clear geometric interpreta-
tion: vector q is added with the multiple Θ (0 ≤ Θ ≤ 1) of the difference vector (p− q),
the latter being directed from the point Q to the point P . Since it is always possible to
replace Θ by γ, γ = 1−Θ, so the segment direction denoted here by the over left arrow,
does not matter. Owing to this, a line segment is usually denoted by the over line: PQ.

Definition 1.3. The set of points S is said to be convex if ∀p, q ∈ S : Θp+(1−Θ)q ∈ S,
0 ≤ Θ ≤ 1, i.e. if the whole of the segment of a straight line joining any two points of S,
lies in S.

Definition 1.4. An extremal point or a corner point or a vertex of a convex set S is
any point of it not belonging to a line segment joining two arbitrary points of the set.

In the other words, point b ∈ S is a vertex of a convex set S if there do not exist two
points p, q ∈ S such that b = Θp + (1−Θ)q for some Θ, 0 < Θ < 1.

Definition 1.5. The convex span of points P1, P2, . . . Pk represented by the corre-
sponding vectors p1, p2 . . . pk, is the set of points

y = Θ1p1 + Θ2p2 + . . .Θkpk,
k
∑

i=1

Θi = 1, 0 ≤ Θi, i = 1, k

The convex span can be construstively deduced (built) by the sequential applying the
definition of line segment. By doing so, it may be clarified the condition for the weighting
coefficients Θi . Let us draw such a deduction.

Let P1, P2 be arbitrary points in Rn . Then

y2 = k2p2 + (1− k2)p1, 0 ≤ k2 ≤ 1

is a point in P1P2. Join it with an arbitrary point P3 by the line segment. Then

y3 = k3p3 + (1− k3)y2 = k3p3 + (1− k3)k2p2 + (1− k3)(1− k2)p1, 0 ≤ k3 ≤ 1

is a point in the triangle P1P2P3. Join it with an arbitrary point P4 by the other line
segment. Then
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y4 = k4p4 + (1− k4)y3 = k4p4 + (1− k4)k3p3

+(1− k4)(1− k3)k2p2 + (1− k4)(1− k3)(1− k2)p1, 0 ≤ k4 ≤ 1

is a point in the tetrahedron P1P2P3P4.
Such a process can be proceeded or stopped after all available points are involved.

For instance, if the last of available poins is P5 then having joined it with y4 by the line
segment, we obtain that

y5 = k5p5 + (1− k5)y4

= k5p5 + (1− k5)(k4p4 + (1− k4)(k3p3 + (1− k3)(k2p2 + (1− k2)p1))), 0 ≤ k5 ≤ 1

is an arbitrary point of the pentahedron P1P2P3P4P5.
By the construction, we have

y5 = Θ5p5 + Θ4p4 + Θ3p3 + Θ2p2 + Θ1p1

where
Θ5 = k5

Θ4 = (1− k5)k4

Θ3 = (1− k5)(1− k4)k3

Θ2 = (1− k5)(1− k4)(1− k3)k2

Θ1 = (1− k5)(1− k4)(1− k3)(1− k2)
Let now the weighting coefficients Θi be subject to the constraint

Θ1 + Θ2 + Θ3 + Θ4 + Θ5 = 1, Θi ≥ 0, i = 1, 5

Then, choosing any Θi, 0 ≤ Θi ≤ 1, under this condition, we find sequentially

k5 = Θ5, 0 ≤ k5 ≤ 1

k4 =
Θ4

(1−Θ5)
=

Θ4

(Θ1 + Θ2 + Θ3 + Θ4)
, 0 ≤ k4 ≤ 1

k3 =
Θ3

(1−Θ5 −Θ4)
=

Θ3

(Θ1 + Θ2 + Θ3)
, 0 ≤ k3 ≤ 1

k2 =
Θ2

(1−Θ5 −Θ4 −Θ3)
=

Θ2

(Θ1 + Θ2)
, 0 ≤ k2 ≤ 1

These are the same k2, k3, k4 k5 used sequentially in the constructing of the arbitrary
points of: line segment (k2), triangle (k3), tetrahedron (k4), and pentahedron (k5). By
doing so, it has been proven that the convex span of points p1, p2, . . . , pk is completely
defined by the constraint Θ1 + Θ2 + . . . + Θk = 1 on the non-negative coefficients Θi in
the linear combination

y = Θ1p1 + Θ2p2 + . . . + Θkpk
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Definition 1.6. If f is a function and A is a subset of dmn f, then fA, the restriction
of f to A, is the function whose domain is A, given by

fA(t) = f(t) for t ∈ A

Definition 1.7. A level curve of f where f is a function of n real variables, is a set
C ⊆ dmn f if the restriction of f to C is constant.

Definition 1.8. If f(x) is a real function of n real variables x = (x1, x2, . . . xn), and if
the partial derivatives f1(x), . . . , fn(x) exist (where fi(x) = ∂f(x)/∂xi ), the gradient of
f at x is defined as the n-dimensional vector

grad f(x) ≡ (f1(x), . . . , fn(x))

In general, the gradient of a real valued function f of n real variables is a vector
having the direction of greatest increase of f at each point in dmn f . Correspondingly,
the vector of antigradient, − grad f(x), shows the direction of steepest descent along the
surface f in the domain. For all real valued functions f of n real variables possessing
a continuous gradient, a level curve of f is orthogonal to the gradient at each point in
dmn f .
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Chapter 2.

A Standard Linear Programming
Problem

In this section, we use the standard matrix form of a linear programming
problem to which any LP problem can be easily reduced. We describe several
facts, explaining how to narrow the search for the optimum over the feasible
region and providing a better understanding of the simplex method, which is
an algebraic method readily programmable for a computer.

2.1. Problem statement

The LP problem (in the standard form) has:

1) given constraints Ax = b, A = A(m, n), rankA = m, (m < n)

x ∈ Rn, b ∈ Rm

2) natural constraints restricting every component of x to a nonnegative value, x ≥ 0
( i. e. ∀i : xi ≥ 0)

and therewith requires minx cT x where c ∈ Rn. So, the standard LP problem looks as
follows:

minimize z = cT x
over those x satisfying Ax = b, x ≥ 0

where x is n× 1, c is n× 1, A is is m× n, and b is m× 1.

Remark 2.1.1. Vector c = (c1, c2, . . . cn) determines the objective function z, z =
cT x, in n variables (x1, x2, . . . xn) as well as the vector of gradient: grad z = c. This
vector have the following property: Given different constant values denoted by “const”,
vector grad z = c is orthogonal to the cT x = const hyperplanes in dmn z = Rn.
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Definition 2.1. A standard linear programming problem is said to be nondegenerate
if every m×m submatrix selected from the m× (n + 1) augmented matrix Aa = [A | b] is
nonsingular. Otherwise the problem is said to be degenerate.

Remark 2.1.2. The assumption of nondegeneracy is valid in most of the problems en-
countered in practice and is convenient in theory. How to cope with the task of solving
degenerate problems will be considered in Chapter 6.

General key characteristics of the LP problem are as follows: (1) convexity
of the set of feasible solutions; (2) existence of feasible basic solutions; (3) identity of
feasible basic solutions with vertices of the feasible region; and (4) coincidence of at least
one optimal solution (if it exists) with a vertex of feasible region. Let us prove these
properties consecutively.

2.2. Convexity of the set of feasible solutions

Definition 2.2. A set X of points in Rn satisfying both the given and natural constraints
of the LP problem, Ax = b, x ≥ 0, is the set of feasible solutions or, shortly, the
feasible region.

Theorem 2.2.1. The set X of feasible solutions x,

X = {x ∈ Rn : Ax = b, x ≥ 0} (2.1)

in a linear programming problem is convex.

Proof. Let x, y be an arbitrary pair of points in X. Then

Ax = b, x ≥ 0; Ay = b, y ≥ 0

The line segment joining these points is the set of points w,

w = αx + βy, α + β = 1, α ≥ 0, β ≥ 0, w ≥ 0

We have
Aw = A(αx + βy) = αAx + βAy = αb + βb = (α + β)b = b

i.e. Aw = b, w ≥ 0 , which proves the theorem.

2.3. Existence of feasible basic solutions (FBS)

Definition 2.3. A basic solution to the LP problem (in the standard form) is a vector

x = P







B−1b
- - -

O
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where P is a permutation matrix introduced to interchange the columns of A so that
AP = [B |R], B being a m×m-matrix of full rank, O being a block of (n−m) zeros, and
R being a block of (n−m) column vectors linearly dependent on those included in B.

All basic solutions are determined by the different linearly independent sets of m
columns of A. The permutation matrix P affects matrix A so that a linear independent
combination of m column vectors of A appears in submatrix B. Then the constraint
Ax = b is eqiuvalent to APy = b where y = P−1x.

Splitting column vector y into two patrs, y = (yB, yF ), where yB is m× 1 and yF is
(n−m)× 1, we have

yB = B−1b− B−1RyF

y =







B−1b− B−1RyF

- - -
yF







In such a way, solution y to APy = b is expressed through the free variables yF . Setting
them equal to zero, we obtain vector

y =

(

B−1b
O

)

Vector x differs from this y only by the permutation of elements: x = Py . It is precisely
this vector x that is referred to as a basic solution.

Definition 2.4. Those n − m zero elements of vector x = Py that happen to be zeros
due to setting yF = 0, according to the last paragraph, are called nonbasic variables.
The rest m elements of x = Py are called basic variables, and they form a basis.

Definition 2.5. Any basic solution is said to be a basic feasible solution if all its
elements are nonnegative.

In order to avoid a formal concept of a permutation matrix P in the above definitions,
rephrase them in a different way using the following

Definition 2.6. A vector of constraints ai ∈ Rm, i = 1, n, is any column aj of matrix
A:

A = [a1, a2, . . . , an]

With this notion, the given constraints Ax = b can be written as

x1a1 + x2a2 + . . . + xnan = b (2.2)

As the constraint matrix A is of full rank, rankA = m, there always exist linearly
independent sets of m column vectors of constraints. Number of such sets ranges up
to Cm

n , the number of combinations of n objects taken m at a time (without regard to
order).
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Definition 2.4’. The variables xi associated with those columns ai in (2.2) which form
a linearly independent set of m column vectors of constraints are called basic variables.
The other variables are called nonbasic.

Definition 2.7. Any vector x = (x1, x2, . . . , xn) satisfying the given constraints (2.2)
and the natural constraints xi ≥ 0, i = 1, n, is said to be a feasible solution to the LP
problem.

Definition 2.3’. A point x = (x1, x2, . . . , xn) satisfying (2.2) is called a basic solution
if settings xi = 0 are made for those xi in (2.2) which are associated with the vectors ai

not entering a chosen linearly independent set of m vectors.

Not every basic solution is feasible. Such situation happens when there are one or
more negative elements in a basic solution.

Definition 2.5’. A basic solution x = (x1, x2, . . . , xn) is said to be a basic feasible
solution to the LP problem, a BFS for short, if vectors ai associated with the positive
coefficients xi, xi > 0, in (2.2) form a linearly independent set of vectors.

It follows from the last definition that the number r of strictly positive elements of a
BFS is not greater than m, r ≤ m, because some xi in (2.2) associated with the vectors
ai forming a chosen linearly independent set of m vectors, may occur zero.

Definition 2.8. A basic feasible solution is said to be nonsingular if it does not contain
zero elements. Otherwise the BFS is said to be singular.

Theorem 2.3.1. If a linear programming problem is nondegenerate, then the basic vari-
ables in any basic solution are precisely the nonzero variables.

Proof. Suppose that there exist q of the basic variables in a basic solution, q = m−r, 0 <
q < m, that are zero. Then b would be a linear combination of r columns of B (and thus
of A), B being composed of the columns ai associated with the basic variables xi in (2.2).
It would imply that the problem is degenerate. This contradicts the hypothesis of the
theorem and yields the desired result.

Theorem 2.3.2. If the constraints have a feasible solution, they also have a basic feasible
solution.

Proof. We use the direct approach to build a BFS. Let (n − r) variables in a feasible
solution are zero and the rest r variables are positive. This fact, by renumbering the
variables if necessary (which can be done without loss of generality), can be written as
follows:

xj = 0, j = r + 1, r + 2, . . . , n
r
∑

j=1

xjaj = b, xj > 0, j = 1, 2, . . . , r
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Case (1): {aj, j = 1, 2, . . . , r} is a linearly independent set. Then r ≤ m where
m = rankA, and thus the given feasible solution is also a basic feasible solution in which
(m− r) variables happen to be zero. For this case, the proof is completed.

Case (2): {aj , j = 1, 2, . . . , r} is a linearly dependent set. This means that there
exist numbers αj , j ∈ {1, 2, . . . , r}, not all zero, such that

r
∑

j=1

αjaj = 0

Let αk > 0 for some k ( if necessary, this inequality can by multiplied by −1 ). Then

ak = −
r
∑

j=1,j 6=k

(
αj

αk
)aj .

We have the constraint

x1a1 + . . . + xkak + . . . + xrar = b (2.3)

Substituting here the last expression for ak yields

x1a1 + . . . + xk(. . .−
αk−1

αk

ak−1 −
αk+1

αk

ak+1 − . . .) + . . . + xrar = b

After rearrangment, we have

r
∑

j 6=k,j=1

(xj −
αjxk

αk
)aj = b

It is always possible to choose k so that

xk

αk
= min

j
(
xj

αj
; αj > 0)

By this, the values

Xj = xj − αj(
xk

αk
), j 6= k, j = 1, r (2.4)

turn out positive and
Xj = 0, j = k, r + 1, r + 2, . . . , n (2.5)

As a result, the solution X = (X1, X2, . . . , Xn) is feasible, considering that the constraint

n
∑

i=1

Xiai = b (2.6)

is satisfied and Xi ≥ 0, i = 1, n, with (r − 1) variables strictly positive (2.4) and
(n− r + 1) variables equal to zero (2.5).

It is along this pathway that ak, which is linearly dependent on the remaining vec-
tors aj, turns out omitted from the set {aj, j = 1, 2, . . . , r} of vectors associated with
positive coefficients in the constraint Ax = b, (2.2), (2.3), that is now rewritten as (2.6).
Continuing in this way (if necessary), we come to case 1, in which r ≤ m, that is, to a
BFS, and thus we are done.
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2.4. Identity of feasible basic solutions with

vertices of the feasible region

Theorem 2.4.1. The basic feasible solutions to a LP problem coincide with the vertices
of the (convex) set of feasible solutions (2.1).

Proof. Without loss of generality, let us denote a basic feasible solution as

x0 = (x1, . . . , xm, 0, . . . , 0)T

It means that x0 is a unique nonnegative solution to Ax = b with the last (n − m)
coordinate values being zero.

Remark 2.4.1. For this theorem, the following equivalent formulation can be used. A
feasible solution x0 to a LP problem is a basic feasible solution if and only if x0 is a vertex
of the feasible region X, (2.1).

Part I: The condition is necessary. (Given: x0 is a basic feasible solution. Needed
to prove: x0 is a vertex.) If x0 were not a vertex, then we could find two different points
u and v in X such that x0 = θu + (1 − θ)v for some θ, 0 < θ < 1. In the other words,
we would have Au = b, Av = b, u, v ≥ 0, and for the last (n −m) coordinate values of
u and v we could write:

0 = θum+1 + (1− θ)vm+1

0 = θum+2 + (1− θ)vm+2

. . . . . . . . . . . . . . . . . . . . . . . .
0 = θun + (1− θ)vn

In these equations, both multipliers, θ and (1 − θ), are positive since x0 is supposed
to be an inner point of the line segment joining u and v. Besides, um+1, . . . , un ≥ 0
and vm+1, . . . , vn ≥ 0 . By these reasons, the last equations hold only if uj = 0 and
vj = 0, j = m + 1, . . . , n. It would force us to agree that u and v are both basic feasible
solutions with the last (n −m) coordinate values being zero. This contradicts the fact
that such a solution to Ax = b, x ≥ 0 is unique, unless we admit that x0 = u = v is a
vertex.

Part II: The condition is sufficient. (Given: x0 is a vertex of X. Needed to prove:
x0 is a basic feasible solution.) Denote by r the number of positive coordinate values of
vector x0. Prove that r ≤ m and that the vectors of constraints associated in (2.2) with
these positive values, form a linearly independent set of vectors. To accomplish this, we
shall do in the same way as in the proof of Theorem 2.3.1. Again, as above, we have
case 1 and case 2. For case 1, the proof is done. Case 2 implies that there exist numbers
αj , j = 1, r, not all zero, such that

r
∑

j=1

αjaj = 0 (2.7)
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Introduce a scalar ρ such that for these αj 6= 0

0 < ρ < min
j

x0
j

| αj |

Then vectors
x1 = x0 + ρα

x2 = x0 − ρα

are nonnegative: x1 ≥ 0 and x2 ≥ 0 (i.e., all their coordinate values are nonnegative)
where α = (α1, α2, . . . , αr, 0, . . . , 0). Rewrite (2.7) as Aα = 0. Thus

Ax1 = A(x0 + ρα) = Ax0 + ρAα = Ax0 = b

Ax2 = A(x0 − ρα) = Ax0 − ρAα = Ax0 = b

The half-sum of the last equations together with the expression

x0 =
1

2
(x1 + x2) = θx1 + (1− θ)x2, θ =

1

2

confirms that we have built two different points x1, x2 ∈ X, distinct from x0 and such
that x0 is the inner point of the line segment joining x1 and x2 (namely, the middle point
of it). This contradicts the hypothesis of Part II of the theorem, unless we admit that all
αj in (2.7) are zero, i.e. a set of vectors {aj , j = 1, r} is linearly independent. But it is
known that if aj ∈ Rm, then the number r of vectors in the set can not exceed m, r ≤ m.
We returned to Case 1 for which the theorem is proven.

Remark 2.4.2. Theorem 2.4.1 can be rephrased conversely. A point x0 = (x0
1, x

0
2, . . . x

0
n),

x0 ≥ 0, is a vertex of the feasible region X, (2.1), if and only if vectors of constraints aj

with positive coefficients x0
j in the constraints Ax0 = b form a linearly independent set.

It is obvious that in this equivalent formulation the necessity and sufficiency are simply
interchanged.

2.5. Coincidence of the LP problem solution with a

vertex of feasible region

The following proposition is the main for the further transition to the practicable
computational method having the advantage of very fast arriving at the solution.

Theorem 2.5.1. If the objective function z = cT x has a finite minimum, then at least
one optimal solution is a basic feasible solution (i.e., a vertex of the feasible hyperpolyhe-
dron X, (2.1)).
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Proof. Let all basic feasible solutions be determined by the vectors p1, p2, . . . , pk and
let the objective function have at these points corresponding values z1, z2, . . . , zk. Since
z = cT pi, then

zi = cT pi, i = 1, 2, . . . , k

It is known from Theorem 2.4.1 that p1, p2, . . . , pk are all verices of the set of feasible
solutions X and, according to Theorem 2.2.1, this set is convex. By Definition 1.5, any
convex span of points represented by vectors p1, p2, . . . , pk is the set of points

x = θ1p1 + θ2p2 + . . . θkpk, θi ≥ 0,
k
∑

i=1

θi = 1

At any such point x, x ∈ X, we have

z = cT x = θ1c
T p1 + θ2c

T p2 + . . . θkc
T pk = θ1z1 + θ2z2 + . . . θkzk

Consequently, seeking the solution x ∈ X, optimal in the sense of min z = min cT x,
can be narrowed to the task of finding such numbers θi ≥ 0 adding up to 1 and giving
minimum to

z = θ1z1 + θ2z2 + . . . θkzk

where zi = cT pi are real numbers. In the finite set of numbers zi, there always exists
at least one having a minimum value zmin. Let, without loss of generality, this value be
taken by the first l numbers of the set: zj = zmin, j = 1, 2 . . . , l. Then z = θ1z1 + . . . θkzk

will take its minimum value zmin if nonnegative real coefficients θi are chosen to satisfy
θ1 + . . . θl = 1 and θi = 0 for i = l + 1, . . . , k. Thus, it has been proven that a finite
miminum of z = cT x, if it exists, is attained at some vertex pj or at a convex span of
finite number of vertices p1, p2, . . . , pl, i.e., at a point

x =
l
∑

i=1

θipi,
l
∑

i=1

θi = 1, 0 ≤ θi

within the feasible hyperpolyhedron X.
Conclusion from section 1: In the search for solution to a linear programming

problem (given in the standard form), it is sufficient to narrow oneself only by the search
for basic feasible solutions and only them, i.e., by the search for vertices of the feasi-
ble hyperpolyhedron as candidates for the optimal solution. This is precisely what the
simplex method described below does.
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Chapter 3.

The Simplex Method

The word simplex in the common sense means simple, non-composite as
opposed to the word complex. As a mathematical notion, a simplex is a
hyperpolyhedron with n + 1 corners in n dimensions (i.e., a convex span
of n + 1 points in Rn). For example, 0-dimensional simplex is a point, 1-
dimensional simplex is a limited straight line, 2-dimensional simplex is a tri-
angle, 3-dimensional simplex is a tetrahedron, etc. Since it was established
(see Chapter 2) that solution to a linear program ought to be soughth at the
vertices of the feasible set of solutions, which is, by nature, a simplex, the
very seeking procedure was named “the simplex method”. It was developed
by the American mathematician George B. Dantzig of the University of Cal-
ifornia, Berkeley, in 1947. This ingenious invention makes it possible to find
the optimal solution by evaluating only a tiny fraction of all vertices while
moving along the edges on the boundary of the hyperpolyhedron and looking
for one particular target vertex. Thus, the simplex method avoids visiting
every vertex and moves from one starting vertex to the optimal one through
many intermediate vertices. At each vertex, all neighboring vertices are eval-
uated to see which ones are able to decrease the objective function and which
are not. A new vertex is chosen from among the able ones, and at this new
vertex the evaluation of neighbors is repeated until we arrive at the target
vertex.

3.1. Reduction of a linear programming problem to

the canonical form for a basis

The simplex method has got the several forms (or different algorithms). To describe
them all, we begin from representing the standard LP problem in another (equivalent)
form.
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As it follows from definitions 2.3’ and 2.5’, in order to find a BFS we should select
firstly a linearly independent set of m vectors aj among columns of matrix A. Let they
be already found and (with possible renumbering the variables xj) be factors at the first
m variables x1, x2, . . . , xm in (2.2). These columns form a nonsingular matrix

B = [a1, a2, . . . , am]

Hence, A = [B | R], where R = [am+1, . . . , an] is a matrix composed of columns, each
of them being linearly dependent on the column vectors of B. Introduce the corre-
sponding notation for the basic and nonbasic variables: xB = (x1, x2, . . . , xm)T and
xF = (xm+1, xm+2, . . . , xn)T . (Using the simbol “F” reminds us that nonbasic variables
are treated as “free” to enable moving from one vertex to another.) Thus, x = (xB, xF ).
Correspondingly, cB = (c1, . . . , cm)T , cF = (cm+1, . . . , cn)

T and c = (cB, cF ).
We consider the following standard LP problem:

{

minimize z = cT x
subject to Ax = b, x ≥ 0

With the introduced notations, we rewrite the problem in the other form taking into
account that B−1 exists.

First we rewrite the constraints Ax = b:

BxB + RxF = b, xB + B−1RxF = b′, b′ = B−1b

where matrix B−1R is m× (n−m). Denote it by A′. Written through the columns a′
j of

A′, it takes the form:
A′ = B−1R = [a′

m+1 : a′
m+2 : . . . : a′

n]

a′
j = B−1aj , j = m + 1, . . . , n

Next, rewrite the objective function z = cT x:

z = cT
BxB + cT

F xF = cT
B(b′ − A′xF ) + cT

F xF = cT
Bb′ + (cT

F − cT
BA′)xF = z0 + c′T xF

where new coefficients are denoted by c′, c′T = cT
F − cT

BA′, or by elements:

c′j = cj − cT
Ba′

j, j = m + 1, . . . , n

A value of z at xF = 0 is denoted by z0, z0 = cT
Bb′.

Thus, the standard LP problem

min
x

(z = cT x), Ax = b, x ≥ 0

is reduced to the following equivalent form known as the canonical form for a basis
xB = (x1, . . . , xm) :
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{

minimize z − z0 = c′T xF

subject to xB + A′xF = b′, xB ≥ 0, xF ≥ 0

where
z0 = cT

Bb′; b′ = B−1b; A′ = {a′
j}, j = m + 1, . . . , n

c′j = cj − cT
Baj , a′

j = B−1aj, j = m + 1, . . . , n

Here, it is taken into account that

B = {aj}, j = 1, m, rankB = m; A = {aj}, j = 1, n

The characteristic features of this form are: (1) the basic variables xB appear in
the constraints with the identity matrix I, and yet they do not appear in the objective
function; and (2) the objective function (z − z0) is expressed only through the nonbasic
(free) variables xF . This representation of the LP problem is convenient to derive the
computational procedure that can succesfully solve the problem and is known as the
simplex method, the method most commonly used at a lot of large businesses all round
the world.

3.2. The simplex method for the case of obvious basic

feasible solution

Reduction of a linear programming problem to the canonical form for a basis means
that a basic solution has been found and it has the following form:

the nonbasic variables xF = 0;
the basic variables xB = b′;
the objective function z = z0 = cT

Bb′.
If here it occurrs that b′ ≥ 0, then this basic solution is a basic feasible solution (a

vertex of feasible hyperpolyhedron). Otherwise, it is not a feasible solution.
In this section, we consider a nondegenerate linear programming problem and assume

that at the beginning or at a recurrent step it occurrs that b′ ≥ 0. The question arises:
Is it possible to do one more step and some more decrease the value of the objective
function z by moving to another vertex of feasible hyperpolyhedron ?

We get an answer to the question looking at z:

z − z0 = c′T xF

Theorem 3.2.1.

(i) If all elements of c′ are strictly positive, c′ > 0, then it is impossible to decrease
z while moving from xF = 0 and remaining in the feasible region, xF ≥ 0. Min-
imum z = z0 has been found, and the corresponding basic feasible solution is the
unique solution of the linear program, that is, it is an optimal basic feasible solution
(OBFS).
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(ii) If there, among elements of c′, exists at least one element, say c′s, that is less than
zero, then there are only two possibilities:

(a) If a′
is ≤ 0 for all i = 1, . . . , m, then feasible solutions exist such that z can be

made as small as desired, and the linear program has no finite solution.

(b) If a′
is > 0 for at least one i, then a new basic solution can be found such that

the value of z is strictly decreased.

(iii) If all elements of c′ are nonnegative, c′ ≥ 0, while at least one of them, say c′s, is
equal to zero, then z attains its minimum value for at least two different points x.
If two such optimal solutions are denoted by x(1) and x(2), then

x = θx(1) + (1− θ)x(2), 0 ≤ θ ≤ 1

is also an optimal solution.

(iv) If procedure (ii) (b) is repeated, then either case (ii) (a) is reached after a finite
number of steps, in which z can be made as small as desired, or one of cases, (i) or
(iii), is reached after a finite number of steps, in which an optimal solution to the
linear program has been found.

The proof of this theorem is obvious from the following analysis. If there, among co-
efficients c′, exists at least one strictly negative, then z can be further decreased from
value z0 by making positive those nonbasic (free) variables in the structure of xF which
appear in the objective function (z−z0) = c′T xF with the negative coefficients c′, however
preserving the residence of the point (xB, xF ) within the feasible region:

xB + A′xF = b′, xB ≥ 0, xF ≥ 0 (3.1)

It does not matter how many such variables exist and what of them are selected for
making positive, but the simplex method offeres to choose only one of nonbasic variables
to increase it from 0 to a positive value while keeping the rest of them equal to 0.
Obviously, it is advisable to choose from xF such a variable that appear in (z−z0) = c′T xF

with the most negative coefficient. It would guarantee the steepest descend along z among
all possible variants of a variable-by-variable descent.

Assume a choice has been made, and xs is the chosen variable intended to assume a
positive value. We increase it from zero keeping the other nonbasic variables constant
and equal to zero. Then constraints (3.1) to be looked at take the simple form:

xB
i + a′

isxs = b′i, xB
i ≥ 0, xs > 0, i = 1, m. (3.2)

From this, we see that the change in the value of xs, which decreases z, forces us to reduce
xB

i in order to preserve the equalities in (3.2). Naturally, xB
i is reduced if only a′

is > 0.
If a′

is < 0, this change will increase xB
i , and xB

i remains unchanged if a′
is = 0. In these

two cases the constraint xB
i ≥ 0 can not be violated. So, the only case that can trouble

is a′
is > 0 because in (3.2) we need to preserve the inequality xB

i ≥ 0.
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Now one must answer the question: Up to what value it is allowed to increase xs in
case of a′

is > 0 ? From the point of view of a single, say ith, constraint, the answer sounds
as follows: As increasing xs in the region xs > 0 causes a reduction in the value of xB

i

and as xB
i may be reduced only to xB

i = 0, increasing xs is allowed only to xs = b′i/a
′
is.

However, from the point of view of all m constraints simultaneously, increasing xs is
permissible only to the lowest value

xs = min
i=1,m

(

b′i
a′

is

)

Assume that this lowest value is discovered in the kth row of constraints (3.2), viz.

xs = min
i=1,m

(

b′i
a′

is

)

=
b′k
a′

ks

.

Hence, we have the following result: the chosen nonbasic variable xs has been increased
from 0 to b′k/a

′
ks and at the same time the basic variable xk has been decreased to 0. In

other words, xs has been included into a basis and xk has been excluded from the basis.
For this reason, xs is called the entering basic variable and xk is called the departing
basic variable. By this manner a transition from the old basic feasible solution to a
new basic feasible solution is performed, and in doing so the value of objective function
is decreased.

Therein indeed lies the every next in turn step of the simplex method. Because
the number of different basic feasible solutions is finite (it does not exceed Cm

n , - see
Definition 2.6), minimum of the objective function (if only it exists) will be found in a
finite number of steps.

3.3. Algorithm of the simplex method for the case of

obvious basic feasible solution

From Section 3.1 it is obvious that the standard LP problem has a variety of represen-
tations refered to as different canonical forms for a basis, and each basis relates to its own
canonical form. On the other hand, as it was shown in Section 3.2, the every next in turn
step of the simplex method, at which we pass to a lower value of the objective function,
means that some variable xs enters a basis instead of another variable xk departing the
basis. Thus, to fulfil a step of the simplex method means formally to rewrite the LP
problem in the canonical form for a new basis being adopted next as giving the less value
of the objective function. Let us describe the corresponding actions.

Given a linear programming problem in its initial (or current) canonical form for a
basis (see Section 3.1), which is looking as the following system of equations with the
nonnegative rihgt-hand side b′ ≥ 0:







I | A′

−−− | − − −
O | c′T













xB

−−−
xF





 =







b′

−−−
z − z0





 , xB ≥ 0, xF ≥ 0
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where the last equation gives the expression of the objective function via nonbasic (free)
variables.

In these equations also shown are: I the m × m identity matrix; A′ = {a′
j} the

m × (n −m) martix of column vectors a′
j , j = m + 1, . . . , n; O a row of zeros; c′ the

column vector of coefficients for nonbasic variables xF ; z0 = cT
Bb′ the initial value of the

objective function z at the initial (or current) BFS, which is defined as x = (xB, xF ), xB =
b′, xF = 0.

Action 1◦. Find what variable in xF , say xs, can be increased from zero in order to
decrease z from z0. Indicative of any such variable is a negative coefficient in the last
row of the above partitioned matrix, or more precisely among elements of c′T . Locate the
negative element among c′T that is largest in magnitude. (If two or more entries share
this property, any one of these can be selected.) If all such entries are nonnegative, the
system is in the final form and solution is obtained because the desired xs does not exist
any more. The selected variable xs is called the entering variable because it is prepared
to be introduced into a basis, and the corresponding (s-th) column is called the pivot
column.

Action 2◦. Find what row of m rows of constraints (they are the first m rows of the
above system) provides

b′k
a′

ks

= min
i: a′

is
>0

(

b′i
a′

is

)

Designate the number of this row by k and call this row the key row. (If two or more
rows share this property, any one of these can be selected as key.) The coefficient a′

ks of
xs in the key row is called a pivot element. The variable being basic in the key row
is called the departing variable because it is prepared to be excluded from the basis.
Both introducing the entering variable and excluding the departing variable are being
made by the following two actions.

Action 3◦. Normalize the kth equation of the system through dividing it by the
pivot a′

ks. As a result, the entering variable xs takes coefficient 1.
Action 4◦. Do a series of subtractions of the normalized k-th row taken with the

suitable multipliers, from all the other rows of the system in order to eliminate the pivot
variable xs from all system equations except the k-th. (The suitable multipliers have
been, by that time, in the system matrix at the crossings of all m+1 rows, excepting the
k-th, with the pivot column numbered s.)

As a result of these four actions, the s-th column becomes a column of the identity
matrix, and the NB(k)-th column stops being such where NB(k) is the number of a
basis (departing) variable in the k-th constraint (row). This just means that xs has been
included into a (new) basis while xNB(k) has been excludud from the (old) basis. By this
means, a transition to a new canonical form for a basis has been made. Next step of the
algorithm will repeat these four actions or will stop at action 1◦ if no entering variable
can be found.

Obviously, actions 3◦ and 4◦ coincide with the procedure of Gauss-Jordan elimination
of xs from the given system of equations while actions 1◦ and 2◦ forego this procedure
with a specific selection of: a pivot column (action 1◦) and a key row (action 2◦).
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Example 3.3.1. Minimize
−2x1 − 4x2 = z

subject to x1, x2 ≥ 0 and
2x1 + 3x2 ≤ 120
3x1 + 9x2 ≤ 270

First, we write down this LP problem in the standard form introducing two slack
variables x3, x4 ≥ 0 :

2x1 + 3x2 + x3 = 120
3x1 + 9x2 + x4 = 270
−2x1 − 4x2 = z

In the matrix notation we have







2 3 1 0
3 9 0 1
−2 −4 0 0

















x1

x2

x3

x4











=







120
270
z







Simultaneously, it serves the initial canonical form of the problem for a basis xB =
(x3, x4). The rest variables, x1 and x2, are nonbasic: xF = (x1, x2). The initial basic fea-
sible solution is x = (x1, x2, x3, x4) = (0, 0, 120, 270). The value of the objective function
at this point is z = z0 = 0.

To make the simplex method function, i.e. to run the above actions 1◦ − 4◦, it is
sufficient to operate only with the extended matrix. In this example it has the following
initial form:







2 3 1 0 | 120
3 9 0 1 | 270
−2 −4 0 0 | z







Such matrix is called a simplex tableau.
Let is run all the necessary actions 1◦ − 4◦ in this tableau.

Step 1.

1◦ xs = x2 (the pivot column is the second one; correpondingly, x2 is the entering
variable).

2◦ min(120
3

, 270
9

) = min(40, 30) = 30; k = 2 (the key row is the second one; the basic
variable in this row is x4, and it is the departing variable).

3◦ After normalizing:

→







2 3 1 0 | 120
1/3 1 0 1/9 | 30
−2 −4 0 0 | z







↑

(the pivot column and key row are marked for illumination by arrows).
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4◦ After subtractions:






1 0 1 −1/3 | 30
1/3 1 0 1/9 | 30
−2/3 0 0 4/9 | z + 120







This is the next canonical form for a basis xB = (x2, x3). Nonbasic variable are
xF = (x1, x4). Basic feasible solution is x = (x1, x2, x3, x4) = (0, 30, 40, 0). The value of
the objective function at this point is z + 120 = 0, i.e. z = z0 = −120.

Step 2.
1◦ xs = x1 (the pivot column is the first)
2◦ min(40

1
, 30

1/3
) = min(40, 90) = 40; (the key row is the first)

k = 1
3◦ After normalizing:

→






1 0 1 −1/3 | 30
1/3 1 0 1/9 | 30
−2/3 0 0 4/9 | z + 120







↑

4◦ After subtractions:







1 0 1 −1/3 | 30
0 1 −1/3 2/9 | 20
0 0 2/3 2/9 | z + 140







This is the next form for a basis xB = (x1, x2). Nonbasic variables are xF = (x3, x4).
Basic feasible solution is x = (x1, x2, x3, x4) = (30, 20, 0, 0). The value of the objective
function for the solution is z + 140 = 0, i.e. z = z0 = −140.

Step 3.

1◦ There is no free (nonbasic) variables having a negative coefficient among the first n
elements, n = 4, in the last row of the matrix. The process of solution has finished.
The solution of the problem is x1 = 30, x2 = 20 and z = −140.

Remark 3.3.1. If one represents the above problem geometrically on the (Ox1x2)-plane,
it will be seen that solution started from the origin (x1 = x2 = 0). After step 1◦ the
solution moved into the point x1 = 0, x2 = 30. After step 2◦ the solution moved along the
border line 3x1 + 9x2 = 270 into the point x1 = 30, x2 = 20. If there is chosen another
variant of action 1◦, xs = x1, at step 1◦ , that is also possible, then at such step 1◦ the
solution moves to the point x1 = 60, x2 = 0, and then at step 2◦ , it will move along the
border line 2x1 +3x2 = 120 to the same final point x1 = 30, x2 = 20 and z = −140. Here,
for these two variants of action the number of steps from the initial to the final solution
occured to be the same: 2 steps. In general case, such coincidence does not occur, and it
appears impossible, to foresee what variant of actions leads faster to the final solution.
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Remark 3.3.2. In the simplex tableau, the lowest right corner position is for the value
of objective function. In the above symbol z was written there only for simplicity and
from now on there is no need to write it. In doing so, we have the value of the objective
function alwayse eqnal to the element of this position taken with the opposite sign, −z0,
because at every basic feasible solution we have z + (−z0) = 0. At the initial state, this
element equals 0.

3.4. Computational aspects of the simplex method

with the obvious basic solution

We have a simplex tableau in the form of two dimensional array, i.e. as (m+1)×(n+1)
matrix. The first m rows of the tableau contain coefficients and the right-hand sides of
constraints represented in a canonical form for a basic. These constraints can be written
as a system of equations

[I | A′]

[

xB

xF

]

= b′

In this section we abandone the requirement b′ ≥ 0. The last, (m + 1)-th, row of the
matrix contains the coefficients of the objective function having the following expression
in the canonical form for a basis:

[0 | c′T ]

[

xB

xF

]

= z − z0

The last, (n + 1)-th, element of this row is for the right-hand side of this equation. It
equals −z0, because we omit the symbol “z” when writing the tableau, and z0 is the
value of z at a current basic solution (xB = b′, xF = 0). Before computation, this element
equals 0.

For computation, it is convenient to introduce two pointers: (1) the pointer NB(i),
i = 1, m; NB(i) is number of a basic variable in the i-th constraint, and (2) the pointer
NF (j), j = 1, 2, . . . , n−m; NF (j) is number of a nonbasic variable. Thus, these pointers
store the basic and nonbasic variable numbers.

At each step of the algorithm the following actions 1◦ – 4◦ are done:

1◦ Look through NF (j) whether there exist or not negative values among elements

a(m + 1, NF (j)), j = 1, 2, . . . , n−m

If “not”, the desired solution has been found and given by the equations: xB = b′,
xF = 0, zmin = z0. We have the following values:

x(NB(i)) = a(i, n + 1), i = 1, 2, . . . , m
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for basic variables,

x(NF (j)) = 0, j = 1, 2, . . . , n−m

for nonbasis variables, and

zmin = −a(m + 1, n + 1)

for the objective function.

If “yes”, then select one element from the mentioned negative elements, for example,
the most negative. Let it have the number s, s = NF (l) for some l. By this,
one column, its number s, is announced the pivot column, and the corresponding
variable x(s) is determined to be the entering basic variable.

2◦ Look through the row numbers, i = 1, 2, . . . , m, in order to select the key row,
its number k, according to a predetermined rule. This rule is formulated so that
the basic variable having the number NB(i), does not go out of the feasible region
due to increasing the entering variable xs = x(s). To do this, write down the i-th
constraint:

x(NB(i)) + a′
isx(s) = b′i

where a′
is is the element of the above submatrix A′; b′i is the element of the right-

hand side b′ of constraints. In our notation for the simplex tableau (matrix A, its
elements a(i, j)), the same constraint has the form:

x(NB(i)) + a(i, s)x(s) = a(i, n + 1)

Now, in dependence of a combination of signs and critical (zero) values for a′
is and

b′i = a(i, n + 1), determine the limiting value max(xs) up to which the entering
variable x(s) may be increased with keeping x(NB(i)) nonnegative. The complete
set of variants is shown in Table 3.4.1.

It is necessary to use this table for each row of constraints, i = 1, 2, . . . , m. If in
doing so one encounters one or more situations of “prohibited”, then one should
refuse x(s) as the entering variable and return to action 1◦ in order to find another
entering variable x(s) and to do with it action 2◦. If no situation of “prohibited” is
encountered for all constraints number k should be determined by rule:

k = arg min
i:a′

i,s
>0,b′

i
>0

[

b′i
a′

is

]

= arg min
i:a′

i,s
>0,b′

i
>0

[

a(i, n + 1)

a(i, s)

]

As a result, coefficient a′
ks = a(k, s) is announced the pivot and the k-th row is

announced the key row, in order to complete a circle of two actions, 3◦ and 4◦, con-
stituting one circle of Gauss-Jordan elimination for systems of linear algebraic equa-
tions. The fact of such elimination has a towfold effect: variable x(s), s = NF (l),
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Table 3.4.1. Limiting value max(xs) for the entering variable xs for the cases when the
basic variable x(NB(i)) appears in the i-th constraint with coefficient +1
a′

is = a(i, s) b′i = a(i, n + 1) max(xs)
> 0 > 0 b′i/a

′
is

< 0 > 0 ∞
= 0 > 0 ∞
> 0 < 0 −∞ (prohibited)
< 0 < 0 ∞
= 0 < 0 ∞ (*)
> 0 = 0 −∞ (prohibited)
< 0 = 0 ∞
= 0 = 0 ∞

(*) - the solution remains in the infeasible region

enters a basis, and variable x(NB(k)) leaves the basis. This can be registered by
the mutual exchage of numbers in the two pointers:

NF (l)←→ NB(k)

3◦ Normalize the k-th row through dividing it by the pivot a(k, s).

4◦ Substract the k-th row times a(i, s) from the other m rows, i = 1, 2, . . . , m + 1
except i = k.

Remark 3.4.1. It is obvious that only (n−m+1) columns of the simplex tableau (matrix
A) are re-calculated at each step. They are:

(1) the last column, having number n + 1, with the right-hand sides b′ of constraints;

(2) all columns for nonbasic variables except the pivot column that is replaced by a
trivial column (all zeros and one unit instead of the pivot element a(k, s)), totaling
(n−m− 1) columns;

(3) the column for the departing variable x(NB(k)).

The other m columns remain unchanged and so may not be re-calculated. But on
the whole, this algorithm is the Gauss-Jordan elimination with the special choice of pivot
a(k, s).

Example 3.4.1. Find a solution x1 ≥ 0, x2 ≥ 0 of the following LP-problem:

x1 + x2 ≤ 50
−x1 + x2 ≤ 10

x1 ≥ 20
x2 ≥ 10

−2x1 − 3x2 = z → min
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Geometrical plotting shows that the feasible region is a quadrangle on the ox1x2–plane
with the vertices at points: P = (20, 10); Q = (20, 15); R = (30, 20); and S = (40, 10).
Moving the line z = const along the antigradient − grad(z) = (2, 3), we find that the
solution is attained in vertex R where zmin = −120. Having this result for the checking,
let us fulfil the above algorithm formally.

First, write down the given problem in the standard form:

x1 + x2 + x3 = 50
−x1 + 2x2 + x4 = 10
x1 − x5 = 20

x2 − x6 = 10
−2x1 − 3x2 = z → min

where x3, x4, x5 and x6 are the slack variables, each nonnegative, introduced in order to
replace inequalities by equalities. Fill in the arrays A(5, 7); NB(4) and NF (2) with the
initial data:

A
1 1 1 0 0 0 50

→ −1 2 0 1 0 0 10
−1 0 0 0 1 0 −20
0 −1 0 0 0 1 −10
−2 −3 0 0 0 0 0

↑

NB
(1) 3
(2) 4
(3) 5
(4) 6

NF
(1) 1
(2) 2

BS = (0, 0, 50, 10,−20,−10) 6= BFS

The last line shows that the initial Basic Solution (BS) is not Basic Feasible Solution
(BFS).

Step 1

1◦ s 2 l 2

2◦ min(50/1, 10/2,∞,∞) = 5; k 2

As a result of actions 1◦ and 2◦, we have found the pivot column, s = 2, and the
key row, k = 2 (above and below, they are marked by arrows near the tableau),
and the pivot element aks = a22 = 2 is determined at their crossing.

3◦ After normalizing the key row:

A
1 1 1 0 0 0 50

→ −1/2 1 0 1/2 0 0 5
−1 0 0 0 1 0 −20

0 −1 0 0 0 1 −10
−2 −3 0 0 0 0 0

↑

NB
(1) 3
(2) 4
(3) 5
(4) 6

NF
(1) 1
(2) 2
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4◦ After subtraction and switching NF (l)←→ NB(k) :

A
→ 3/2 0 1 −1/2 0 0 45
−1/2 1 0 1/2 0 0 5
−1 0 0 0 1 0 −20
−1/2 0 0 1/2 0 1 −5
−7/2 0 0 3/2 0 0 15
↑

NB
(1) 3
(2) 2
(3) 5
(4) 6

NF
(1) 1
(2) 4

BS = (0, 5, 45, 0,−20,−5) 6= BFS

Step 2

1◦ s 1 l 1

2◦ min( 45
3/2

,∞,∞,∞) = 30; k 1

Found are: a pivot column, s = 1, and a key row, k = 1. In the above tableau they
are marked by arrows. The pivot element 3/2 is at their crossing.

3◦ After normalizing the key row:

A
→ 1 0 2/3 −1/3 0 0 30
−1/2 1 0 1/2 0 0 5
−1 0 0 0 1 0 −20
−1/2 0 0 1/2 0 1 −5
−7/2 0 0 3/2 0 0 15
↑

NB
(1) 3
(2) 2
(3) 5
(4) 6

NF
(1) 1
(2) 4

4◦ After subtraction and switching NF (l)←→ NB(k) :

A
1 0 2/3 −1/3 0 0 30
0 1 1/3 1/3 0 0 20
0 0 2/3 −1/3 1 0 10
0 0 1/3 1/3 0 1 10
0 0 7/3 1/3 0 0 120

NB
(1) 1
(2) 2
(3) 5
(4) 6

NF
(1) 3
(2) 4

Step 3

1◦ There are no negative coefficients in the last row. The solution has been found:
x1 = 30, x2 = 20 and zmin = −120.

In geometrical interpretation, the solution was found by moving from the origin
(0, 0) to the point (0, 5) and then to the point R = (30, 20). The first and second
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points were not in the feasible region. Thus, increasing the entering basic variable
yields not only decreasing the value of the objective function but introducing the
solution into the feasible region, too.

Remark 3.4.2. As for the situation −∞ (“prohibited”) that appears in Table 3.4.1, see
example 4.1.4 in the below Section 4.1.

3.5. The simplex-method free from generation the

initial BFS

The simplex-algorithm considered in Sections 3.3 and 3.4 is suitable for the case when
a basic feasible solution is readily available from the very beginning. Such a solution holds
if b ≥ 0 and all m constraints are stated with ≥ signs. In such an event, each constraint
given originally as an inequality of “less then or equal to” type is to be converted into
an equality in order to create the standard linear programming problem. We do this by
introducing one new variable in each inequality, called a slack variable since it takes up
all of the slack in the original inequality given as “the left side” ≤ “the right side”.

Since all the variables that occur in the problem must be greater than or equal to
zero, the slack variable for such inequality have to be determined by the difference:

“the slack variable” = “the right side” - “the left side”.

This formula shows that the desired equality is now obtained:

“the left side” + “the slack variable” = “the right side”.

The slack variables introduced in this case and in such a manner into each inequality are
nonnegative and completely independent of one another. Also, the formula shows that,
in such situation, slack variables appear in the converted constraints with the multiplier
“ + 1” (see Table 3.4.1). Variables added by this way are just the basic variables xB in
the initial BFS ≥ 0 because they appear in the standard LP problem with the identity
matrix, I, and do not appear in the formula for the given objective function, z.

If among constraints there are those of “greater than or equal to” type, then, as
it can be seen from Example 3.4.1, the given algorithm does also work althougt it has
to start not from the feasible region but from some non-obligatory nonnegative basic
solution (BS). Such situation appears when, by preliminary multiplying such constraints
by “ − 1”, these constraints are formally being transformed into the “less than or equal
to” cathegory because in doing so the inequality b ≥ 0 changes to (−b) ≤ 0 for the new
right hand side (−b).

Remark 3.5.1. Certainly, one can notice that the above mentioned multiplying, as such,
is not a cause for the situation to appear. If the situation exists, it exists by its nature,
i.e. by the nature of the problem under consideration (confer Example 3.4.1 and the below
Example 3.5.2).
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As for the slack variables in the case of “greater than or equal to” constraints, they
obviously, are to be determined by the formula:

“the slack variable” = “the left side” - “the right side” ≥ 0

in order to guarantee the given constraint and to meet the requirement that all the
variables must be nonnegative. The formula shows that the constraint is reduced to the
equality:

“the left side” - “the slack variable” = “the right side”

so the slack variable appears in the converted constraint with the multiplier “− 1”.
If there exists a constraint of “equal to” type, then one can introduce a so-called arti-

ficial variable in it and then solve the problem, as it is considered below in Examles 3.5.1
and 3.5.2. However, it must be noticed that if a solution for such cases exists, then the
introduced artificial variables are zero in this solution. Accordingly, if they can not be
zero, no solution exists.

Example 3.5.1. For x1, x2 ≥ 0, solve the problem:

x1 + x2 ≤ 6
−2x1 + 3x2 ≤ 3
2x1 + 3x2 ≤ 21
−2x1 − 5x2 = z → min

Step 0. Input the numerical values of the coefficients from the given problem and
automatically set the rest values to generate the following initial form of the arrays:

A
1 1 0 0 1 6

→ −2 3 1 0 0 3
2 3 0 1 0 21
−2 −5 0 0 0 0

↑

NB
5
3
4

NF
1
2

BS = (0, 0, 3, 21, 6) = BFS, 0 = z.

Step 1.

1◦ s = 2, l = 2

2◦ min(6, 1, 7) = 1, k = 2

3◦ After normalization:

A
1 1 0 0 1 6

→ −2/3 1 1/3 0 0 1
2 3 0 1 0 21
−2 −5 0 0 0 0

↑

36



4◦ After subtraction:

A
→ 5/3 0 −1/3 0 1 5

−2/3 1 1/3 0 0 1
4 0 −1 1 0 18

−16/3 0 5/3 0 0 5
↑

NB
5
2
4

NF
1
3

BS = (0, 1, 0, 18, 5) = BFS; −5 = z

Step 2.

1◦ s = 1, l = 1

2◦ min(3,∞, 9/2) = 3, k = 1

3◦ After normalization:

A
→ 1 0 −1/5 0 3/5 3

−2/3 1 1/3 0 0 1
4 0 −1 1 0 18

−16/3 0 5/3 0 0 5
↑

4◦ After subtraction:

A
1 0 −1/5 0 3/5 3
0 1 1/5 0 2/5 3
0 0 −1/5 1 −12/5 6
0 0 3/5 0 16/5 21

NB
1
2
4

NF
5
3

BS = (3, 3, 0, 6, 0) = BFS; −21 = min z

Step 3.

1◦ No negative elements among a(m + 1, NF (l)), l = 1, 2, and NF contains 5 (the
number of artificial variable x5 introduced at Step 0 for the first constraint; thus
x5 = 0).

Therefore, Basic Optimal Solution (BOS) can be output (omitting the artificial
variable):

BOS = (3, 3, 0, 6); −21 = min z
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Table 3.5.1. Limiting value max(xs) for the entering variable xs for the cases when the
basic variable x(NB(i)) appears in the i-th constraint with coefficient −1

a′
is = a(i, s) b′i = a(i, n + 1) max(xs)
> 0 > 0 ∞
< 0 > 0 −∞ (prohibited)
= 0 > 0 ∞ (∗)
> 0 < 0 ∞
< 0 < 0 b′i/a

′
is

= 0 < 0 ∞
> 0 = 0 ∞
< 0 = 0 −∞ (prohibited)
= 0 = 0 ∞

(*) - the solution remains in the infeasible region

Geometrically, here was a movement through the points (0, 0) → (0, 1) → (3, 3) on
the plane ox1x2.

Remark 3.5.2. The distinction between the slack and artificial variables is that the latter
must be zero in the final solution while the first have not (cf. Examples 3.4.1 and 3.5.1).

If among the given constraints are those of “greater than or equal to” type, then
there is no need to convert them into the “less than or equal to” inequality through
preliminary multiplication by “ − 1”. As above discussed, it is sufficient to introduce a
slack (nonnegative) variable with the coefficient “ − 1” into each such a constraint. For
such constraints, the following Table 3.5.1 can be shown to replace Table 3.4.1 while
doing Action 2◦ of the simplex algorithm. That this is the case can be easily seen from
the corresponding equation for such a constraint:

−x(NB(i)) + a′
isx(s) = b′i

Indeed, slack variables introduced in the above manner are the basic variables xB in the
initial basic solution (IBS) because each of them appears only in one constraint and does
not appear in the formula for the given objective function, with the only difference that
it appears there with the multiplier “− 1” instead of “ + 1” and that this IBS may occur
to lie outside the feasible region (if b′i > 0).

Example 3.5.2. For x1, x2 ≥ 0 solve the problem:

2x1 ≥ 3
x2 ≥ 1

x1 + x2 = 6
−2x1 + 3x2 ≤ 3
2x1 + 3x2 ≤ 21
−2x1 − 5x2 = z → min
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Step 0. Input the numerical values of the coefficients from the given problem and
automatically set the rest values to generate the following initial form of the arrays:

A
2 0 −1 0 0 0 0 3
0 1 0 −1 0 0 0 1
1 1 0 0 0 0 1 6

→ −2 3 0 0 1 0 0 3
2 3 0 0 0 1 0 21
−2 −5 0 0 0 0 0 0

↑

NB
3
4
7
5
6

NF
1
2

BS = (0, 0,−3,−1, 3, 21, 6) 6= BFS; 0 = z

Step 1.

1◦ s = 2, l = 2

2◦ min(∞,∞, 6, 1, 7) = 1, k = 4

3◦ After normalization:

A
2 0 −1 0 0 0 0 3
0 1 0 −1 0 0 0 1
1 1 0 0 0 0 1 6

→ −2/3 1 1 0 1/3 0 0 1
2 3 0 0 0 1 0 21
−2 −5 0 0 0 0 0 0

↑

4◦ After subtraction:

A
2 0 −1 0 0 0 0 3

2/3 0 0 −1 −1/3 0 0 0
→ 5/3 0 0 0 −1/3 0 1 5

−2/3 1 0 0 1/3 0 0 1
4 0 0 0 −1 1 0 18

−16/3 0 0 0 5/3 0 0 5
↑

NB
3
4
7
2
6

NF
1
5

BS = (0, 1,−3, 0, 0, 18, 5) 6= BFS; −5 = z

Step 2.

1◦ s = 1, l = 1
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2◦ min(∞,∞, 3,∞, 9/2) = 3, k = 3

3◦ After normalization:

A
2 0 −1 0 0 0 0 3

2/3 0 0 −1 −1/3 0 0 0
→ 1 0 0 0 −1/5 0 3/5 3

−2/3 1 0 0 1/3 0 0 1
4 0 0 0 −1 1 0 18

−16/3 0 0 0 5/3 0 0 5
↑

4◦ After subtraction:

A
0 0 −1 0 2/5 0 0 −3
0 0 0 −1 −1/5 0 0 −2
1 0 0 0 −1/5 0 3/5 3
0 1 0 0 1/5 0 0 3
0 0 0 0 −1/5 1 0 6
0 0 0 0 3/5 0 0 21

NB
3
4
1
2
6

NF
7
5

BS = (3, 3, 3, 2, 0, 6, 0) = BFS; −21 = min z

Step 3.

1◦ No negative elements among a(m + 1, NF (l)), l = 1, 2; and NF contains 7 (the
number of the artificial variable introduced at Step 0 for the third constraint;
thus x7 = 0). Therefore, BOS can be output (omitting x7) as follows: BOS =
(3, 3, 3, 2, 0, 6), −21 = min z.

Geometrically, there was a movement through the points (0, 0) → (0, 1) → (3, 3) on
the plane ox1x2, the first two of them lying outside the feasible region.

Definition 3.1. A basis is said to be correct, if each basic variable appears only in one
constraint with the coefficient “+1” and does not appear in the objective function equation.
If there exists at least one basic variable appearing there with the coefficient “−1” instead,
such a basis is called “noncorrect”.

So, for the case of correct basis we operate only with Table 3.4.1 while for the case of
noncorrect basis we address sometimes to Table 3.5.1.
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3.6. The simplex-method with generation an

initial BFS

The preceding algorithm (see Sections 3.4 and 3.5) does not rule out the appearance
of impermissible solutions at the initial state or at some intermediate steps. In order
to exclude such a situation from the very beginning, i.e. to generatate an initial basic
feasible solution, the following algorithm has been developed.

The idea is to define a new linear programming problem, for which an initial basic
feasible vector is easily found, and whose solution gives the desired initial BFS for the
original problem.

Let us illustrate the idea by the previous Example 3.5.2:

minimize z = −2x1 − 5x2

subject to 2x1 ≥ 3
x2 ≥ 1

x1 + x2 = 6
−2x1 + 3x2 ≤ 3

2x1 + 3x2 ≤ 21
xi ≥ 0 (i = 1, 2)

It is obvious from Step 0 (see the last example in Section 3.5) that the point x1 = 0,
x2 = 0 does not satisfy the constraints owing to the requirements 2x1 ≥ 3, x2 ≥ 1 and
x1 + x2 = 6, so we must find a different initial vector. If, as usual, we introduce slack
variables x3 and x4 for the first and second offending inequalities, we obtain instead two
equalities

2x1 − x3 = 3
x2 − x4 = 1

with x3 ≥ 0, x4 ≥ 0. Our inability to let x1 = x2 = 0 for the inequalities shows here in
the fact that x1 = x2 = 0 yields x3 = −3 and x4 = −1 in violation of x3 ≥ 0 and x4 ≥ 0.

It is worth noting that slack variables x5 and x6 introduced in the fourth and fifth
(non-offending) inequalities do not cause such a trouble because we have

−2x1 + 3x2 + x5 = 3
2x1 + 3x2 + x6 = 21

and x1 = x2 = 0 does not violate x5 ≥ 0, x6 ≥ 0.
The trick with the inequalities of “greater than or equal to” type (and, as it will

be seen, with the constraints of “equal to” type) is to introduce one or more another
variables, in this example x7, x8 and x9, correspondingly, for the first, second and third
offending constraints, the so-called artificial variables, and then to: (1) replace x3 in the
first equation 2x1−x3 = 3 by x3−x7 so that we can write the first constraint 2x1 ≥ 3 as
2x1−x3+x7 = 3 with x3 ≥ 0 and x7 ≥ 0; (2) replace x4 in the second equation x2−x4 = 1
by x4 − x8 so that we can write the second constraint x2 ≥ 1 as x2 − x4 + x8 = 1 with
x4 ≥ 0 and x8 ≥ 0; and (3) write the third constraint x1 +x2 = 6 as x1 +x2 +x9 = 6 with
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x9 ≥ 0. Now we can let x1 = x2 = 0 since we can easily have x7 − x3 = 3, x8 − x4 = 1
and x9 = 6 while the slack variables (x3, x4, x5 and x6) and artificial variables (x7, x8 and
x9) are all nonnegative. We therefore consider the extended constraints:

2x1 −3x3 +x7 = 3
x2 −x4 +x8 = 1

x1 + x2 x9 = 6
−2x1 + 3x2 +x5 = 3

2x1 + 3x2 +x6 = 21

(3.3)

for which a basic feasible vector is obvious as x1 = x2 = x3 = x4 = 0, x5 = 3, x6 = 21,
x7 = 3, x8 = 1, x9 = 6. If we can somehow start from this vector and eventually find
another BFS for the extended constraints (3.3) but for which all the artificial variables
(x7, x8 and x9) are zero, then the first six components of this vector will form a basic
feasible vector for the original LP problem (with slack variables only), namely for the
original constraints written as equalities

2x1 −x3 = 3
x2 −x4 = 1

x1 + x2 = 6
−2x1 + 3x2 +x5 = 3

2x1 + 3x2 +x6 = 21
xi ≥ 0 (for i = 1, . . . , 6)

(3.4)

Conversely, any BFS for the last set of constraints (3.4), including only original and
slack variables, generates a basic feasible vector for the above extended set of constraints
(3.3) (extended with the artificial variables) with all artificial variables being zero: x7 =
x8 = x9 = 0. Therefore the constraints we really care about, namely the original ones,
have a BFS if and only if the extended set of constraints has a basic feasible vector for
which all artificial variables are zero, in this example x7 = x8 = x9 = 0. Since of course all
they must be nonnegative, we are really trying to minimize the sum of artificial variables.
In this example:

minimize w = x7 + x8 + x9

subject to (3.3) and xi ≥ 0 (for i = 1, . . . , 9)

Thus, we have to solve this auxiliary LP problem with an artificial objective function w
before solying the original one. Since artificial variables must be nonnegative, x7 ≥ 0,
x8 ≥ 0, x9 ≥ 0, there are two possibilities:

(1) The minimum value of w is in fact 0. This means that we are able to find a BFS
of (3.3) in which x7 = x8 = x9 = 0, that is, we can find a BFS of (3.4).

(2) The minimum value of w is greater than 0. This means that no BFS of (3.4) exists
because, assuming such a solution did exist, we could find a BFS of (3.3) with
x7 = x8 = x9 = 0, that is, w = 0, and it would contradict what we have just
assumed.
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Now it is possible to continue our exposition of the method by the same example and
see how it is performed from the very beginning to the end.

Example 3.6.1. We solve the problem of Example 3.5.2 and at the same time illus-
trate the general case implementation when constraints of all types are involved.

Step 0. Data input/calculation:
np, the number of original (prime) variables, here np = 2.
ng, the number of constraints of “≥” type, here ng = 2.
ne, the number of constraints “=” type, here ne = 1.
nl, the number of constraints “≤” type, here nl = 2.
ns = ng + nl, the number of slack variables, here ns = 4.
na = ng + ne, the number of artificial variables, here na = 3.
n = np + na + ns, the total number of variables, here n = 9.
m = na + nl, the total number of constraints, here m = 5.

Array memory assignment:

(1) A(1..m + 2, 1..n + 1), here A(1..7, 1..10) is an (7× 10) – matrix.

(2) NB(1..m), here NB(1..5) is a 5 dimensional vector.

(3) NF (1..n−m), here NF (1..4) is a 4 dimensional vector.

Coefficients entry from the problem statement in part relating to matrix A:
A(1..m + 1, 1..np), here A(1..6, 1..2)
A(1..m + 1, n + 1), here A(1..6, 10)

and the rest array elements automatic fill; as a result the arrays become

A
2 0 −1 0 0 0 1 0 0 3
0 1 0 −1 0 0 0 1 0 1
1 1 0 0 0 0 0 0 1 6
−2 3 0 0 1 0 0 0 0 3
2 3 0 0 0 1 0 0 0 21
−2 −5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0

NB
7
8
9
5
6

NF
1
2
3
4

BS = (0, 0, 0, 0, 3, 21, 3, 1, 6) = BFS, 0 = zmin, 0 = w

Remark 3.6.1. From this result, it is evident that variables are ordered as follows:
x1 and x2 are original (prime) variables,
x3, x4, x5 and x6 are slack variables and
x7, x8 and x9 are artificial variables.

Such ordering may be fixed by the program design. Artificial variables are introduced only
for “≥” and “=” constraints. There is an extra row added to the bottom of matrix A;
this last row represents the artificial problem. It contains the coefficients of the artificial
objective function w and this function value located in the lower right corner (the southeast
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corner) of A matrix, with the sign changed, (−w). The second row from the bottom of A
matrix represents, as previously, the original problem: it contains the coefficients of the
original objective function z and this function value located at the extreme right position,
also with the sign changed, (−z).

Remark 3.6.2. The simplex method under consideration is composed of two stages:
Stage I intended to solve the artificial LP problem and Stage II intended to solve the
original one. Step 0, considered above in the example, is only a setup step. It is also
a preparatory step. To be prepared to the main (working) steps of Stage I, we must ex-
press the artificial objective function w only through nonbasic variables. For this example,
w = x7 +x8 +x9 by definition, but all artificial variables (x7, x8, x9) are to appear in the
initial BFS in the capacity of basic variables. By virtue of this requirement, Step 0 must
be comleted by elimination of the artificial variables from the bottom row. It is made by
subtraction of all those rows where artificial variables were introduced from the bottom
row. Given the accepted ordering of variables (see Remark 3.6.1), the first na rows should
be subtracted from the last row. Here na = 3, and after such a preparatory subtraction
we have

A
→ 2 0 −1 0 0 0 1 0 0 3

0 1 0 −1 0 0 0 1 0 1
1 1 0 0 0 0 0 0 1 6
−2 3 0 0 1 0 0 0 0 3

2 3 0 0 0 1 0 0 0 21
−2 −5 0 0 0 0 0 0 0 0
−3 −2 1 1 0 0 0 0 0 −10
↑

As a result we obtain also a correct initial value of the artificial objective function: 10 = w.

Remark 3.6.3. Given the constraints ordering: “≥” first, “=” second and “≤” third,
then basic variables in the inicial BFS have numberes (np + ng + 1) to n = np + na + ns,
in this example 5 to 9.

From this time on, Stage I begins where the conventional simplex method (see Sec-
tions 3.3 and 3.4) has to be used to solve the auxiliary (artificial) problem w → min .

Step 1.

1◦ s = 1, l = 1

2◦ min(3/2,∞, 6,∞, 21/2) = 3/2, k = 1
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3◦ After normalization:

A
→ 1 0 −1/2 0 0 0 1/2 0 0 3/2

0 1 0 −1 0 0 0 1 0 1
1 1 0 0 0 0 0 0 1 6
−2 3 0 0 1 0 0 0 0 3

2 3 0 0 0 1 0 0 0 21
−2 −5 0 0 0 0 0 0 0 0
−3 −2 1 1 0 0 0 0 0 −10
↑

4◦ After subtractions:

A
1 0 −1/2 0 0 0 1/2 0 0 3/2

→ 0 1 0 −1 0 0 0 1 0 1
0 1 1/2 0 0 0 −1/2 0 1 9/2
0 3 −1 0 1 0 1 0 0 6
0 3 1 0 0 1 −1 0 0 18
0 −5 −1 0 0 0 1 0 0 3
0 −2 −1/2 1 0 0 3/2 0 0 −11/2
↑

NB
1
8
9
5
6

NF
7
2
3
4

BS = (3/2, 0, 0, 0, 6, 18, 1, 9/2) = BFS; −3 = z; 11/2 = w

Step 2.

1◦ s = 2, l = 2

2◦ min(∞, 1, 9/2, 2, 6) = 1, k = 2

3◦ After normalization (since the pivot located in above matrix by the intersection of
arrows, happens to be 1, division by it makes no change in the key row): the matrix
holds unchanged.

4◦ After subtractions:

A
1 0 −1/2 0 0 0 1/2 0 0 3/2
0 1 0 −1 0 0 0 1 0 1
0 0 1/2 1 0 0 −1/2 −1 1 7/2

→ 0 0 −1 3 1 0 1 −3 0 3
0 0 1 3 0 1 −1 −3 0 15
0 0 −1 −5 0 0 1 5 0 8
0 0 −1/2 −1 0 0 3/2 2 0 −7/2

↑

NB
1
2
9
5
6

NF
7
8
3
4

BS = (3/2, 1, 0, 0, 3, 15, 0, 0, 7/2) = BFS; −8 = z; 7/2 = w
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Step 3.

1◦ s = 4, l = 4

2◦ min(∞,∞, 7/2, 1, 5) = 1, k = 4

3◦ After normalization:

A
1 0 −1/2 0 0 0 1/2 0 0 3/2
0 1 0 −1 0 0 0 1 0 1
0 0 1/2 1 0 0 −1/2 −1 1 7/2

→ 0 0 −1/3 1 1/3 0 1/3 −1 0 1
0 0 1 3 0 1 −1 −3 0 15
0 0 −1 −5 0 0 1 5 0 8
0 0 −1/2 −1 0 0 3/2 2 0 −7/2

↑

4◦ After subtractions:

A
1 0 −1/2 0 0 0 1/2 0 0 3/2
0 1 −1/3 0 1/3 0 1/3 0 0 2

→ 0 0 5/6 0 −1/3 0 −5/6 0 1 5/2
0 0 −1/3 1 1/3 0 1/3 −1 0 1
0 0 2 0 −1 1 −2 0 0 12
0 0 −8/3 0 5/3 0 8/3 0 0 13
0 0 −5/6 0 1/3 0 11/6 1 0 −5/2

↑

NB
1
2
9
4
6

NF
7
8
3
5

BS = (3/2, 2, 0, 1, 0, 12, 0, 0, 5/2) = BFS; −13 = z; 5/2 = w

Step 4.

1◦ s = 3, l = 3

2◦ min(∞,∞, 3,∞, 6) = 3, k = 3

3◦ After normalization:

A
1 0 −1/2 0 0 0 1/2 0 0 3/2
0 1 −1/3 0 1/3 0 1/3 0 0 2

→ 0 0 1 0 −2/5 0 −1 0 6/5 3
0 0 −1/3 1 1/3 0 1/3 −1 0 1
0 0 2 0 −1 1 −2 0 0 12
0 0 −8/3 0 5/3 0 8/3 0 0 13
0 0 −5/6 0 1/3 0 11/6 1 0 −5/2

↑
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4◦ After subtractions:

A
1 0 0 0 −1/5 0 0 0 3/5 3
0 1 0 0 1/5 0 0 0 2/5 3
0 0 1 0 −2/5 0 −1 0 6/5 3
0 0 0 1 1/5 0 0 −1 2/5 2
0 0 0 0 −1/5 1 0 0 −12/5 6
0 0 0 0 3/5 0 0 0 16/5 21
0 0 0 0 0 0 1 1 1 0

NB
1
2
3
4
6

NF
7
8
9
5

BS = (3, 3, 3, 2, 0, 6, 0, 0, 0) = BFS; −21 = min(z); 0 = min(w)

By this point, Stage I has been successfully accomplished as indicated by: (1) the
zero value of w (and hence by zero values of artificial variables) and (2) the absence of
negative entries in the bottom row. Stage II is not needed here because of the absence of
negative entries in the second row from the bottom. The minimums for w and z have been
reached simultaneously. In geometrical interpretation, there was a movement through the
following points: (0, 0)→ (3/2, 0)→ (3/2, 1)→ (3/2, 2)→ (3, 3) on the ox1x2 plane.

In order to show how Stage II is to be executed, let us choose another path after
Step 2.

Step 3.

1◦ s = 3, l = 3

2◦ min(∞,∞, 7,∞, 15) = 7, k = 3

3◦ After normalization:

A
1 0 −1/2 0 0 0 1/2 0 0 3/2
0 1 0 −1 0 0 0 1 0 1

→ 0 0 1 2 0 0 −1 −2 2 7
0 0 −1 3 1 0 1 −3 0 3
0 0 1 3 0 1 −1 −3 0 15
0 0 −1 −5 0 0 1 5 0 8
0 0 −1/2 −1 0 0 3/2 2 0 −7/2

↑
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4◦ After subtractions:

A
1 0 0 1 0 0 0 −1 1 5
0 1 0 −1 0 0 0 1 0 1
0 0 1 2 0 0 −1 −2 2 7
0 0 0 5 1 0 0 −5 2 10
0 0 0 1 0 1 0 −1 −2 8
0 0 0 −3 0 0 0 3 2 15
0 0 0 0 0 0 1 1 1 0

NB
1
2
3
5
6

NF
7
8
9
4

BS = (5, 1, 7, 0, 10, 8, 0, 0, 0) = BFS; −15 = z; 0 = min(w)

Indicative of successful completing of Stage I is 0 for w and nonnegativeness of all
coefficients in the bottom row. If w did not become 0 with these coefficients nonnegative,
it would be evidence that Stage II could not started because the originaly given constraints
did not have any BFS. That would be the case of contradictory constraints. (see also
Chapter 6)

Remark 3.6.4. The formal reason for the case of contradictory constraints to take place
is that the BFS obtained after Stage I contains at least one of the artificial variables
among basic variables (hence w 6= 0).

Turning back to the example, we pass on to Stage II. In this version of steps, Stage II
is necessary because z did not reach its minimum as withnessed by one negative coeffi-
cient, −3, in the last but one row of matrix A. We need neither artificial variables nor
artificial objective function any more at Stage II. Thus, they can be deleted from all the
upcoming actions. To be deleted are those columns of matrix A received a value of unity
in the last row, and the last row as well. For the assumed ordering of the variables (see
Remark 3.6.1), they are: columns with the numbers (np + ns + 1) to n, here 7 to 9.
Among deleted elements are also elements of NF containing the same numbers; for this
ordering these are always the first na elements, here na = 3.

Stage II. Step 4.

1◦ s = 4, l = 4

2◦ min(5,∞, 7/2, 2, 8) = 2, k = 4

3◦ After normalization: 4◦ After subtractions:

A
1 0 1 1 0 0 5
0 1 0 −1 0 0 1
0 0 1 2 0 0 7

→ 0 0 0 1 1/5 0 2
0 0 0 1 0 1 8
0 0 0 −3 0 0 15

↑

A
1 0 1 0 −1/5 0 3
0 1 0 0 1/5 0 3
0 0 1 0 −2/5 0 3
0 0 0 1 1/5 0 2
0 0 0 0 −1/5 1 6
0 0 0 0 3/5 0 21

NB
1
2
3
4
6

NF
5
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BS = (3, 3, 3, 2, 0, 6) = BFS; −21 = min(z)

Geometrically, there was a movement through the points (0, 0) → (3/2, 0) →
(3/2, 1)→ (5, 1)→ (3, 3) on the plane ox1x2.
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Chapter 4.

The Dual Simplex Method

The set of points x ∈ Rn which yield the minimum value zmin of z = cT x
is called the “hyperplane of z = zmin”. This hyperplane divides Rn into two
parts: in the first part z > zmin and there exists the feasible region; in the
second part z < zmin and there is no feasible region. The above expounded
conventional simplex method works if it starts in the region where z > zmin.
However, in case the initial basic solution lies in the second part, where z <
zmin, it is necessery not to decrease but increase z while approaching the value
zmin through the non-feasible basic solutions. For such cases, the dual simplex
method is designed. Another situation which the method has been devised for
may appear as a result of imposing an additional constraint onto the problem
just solved. The situation will be certain to appear if the additionally imposed
constraint does not contain entirely the original feasible region but parts off a
portion from it. Then, naturally, the new zmin is greater than the former one.
The latter is used as the initial point for the dual simplex method to start
and solve the problem as the new one.

By virtue of the fact that it is necessary to increase z while moving from
the region of z < zmin, being in this region is indicated by the condition
that all coefficients of the objective function z = cT x represented in terms of
canonical form for a basis, are nonnegative. Moving towards zmin is assured
by sequential elimination of negative variables from the basic solutions. The
absence of such variables makes a basic solution the feasible basic solution
and, on keeping up the above condition, the optimal one.

4.1. Algorithm with the correct form of a basis

It is unimportant for what reason a situation of readiness to start the dual simplex
method has occurred. It is determined by two indications: (1) there is no negative coeffi-
cient of the objective function in the canonical form for a basis and (2) the corresponding
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basic solution is not a feasible one (it contains one or more negative values). In order to
facilitate the detection of the second indication, the appearance of basic variables (xB) in
the constraints should be always made with the coefficient +1. This is so called a correct
form of a basis (see also Section 3.5). Such form is obtained from the very beginning
after prior multiplication by −1 those constraints containing a basic variable with the
coefficient −1. Hence, a linear programming problem is taken in the following canonical
form for a basis:







I | A′

−− | −−
OT | c′T













xB

−−−
xF





 =







b′

−−−
z − z0





 , c′ ≥ 0

where BS = {xB = b′, xF = 0}. By doing so, checking of the second indication is reduced
to answering the question: Are there negative values among elements of vector b′? From
this point, any step of the dual simplex method is started. But in the whole, every step
of it falls into four actions as follows:

Action 1◦ Check elements of b′. If there are no negatives among them, then zmin = z0

has been found with the BFS = {xB = b′, xF = 0}, which is the sought optimal solution.
If there are one or more negative elements in b′, select that row of constraints, its number
k, containing the most negative element b′k of vector b′. By doing so, a basic variable xr is
found, its munber r = NB(k), which has to be removed from xB owing to xr = b′k being
less than zero.

After that, the next question arises: What nonbasic variable, say xs, is to be selected
from among the elements of xF for entering a basis by increasing xs from zero, instead
of the departing variable xr? Let us assume this question has been answered: the non-
basic variable xs has been selected and intended for elimination from all the equations of
canonical form except the k−th equation, which must be normalized prior to this elim-
ination through division by the pivot element a′

ks < 0. Due to such normalization, one
negative element in column b′ is removed and correct form of a basis is preserved. As
for the elimination in the row of objective function, an important point is that it must
preserve the first of above mentioned indications for further applicability of the dual sim-
plex method. To clarify this, let us write the formula to update the j−th coefficient of
objective function while eliminating xs:

c+
j = c′j − c′sa

′′
kj

Here a′′
kj is the j−th coefficient in the k−th row after the row normalization:

a′′
kj = a′

kj/a
′
ks

The first indication requires that the updated value c+
j is nonnegative, c+

j ≥ 0, while
c′j ≥ 0 and c′s ≥ 0. It is obvious that only that j−th column threatens to disobey the
required inequality c+

j ≥ 0 for which a′′
kj > 0. Since c+

j ≥ 0 is equivalent to

c′j
| a′

kj |
≥

c′s
| a′

ks |
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the selection of s, the number of pivot variable xs, turns out to be subject to the condition:

c′s
| a′

ks |
= min

j: a′

kj
<0

c′j
| a′

kj |
(4.1)

Thus, we continue to do the following actions.
Action 2◦ Scan through the k−th row to find negative coefficients a′

kj only for non-
basic variables. If there are no such a′

kj, there does not exist a basic feasible solution
(quit the algorithm with this message). If such elements a′

kj exist, select among them
one, say a′

ks, whose number is s, for which the condition (4.1) holds. Call a′
ks the pivot.

Action 3◦ Normalize the k−th row through dividing it by the pivot a′
ks.

Action 4◦ Subtract the k−th row times a′
is from each i−th row (i 6= k).

From this, it is obvious that at each step the dual simplex method is equivalent to
the Gauss-Jordan elimination in actions 3◦ and 4◦ preceded by special choice of pivot a′

ks

in actions 1◦ and 2◦.
Example 4.1.1. Find nonnegative solution x1, x2 ≥ 0 to the problem

2x1 + 3x2 ≤ 120
3x1 + 9x2 ≤ 270
−2x1 − 4x2 = z → min

(considered in Example 3.3.1) by the dual simplex method.
First of all, write down the problem in standard canonical form for a basis:

2 3 1 0 120
3 9 0 1 270
−2 −4 0 0 0

A =

(

2 3 1 0
3 9 0 1

)

, b =

(

120
270

)

cT =
(

−2 −4 0 0
)

, Ax = b

cT x = z

This form corresponds to BS = (0, 0, 120, 270) = BFS, z = 0, which is imaged by the
point (0, 0) on Ox1x2-plane. In totality, there are C2

4 = 6 variants to choose a linearly
independent set of two vectors of four: (1,2), (1,3), (1,4), (2,3), (2,4), (3,4).

Variant (3,4) has been shown above. Let us write down the rest variants in order to
have the complete set of basic solutions with their point images on the plane.

Variant (1,2)

B =

(

2 3
3 9

)

, B−1 =

(

1 −1/3
−1/3 2/9

)

B−1A =

(

1 0 1 −1/3
0 1 −1/3 2/9

)

, b′ = B−1b =

(

30
20

)

1 0 1 −1/3 30
0 1 −1/3 2/9 20
0 0 2/3 2/9 140

BS=(30, 20, 0, 0)=BFS
−140 = zmin

the point (30, 20)
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Variant (1,3)

B =

(

2 1
3 0

)

, B−1 =

(

0 1/3
1 −2/3

)

B−1A =

(

1 3 0 1/3
0 −3 1 −2/3

)

, b′ = B−1b =

(

90
−60

)

1 3 0 1/3 90
0 −3 1 −2/3 −60
0 2 0 2/3 180

BS=(90, 0,−60, 0) 6= BFS
−180 = z < zmin

the point (90, 0)

Variant (1,4)

B =

(

2 0
3 1

)

, B−1 =

(

1/2 0
−3/2 1

)

B−1A =

(

1 3/2 1/2 0
0 3/2 −3/2 1

)

, b′ = B−1b =

(

60
90

)

1 3/2 1/2 0 60
0 3/2 −3/2 1 90
0 −1 1 0 120

BS=(60, 0, 0, 90)=BFS
−120 = z > zmin

the point (60, 0)

Variant (2,3)

B =

(

3 0
9 1

)

, B−1 =

(

0 1/9
1 −1/3

)

B−1A =

(

1/3 1 0 1/9
1 0 1 −1/3

)

, b′ = B−1b =

(

30
30

)

1/3 1 0 1/9 30
1 0 1 −1/3 30
−2/3 0 0 4/9 120

BS=(0, 30, 30, 0)=BFS
−120 = z > zmin

the point (0, 30)

Variant (2,4)

B =

(

3 0
9 1

)

, B−1 =

(

1/3 0
−3 1

)

B−1A =

(

2/3 1 1/3 0
−3 0 −3 1

)

, b′ = B−1b =

(

40
−90

)

2/3 1 1/3 0 40
−3 0 −3 1 −90
2/3 0 4/3 0 160

BS=(0, 40, 0,−90)
−160 = z < zmin

the point (0, 40)
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In order to apply the dual simplex method it is necessary to start from the region
z < zmin, that is, from any BS 6= BFS. In this example, we have two such points: (90, 0)
or (0, 40). Let us take, for instance, variant (1, 3) as initial one:

A
1 3 0 1/3 90

→ 0 −3 1 −2/3 −60
0 2 0 2/3 180

↑

NB
1
3

NF
2
4

Step 1.

1◦ k = 2. Choosing the second row, k = 2, as the key row is shown above by the arrow
on the left of the tableau.

2◦ min
l=1,2; j=NF (l)

(

2
|−3|

, 2/3
|−2/3|

)

= 2
3
; l = 1; s = 2

Choosing the second column, s = 2, as the pivot column is shown above by the
arrow under the tableau.

3◦ After normalization: 4◦ After subtractions:

A
1 3 0 1/3 90
0 1 −1/3 2/9 20
0 2 0 2/3 180

A
1 0 1 −1/3 30
0 1 −1/3 2/9 20
0 0 2/3 2/9 140

NB
1
2

NF
3
4

Step 2.

1◦ The solution has been found: BS = (30, 20, 0, 0) = BFS, −140 = zmin

Example 4.1.2. Assume an additional constraint to be imposed on the problem of
Example 4.1.1:

5x1 + 3x2 ≤ 150

The problem can be solved as a whole by the conventional simplex method. However,
one can save time proceeding from that very place where the solution of Example 4.1.1
had been found by simply adding one more constraint. The scheme of adding may be as
follows:
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A b

NB NF

c −z

However, techically it may not be convenient if (A, b, c,−z) are stored in a single
array. In this case it would be more labour-saving either to store arrays under separate
names or to place them in a single array of the following form:

NB

A

c

b

−z NF

If the programming language permits for array rows and columns to be enumerated
from zero, then row number 0 can be used for (−z, c) and column number 0 for b. Doing
so and adding one more row for the additional constraint and one more column for one
more slack variable x5, we have the following continuation of Example 4.1.1:

Step 0. Input the additional row of constraints:

NB
1
2

(5)

140 0 0 2/3 2/9 0
30 1 0 1 −1/3 0
20 0 1 −1/3 2/9 0
150 5 3 0 0 1

NF
3
4

Here the bottom row does not correspond yet to canonical form for a basis, and so
the number 5 is placed, for the time being, in parentheses. To legatize this form, the
elimination of the two former basic variables, x1 and x2, must be done from the just
added row. We do it here by the two preparatory subtractions: (1) subtract the row 1
times 5 and (2) subtract the row 2 times 3 from the bottom row. As a result, we have
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NB
1
2

→ 5

140 0 0 2/3 2/9 0
30 1 0 1 −1/3 0
20 0 1 −1/3 2/9 0
−60 0 0 −4 1 1

↑

NF
3
4

BS = (30, 20, 0, 0,−60) 6= BFS, −140 = z

Step 1.

1◦ k = 3

2◦ min
(

2/3
|−4|

)

= 1
6
; l = 1, s = NF (l) = 3

3◦ After normalization:

140 0 0 2/3 2/9 0
30 1 0 1 −1/3 0
20 0 1 −1/3 2/9 0

→ 15 0 0 1 −1/4 −1/4
↑

4◦ After subtractions and switching NB(k)←→ NF (l):

NB
1
2
3

130 0 0 0 7/18 1/6
15 1 0 0 −1/12 1/4
25 0 1 0 5/36 −1/12
15 0 0 1 −1/4 −1/4

NF
5
4

BS = (15, 25, 15, 0, 0) = BFS, −130 = zmin

In geometrical interpretation on the Ox1x2-plane, there was the movement from the point
(30, 20) in the region of z < zmin to the point (15, 25). That the last point is the problem
solution is diagnosed at the beginning of Step 2 by the absence of negative values among
(15, 25, 15) in the zero column of the matrix. The solution has been found for one step
because the additional constraint was imposed on the final solution of Example 4.1.1.
This constraint may be placed upon the other form of the objective function, and in such
case the dual simplex method may take more steps to find the solution.

In order to show this, let us place the additional constraint on variant (2, 4) of Exam-
ple 4.1.1:

Step 0. Input the additional constraint:

NB
2
4

(5)

160 2/3 0 4/3 0 0
40 2/3 1 1/3 0 0
−90 −3 0 −3 1 0
150 5 3 0 0 1

NF
1
3
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Setting this tableau at ready for the dual simplex method, eliminate, from the added
row, the variables x2 and x4, which are basic variables befor Step 0. To do this, subtract
an appropriate multiple of the k−th row so chosen as to eliminate the basic variable
x(NB(k)) from the last row. First, k = 1; thus we eliminate x2 because NB(k) =
NB(1) = 2, and the appropriate multiplier for the k−th row is taken from position
NB(k) = NB(1) = 2 of the last row (here it is 3). After subtraction we have

NB
2

→ 4
5

160 2/3 0 4/3 0 0
40 2/3 1 1/3 0 0
−90 −3 0 −3 1 0

30 3 0 −1 0 1
↑

NF
1
3

Second, k = 2; and we eliminate the basic variable x4 because NB(k) = NB(2) =
4. However, for the coefficient in the NB(k)−th position of the last row being zero,
subtraction is not needed here. (Such checkings for zero are advisable in the computer
programme to avoid unnecessary time consumption.) Thus, readiness for the dual simplex
method has been assured:

BS = (0, 40, 0,−90, 30) 6= BFS, −160 = z < zmin

Step 1.

1◦ k = 2

2◦ Look for negative nonbasic variables in the k−th row. NF shows that the 1st and
the 3rd elements should be checked. They both happen to be negative. Among
negatives, select one providing

min
j=1,3

(

c′j
| a′

kj |

)

= min

(

2/3

| −3 |
,

4/3

| −3 |

)

= min
(

2

9
,
4

9

)

=
2

9

Minimum is provided by the first element, that is, l = 1, j = NB(l) = s = 1.

It is along action 1◦ that the key row is found and along action 2◦ the pivot column is
found. Thereby the pivot element a′

ks, here −3 marked by arrows near the tableau,
is determined to be used in the Gauss-Jordan elimination as follows in actions 3◦

and 4◦.

3◦ After normalization:

160 2/3 0 4/3 0 0
40 2/3 1 1/3 0 0

→ 30 1 0 1 −1/3 0
30 3 0 −1 0 1

↑
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4◦ After subtraction and switching NB(k)←→ NF (l) :

NB
2
1

→ 5

140 0 0 2/3 2/9 0
20 0 1 −1/3 2/9 0
30 1 0 1 −1/3 0
−60 0 0 −4 1 1

↑

NF
4
3

BS = (30, 20, 0, 0,−60) 6= BFS, −140 = z < zmin

Step 2.

1◦ k = 3

2◦ l = 2, j = NF (l) = 3, s = 3

3◦ After normalization:

140 0 0 2/3 2/9 0
20 0 1 −1/3 2/9 0
30 1 0 1 −1/3 0

→ 15 0 0 1 −1/4 −1/4
↑

4◦ After subtraction and switching NB(k)←→ NF (l) :

NB
2
1
3

130 0 0 0 7/18 1/6
25 0 1 0 5/36 −1/12
15 1 0 0 −1/12 1/4
15 0 0 1 −1/4 −1/4

NF
4
5

BS = (15, 25, 15, 0, 0) = BFS, −130 = zmin

Step 3.

1◦ The solution has been found:

BOS = (15, 25, 15, 0, 0), zmin = −130

Geometrically, there was a movement by two steps through the points: (0, 40) →
(30, 20)→ (15, 25).

Example 4.1.3. For x1, x2 ≥ 0 solve the problem (cf. Example 3.5.2)

2x1 ≥ 3
x2 ≥ 1

−2x1 + 3x2 ≤ 3
2x1 + 3x2 ≤ 21
−2x1 − 5x2 = z → min
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and after that introduce an additional constraint

x1 + x2 ≤ 6

Step 0.
NB

3
4

→ 5
6

0 −2 −5 0 0 0 0
3 2 0 −1 0 0 0
1 0 1 0 −1 0 0
3 −2 3 0 0 1 0

21 2 3 0 0 0 1
↑

NF
1
2

BS = (0, 0,−3,−1, 3, 21) 6= BFS, 0 = z

We start finding solution by the conventional simplex method as in Section 3.5.

Step 1.

1◦ s = 2, l = 2

2◦ min(∞,∞, 3/3, 21/3) = 1, k = 3

3◦ After normalization:

0 −2 −5 0 0 0 0
3 2 0 −1 0 0 0
1 0 1 0 −1 0 0
1 −2/3 1 0 0 2/3 0

21 2 3 0 0 0 1

4◦ After subtraction and switching NB(k)←→ NF (l) :

NB
3
4
2

→ 6

5 −16/3 0 0 0 5/3 0
3 2 0 −1 0 0 0
0 2/3 0 0 −1 −1/3 0
1 −2/3 1 0 0 1/3 0

18 4 0 0 0 −1 1
↑

NF
1
5

BS = (0, 1,−3, 0, 0, 18) 6= BFS, −5 = z

Step 2.

1◦ s = 1, l = 1

2◦ min(∞,∞,∞, 18/4) = 9/2, k = 4
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3◦ After normalization:

5 −16/3 0 0 0 5/3 0
3 2 0 −1 0 0 0
0 2/3 0 0 −1 −1/3 0
1 −2/3 1 0 0 1/3 0

→ 9/2 1 0 0 0 −1/4 1/4
↑

4◦ After subtraction and switching NB(k)←→ NF (l) :

NB
3
4
2
1

29 0 0 0 0 1/3 4/3
−6 0 0 −1 0 1/2 −1/2
−3 0 0 0 −1 −1/6 −1/6

4 0 1 0 0 1/6 1/6
9/2 1 0 0 0 −1/4 1/4

NF
6
5

BS = (9/2, 4, 6, 3, 0, 0) = BFS, −29 = zmin

Now, we introduce the additional constraint and at the same time produce the correct
form of a basis (through multiplying the first and second rows by −1). Changing from the
conventional simplex method to the dual, we begin the step numbering from the start:

Step 0.
NB
3
4
2
1

(7)

29 0 0 0 0 1/3 4/3 0
6 0 0 1 0 −1/2 1/2 0
3 0 0 0 1 1/6 1/6 0
4 0 1 0 0 1/6 1/6 0

9/2 1 0 0 0 −1/4 1/4 0

6 1 1 0 0 0 0 1

NF
6
5

In the added (the bottom) row of constraints there are variables that were before in
the list of basic variables, here (3, 4, 2, 1), and variables that entered the row with non-
zero coefficients, here 1 and 2. Making the tableau ready for the dual simplex method,
eliminate variables 1 and 2 from the bottom row through Gauss elimination by row. As
a result, we obtain

NB
3
4
2
1

→ 7

29 0 0 0 0 1/3 4/3 0
6 0 0 1 0 −1/2 1/2 0
3 0 0 0 1 1/6 1/6 0
4 0 1 0 0 1/6 1/6 0

9/2 1 0 0 0 −1/4 1/4 0
−5/2 0 0 0 0 1/12 −5/12 1

↑

NF
6
5

BS = (9/2, 4, 6, 3, 0, 0,−5/2) 6= BFS, −29 = z

From this point, the dual simplex method starts.
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Step 1.

1◦ k = 5. Variable x7, NB(5) = 7, will be departing the basis because x7 = −5/2 < 0

2◦ s = 6, l = 1, because

min
l,j=NF (l):a′

kj
<0

(

c′j
| a′

kj |

)

= min
j=6

(

4/3

| −5/12 |

)

=
16

5

3◦ After normalization:

29 0 0 0 0 1/3 4/3 0
6 0 0 1 0 −1/2 1/2 0
3 0 0 0 1 1/6 1/6 0
4 0 1 0 0 1/6 1/6 0

9/2 1 0 0 0 −1/4 1/4 0
→ 6 0 0 0 0 −1/5 1 −12/5

↑

4◦ After subtraction and switching NB(k)←→ NF (l) :

NB
3
4
2
1
6

21 0 0 0 0 3/5 0 16/5
3 0 0 1 0 −2/5 0 6/5
2 0 0 0 1 1/5 0 2/5
3 0 1 0 0 1/5 0 2/5
3 1 0 0 0 −1/5 0 3/5
6 0 0 0 0 −1/5 1 −12/5

NF
7
5

BS = (3, 3, 3, 2, 0, 6, 0) = BFS, −21 = zmin

Example 4.1.4. Find solution to the preceding Example 4.1.3 and then place another
constraint

x1 + x2 = 6

on the problem.
Let us continue the solution after Step 2 (see in the above). For the last constraint,

we introduce an artificial variable x7 and artificial objective function w = x7. From this
point, the step numbering will be started over again. Writing down the simplex-tableau
will be done in the form taken everywhere in the book except Examples 4.1.2 and 4.1.3.
Besides, we provide the correct form of basis (an algorithm without such a form is given
below, see Section 4.2).
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Step 0.

0 0 1 0 −1/2 1/2 0 6
0 0 0 1 1/6 1/6 0 3
0 1 0 0 1/6 1/6 0 4
1 0 0 0 −1/4 1/4 0 9/2
1 1 0 0 0 0 1 6
0 0 0 0 1/3 4/3 0 29
0 0 0 0 0 0 1 0

NB
3
4

(2)
(1)
(7)

NF
5
6

By virtue of adding the fifth row corresponding to the fifth constraint, variables x2, x1

ceased to be basic. Also, the just introduced artificial variable x7 is, for the time being,
not basic with regard to the artificial objective function (see the last row in the above
tableau). It is easy to bring x2, and x1 back into the set of basic variables by evident
subtractions of those rows where x2 and x1 were basic variables from the fifth row. At
the same time, it is necessary to make x7 be basic by subtraction of the so modified fifth
row from the bottom row. We obtain:

0 0 1 0 −1/2 1/2 0 6
0 0 0 1 1/6 1/6 0 3
0 1 0 0 1/6 1/6 0 4
1 0 0 0 −1/4 1/4 0 9/2

→ 0 0 0 0 1/12 −5/12 1 −5/2
0 0 0 0 1/3 4/3 0 29
0 0 0 0 −1/12 5/12 0 5/2

↑

NB
3
4
2
1
7

NF
1 5
2 6

BS = (9/2, 4, 6, 3, 0, 0,−5/2) 6= BFS, z = −29, w = −5/2

Stage I. The convenient simplex method for the artificial objective function w is used
because there exists a negative element −1/12 in the bottom row.

Step 1.

1◦ l = 1, s = 5

2◦ min
(

∞, 3
1/6

, 4
1/6

,∞,−∞
)

According to Table 3.4.1, the token “−∞” means “prohibited”. If nevertheless
we select the key row by this token, in this example k = 5, then it will mean that
nonbasic variable x5 now becomes basic, although it is negative (this is why this
case was named “prohibited”). However, x5, having become negative, increases the
artificial objective function w from its value −5/2 thanks to negative coefficient
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−1/12. But namely this is necessary, considering that stage I must be ended in
w = 0. By virtue of these arguments, the selection k = 5 is rightful and must
not be considered as prohibited. (“Prohibited” means only an exit out of feasible
region where always exists a possibility to return with the usage of the dual simplex
method.)

3◦ After normalization:

0 0 1 0 −1/2 1/2 0 6
0 0 0 1 1/6 1/6 0 3
0 1 0 0 1/6 1/6 0 4
1 0 0 0 −1/4 1/4 0 9/2

→ 0 0 0 0 1 −5 12 −30
0 0 0 0 1/3 4/3 0 29
0 0 0 0 −1/12 5/12 0 5/2

↑

4◦ After subtraction:

0 0 1 0 0 −2 6 −9
0 0 0 1 0 1 −2 8
0 1 0 0 0 1 −2 9
1 0 0 0 0 −1 3 −3

→ 0 0 0 0 1 −5 12 −30
0 0 0 0 0 3 −4 39
0 0 0 0 0 0 1 0

↑

NB
3
4
2
1
5

NF
1 7
2 6

BS = (−3, 9,−9, 8,−30, 0, 0) 6= BFS, z = −39, w = 0

Stage I has been succesfully ended. The bottom row, and the seventh column, and
NF (1) = 7 may be cut out. After that, the view of the last row coefficients, (0, 0, 0, 0, 0, 3),
and the view of right hand side vector, (−9, 8, 9,−3,−30), witness that further must be
applied the dual simplex method with respect to the original objective function z.
Stage II. The dual simplex method with a correct form for a basis (cf. Section 4.1).

Step 2.

1◦ k = 5

2◦ s = 6
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3◦ After normalization:

0 0 1 0 0 −2 −9
0 0 0 1 0 1 8
0 1 0 0 0 1 9
1 0 0 0 0 −1 −3

→ 0 0 0 0 −1/5 1 6
0 0 0 0 0 3 39

↑

4◦ After subtraction:

0 0 1 0 −2/5 0 3
0 0 0 1 1/5 0 2
0 1 0 0 1/5 0 3
1 0 0 0 −1/5 0 3
0 0 0 0 −1/5 1 6
0 0 0 0 3/5 0 21

NB
3
4
2
1
6

NF
(7)
5

BS = (3, 3, 3, 2, 0, 6) = BFS, zmin = −21

Step 3.

1◦ The above BFS is BOS (basic optimal solution) because there is no negative element
in the tableau right hand column, and zmin = −21.

In geometrical interpretation on the Ox1x2-plane, after placing the constraint x1 +x2 = 6
upon the problem, there was a movement from point (9/2, 4), that was optimal before
the additional constraint placing, into point (−3, 9) where lines 2x1 + 3x2 = 21 and
x1 + x2 = 6 intersect, and it is beyond the feasible region (Step 1). The next movement
(Step 2) was into point (3, 3), yielding minimum z.

Remark 4.1.1. Comparison of Examples 4.1.3 and 4.1.4 shows that every constraint of
“=” type requires the introduction of both an artificial variable and artificial objective
function into the problem.

4.2. Algorithm without correct form of a basis

In the above, the dual simplex method is expounded for cases when all inequalities
in the constrants have beforehand been brought into the form of “less than or equal to”.
Then, the added slack variables appear in the system of constraints with the coefficient
+1 and, thereby, these (as well as all sequent) basic variables have the identity matrix
columns in the capacity of constraint vectors. As it was above defined, such a basis
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(formed by the identity matrix columns) is called correct in order to differentiate it from
another situations in which some basic variables appear in constraints with coefficient
+1 and others with coefficient −1. Obviously, any such situation corresponds to a set
of constraints containing both “less than or equal to” and “greater than or equal to”
inequalities in the originally given problem.

The dual simplex method for such situations (of non-correct form of a basis) is illus-
trated by the following example, which also shows the type of constraints for which it is
convenient to begin finding the solution by the dual simplex method, namely the type
for which the coordinate origin usually used as the starting point for the solution, lies in
the semi-space where z < zmin.

Remark 4.2.1. Lying of a current basic solution in the semi-space z < zmin is detected
by the condition that the nonbasic variables have in the objective function row only non-
negative coefficients and some of the coefficients are positive. Only this condition enables
one to apply the dual simplex method.

Example 4.2.1. For x1, x2 ≥ 0 solve the problem:

2x1 + 3x2 ≥ 6
2x1 + 6x2 ≥ 9
2x1 + 2x2 ≤ 7
x1 + 4x2 = z → min

Step 0.

x1 x2 x3 x4 x5 b′

2 3 −1 0 0 6
→ 2 6 0 −1 0 9

2 2 0 0 1 7
1 4 0 0 0 0
↑

NB
1 3
2 4
3 5

NF
1 1
2 2

BS = (0, 0,−6,−9, 7) 6= BFS, 0 = z

It is permitted to apply the dual simplex method (see Remark 4.2.1).

Step 1.

1◦ Look at column b′ through NB(i) and find the rows where a′[i, NB(i)] ∗ b′(i) < 0.
Select from them a row number k where this quantity, a′[i, NB(i)] ∗ b′(i), is most
negative. If there is no such a row, the problem has been solved (the end). Here
k = 2.

2◦ Look, through NF (i), at those coefficients for nonbasic variables in the k−th row
which are positive if a′[k, NB(k)] = −1, or negative if a′[k, NB(k)] = +1. Select
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from them a coefficient providing

min
j

(

c′j
| a′

kj |

)

In this example

min

(

1

| 2 |
,

4

| 6 |

)

=
1

2

Fix numbers l and s = NF (l) corresponding to the minimum, in this example l = 1,
s = 1.

3◦ After normalization of the k-th row through division it by the pivot a′
ks, here a′

ks = 2,
we obtain:

2 3 −1 0 0 6
→ 1 3 0 −1/2 0 9/2

2 2 0 0 1 7
1 4 0 0 0 0
↑

4◦ After subtraction the appropriate multiples of the k-th row (using coefficients a′
is)

from all other rows (i 6= k) and after switching NB(k)↔ NF (l), we obtain:

0 −3 −1 1 0 −3
1 3 0 −1/2 0 9/2

→ 0 −4 0 1 1 −2
0 1 0 1/2 0 −9/2

↑

NB
1 3
2 1
3 5

NF
1 4
2 2

BS = (9/2, 0, 3, 0,−2) 6= BFS, 9/2 = z

Step 2.

1◦ a′[3, NB(3)] ∗ b′(3) < 0, ⇒ k = 3

2◦ a′[3, NB(3)] = +1; one negative coefficient −4⇒ l = 2, s = 2

3◦ After normalization:

0 −3 −1 1 0 −3
1 3 0 −1/2 0 9/2

→ 0 1 0 −1/4 −1/4 1/2
0 1 0 1/2 0 −9/2

↑
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4◦ After subtractions:

0 0 −1 1/4 −3/4 −3/2
1 0 0 1/4 3/4 3
0 1 0 −1/4 −1/4 1/2
0 0 0 3/4 1/4 −5

NB
1 3
2 1
3 2

NF
1 4
2 5

BS = (3, 1/2, 3/2, 0, 0) = BOS, 5 = z = zmin

Step 3.

1◦ All a′[i, NB(i)] ∗ b′(i) ≥ 0, ⇒ the end

Remark 4.2.2. Artificial variables with the artificial objective function, as it is in Sec-
tion 3.6, and the dual simplex method are at first glance to be incompatible. Indeed, all
basic solutions will be feasible if artificial variables are introduced for all constraints of
“ ≥ ” and “ = ” types. As a result, applicability conditions of the dual simplex method
vanish because this method works in the region where BS 6= BFS (for more details, see
Section 4.3).

Let us illustrate the last remark by the following problem where the constraint of “=”
type is introduced not with the artificial variable x6 (together with the artificial objective
function w = x6) but with the replacement of “ = ” by “ ≤ ” and “ ≥ ” simultaneously.

Example 4.2.2. For x1, x2 ≥ 0 solve the problem

2x1 + 3x2 ≥ 6
2x1 + 6x2 ≥ 9
x1 + x2 ≤ 4

2x2 + 2x3 = 7
x1 + 2x2 = z → min

Step 0.

2 3 −1 0 0 0 0 6
→ 2 6 0 −1 0 0 0 9

1 1 0 0 1 0 0 4
2 2 0 0 0 1 0 7
2 2 0 0 0 0 −1 7
1 2 0 0 0 0 0 0
↑

NB
1 3
2 4
3 5
4 6
5 7

NF
1 1
2 2

BS = (0, 0,−6,−9, 4, 7,−7) 6= BFS, 0 = z

It is permitted to apply the dual simplex method.
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Step 1.

1◦ a′[1, NB(1)] ∗ b′(1) = −6 < 0
a′[2, NB(2)] ∗ b′(2) = −9 < 0
a′[5, NB(5)] ∗ b′(5) = −7 < 0, ⇒ k = 2

2◦ a′[2, NB(2)] = −1. There are two positive coefficients:
a′[2, NF (1)] = 2, a′[2, NF (2)] = 6

min

(

1

| 2 |
,

2

| 6 |

)

=
1

3
⇒ l = 2, s = 2

3◦ After normalization:

2 3 −1 0 0 0 0 6
→ 1/3 1 0 −1/6 0 0 0 3/2

1 1 0 0 1 0 0 4
2 2 0 0 0 1 0 7
2 2 0 0 0 0 −1 7
1 2 0 0 0 0 0 0
↑

4◦ After subtractions:

1 0 −1 1/2 0 0 0 3/2
1/3 1 0 −1/6 0 0 0 3/2
2/3 0 0 1/6 1 0 0 5/2
4/3 0 0 1/3 0 1 0 4

→ 4/3 0 0 1/3 0 0 −1 4
1/3 0 0 1/3 0 0 0 −3
↑

NB
1 3
2 2
3 5
4 6
5 7

NF
1 1
2 4

BS = (0, 3/2,−3/2, 0, 5/2, 4,−4) 6= BFS, 3 = z

Step 2.

1◦ a′[1, NB(1)] ∗ b′(1) = −3/2 < 0
a′[5, NB(5)] ∗ b′(5) = −4 < 0, ⇒ k = 5

2◦ a′[5, NB(5)] = −1, & a′[5, NF (1)] = 4/3 > 0, &
a′[5, NF (2)] = 1/3 > 0

min

(

1/3

| 4/3 |
,

1/3

| 1/3 |

)

=
1

4
⇒ l = 1, s = 1
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3◦ After normalization:

1 0 −1 1/2 0 0 0 3/2
1/3 1 0 −1/6 0 0 0 3/2
2/3 0 0 1/6 1 0 0 5/2
4/3 0 0 1/3 0 1 0 4

→ 1 0 0 1/4 0 0 −3/4 3
1/3 0 0 1/3 0 0 0 −3
↑

4◦ After subtractions:

0 0 −1 1/4 0 0 3/4 −3/2
0 1 0 −1/4 0 0 1/4 1/2
0 0 0 0 1 0 1/2 1/2
0 0 0 0 0 1 1 0
1 0 0 1/4 0 0 −3/4 3
0 0 0 1/4 0 0 1/4 −4

NB
1 3
2 2
3 5
4 6
5 1

NF
1 7
2 4

BS = (3, 1/2, 3/2, 0, 1/2, 0, 0) = BOS, −4 = zmin

Step 3.

1◦ All a′[i, NB(i)] ∗ b(i) ≥ 0, ⇒ the end

4.3. Algorithm without correct form of a basis

using artificial variables

In this section, we solve the same problem (cf. Example 4.2.2) but by another way.
By this we show the compatibility of artificial variables and the dual simplex method.

Example 4.3.1. For x1, x2 ≥ 0 solve the problem

2x1 + 3x2 ≥ 6
2x1 + 6x2 ≥ 9
x1 + x2 ≤ 4

2x2 + 2x3 = 7
x1 + 2x2 = z → min

Among constraints there is one of “=” type. Solely because of it we introduce an artificial
variable, here x6, and, correspondingly, the artificial objective function w = x6.
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Step 0.
2 3 −1 0 0 0 6
2 6 0 −1 0 0 9
1 1 0 0 1 0 4
2 2 0 0 0 1 7
1 2 0 0 0 0 0
0 0 0 0 0 1 0

Here, the last row is intended for coefficients and the value of function w. So far as at the
first stage we need to minimize function w, it is necessary to make a preparatory subtrac-
tion of the fourth row from the last row. By doing so we enable variables (x3, x4, x5, x6)
to become basic variables in the canonical form with respect to w. As a result, we obtain
the initial state:

2 3 −1 0 0 0 6
2 6 0 −1 0 0 9
1 1 0 0 1 0 4

→ 2 2 0 0 0 1 7
1 2 0 0 0 0 0
−2 −2 0 0 0 0 −7
↑

NB
3
4
5
6

NF
1 1
2 2

BS = (0, 0,−6,−9, 4, 7) 6= BFS, 0 = z, 7 = w

Now, by the last row of the tableau we recognize that minimization of w (Stage I) must
be done by means of the conventional (non-dual) simplex method without generation of
BFS (see Section 3.5).

Stage I. Step 1.

1◦ l = 1, s = 1

2◦ min
(

∞,∞, 4
1
, 7

2

)

= 7/2 ⇒ k = 4

3◦ After normalization:

2 3 −1 0 0 0 6
2 6 0 −1 0 0 9
1 1 0 0 1 0 4

→ 1 1 0 0 0 1/2 7/2
1 2 0 0 0 0 0
−2 −2 0 0 0 0 −7
↑

4◦ After subtractions:
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0 1 −1 0 0 −1 −1
→ 0 4 0 −1 0 −1 2

0 0 0 0 1 −1/2 1/2
1 1 0 0 0 1/2 7/2
0 1 0 0 0 −1/2 −7/2
0 0 0 0 0 1 0
↑

NB
3
4
5
1

NF
1 6
2 2

BS = (7/2, 0, 1,−2, 1/2, 0) 6= BFS, 7/2 = z, 0 = w

Stage I has been successfully completed, thus the artificial objective function (the last
row) and artificial variable x6 (the sixth column) are of no further need. Yet, BS has not
been feasible. Further, by the next to the last row we recognize that at Stage II the dual
simplex method must be applied to minimize z (cf. Remark 4.2.1 in Section 4.2).

Stage II. Step 2.

1◦ a′[2, NB(2)] ∗ b′(2) = −2 < 0, ⇒ k = 2

2◦ a′[2, NB(2)] = −1, and there is one positive coefficient,
a′[2, NF (2)] = 4

min
j

(

c′j
| a′

kj |

)

= min

(

1

| 4 |

)

=
1

4
⇒ l = 2, s = 2

3◦ After normalization:

0 1 −1 0 0 −1
→ 0 1 0 −1/4 0 1/2

0 0 0 0 1 1/2
1 1 0 0 0 7/2
0 1 0 0 0 −7/2
↑

4◦ After subtractions:

0 0 −1 1/4 0 −3/2
0 1 0 −1/4 0 1/2
0 0 0 0 1 1/2
1 0 0 1/4 0 3
0 0 0 1/4 0 −4

NB
3
2
5
1

NF
1 6
2 4

BS = (3, 1/2, 3/2, 0, 1/2) = BFS = BOS, 4 = zmin

Step 3.

1◦ All a′[i, NB(i)] ∗ b′(i) ≥ 0, ⇒ the end
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Chapter 5.

The Revised Simplex Method

This modification of the standard simplex method is sometimes called the
improved simplex method. It takes this name from the fact that it reduces
the number of operations to a necessary minimum. This minimum is almost
evident: (1◦) to determine what nonbasic variable to insert into the basis we
only need to check (n−m) coefficients for nonbasic variables in the objective
function row; (2◦) having decided to insert, say, a variable xs, we only need
to know m numbers in the column a′

s and m numbers in the right hand side
b′ in order to decide which basic variable to delete from the basis. Thus to
select the pivot in the standard simplex method we need to have only (n+m)
numbers available.

The similar feature has the dual simplex method: (1◦) to determine what
basic variable to delete from the basis we only need m numbers in the right
hand side b′ while selecting index k for one of these numbers; (2◦) having
decided to delete, say, a variable xb, b = NB(k), we only need to know (n−m)
numbers in the k-th row and (n−m) numbers in the objective function row
of the tableau in order to decide which of (n−m) nonbasic variables to insert
into the basis. Thus to select the pivot in the dual simplex method we need
to have only 2n−m numbers available.

Clearly, it would be more efficient if we could first compute just the numbers
needed for Action 1◦ above and then perform this action, then compute only
the numbers needed for Action 2◦ and then perform it. By doing so, we could
minimize the amount of work needed to determine what variables to exchange
in the basis. As for Actions 3◦ and 4◦ constituting Gauss-Jordan elimination,
they could be avoided at all if we could exchange the variables so as to be able
to repeat Actions 1◦ and 2◦ at the next step.

A way of implementing so modified Actions 1◦ and 2◦ without Actions 3◦ and
4◦ at each step is the revised simplex method. The basic idea of it consists in
possibility to obtain each canonical form of a problem independently of others
canonical forms directly from the original standard form of the problem. To
implement this idea we need: (1) to keep the original standard form of the
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problem original standard form of the problem unchanged over the whole
course of solution; (2) to use the so-called simplex-multipliers π being the
coefficients for direct transition from the original standard form to the current
canonical form for a basis; and (3) to use the so-called inverse basis B−1 being
m ×m-matrix which makes it possible to obtain all the numbers needed for
Actions 1◦ and 2◦ above.

5.1. The simplex multipliers

Given the original form of a standard LP problem:

Ax = b, x ∈ Rm, b ∈ Rm, m < n

rank(A) = m, x ≥ 0, cT x = z → min
The current step of simplex calculations is determined by choosing a set of m elements
from vector x to become the basic variables, xB, while the rest n −m elements appear
to be the nonbasic (free) variables, xF . Let such a choice be made, so that we have
x = (xB, xF ).

Remark 5.1.1. The assumption that it is precisely the first m elements of x that formed
xB, makes no loss of generality and is taken only as a matter of convenience in presenting
the material.

A choice of xB means that the corresponding m columns of matrix A are selected to
form a linearly independent set of vectors, viz. a basis in Rm. This set of columns, which
are ordered according to how elements of x appear in xB, is called the “current basis”
and considered as a matrix B. It is quite clear that elements of c, the objective function
coefficients, turn out divided into two groups, too: cB for xB and cF for xF .

Under the above assumption, the original form of LP problem looks as follows:







B | R
−− | −−
cT
B | cT

F













xB

−−−
xF





 =







b
−−−

z → min





 (5.1)

where matrix R collects the columns used as factors by nonbasic variables in the system
of constraints:

Ax = BxB + RxF = b (5.2)

The current step of the simplex method requires the canonical form of problem for
the chosen basis, instead of the original form. As it is described in Section 3.1, this can
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be done in three stages: (1) premultiplying the constraints (5.2) by the inverse basis B−1

in order to have the constraints in the form

[ I | A′ ]







xB

−−−
xF





 = b′, A′ = B−1R, b′ = B−1b

(2) premultiplying the last equation by cT
B to obtain

[ cT
B | cT

BA′ ]







xB

−−−
xF





 = cT
Bb′

and (3) subtracting this equation from the last row of (5.1) to represent the objective
function in the form

[ OT | c′T ]







xB

−−−
xF





 = z − z0 → min, c′T = cT
F − cT

BA′ (5.3)

in order, by doing so, to clarify whether it is possible or not to minimize further z
(by increasing one of nonbasic variables chosen from xF ) with reference to the value
z = z0, z0 = cT

Bb′, which has yet been gained at the current step, viz. at the current basic
solution BS = (xB = b′, xF = 0).

However, the same result can be reached by outwardly different, but entirely identical,
means: premultiplying (5.2) by a matrix-row of coefficients πT = [π1, π2, . . . , πm] and then
adding the product to the last row of (5.1) to obtain

[(πT B + cT
B) | (πT R + cT

F )]







xB

−−−
xF





 = πT b + z → min

where the condition πTB + cT
B = 0T is imposed. Coefficients π determined from this

condition, πT = −cT
BB−1, are refered to as the simplex multipliers. They serve the

same purpose: to represent the objective function in the canonical form (5.3). Therefore,
c′T = πT R + cT

F , z0 = −πT b.
Both expressions πT B + cT

B and πT R + cT
F determine by themselves the updated

coefficient values for xB and xF in the objective function. These expressions are absolutely
of the same updating rule, namely: to update the i-th coefficient (for variable xi) it is
necessary to: (1) take ai, the i-th column of matrix A describing the original system of
constraints Ax = b; (2) calculate the scalar (dot) product (π, ai) = πT ai; and (3) add
(π, ai) to ci, the i-th coefficient which was given for xi in the original expression cT x = z
for the objective function z. Obviously, to operate like this one needs to have the simplex-
multipliers π.

They are obtained as follows. (1) Take the next, in turn, linearly independent set of
m columns of matrix A arranged in matrix B according to their original index numbers
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j1, j2, . . . jm, i.e., so that bi = aji
, i = 1, 2, . . . , m. (Note that the choice of these columns

to be included in B means the choice of variables xji
, i = 1, 2, . . . , m, to be included in the

set of basic variables xB). (2) Premultiply B by the row-matrix πT , (3) add the product
to coefficients cT

B = (cj1 , cj2, . . . cjm
) given for the corresponding variables in the original

objective function form cT x = z, and (4) require that the sum be a zero row-matrix. This
is just the requirement having the form of linear equations πT B = −cT

B from which the
sought-for simplex multipliers πT can be found.

Every time they are unique because rankB = m, and every time they are found,
as well as the updated coefficients c′T = πT R + cT

F for nonbasic variables xF , on the
basis of the original columns of matrix A and of the original coefficients cT

B and cT
F ,

which describe correspondingly, the constraints Ax = b and the objective function cT x =
cT
BxB + cT

FxF = z in the standard LP problem statement.
One case of the above coefficients updating deserves to be emphasized. If column aj

of the original matrix A is precisely a unit vector eq, where eq is defined to be the m× 1
column vector whose q-th element is unity and all other elements are zero, and if the
corresponding coefficient cj is zero, then: (1) while including the column aj into basis
B, we have πq = 0; (2) while including the column aj into non-basis matrix R, we have
c′q = πq. Thus, any computer memory location intended to hold the given and then the
updated objective function coefficient c′j for that variable xj which originally appears in
the problem with a unit vector of constraints eq and with the zero value of the objective
function coefficient (cj = 0), in actuality holds nothing but the corresponding simplex
multiplier πq, with πq = 0 if the corresponding variable xj has currently turned out a
variable included into the basis set xB.

5.2. The inverse basis

As mentioned in Sections 3.3 and 4.1, the simplex method comprises the Gauss-Jordan
elimination, the same as in linear algebraic equations solution, which is preceded by the
special pivoting actions 1◦ and 2◦. In the standard simplex method (cf. Section 3.3),
first is found the pivot column (action 1◦) and then the pivot row (action 2◦), while in
the dual simplex method (cf. Section 4.1) the pivoting order is reverse: first is found
the pivot row (action 1◦) and then the pivot column (action 2◦). For Gauss-Jordan
elimination, the pivoting order does not matter. Substantial is that the pivot element
has been determined in order to execute one in turn elimination step. From the point of
view of solving equations, every such step implies elimination of the pivot variable from
all equations excepting the pivot equation where it remains with coefficient 1.

Let us consider the Gauss-Jordan elimination at the current step t from the viewpoint
of basis inversion in the simplex method. We make use of elementary matrices of two
types. The first one is a diagonal m × m elementary matrix Dk whose all the main
diagonal elements are units except the k-th diagonal element, which must not be zero. If
one needs to normalize the k-th pivot row of the current matrix At through division this
row by the current pivot element a′

ks, then the result can be written shortly as D−1
ks At
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where Dks denotes matrix Dk with its k-th diagonal element being a′
ks (taken from the

s-th column of At). By doing so, variable xs occurs to be prepared for elimination from
all the rest equations and, at the same time, for entering the basis set xB in place of
variable xr, r = NB(k), which departs xB in order to enter xF .

The second elementary matrix is the total column m × m matrix T c
k whose non-

zero elements are located only at the main diagonal and in the k-th column, all the
main diagonal elements being units. If the k-th column of T c

k is formed so that its k-th
(diagonal) element is unit and other elements are taken correspondingly from the s-th
column of At, then such a matrix will be denoted as T c

ks. The inverse matrix (T c
ks)

−1

equals T c
ks with the sign changed for all the non-diagonal elements of the k-th column.

With these two matrices, it is convenient to express the result of elimination by the
Gauss-Jordan method at step t as the product (T c

ks)
−1D−1

ks At.
When solving an ordinary set of algebraic equations, Ax = b with the m×m matrix A,

numbers k and s coincide and run all their values in the natural order: k = s = 1, 2, . . . , m.
Then, after m steps of elimination we have

(T c
mm)−1D−1

mm . . . (T c
22)

−1D−1
22 (T c

11)
−1D−1

11 A = I

hence
A−1 = (T c

mm)−1D−1
mm . . . (T c

22)
−1D−1

22 (T c
11)

−1D−1
11 I

This reflects the well-known fact that the Gauss-Jordan elimination, when applied to
identity matrix I, yields the inverse matrix A−1. This procedure, in its recurrent form,
can be written as

A−1
t = (T c

tt)
−1D−1

tt A−1
t−1; A−1

0 = I, t = 1, 2, . . . , m, (5.4)

where t is the procedure step number and A−1
m = A−1.

A feature of the simplex method is that we need to reformulate the original LP problem
in terms of equalities in order to be able to seek a basic solution to the underdetermined
set of m equations Ax = b by the Gauss-Jordan elimination. We obtain this set by
introducing one new (slack) variable in each inequality and one new (artificial) variable
in each equality given in the original set of constraints. After that the total number of
variables becomes n, n > m. In any case, we can assume that all such variables have been
introduced with coefficient 1 (as described in Sections 3.3, 3.4 and 3.6). Thus, m × n
matrix A of constraints can be considered as consisting of two blocks, A = [ G | I ] in
the initial state, where G denotes the left-hand block and I is m × m identity matrix
corresponding to the introduced variables.

Analogously to (5.4), the Gauss-Jordan procedure, existing in the simplex method,
can be written as follows

B−1
t = (T c

ks)
−1D−1

ks B−1
t−1, B−1

0 = I, t = 1, 2, . . . , N

when considered in application to the right hand side I of matrix A, where t is a simplex
method step number; Bt is a basis at step t; B−1

t is the inverse basis at step t; B−1
0 is
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the inverse basis at step 0 (in the initial state); and N is the total number of steps of
the simplex procedure. In the last expression, numbers k and s correspond to the pivot
row and pivot column of the current matrix At. They are determined by the rules of the
standard or dual simplex method at each t, so it would be well to mark them by subscript
t (we omit this subscript only for simplicity).

Therefore, a matrix corresponding to the right hand block I of matrix A in the initial
state, which has its own column numbering k = 1, 2, . . . , m, becomes equal to the inverse
basis B−1

t as the result of the t-step Gauss-Jordan procedure. The difference between
B−1

t and B−1
t−1 is determined by the following: basis Bt is the preceding basis Bt−1 with

the k-th column, k ∈ {1, 2, . . . , m}, replaced by the s-th column, s ∈ {1, 2, . . . , n}, of
the whole original matrix A. Namely such is the role of factors (T c

ks)
−1D−1

ks in the above
expression for the current inverse basis B−1

t via the preceding inverse basis B−1
t−1.

Of course, in reality no multiplication of B−1
t−1 by these factors is done to obtain B−1

t .
Obviously, affecting B−1

t−1 by D−1
ks and then by (T c

ks)
−1 reduces to the following.

Let elements of B−1 be denoted via βij , i, j = 1, 2, . . . , m, i.e.

B−1 =







β11 · · · β1m

· · · · · · · · ·
βm1 · · · βmm







At t = 0 we have B = I, the right hand block of the original matrix A. Before step
t, t = 1, 2, . . . , N, we have B = B−1

t−1. After step t, t = 1, 2, . . . , N, matrix B−1 must
contain B−1

t . Conversion from B−1
t−1 to B−1

t , that is the inverse basis update, is effected
by two actions:

(1) The action of matrix D−1
ks :

for j = 1, 2, . . . , m compute β+
kj = βkj/a

′
ks (5.5)

(2) The action of matrix (T c
ks)

−1:

for i = 1, 2, . . . , m, i 6= k and j = 1, 2, . . . , m

compute β+
ij = βij − a′

isβ
+
kj (5.6)

Here and below the sign “+” is used to denote the updated values; a′
ks is the pivot

element, and a′
is are any other elements of the pivot column a′

s.
The pivot column is determined by

a′
s = B−1as

where B−1 = B−1
t . This formula is part of the more general expression A′ = B−1R in the

description of any step of the simplex method in Section 5.1.
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5.3. Simplex multipliers sequential update

In Section 5.1, simplex multipliers are defined by expression πT = −cT
BB−1 where the

original columns of matrix A are used to form B−1 and the original coefficients of the
objective function z = cT x are used to form cT

B, the coefficient set for xB, the set of basic
variables, at each step of the simplex method. At the next step, the belonging to which
is marked by “+”, we have

(π+)T = −(c+
B)T (B+)−1

From this, the j-th element of the row (π+)T equals

π+
j

(1)
= −

m
∑

i=1
cNB+(i)β

+
ij

(2)
= −

m
∑

i=1,(i6=k)
cNB+(i)β

+
ij − cNB+(k)β

+
kj

(3)
= −

m
∑

i=1,(i6=k)
cNB+(i)(βij − a′

isβ
+
kj)− cNB+(k)β

+
kj

(4)
= −

m
∑

i=1
cNB(i)(βij − a′

isβ
+
kj)− cNB+(k)β

+
kj

(5)
= −

m
∑

i=1
cNB+(i)βij +

m
∑

i=1
cNB(i)a

′
isβ

+
kj − cNB+(k)β

+
kj

(6)
= πj − β+

kj(cs −
m
∑

i=1
cNB(i)a

′
is)

(7)
= πi − β+

kjc
′
s

In these transformations, the first and the second equalities are evident, the third is
obtained from (5.6) and also it takes into account that only one variable (with number
NB(k)) is departing the basis when changing from NB(i) to NB+(i), i = 1, 2, . . . , m.
The fourth equality is true because of (5.5). The sixth and seventh equalities are obtained
from two facts: NB+(k) = s, s is the number of the entering variable, and

c′s = cs −
m
∑

i=1

cNB(i)a
′
is

which counts the s-th element of the general formula c′T = cT
F − cT

BA′ given in Section 5.1
to update those coefficients that were in set cF before the next step marked here by
“+”. Indeed, in the k-th position of row vector cT

B+, in the capacity of c+
k , now is

cs, s = NB+(k). This is the original coefficient for that variable xs which has entered
the set xB at step “+” and which was in set xF before the step and then was selected as
the pivot to be included in xB in exchange for variable xr, r = NB(k). Hence,

π+
j = πj − β+

kjc
′
s

is the sequential updating rule for the simplex-multipliers, j = 1, 2, . . . , m.
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5.4. Algorithm of the revised simplex method

Let us summarize material of Sections 5.1 to 5.3 as applied to the conventional (non-
dual) simplex method. The initial form of standard LP problem







G | I
−− | −−
cT | OT





 x =
b
−−
z

, b ≥ 0

implies that I is m×m identity matrix for basic variables xB, xB having not appeared in
the objective function cT xF = z → min. Usually, these xB are slack variables. Notation
G stands for the rest columns of matrix A = [ G | I ] in the constraints Ax = b; these are
columns for nonbasic variables xF within vector x = (xF , xB) of variables; b is the right
hand side of constraints. From the initial form of the problem, the following data have
to be stored for the algorithm: A, b, cT . The sub-row OT will be used to store the simplex
miltipliers πT . To store the inverse basis B−1 we need the additional m×m matrix.

Before each step t of the algorithm, t = 1, 2, . . . , N, there are known the current
values πT , B−1, b′ and z; these values are to be updated. Before the first step they are:
πT = OT , B−1 = I, b′ = b, z = 0. From the initial data the following values are to be
used: G and cT to obtain the current coefficients c′T = πT B + cT ; and matrix A to find
the current pivot column a′

s = B−1as where as is the s-th column of the initial matrix A.

Step t.

1◦ Obtain c′T = πTB + cT . Look through NF (l) at the compound row (c′T , πT ) as at
a whole, corresponding to the bottom row of the initial form of the problem, in
order to find if it contains negative elements or not. If “not”, then the solution has
been found; the end. If “yes”, then fix the number l and, correspondingly, number
s = NB(l) of the nonbasic variable xs which has the most negative coefficient c′s
and which will be introduced into basis at this step.

2◦ Obtain a′
s = B−1as. Compare all the corresponding elements of columns b′ and a′

s

so that to find number k such that

b′

a′
ks

= min
i,a′

is
>0

(

b′i
a′

is

)

By doing so, it has been found number r = NB(k) of the variable xr which will be
excluded from basis. Besides, there has been found the pivot a′

ks among elements
of column a′

s.

3◦ Update all the values needed for the next step:

(a) pointers: NB(k)↔ NF (l).

(b) elements of the basic values column:

b+
k = b′k/a

′
ks; b+

i = b′i − a′
isb

+
k (i 6= k)
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(c) objective function: z+ = z − c′sb
+
k

Remark: In reality, notations z and z+ stand here for the objective function
with the sign changed, i.e. for −z. It must be kept in mind while displaying
results.

(d) inverse basis:

β+
kj = βkj/a

′
ks; β+

ij = βij − a′
isβ

+
kj (i 6= k)

(e) simplex miltipliers: π+T = πT − β+
k c′s.

Remark 5.4.1.

1. In the last expression β+
k stands for the k-th row of the updated inverse basis B−1

composed of elements β+
kj, j = 1, 2, . . . , m.

2. The updated values have been marked by superscript “+” in items (b) to (e) only for
convenience sake. In computer programs, one should use the assignment statement.
For example, instead item (c) we write z := z − c′sbk.

Example 5.4.1. For x1, x2, x3 ≥ 0 solve the problem

x1 + 2x2 + 5x3 ≤ 45
2x1 + 3x2 + 3x3 ≤ 60
x1 + x2 + 2x3 ≤ 27

−9x1 − 10x2 − 15x3 = z → min

Step 0. (The initial form of the problem).

A b
1 2 5 1 0 0 45
2 3 3 0 1 0 60
1 1 2 0 0 1 27
−9 −10 −15 0 0 0 0

NB
1 4
2 5
3 6

NF
1 1
2 2
3 3

BS = (0, 0, 0, 45, 60, 27) = BFS, 0 = z

Step 1.

1◦ c′T = πT G + cT ; c′T = cT = (−9,−10,−15). In view of the fact that in the initial
state πT = (0, 0, 0), this operation can be omitted considering that c′T = cT .

(c′T , πT ) = (−9,−10,−15, 0, 0, 0)⇒ l = 3, s = 3, c′s = −15
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2◦ a′
s = B−1as; a′

s = as = a3 =
1 2 3

3 5 2 . Since B−1 = I, in the initial state, this
operation can also be omitted at step 1 considering a′

s = as.

min
(

45

5
,
60

3
,
27

2

)

=
45

5
= 9 ⇒ k = 1, a′

ks = 5

3◦ (a) NB =
1 2 3

3 5 6 , NF =
1 2 3

1 2 4

(b) b′ =
1 2 3

9 33 9

(c) −z = 135

(d) B−1 =
1/5 0 0
−3/5 1 0
−2/5 0 1

(e) πT = 3 0 0 = 0 0 0 − 1/5 0 0 ∗ −15

Step 2.

1◦

c′T

−6 −4 0
↑1 2 3

=

πT

3 0 0
4 5 6

∗

G
1 2 5
2 3 3
1 1 2

+

cT

−9 −10 −15

l = 1, s = 1, c′s = −6

2◦ a′
s =

1/5
7/5
3/5

=
1/5 0 0
−3/5 1 0
−2/5 0 1

∗
1
2
1

min

(

9

1/5
,

33

7/5
,

9

3/5

)

=
9

3/5
= 15 ⇒ k = 3, a′

ks = 3/5

3◦ (a) NB =
1 2 3

3 5 1 , NF =
1 2 3

6 2 4

(b) b′ =

1 2 3

6 12 15

(c) −z = 225

(d) B−1 =
1/3 0 −1/3
1/3 1 −7/3
−2/3 0 5/3
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(e) πT = −1 0 10 = 3 0 0 − −2/3 0 5/3 ∗ −6

Step 3.

1◦

c′T

0 −2 0
1 ↑2 3

=
πT

−1 0 10
4 5 6

∗

G
1 2 5
2 3 3
1 1 2

+
cT

−9 −10 −15

l = 2, s = 2, c′s = −2

2◦ a′
s =

1/3
4/3
1/3

=
1/3 0 −1/3
1/3 1 −7/3
−2/3 0 5/3

∗
2
3
1

min

(

6

1/3
,

12

4/3
,

15

1/3

)

=
12

4/3
= 9 ⇒ k = 2, a′

ks = 4/3

3◦ (a) NB =
1 2 3

3 2 1 , NF =
1 2 3

6 5 4

(b) b′ =
1 2 3

3 9 12

(c) −z = 243

(d) B−1 =
1/4 −1/4 1/4
1/4 3/4 −7/4
−3/4 −1/4 9/4

(e) πT = −1/2 3/2 13/2 = −1 0 10 − 1/4 3/4 −7/4 ∗ −2

Step 4.

1◦

c′T

0 0 0
1 2 3

=
πT

−1/2 3/2 13/2
↑4 5 6

∗

G
1 2 5
2 3 3
1 1 2

+
cT

−9 −10 −15

l = 3, s = 4, c′s = −1/2

2◦ a′
s =

1/4
1/4
−3/4

=
1/4 −1/4 1/4
1/4 3/4 −7/4
−3/4 −1/4 9/4

∗
1
0
0

min

(

3

1/4
,

9

1/4
,∞

)

=
3

1/4
= 12 ⇒ k = 1, a′

ks = 1/4
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3◦ (a) NB =
1 2 3

4 2 1 , NF =
1 2 3

6 5 3

(b) b′ =

1 2 3

12 6 21

(c) −z = 249

(d) B−1 =
1 −1 1
0 1 −2
0 −1 3

(e) πT = 0 1 7 = −1/2 3/2 13/2 − 1 −1 1 ∗ −1/2

Step 5.

1◦

c′T

0 0 2
1 2 3

=
πT

0 1 7
4 5 6

∗

G
1 2 5
2 3 3
1 1 2

+
cT

−9 −10 −15

There are no negative elements with the numbers from NF within the compound
row (c′T , πT ); the end. The basic solution, in this case the optimal one, can be read
out from b′ through NB subject to the condition that nonbasic variables with the
numbers from NF are zero:

BOS = (21, 6, 0, 12, 0, 0); zmin = −249

Along the same lines, basic solutions can be read out at the completion of each
step.

5.5. Algorithm of the revised dual simplex method

Let us formulate the dual version of the revised simplex method building upon the
main concepts of Sections 5.1 to 5.3. Outwardly, the problem has the same initial form
as in Section 5.4:







G | I
−− | −−
cT | OT





 x =







b
−−
z





 , c ≥ 0

The distinctive property allowing to launch the dual simplex method is that c ≥ 0 and
b may contain elements of different signs, whereas the property allowing to initiate the
conventional simplex method looks quite the reverse: b ≥ 0 and c may contain elements
of different signs.

Before each step t, t = 1, 2, . . . , N, there are known πT , B−1, b′ and z. Conditions
πT ≥ 0 and c′ ≥ 0 are evidences for further applying the algorithm. Before step 1 we
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have: b′ = b, πT = 0T , B−1 = I, c′ = c, z = 0. From the initial data we use the following
values: matrix G to find the left part of the k-th (the pivot) row a′T

k = βT
k G where βT

k is
the k-th row of B−1; matrix G to obtain the updated coefficients c′T = πT G + cT where
cT are the initial coefficients; the whole matrix A = [ G | I ] to find the updated s-th
(the pivot) column a′

s = B−1as where as is the s-th column of the initial matrix A.

Step t.

1◦ Look at column b′ to find negative elements. If there is not any, the solution has
been found; the end. If any, determine munber k of the most negative element of
b′.

2◦ Obtain a′T
k = βT

k G. Look through NF (l) at the k-th compound row (a′T
k , βT

k ) as
at a whole in order to select only coefficients for nonbasic variables from the k-th
constraint. Among them, select only negative coefficients a′

kj < 0, in order to fix
the ordinal number l and the index number s = NF (l) of the pivot column from
the condition

min
j

(

(c′T , πT )j

| a′
kj |

)

=
(c′T , πT )s

| a′
ks |

Also, find c′s = (c′T , πT )s.
Remark: (c′T , πT )j denotes the j-th element of the compound row (c′T , πT ) taken
as a whole.

3◦ Obtain the pivot column a′
s = B−1as and the pivot element a′

ks in it.

4◦ Update all the values needed for the next step:

(a) pointers: NB(k)↔ NF (l).

(b) elements of the basic values column:

b+
k = b′k/a

′
ks; b+

i = b′i − a′
isb

+
k (i 6= k)

(c) objective function: z+ = z − c′sb
+
k .

Remark: It must be kept in mind that here notations z and z+ stand for the
objective function with the sign changed.

(d) inverse basis: β+
kj = βkj/a

′
ks; β+

ij = βij − a′
isβ

+
kj (i 6= k).

(e) simplex multipliers: π+T = πT − βT
k c′s; π := π+.

(f) coefficients c′T = πT G + cT .

Remark 5.5.1.

1. Superscript “+” is used in items (b) to (e) only for simplicity; in computer programs
the assignment statment should be used instead, for example, b′k := b′k/a

′
ks, z :=

z − c′sb
+
k and so on.

84



2. Item (c) does compute the objective function with the sign changed, i.e. −z.

By way of illustration let us consider the same problems as in Section 4.2.
Example 5.5.1. Find x1, x2 ≥ 0 subject to

2x1 + 3x2 ≥ 6
2x1 + 6x2 ≥ 9
2x1 + 2x2 ≤ 7
x1 + 4x2 = z → min

Step 0. (The initial form of the problem).

A b
−2 −3 1 0 0 −6
−2 −6 0 1 0 −9

2 2 0 0 1 7
1 4 0 0 0 0

NB
1 3
2 4
3 5

NF
1 1
2 2

BS = (0, 0,−6,−9, 7) 6= BFS, 0 = z

Step 1.

1◦ b′T =
1 2 3

−6 −9 7 ⇒ k = 2

2◦

a′T
k

−2 −6
1 2

=
βT

k

0 1 0
3 4 5

∗

G
−2 −3
−2 −6

2 2

min

(

1

| −2 |
,

4

| −6 |

)

=
1

2
⇒ l = 1, s = 1, c′s = 1

3◦ a′
s = B−1as = as = (−2,−2, 2)T ; a′

ks = −2
Remark: At step 1 one can not premultiply as by B−1 if before this step B−1 = I.

4◦ Updating:

(a) NB =
1 2 3

3 1 5 , NF =
1 2

4 2

(b) b′T =

1 2 3

3 9/2 −2
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(c) −z = −9/2

(d) B−1 =
1 −1 0
0 −1/2 0
0 1 1

(e) πT = 0 1/2 0 = 0 0 0 − 0 −1/2 0 ∗ −1

(f)

c′T

0 1
1 2

=

πT

0 1/2 0
3 4 5

∗

G
−2 −3
−2 −6

2 2

+

cT

1 4

Step 2.

1◦ Look at b′ in the above ⇒ k = 3

2◦

a′T
k

0 −4
1 2

=

βT
k

0 1 1
3 4 5

∗

G
−2 −3
−2 −6

2 2

min

(

1

| −4 |

)

=
1

4
⇒ l = 2, s = 2, c′s = 1

3◦ a′
s =

1 −1 0
0 −1/2 0
0 1 1

∗
−3
−6

2
=

3
3
−4

; a′
ks = −4

4◦ Updating:

(a) NB =
1 2 3

3 1 2 , NF =
1 2

4 5

(b) b′T =
1 2 3

3/2 3 1/2

(c) −z = −5

(d) B−1 =
1 −1/4 3/4
0 1/4 3/4
0 −1/4 −1/4

(e) πT = 0 3/4 1/4 = 0 1/2 0 − 0 −1/4 −1/4 ∗ 1

(f)

c′T

0 0
1 2

=

πT

0 3/4 1/4
3 4 5

∗

G
−2 −3
−2 −6

2 2

+

cT

1 4
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Step 3.

1◦ Look at b′ in the above ⇒ the end
BFS = (3, 1/2 , 3/2 , 0, 0); zmin = 5

Remark 5.5.2. To accelerate coming to “the end” it is advisable to insert the checking
vector b′, analogously to item 1◦, immediately following item 4◦c.

Example 5.5.2. Find x1, x2 ≥ 0 subject to

2x1 + 3x2 ≥ 6
2x1 + 6x2 ≥ 9
x1 + x2 ≤ 4

2x1 + 2x2 = 7
x1 + 2x2 = z → min

Step 0. (The initial form of the problem).

A b
−2 −3 1 0 0 0 0 −6
−2 −6 0 1 0 0 0 −9

1 1 0 0 1 0 0 4
2 2 0 0 0 1 0 7
−2 −2 0 0 0 0 1 −7

1 2 0 0 0 0 0 0

NB
1 3
2 4
3 5
4 6
5 7

NF
1 1
2 2

BS = (0, 0,−6,−9, 4, 7,−7) 6= BFS, 0 = z

Step 1.

1◦ b′T =
1 2 3 4 5

−6 −9 4 7 −7 ⇒ k = 2

2◦

a′T
k

−2 −6
1 2

=

βT
k

0 1 0 0 0
3 4 5 6 7

∗

G
−2 −3
−2 −6

1 1
2 2
−2 −2

min

(

1

| −2 |
,

2

| −6 |

)

=
1

3
⇒ l = 2, s = 2 c′s = 2

3◦ a′
s = B−1as = as = (−3,−6, 1, 2,−2)T ; a′

ks = −6
See the remark in the preceding example, Step 1, item 3◦.
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4◦ Updating:

(a) NB =
1 2 3 4 5

3 2 5 6 7 , NF =
1 2

1 4

(b) b′T =

1 2 3 4 5

−3/2 3/2 5/2 4 −4

(c) −z = −3

(d) B−1 =

1 −1/2 0 0 0
0 −1/6 0 0 0
0 1/6 1 0 0
0 1/3 0 1 0
0 −1/3 0 0 1

(e) πT = 0 1/3 0 0 0 = 0 0 0 0 0 − 0 −1/6 0 0 0 ∗ 2

(f)

c′T

1/3 0
1 2

=

πT

0 1/3 0 0 0
3 4 5 6 7

∗

G
−2 −3
−2 −6

1 1
2 2
−2 −2

+

cT

1 2

Step 2.

1◦ Check b′ in the above ⇒ k = 5

2◦

a′T
k

−4/3 0
1 2

=
βT

k

0 −1/3 0 0 1
3 4 5 6 7

∗

G
−2 −3
−2 −6

1 1
2 2
−2 −2

min

(

1/3

| −4/3 |
,

1/3

| −1/3 |

)

=
1

4
⇒ l = 1, s = 1 c′s = 1/3

3◦ a′
s = B−1as = (−1, 1/3, 2/3, 4/3,−4/3)T ; a′

ks = −4/3

4◦ Updating:

(a) NB =
1 2 3 4 5

3 2 5 6 1 , NF =
1 2

7 4

(b) b′T =

1 2 3 4 5

3/2 1/2 1/2 0 3
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(c) −z = −4

(d), (e), (f) are omitted, see the remark at the end of the preceding example
⇒ the end.
BFS = (3, 1/2, 3/2, 0, 1/2, 0, 0); zmin = 4

Remark 5.5.3. The revised simplex method offers some advantages over the conven-
tional simplex method. The first one is in reduced calculations. The second is the pos-
sibility of each step calculations to be checked by the relation B−1B = I. One can see
that B−1 = [ βij ] is the inverse of B(i, j) = A[i, NB(j)]. For example, after Step 3 of
Example 5.4.1 we have the following checking relation







1/4 −1/4 1/4
1/4 3/4 −7/4
−3/4 −1/4 9/4





 ∗







5 2 1
3 3 2
2 1 1





 =







1 0 0
0 1 0
0 0 1





 ,

where the second factor, matrix B, is obtained from the initial matrix A by extracting its

columns in order specified by pointer NB =
1 2 3

3 2 1 .

5.6. Algorithm of the revised simplex method with

artificial variables

Algorithm of Section 5.4 assumes that the initial form of problem makes the starting
BFS obvious. The same assumption has been made in Sections 3.2 and 3.3. However, it
often does not hold when some constraints are not changed from “greater or equal to”
type to “less or equal to” type through premuptiplying by −1, or some constraints are
of “equal to” type. As a precautionary measure againt this situation, artificial variables
and artificial objective function are used as it is shown in Section 3.6. Now we show this
practice as applied to the revised simplex method drawing the analogy to Section 5.4.

By the starting point of the algorithm the initial form of problem must look as follows:
















G | I
−−− | − −−−

cT | 0T = πT

−− | − −−−
dT | 0T = σT

















x =

















b
−−
z
−−
w

















, b ≥ 0

This means that x = (xF , xB) and BFS = (b, 0). For the main objective function z we
have the coefficients cT and simplex multipliers πT (initially, the latter are zero). For
the artificial objective function w we have the coefficients dT and simplex multipliers σT

(initially, σT are zero, too).
Two stages are to be executed. Stage I is for minimizing w to generate a BFS by

the beginning of Stage II. Stage II is for minimizing z; here both artificial variables and
artificial objective function w have to be deleted from the problem. At Stage I, all actions
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are executed in the same manner as described in Section 5.4, but simultaneously with
the two pairs of coefficients: (cT , πT ) and (dT , σT ). In doing so, the governing factor
for Stage I is pair (dT , σT ) because namely these data are associated with the artificial
objective function w to be minimized at this stage. Acting at Stage II are only (cT , πT )
and z, being reduced to a minimum.

There is no need for a detailed description of the algorithm because, in view of the
above peculiarities of Stages I and II, it would be completely similar to the algorithm of
Section 5.4. It will suffice to give an example.

Example 5.6.1. For x1, x2 ≥ 0 solve the problem

2x1 + 2x2 ≤ 7
2x1 + 3x2 ≥ 6
2x1 + 6x2 ≥ 9
x1 + 4x2 = z → min

Let us compare the solution with examples of Sections 4.2 and 5.5. There the same
problem was solved, however, without artificial variables. This fact sent us in application
not the conventional but the dual simplex method (Section 4.2) or the revised dual simplex
method (Section 5.5).

Solution. The initial form of problem is as follows:

2 2 0 0 1 0 0 7
2 3 −1 0 0 1 0 6
2 6 0 −1 0 0 1 9
1 4 0 0 0 0 0 0
0 0 0 0 0 1 1 0

First, we need to change from the initial form to the correct form of problem in order to
have σT = 0T . In the above, we have σT = 0 1 1 and this means that w = x6 + x7. To

convert to σT = 0 0 0 , we have to do the so-called preparatory subtraction. Obviously,
it means the elimination of artificial variables x6 and x7 from the above (the initial) form
of w. In any case, it is made by subtraction of the appropriate rows from the bottom row
of the tableau. The appropriate rows are those where the artificial variables, here x6 and
x7, appear as basic variables with coefficient 1.

Step 0. (After subtraction of the second and third rows from the bottom row).

A
1 2 3 4 5 6 7

2 2 0 0 1 0 0 7
2 3 −1 0 0 1 0 6
2 6 0 −1 0 0 1 9
1 4 0 0 0 0 0 0
−4 −9 1 1 0 0 0 −15

NB
5
6
7

NF
1 1
2 2
3 3
4 4

BS = (0, 0, 0, 0, 7, 6, 9) = BFS, 0 = −z, −15 = −w
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Now the problem has the correct form and both z and w have the correct values: z =
0, w = 15.

Stage I. (Following the algorithm of Section 5.4 and using pair (dT , σT ) as the governing
one and (cT , πT ) as the concomitant pair).
Step 1.

1◦ d
′T = σT G + dT ; c′T = πT G + cT

Because at the very beginning we have σT = 0 and πT = 0, then d′T = dT and
c′T = cT , here: d′T = -4 -9 1 1 , c′T = 1 4 0 0

(d′T , σT ) = (−4,−9, 1, 1, 0, 0, 0) ⇒ l = 2, s = 2, d′
s = −9, c′s = 4

2◦ a′
s = B−1as = as =







2
3
6





, because now B = I. We have

b′ =







7
6
9





 , min (7/2, 6/3, 9/6) = 9/6 ⇒ k = 3, a′
ks = 6

3◦

NB
5
6
2

NF
1
7
3
4

b+

4
3/2
3/2

z+ = z − c′sb
+
k = 0− 4 ∗ 3/2 = −6

w+ = w − d′
sb

+
k = −15 + 9 ∗ 3/2 = −3/2

B−1

1 0 −1/3
0 1 −1/2
0 0 1/6

π+T

0 0 −2/3
=

πT

0 0 0
−

βT
k

0 0 1/6
∗

c′s
4

σ+T

0 0 3/2
=

σT

0 0 0
−

βT
k

0 0 1/6
∗

d
′

s

−9

BS = (0, 3/2, 0, 0, 4, 3/2, 0) = BFS; z = 6, w = 3/2

Remark: The last two equations determine the true value z and w. It is necessary
to distinguish them from z, z+ and w, w+ used in action 3◦ at every step as the
calculation values whose sign is always opposite to the sign of true values z and w.

Step 2.

1◦

d′T

−1 0 1 −1/2
1 2 3 4

=
σT

0 0 3/2
5 6 7

G
2 2 0 0
2 3 −1 0
2 6 0 −1

+
dT

−4 −9 1 1

c′T

−1/3 0 0 2/3
1 2 3 4

=

πT

0 0 −2/3
5 6 7

G
2 2 0 0
2 3 −1 0
2 6 0 −1

+

cT

1 4 0 0
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Look at (d′T , σT ) through NF = (1, 7, 3, 4) (see the underlined numbers) in order
to find the most negative element. We find l = 1, s = 1, d′

s = −1. Look at (c′T , πT )
through NF . By s = 1 we find c′s = −1/3.

2◦ a′
s = B−1as =

1 0 −1/3
0 1 −1/2
0 0 1/6

2
2
2

=
4/3

1
1/3

; b′ =
4

3/2
3/2

min

(

4

4/3
,
3/2

1
,
3/2

1/3

)

⇒ k = 2, a′
ks = 1

3◦

NB
5
1
2

NF
6
7
3
4

b+

2
3/2

1

z+ = z − c′sb
+
k = −11/2

w+ = w − d
′

s b+
k = 0

Appearing w := w+ = 0 is the intermediate, preliminary indication of successful
completing the first stage, and now it is clear that

BS = (3/2, 1, 0, 0, 2, 0, 0) = BFS, z = 11/2

In order to check the final indication and change to Stage II, we continue the
calculations.

B−1

1 −4/3 1/3
0 1 −1/2
0 −1/3 1/3

πT

0 1/3 −5/6
:= πT

0 0 −2/3
− βT

k

0 1 −1/2
∗ c′s
−1/3

σT

0 1 1
:= σT

0 0 3/2
− βT

k

0 1 −1/2
∗ d′

s

−1

Remark: As already noted, the revised simplex method allows a check of calcula-
tions to be made by the relation:

B−1

1 −4/3 1/3
0 1 −1/2
0 −1/3 1/3

∗

B
1 2 2
0 2 3
0 2 6

=

I
1 0 0
0 1 0
0 0 1

In doing this, matrix B should be formed by extracting columns from the initial
matrix A according to numbers stored in NB. At this point we have NB = (5, 1, 2).
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Step 3.

1◦

d′T

0 0 0 0
1 2 3 4

=
σT

0 1 1
5 6 7

G
2 2 0 0
2 3 −1 0
2 6 0 −1

+
dT

−4 −9 1 1

c′T

0 0 −1/3 5/6
1 2 3 4

=

πT

0 1/3 −5/6
5 6 7

G
2 2 0 0
2 3 −1 0
2 6 0 −1

+

cT

1 4 0 0

Look at elements of (d′T , σT ) through NF = (6, 7, 3, 4). Among them, there no
negatives and, as above noted, w = 0. This is the final indication of successful
completing the first stage. In what follows, Stage II, we need neither artificial
variables x6, x7 nor artificial objective function w. Also, we do not need (d′T , σT ),
so we switch to viewing (c′T , πT ) through NF = (6, 7, 3, 4) where numbers 6 and 7
will be ignored.

Stage II. (Continuing Step 3, action 1◦) As a result of viewing (c′T , πT ) through NF =
(6, 7, 3, 4) with numbers 6 and 7 ignored, we have l = 3, s = 3, c′s = −1/3.

2◦ a′
s = B−1as =

1 −4/3 1/3
0 1 −1/2
0 −1/3 1/3

0
−1

0
=

4/3
−1
1/3

; b′ =
2

3/2
1

Remark: Matrix B−1 needs to be calculated as a whole in order to find a′
s even

though artificial variables are needless at Stage II. The same pertains equally to πT

that will be seen below at Step 4, 1◦.

min

(

2

4/3
,∞,

1

1/3

)

⇒ k = 1, a′
ks = 4/3

3◦

NB
3
1
2

NF
6
7
5
4

b+

3/2
3

1/2
z+ = z − c′sb

+
k = −11/2− (−1/3)(3/2) = −5

B−1

3/4 −1 1/4
3/4 0 −1/4
−1/4 0 1/4

πT

1/4 0 −3/4
:=

πT

0 1/3 −5/6
−

−
βT

k

3/4 −1 1/4
∗

c′s
−1/3

BS = (3, 1/2, 3/2, 0, 0) = BOS, zmin = 5.
However, the fact that the basic optimal solution (BOS) has been found and has
the above form, will be formally seen only on the next step.
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Step 4.

1◦

c′T

0 0 0 3/4
1 2 3 4

=
πT

1/4 0 −3/4
5 6 7

G
2 2 0 0
2 3 −1 0
2 6 0 −1

+
cT

1 4 0 0

Through NF = (6, 7, 5, 4) in which numbers 6 and 7 are ignored, we look at
(c′T , πT ) and discover that there are no negative values among numbers (3/4, 1/4).
This indicates the work is now complete and we have achieved the basic optimal
solution.

Remark 5.6.1. It is necessary to calculate c′T not in part but completely. Because of it,
we must have the complete πT , together with elements number 6 and 7, although these
are numbers of the ignored artificial variables. In other words, these numbers are being
ignored only while looking at row (c′T , πT ) through NF in action 1◦ of every step in the
sequel to the algorithm.

5.7. The revised dual simplex method with artificial

variables

In Section 4.3 we considered the dual simplex method without correct form of basis for
such a case when among constraints there is at least one of “equal to” type and only by
this fact it is stipulated that artificial variables and artificial objective function should be
effected at Stage I of the conventional simplex method. In this case the problem is such
that the necessity to use the dual simplex method is detected at Stage II. This situation
was considered as applied to the non-revised algorithm. Now we take the same example
as in Section 4.3 and show how the revised algorithm works. In so doing, we will see that
the algorithm of Section 5.6 works at Stage I and the algorithm of Section 5.5 works at
Stage II.

Example 5.7.1. For x1, x2 ≥ 0 solve the problem:

2x1 + 3x2 ≥ 6
2x1 + 6x2 ≥ 9
x1 + x2 ≤ 4

2x2 + 2x3 = 7
x1 + 2x2 = z → min

All the revised algorithms use the correct form of basis. It means that basis B must be
initially formed by columns of identity matrix. Because of it, inequalities of “≥” type
should be premultiplied by −1 to change them to “≤” type. In view of this, the initial
form of the problem is characterized by the following tableau:
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Step 0.
−2 −3 1 0 0 0 −6
−2 −6 0 1 0 0 −9

1 1 0 0 1 0 4
2 2 0 0 0 1 7
1 2 0 0 0 0 0
0 0 0 0 0 1 0

Obviously, variable x6 is artificial and the bottom row has stored the coefficients and
value of artificial objective function w. By the time being, x6 is not in basic set of
variables xB with reference to w. To make x6 basic, we eliminate x6 from the bottom
row by the evident subtracting the fourth row from the bottom row. Having done this
preparatory subtraction, we obtain the correct initial state:

−2 −3 1 0 0 0 −6
−2 −6 0 1 0 0 −9

1 1 0 0 1 0 4
2 2 0 0 0 1 7
1 2 0 0 0 0 0
−2 −2 0 0 0 0 −7

NB
3
4
5
6

NF
1 1
2 2

BS = (0, 0,−6,−9, 4, 7) 6= BFS, 0 = z, 7 = w

Now the initial state of the problem is similar to that one specified in Section 5.6 with
the only difference that inequality b ≥ 0 does not hold, i.e., BS 6= BFS.

Stage I. (Minimizing the artificial objective function w) By the bottom row we recognize
that the conventional simplex method (Section 5.4 and Section 5.6) should be applied.

Step 1.

1◦ d′T = σT G + dT ; c′T = πT G + cT . Because σT = 0 and πT = 0, then d′T = dT ,
c′T = cT , d′T = (−2,−2), c′T = (1, 2)
(d′T , σT ) = (−2,−2, 0, 0, 0, 0, 0) ⇒ l = 1, s = 1, d′

s = −2, c′s = 1

2◦ a′
s = B−1as = as = (−2,−2, 1, 2)T , b′ = (−6,−9, 4, 7)T

min(∞,∞, 4/1, 7/2) = 7/2 ⇒ k = 4, a′
ks = 2

3◦

NB
3
4
5
1

NF
6
2

b+

1
−2
1/2
7/2

z+ = z − c′sb
+
k = −7/2; b′ := b+

w+ = w − d
′

s b+
k = 0
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B−1

1 0 0 1
0 1 0 1
0 0 1 −1/2
0 0 0 1/2

πT

0 0 0 −1/2
:= πT

0 0 0 0
− βT

k

0 0 0 1/2
∗ c′s
1

σT

0 0 0 1
:= σT

0 0 0 0
− βT

k

0 0 0 1/2
∗ d′

s

−2

BS = (7/2, 0, 1,−2, 1/2, 0) 6= BFS, z = 7/2, w = 0

Step 2.

1◦

d
′T

0 0 =

σT

0 0 0 1 ∗

G
−2 −3
−2 −6
1 1
2 2

+

dT

−2 −2

c′T

0 1 =

πT

0 0 0 −1/2 ∗

G
−2 −3
−2 −6
1 1
2 2

+

cT

1 2

Look at elements of (d′T , σT ) through NF = (6, 2). Because there are no nega-
tive elements and w = 0, then Stage I has been successfully completed. Further,
while looking at row (c′T , πT ), we ignore the sixth element corresponding to the ar-
tificial variable x6, i.e. we look at (c′T , πT ) only through the remained, the second,
element of NF : l = 2, NF (l) = 2.

Stage II. (Pursueing Step 2, action 1◦)
Looking at (c′T , πT ) through NF testifies that from this point on the dual simplex method
must be used (see Remark 4.2.1), and here we use the revised version of the method (see
Section 5.5).

1◦ b′T =

1 2 3 4

−1 −2 1/2 7/2

2◦

a′T
k

0 −4 =
βT

k

0 1 0 1 ∗

G
−2 −3
−2 −6

1 1
2 2

; a′
k[NF (2)] = −4 < 0

min
j=NF (2)

(

(c′T , πT )

| a′
kj |

)

= min

(

1

| −4 |

)

=
1

4
⇒ l = 2, s = 2, c′s = 1
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3◦ a′
s =

1 0 0 1
0 1 0 1
0 0 1 −1/2
0 0 0 1/2

∗

−3
−6
1
2

=

−1
−4
0
1

; a′
ks = −4

4◦ Updating:

(a) NB =
1 2 3 4

3 2 5 1 , NF =
1 2

6 4

(b) b′T =
1 2 3 4

3/2 1/2 1/2 3

(c) z+ = −7/2− 1 ∗ 1/2 = −4

(d) B−1 =

1 −1/4 0 3/4
0 −1/4 0 −1/4
0 0 1 −1/2
0 1/4 0 3/4

(e)

πT

0 1/4 0 −1/4 :=

πT

0 0 0 −1/2 −

βT
k

0 −1/4 0 −1/4 ∗

c′s
1

(f)

c′T

0 0
1 2

:=

πT

0 1/4 0 −1/4
3 4 5 (6)

∗

G
−2 −3
−2 −6
1 1
2 2

+

cT

1 2

Step 3.

1◦ See b′ in the above ⇒ the end.
BS=(3, 1/2, 3/2, 0, 1/2)=BFS=BOS, zmin = 4

5.8. Adding a constraint in the revised simplex method

In Chapter 4 we considered how to continue the solution when a constraint is added to
the problem that just have been solved. Now we address to the same question when
applied to the revised simplex method.

Let us cosider Example 5.4.1 and continue the solution asking: “What if we add one
more constraint ?”

Let the added constraint be

x1 + x2 + x3 ≤ 15
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At this point (see the end of Section 5.4) we have

G
1 2 5
2 3 3
1 1 2
1 2 3

B−1

1 −1 1
0 1 −2
0 −1 3

b′

12
6
21

NB
1 4
2 2
3 1

NF
1 6
2 5
3 3

c′T

0 0 2
1 2 3

πT

0 1 7
4 5 6

−z
249

A
1 2 5 1 0 0 45
2 3 3 0 1 0 60
1 1 2 0 0 1 27
−9 −10 −15 0 0 0 0

Adding the constraint x1 +x2 +x3 ≤ 15 entails the following modifications in these data:

G
1 2 5
2 3 3
1 1 2
1 1 1
1 2 3

B−1

1 −1 1 0
0 1 −2 0
0 −1 3 0
0 0 0 1

b′

12
6
21
15

NB
1 4
2 2
3 1
4 (7)

NF
1 6
2 5
3 3

c′T

0 0 2
1 2 3

πT

0 1 7 0
4 5 6 7

−z
249

A
1 2 5 1 0 0 0 45
2 3 3 0 1 0 0 60
1 1 2 0 0 1 0 27
1 1 1 0 0 0 1 15
−9 −10 −15 0 0 0 0 0

Artificial variable x7 has been introduced to represent the added (the fourth) constraint
in the form:

x1 + x2 + x3 + x7 = 15, x7 ≥ 0

However, we must make x7 the only basic variable in the fourth constraint in order to
represent the problem in the canonical form for a basis. It means that we have to eliminate

all the other basic variables appearing in that row. Through NB =
1 2 3 4

4 2 1 (7) we see

that we have to eliminate x2 and x1. This correcting elimination will change only the
bottom row of B−1 and the bottom element of b′.
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Step 0. (The correcting elimination)
Look through NB at the added (the bottom) row of G. For this, we scan in
succession elements of NB(i) : i = 1, 2, . . . , m, and look at elements of the bottom
row of G in locations whose numbers are NB(i) (m denotes the initial number of
constraints, here m = 3). If such an element exists and it is not zero, then the
bottom rows of B−1 and b′ are modified. Sequentially, it looks as follows:
i = 1, NB(1) = 4 ⇒ The 4-th element does not exist in the bottom row of G
⇒ we continue.
i = 2, NB(2) = 4 ⇒ G(m + 1, 2) exists and is not zero ⇒ we subtract the
i-th (the 2nd) row of B−1 (and b′) taken with coefficient G(m+1, NB(i)), from the
bottom row. Doing so, we have

B−1

1 −1 1 0
0 1 −2 0
0 −1 3 0
0 −1 2 1

b′

12
6
21
9

i = 3, NB(3) = 1 ⇒ G(m + 1, 1) exists and is not zero ⇒ we subtract the i-th
(the 3rd) row of B−1 (and b′) taken with coefficient G(4, NB(i)), from the bottom
row. Thus we obtain

B−1

1 −1 1 0
0 1 −2 0
0 −1 3 0
0 0 −1 1

b′

12
6

21
−12

NB
1 4
2 2
3 1
4 7

At this point the correcting elimination has been completed; it means that the
parentheses in the 4-th row of NB can be taken off: variable x7 is, from now on,
basic in the canonical form for a basis. We have

BS = (21, 6, 0, 12, 0, 0,−12) 6= BFS, z = −249

Elements of (c′T , πT ) cannot be negative, so we check elements of b′ and owing to
−12 we see that the dual simplex method should start, in our example, the revised
version of it.

Step 1. (The revised dual simplex method works, see Section 5.5)

1◦ k = 4

2◦

a′T
k

0 0 −1
1 2 3

=
βT

k

0 0 −1 1
4 5 6 7

∗

G
1 2 5
2 3 3
1 1 2
1 1 1
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Looking at (c′T , πT ) and (a′T
k , βT

k ) through NF =
1 2 3

6 5 3 (see also underlined num-
bers in the above), we find

min

(

7

| −1 |
,∞,

2

| −1 |

)

= 2 ⇒ l = 3, s = NF (l) = 3, c′s = 2

3◦

a′
s

4
−1

3
−1

=

B−1

1 −1 1 0
0 1 −2 0
0 −1 3 0
0 0 −1 1

∗

as

, a′
ks = −1

4◦ (a) NB =
1 2 3 4

4 2 1 3 , NF =
1 2 3

6 5 7

(b) b′T =

1 2 3 4

−36 18 −15 12

(c) −z = 225
BS = (−15, 18, 12,−36, 0, 0, 0) 6= BFS

(d)

B−1

1 −1 −3 4
0 1 −1 −1
0 −1 0 3
0 0 1 −1

(e)
πT

0 1 5 2 :=
πT

0 1 7 0 −
βT

k

0 0 1 −1 ∗
c′s
2

(f)
c′T

0 0 0
1 2 3

:=
πT

0 1 5 2
4 5 6 7

∗

G
1 2 5
2 3 3
1 1 2
1 1 1

+
cT

−9 −10 −15

Step 2.

1◦ k = 1

2◦

a′T
k

0 0 0
1 2 3

=

βT
k

0 −1 −3 4
4 5 6 7

∗

G
1 2 5
2 3 3
1 1 2
1 1 1

Looking at (c′T , πT ) and (a′T
k , βT

k ) through NF =
1 2 3

6 5 7 (see underlined numbers
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in the above), we find

min

(

5

| −3 |
,

1

| −1 |
,∞

)

= 1 ⇒ l = 2, s = 5, c′s = 1

3◦

a′
s

−1
1
−1

0

=

B−1

1 −1 −3 4
0 1 −1 −1
0 −1 0 3
0 0 1 −1

∗

as

0
1
0
0

, a′
ks = −1

4◦ (a) NB =
1 2 3 4

5 2 1 3 , NF =
1 2 3

6 4 7

(b) b′T =

1 2 3 4

36 −18 21 12

(c) −z = 189
BS = (21,−18, 12, 0, 36, 0, 0) 6= BFS

(d)

B−1

−1 1 3 −4
1 0 −4 3
−1 0 3 −1

0 0 1 −1

(e)
πT

1 0 2 6 :=
πT

0 1 5 2 −
βT

k

−1 1 3 −4 ∗
c′s
1

(f)
c′T

0 0 0
1 2 3

:=
πT

1 0 2 6
4 5 6 7

∗

G
1 2 5
2 3 3
1 1 2
1 1 1

+
cT

−9 −10 −15

Step 3.

1◦ k = 2

2◦

a′T
k

0 1 0
1 2 3

=
βT

k

1 0 −4 3
4 5 6 7

∗

G
1 2 5
2 3 3
1 1 2
1 1 1

Looking at (c′T , πT ) and (a′T
k , βT

k ) through NF =
1 2 3

6 4 7 (see underlined numbers
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in the above), we find

min

(

2

| −4 |
,∞,∞

)

=
1

2
⇒ l = 1, s = 6, c′s = 2

3◦

a′
s

3
−4

3
1

=

B−1

−1 1 3 −4
1 0 −4 3
−1 0 3 −1

0 0 1 −1

∗

as

0
0
1
0

, a′
ks = −4

4◦ (a) NB =
1 2 3 4

5 6 1 3 , NF =
1 2 3

2 4 7

(b) b′T =

1 2 3 4

45/2 9/2 15/2 15/2

(c) −z = 180
BS = (15/2, 0, 15/2, 0, 45/2, 9/2, 0) = BFS

(d)

B−1

−1/4 1 0 −7/4
−1/4 0 1 −3/4
−1/4 0 0 5/4
−1/4 0 0 −1/4

(e)
πT

3/2 0 0 15/2 :=
πT

1 0 2 6 −
βT

k

−1/4 0 1 −3/4 ∗
c′s
2

(f)
c′T

0 1/2 0 :=
πT

3/2 0 0 15/2 ∗

G
1 2 5
2 3 3
1 1 2
1 1 1

+
cT

−9 −10 −15

Step 4.

1◦ There are no negative elements in b′ ⇒ the end.
BOS = (15/2, 0, 15/2, 0, 45/2, 9/2, 0), zmin = −180
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Chapter 6.

Special Cases

All the above examples and theorems were for nondegenerate problems
where we had one and only one solution and no special difficulties arose.
The only complication was considered in Section 3.6 where we had no obvious
initial basic feasible solution. To cope with this difficulty, we had to solve an
auxiliary LP problem with some artificial variables and the artificial objec-
tive function. There, in Remark 3.6.4, we mentioned another difficulty: the
possibility of contradictory constraints.

In practice, there may arise some other special situations that also com-
plicate matters: degenerate basis, nonlimited feasible region, and nonunique
optimal solution. This chapter illustrates such cases because each computer
program must be so powerful as to be able to cope with any special situation.

6.1. Contradictory constraints

This means that the feasible region does not exist.
Example 6.1.1. For x1, x2 ≥ 0 solve the problem:

x1 + x2 ≥ 3
x1 + 2x2 ≤ 2
−x1 − x2 = z → min

Step 0.

−1 −1 1 0 −3
→ 1 2 0 1 2
−1 −1 0 0 0
↑

NB
3
4

NF
1
2

BS = (0, 0,−3, 2) 6= BFS, z = 0
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Step 1.

1◦ s=1

2◦ min(∞, 2/1) = 2 ⇒ k = 2

3◦ After normalization: the tableau does not change.

4◦ After subtractions:

→ 0 1 1 1 −1
1 2 0 1 2
0 1 0 1 2

NB
3
1

NF
4
2

BS = (2, 0,−1, 0) 6= BFS, z = −2

There are met the conditions to start the dual simplex method.

Step 2.

1◦ k=1

2◦ There are no negative numbers in the first four elements of the k-th row. Therefore
there is no basic feasible solution to this problem. The end.

Let us show another possible way to build the process of finding the solution in this
example.

In attempting to find a basic feasible solution, we introduce an artificial variable x5

and try to solve, for the first, the auxiliary problem: w = x5, w → min .

Step 0. Having input the given data, we start from the tableau where the third and
fourth columns are for the slack variables x3 and x4, and the fifth column is for the
artificial variable x5:

1 1 −1 0 1 3
1 2 0 1 0 2
−1 −1 0 0 0 0

0 0 0 0 1 0

Then we do the preparatory subtraction in order to present the starting tableau in the
canonical form with respect to xB = (x4, x5) and w = x5. Subtracting the first row from
the bottom row yields

1 1 −1 0 1 3
→ 1 2 0 1 0 2
−1 −1 0 0 0 0
−1 −1 1 0 0 −3
↑

NB
5
4

NF
1
2
3

BS = (0, 0, 0, 2, 3) = BFS, z = 0, w = 3
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This is the correct initial state, and we are ready to proceed. We begin with Stage I:

Step 1.

1◦ l=1, s=1

2◦ min(3
1
, 2

1
) = 2 ⇒ k = 2

3◦ After normalization: the tableau does not change.

4◦ After subtractions:

0 −1 −1 −1 1 1
1 2 0 1 0 2
0 1 0 1 0 2
0 1 1 1 0 −1

NB
5
1

NF
4
2
3

BS = (2, 0, 0, 0, 1) = BFS, z = −2, w = 1

Step 2.

1◦ There are no negative numbers in the first five elements of the last row, so the
minimum for w has been reached: wmin = 1. We have come to case (2) preceding
Example 3.6.1: Stage II can not start. This is the case of contradictory constraints.
From a slightly different point of view (see Remark 3.6.4), the reason for the dif-
ficulty is that the BFS obtained at item 4◦ (above) contains one of the artificial
variables, namely x5.

6.2. Degenerate basis

Let us recall the formal definition that LP problem Ax = b, cT x = z → min, is
degenerate if there exists at least one m ×m submatrix selected from the m × (n + 1)
augmented matrix [A, b] that is singular. One can easily see that the following fact is
true.

Theorem 6.2.1. If a problem is nondegenerate, then the basic variables in any basic
solution are precisely the nonzero values.

So, if one encounters a basic solution, — no matter feasible or not, — with at least
one zero variable, it is a good marker of problem degeneracy. The fact of degeneracy
is dangerous only when we encounter such a basic solution, in other words if we get a
zero among elements of the right hand side b′ of constraints A′x = b′. If then we choose
a pivot row to be the row with the zero right hand side, then evidently the objective
function remains unchanged, in which case the procedure can cycle indefinitely. It does
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not matter whether we have encountered or not a zero in the right hand side of constraints,
this must be considered a real possibility in the computing procedure. The procedure
must be designed in such a way that to be able to get out of any indefinite cycling.

Let us consider some examples.
Example 6.2.1. For x1, x2 ≥ 0 solve the problem

−2x1 + x2 ≤ 2
−x1 + 2x2 ≤ 4

x1 + x2 ≤ 8
x1 − 3x2 = z → min

We start by using the standard simplex method.

Step 0.

−2 1 1 0 0 2
−1 2 0 1 0 4

1 1 0 0 1 8
1 −3 0 0 0 0

NB
3
4
5

NF
1 1
2 2

BS = (0, 0, 2, 4, 8) = BFS, z = 0

Step 1.

1◦ l = 2, s = 2

2◦ min
(

2
1
, 4

2
, 8

1

)

= min(2, 2, 8)

Let us arbitrary choose k = 1 (although there is another variant k = 2).

3◦ After normalization: the tableau remains unchanged.

4◦ After subtractions:

−2 1 1 0 0 2
3 0 −2 1 0 0
3 0 −1 0 1 6
−5 0 3 0 0 6
↑

NB
2
4
5

NF
1 1
2 3

BS = (0, 2, 0, 0, 6) = BFS, z = −6

The basic variable x4 = 0 (this value is scored under in the last expression).

Step 2.

1◦ l = 1, s = 1.
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2◦ min(∞,−∞, 6/3). In compliance with Section 3.4 and Table 3.4.1, the situation
marked by −∞ (“prohibited”) requires to reconsider the choice of s. Because at
this step we have no another choice in the matter, we return to the preceding Step 1.
There we have a possibility to make another choice: k = 2. As this Step 2 will be
resumed again after the changed Step 1 (marked below as Step 1’), we shall defer
our discussion until then.

Step 1’.

1◦ l = 2, s = 2

2◦ min
(

2
1
, 4

2
, 8

1

)

= min(2, 2, 8). Now let us choose k = 2.

3◦ After normalization: 4◦ After subtractions:

−2 1 1 0 0 2
→ −1/2 1 0 1/2 0 2

1 1 0 0 1 8
1 −3 0 0 0 0

↑

−3/2 0 1 −1/2 0 0
−1/2 1 0 1/2 0 2

→ 3/2 0 0 −1/2 1 6
−1/2 0 0 3/2 0 6
↑

NB
3
2
5

NF
1 1
2 4

BS = (0, 2, 0, 0, 6) = BFS, z = −6

The basic variable x3 = 0 (scored under in the last expression).

Step 2’.

1◦ l = 1, s = 1

2◦ min
(

∞,∞, 6
3/2

)

⇒ k = 3

3◦ After normalization: 4◦ After subtractions:

−3/2 0 1 −1/2 0 0
−1/2 1 0 1/2 0 2

→ 1 0 0 −1/3 2/3 4
−1/2 0 0 3/2 0 6
↑

0 0 1 −1 1 6
0 1 0 1/3 1/3 4
1 0 0 −1/3 2/3 4
0 0 0 4/3 1/3 8

NB
3
2
1

NF
1 5
2 4

BS = (4, 4, 6, 0, 0) = BOS, zmin = −8

As it is seen, the above response to situation “prohibited” (marked by −∞) has
given the possibility to finish the solution process successfully. Let us see what will
be if the possibility is ignored by resuming Step 2.
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Step 2.

1◦ l = 1, s = 1

2◦ min(∞,−∞, 6/3). This time let us choose k = 2

3◦ After normalization: 4◦ After subtractions:

−2 1 1 0 0 2
→ 1 0 −2/3 1/3 0 0

3 0 −1 0 1 6
−5 0 3 0 0 6
↑

0 1 −1/3 2/3 0 2
→ 1 0 −2/3 1/3 0 0

0 0 1 −1 1 6
0 0 −1/3 5/3 0 6

↑

NB
2
1
5

NF
4
3

BS = (0, 2, 0, 0, 6) = BFS, z = −6

The basic variable x1 = 0 (scored under in the above).

Step 3.

1◦ l = 2, s = 3

2◦ min(∞,∞, 6/1). Let us choose k = 2, contrary to the rules of Table 3.4.1.

3◦ After normalization: 4◦ After subtractions:

0 1 −1/3 2/3 0 2
→ −3/2 0 1 −1/2 0 0

0 0 1 −1 1 6
0 0 −1/3 5/3 0 6

↑

−1/2 1 0 1/2 0 2
→ −3/2 0 1 −1/2 0 0

3/2 0 0 −1/2 1 6
−1/2 0 0 3/2 0 6
↑

NB
2
3
5

NF
4
1

BS = (0, 2, 0, 0, 6) = BFS, z = −6

The basic variable x3 = 0 (scored under in the above).

Step 4.

1◦ l = 2, s = 1

2◦ min
(

∞,∞, 6
3/2

)

. Let us choose k = 2, contrary to the rules of Table 3.4.1.
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3◦ After normalization: 4◦ After subtractions:

−1/2 1 0 1/2 0 2
→ 1 0 −2/3 1/3 0 0

3/2 0 0 −1/2 1 6
−1/2 0 0 3/2 0 6
↑

0 1 −1/3 2/3 0 2
1 0 −2/3 1/3 0 0
0 0 1 −1 1 6
0 0 −1/3 5/3 0 6

NB
2
1
5

NF
4
3

BS = (0, 2, 0, 0, 6) = BFS, z = −6

The basic variable x1 = 0 (scored under in the above).

Hence we have returned to the state of Step 2 and we shall repeat Steps 2 and 3 in-
definitely. This is the case of cycling. The objective reason of cycling is that several
hyperplanes representing different constraints go through one and the same point in the
space of variables x = (x1, . . . , xn). If this point lies in the feasible region, two or more
vertices of the feasible hyperpolyhedron coincide. This situation takes place in the above
example where three several lines meet at point (x1, x2) = (0, 2):
(1) x1 = 0
(2) x3 = 0, i.e., −2x1 + x2 = 2
(3) x4 = 0, i.e., −x1 + 2x2 = 4
Hence three vertices coincide: the intersection of lines (1) and (2), the intersection of
lines (1) and (3), and the intersection of lines (2) and (3). Clearly, the objective function
has one and the same value, z = −6, at these vertices. We change from one vertex to
the other remaining actually at one and the same point if we act as in the above Steps 3
and 4. These changes are shown in Fig. 6.2.1.

As it is seen, unsuccessful are actions at Steps 2, 3 and 4. Common for them is that
the key row selected for normalization, its number k = 2, has the zero value b′k = 0 for
the basic variable of the preceding step: for Step 2 the equality b′k = 0 means x4 = 0;
for Step 3 the equality b′k = 0 means x1 = 0; and for Step 4 the equality b′k = 0 means
x3 = 0.

The basis in which at least one basic variable equals zero is called the degenarate
basis. Hence namely it is a potential cause of cycling, and this cause becomes actual if
one acts in such a manner.

The computer program must be so powerful as to avoid the possible cycling. Dantzig
suggests to slightly change the right hand sides of constraints by adding the small values
εi where i = 1, 2, . . . , m and i is the constraint number [1], [2]. Due to the adding, the
primarily coincided vertices are being “pulled apart”, but then one should let ε be equal
zero in the solution found.

Another way to avoid cycling has been shown yet in this example: Step 1’ and then
Step 2’ (see Fig 6.2.1). Note that in itself Step 1 leading to state S1 does not contain any
unsuccessful actions, but Step 2 leads us up the cycle S2 ↔ S3 (see Fig. 6.2.1). Therefore
one can avoid getting into the cycle if after Step 1 (and state S1) one will act as follows:
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z = 0 x4 = 0
z = −6

-
-

x1 = 0
z = −6-

x3 = 0
z = −6

BOS
z = −8-

S0 S1 S2 S∗?S3

6

z = −16- Step 3”Step 2”
S4

Step 1’

-

6?Step 4

Step 2 Step 3 Step 2’- - -

�

-

Fig. 6.2.1. Graph of the solution with possible cycling: S0 is the initial state; S∗ is the
optimal state; S1, S2, S3 are states in one of three coinciding vertices where one of basic
variables, correspondingly x4, x1 or x3, is zero; S4 is the state out of feasible region.

Step 2”.

1◦ l = 1, s = 1

2◦ min(∞,−∞, 6/3). Choose k = 3.

3◦ After normalization: 4◦ After subtractions:

−2 1 1 0 0 2
3 0 −2 1 0 0

→ 1 0 −1/3 0 1/3 2
−5 0 3 0 0 6
↑

0 1 1/3 0 2/3 6
→ 0 0 −1 1 −1 −6

1 0 −1/3 0 1/3 2
0 0 4/3 0 5/3 16

↑

NB
2
4
1

NF
1 5
2 3

BS = (2, 6, 0,−6, 0) 6= BFS, z = −16 < zmin

By doing so, we get out of the feasible region into the point of intersection of two lines:
−2x1 + x2 = 2 (as x3 = 0) and x1 + x2 = 8 (as x5 = 0). We are able to return from
there and, by so doing, to track down the BOS (basic optimal solution) but only by the
dual simplex method. (The dual method applicability conditions are being recognized as
fulfilled along the bottom row and the right hand column of the tableau.)

Step 3”.

1◦ k = 2

2◦ min
(

4/3
|−1|

, 5/3
|−1|

)

= 4/3 ⇒ l = 2, s = 3
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3◦ After normalization: 4◦ After subtractions:

0 1 1/3 0 2/3 6
→ 0 0 1 −1 1 6

1 0 −1/3 0 1/3 2
0 0 4/3 0 5/3 16

↑

0 1 0 1/3 1/3 4
0 0 1 −1 1 6
1 0 0 −1/3 2/3 4
0 0 0 4/3 1/3 8

NB
2
3
1

NF
5
4

BS = (4, 4, 6, 0, 0) = BOS, zmin = −8

In conclusion, note that even if we found ourselves in a cycle (in the example, states
S2 ↔ S3), it is possible to get out from there if we act properly. In the example, it is
evident that state S3 after Step 3 is identical to the state obtained after Step 1’. Hence
if we execute Step 2’ after Step 3, then the exit from the cycle is guaranteed. Just the
same, we can reach the final (optimal) state S∗ after state S2, too, if we do well, i.e. if
we do not permit such a hoice of k for which b′k = 0, for example:

Step 3’ (after Step 2).

1◦ l = 2, s = 3

2◦ min(∞,∞, 6/1). ⇒ k = 3

3◦ After normalization: 4◦ After subtractions:

0 1 −1/3 2/3 0 2
1 0 −2/3 1/3 0 0

→ 0 0 1 −1 1 6
0 0 −1/3 5/3 0 6

↑

0 1 0 1/3 1/3 4
1 0 0 −1/3 2/3 4
0 0 1 −1 1 6
0 0 0 4/3 1/3 8

NB
2
1
3

NF
4
5

BS = (4, 4, 6, 0, 0) = BOS, z = −8 = zmin

Exercise 6.1.1. E.M.L. Beale has invented another example with possible cycling [3]

1/4x1 − 8x2 − x3 + 9x4 ≤ 0,
1/2x2 − 12x2 − 1/2x3 + 3x4 ≤ 0,

x3 ≤ 1,
−3/4x1 + 20x2 − 1/2x3 + 6x4 = z → min

Number the constraints in the same order and choose pairs (k, s) step by step as follows:
(1, 1); (2, 2); (1, 3); (2, 4); (1, 5); and (2, 6). Make sure that after Step 6 the problem
returns to the initial state S0 that was before Step 1 (see Fig. 6.2.2). In doing so, state S0

has a pair of basic variables, x5 and x6, both equal zero. Further, as the above mentioned
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5
6

6
1

1
2

2
3

3
4

4
5

- - - - -- -1 2 3 4 5
(1,1) (2,2) (1,3) (2,4) (1,5)

S0 S1 S2 S3 S4 S5

� 6
(2,6)

-

S6 S∗
- -1’ 2’

(3,3) (2,1)

Fig. 6.2.2. Cycling and the exit from cycling in the problem by E.M.L. Beale

steps are executed, the pairs of zero basic variables appear according to Fig. 6.2.2 (where
the numbers of zero basic variables are shown within the boxes). If however one chooses
the pairs (k, s) in another way, namely: at Step 1’ (k, s) = (3, 3); and at Step 2’ (k, s) =
(2, 1), then the appearing states S6 and S∗ have no zero basic variables, and S∗ provides
the sought (optimal) solution: BOS = (1, 0, 1, 0, 3/4, 0, 0) and zmin = −5/4.

6.3. Unbounded feasible region

This is the situation in Theorem 3.2.1 (ii) (a) showing that the objective function can
be made as small as desired and hence no solution exists.

Example 6.3.1. For x1, x2 ≥ 0 solve the problem:

2x1 + x2 ≥ 7
x1 + x2 ≥ 4
x1 + 3x2 ≥ 9

−2x1 − 3x2 = z → min

Step 0.
2 1 −1 0 0 1 0 0 7
1 1 0 −1 0 0 1 0 4
1 3 0 0 −1 0 0 1 9
−2 −3 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 0

The last row is introduced for the auxiliary problem w = x6 + x7 + x8 → min with the
artificial variables x6, x7, x8 and artificial objective function w. At this step we do the
preparatory subtraction to represent the tableau in the canonical form for a basis:
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2 1 −1 0 0 1 0 0 7
1 1 0 −1 0 0 1 0 4

→ 1 3 0 0 −1 0 0 1 9
−2 −3 0 0 0 0 0 0 0
−4 −5 1 1 1 0 0 0 −20

↑

NB
6
7
8

NF
1
2
3
4
5

BS = (0, 0, 0, 0, 0, 7, 4, 9) = BFS, z = 0, w = 20

Stage I (solving the auxiliary LP problem).

Step 1.

1◦ l = 2, s = 2

2◦ min(7
1
, 4

1
, 9

3
) = 3 ⇒ k = 3

3◦ After normalization:

2 1 −1 0 0 1 0 0 7
1 1 0 −1 0 0 1 0 4

→ 1/3 1 0 0 −1/3 0 0 1/3 3
−2 −3 0 0 0 0 0 0 0
−4 −5 1 1 1 0 0 0 −20

↑

4◦ After subtractions:

5/3 0 −1 0 1/3 1 0 −1/3 4
→ 2/3 0 0 −1 1/3 0 1 −1/3 1

1/3 1 0 0 −1/3 0 0 1/3 3
−1 0 0 0 −1 0 0 1 9
−7/3 0 1 1 −2/3 0 0 5/3 −5
↑

NB
6
7
2

NF
1
8
3
4
5

BS = (0, 3, 0, 0, 0, 4, 1, 0) z = −9, w = 5

Step 2.

1◦ l = 1, s = 1

2◦ min( 4
5/3

, 1
2/3

, 3
1/3

) = 3
2

⇒ k = 2
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3◦ After normalization:

5/3 0 −1 0 1/3 1 0 −1/3 4
→ 1 0 0 −3/2 1/2 0 3/2 −1/2 3/2

1/3 1 0 0 −1/3 0 0 1/3 3
−1 0 0 0 −1 0 0 1 9
−7/3 0 1 1 −2/3 0 0 5/3 −5
↑

4◦ After subtractions:

→ 0 0 −1 5/2 −1/2 1 −5/2 1/2 3/2
1 0 0 −3/2 1/2 0 3/2 −1/2 3/2
0 1 0 1/2 −1/2 0 −1/2 1/2 5/2
0 0 0 −3/2 −1/2 0 3/2 1/2 21/2
0 0 1 −5/2 1/2 0 7/2 1/3 −3/2

↑

NB
6
1
2

NF
7
8
3
4
5

BS =
(

3

2
,
5

2
, 0, 0, 0,

3

2
, 0, 0

)

z = −21/2, w = 3/2

Step 3.

1◦ l = 4, s = 4

2◦ min(3/2
5/2

,∞, 5/2
1/2

) = 3
5

⇒ k = 1

3◦ After normalization:

→ 0 0 −2/5 1 −1/5 2/5 −1 1/5 3/5
1 0 0 −3/2 1/2 0 3/2 −1/2 3/2
0 1 0 1/2 −1/2 0 −1/2 1/2 5/2
0 0 0 −3/2 −1/2 0 3/2 1/2 21/2
0 0 1 −5/2 1/2 0 7/2 1/2 −3/2

↑

4◦ After subtractions:

0 1 −2/5 1 −1/5 2/5 −1 1/5 3/5
1 0 −3/5 0 1/5 3/5 0 −1/5 12/5
0 1 1/5 0 −2/5 −1/5 0 2/5 11/5
0 0 −3/5 0 −4/5 3/5 0 4/5 57/5
0 0 0 0 0 1 1 1 0

NB
4
1
2

NF
7
8
3
6
5

BS =
(

12

5
,
11

5
, 0,

3

5
, 0, 0, 0, 0

)

z = −57/5, w = 0
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Stage I has been successfully completed, and the artificial variables x6, x7, x8, as well
as the artificial objective function w, should be deleted. As a result, we begin the next
stage, Stage II, with the following tableau:

0 0 −2/5 1 −1/5 3/5
→ 1 0 −3/5 0 1/5 12/5

0 1 1/5 0 −2/5 11/5
0 0 −3/5 0 −4/5 57/5

↑

NB
4
1
2

NF
3
5

Stage II (solving the given LP problem).

Step 4.

1◦ l = 2, s = 5

2◦ min(∞, 12/5
1/5

,∞) = 12 ⇒ k = 2

3◦ After normalization: 4◦ After subtractions:

0 0 −2/5 1 −1/5 3/5
→ 5 0 −3 0 1 12

0 1 1/5 0 −2/5 11/5
0 0 −3/5 0 −4/5 57/5

↑

1 0 −1 1 0 3
5 0 −3 0 1 12
2 1 −1 0 0 7
4 0 −3 0 0 21

NB
4
5
2

NF
3
1

BS = (0, 7, 0, 3, 12) z = −21

Step 5.

1◦ l = 1, s = 3

2◦ min(∞,∞,∞) =∞ ⇒ the end
The appearance of indicators “∞” for all constraints evidences the unbounded
feasible region.

If one continue from this point with an arbitrary choice of the pivot in the third
column, then the situation of all “∞” will repeat and the indefinite cycling is possible.
To show this, let us consider another (more simple in calculation) example.

Example 6.3.2. For x1, x2 ≥ 0 solve the problem:

x1 − x2 ≥ 1
x2 ≤ 2

−x1 − x2 = z → min
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Step 0.

→ 1 −1 −1 0 1
0 1 0 1 2
−1 −1 0 0 0
↑

NB
3
4

NF
1
2

BS = (0, 0,−1, 2) 6= BFS, z = 0

Step 1.

1◦ s = 1

2◦ min(∞,∞) =∞ ⇒ k = 1

3◦ After normalization: the tableau does not change.

4◦ After subtractions:

1 −1 −1 0 1
→ 0 1 0 1 2

0 −2 −1 0 1
↑

NB
1
4

NF
3
2

BS = (1, 0, 0, 2) = BFS, z = −1

Step 2.

1◦ s = 2

2◦ min(∞, 2/1), ⇒ k = 2

3◦ After normalization: the tableau does not change.

4◦ After subtractions:

→ 1 0 −1 1 3
0 1 0 1 2
0 0 −1 2 5
↑

NB
1
2

NF
3
4

BS = (3, 2, 0, 0) = BFS, z = −5
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�

-
Step 1 Step 2 Step 3

Step 4

Fig. 6.3.1. Cycling in Example 6.3.2.

Step 3.

1◦ s = 3

2◦ min(∞,∞), ⇒ k = 1

3◦ After normalization: 4◦ After subtractions:

→ −1 0 1 −1 −3
0 1 0 1 2
0 0 −1 2 5

↑

→ −1 0 1 −1 −3
0 1 0 1 2
−1 0 0 1 2
↑

NB
3
2

NF
1
4

BS = (0, 2,−3, 0) 6= BFS, z = −2

Step 4.

1◦ s = 1

2◦ min(∞,∞), ⇒ k = 1

3◦ After normalization: 4◦ After subtractions:

→ 1 0 −1 1 3
0 1 0 1 2
−1 0 0 1 2
↑

→ 1 0 −1 1 3
0 1 0 1 2
0 0 −1 2 5

NB
1
2

NF
3
4

BS = (3, 2, 0, 0) = BFS, z = −5

The indefinite cycling is evident and shown in Fig. 6.3.1. To avoid cycling, one should
stop when indicators “∞” appear for all constraints.
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6.4. Nonunique optimal solutions

Example 6.4.1. For x1, x2 ≥ 0 solve the problem:

2x1 + x2 ≤ 7
x1 + x2 ≤ 4
x1 + 3x2 ≤ 9
−x1 − x2 = z → min

Step 0.

2 1 1 0 0 7
1 1 0 1 0 4

→ 1 3 0 0 1 9
−1 −1 0 0 0 0

↑

NB
3
4
5

NF
1
2

BS = (0, 0, 7, 4, 9) = BFS, z = 0

Step 1.

1◦ l = 2, s = 2

2◦ min(7/1, 4/1, 9/3) = 3 ⇒ k = 3

3◦ After normalization: 4◦ After subtractions:

2 1 1 0 0 7
1 1 0 1 0 4

→ 1/3 1 0 0 1/3 3
−1 −1 0 0 0 0

↑

5/3 0 1 0 −1/3 4
→ 2/3 0 0 1 −1/3 1

1/3 1 0 0 1/3 3
−2/3 0 0 0 1/3 3
↑

NB
3
4
2

NF
1
5

BS = (0, 3, 4, 1, 0), z = −3

Step 2.

1◦ l = 1, s = 1

2◦ min( 4
5/3

, 1
2/3

, 3
1/3

) = 3
2

⇒ k = 2
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3◦ After normalization: 4◦ After subtractions:

5/3 0 1 0 −1/3 4
→ 1 0 0 3/2 −1/2 3/2

1/3 1 0 0 1/3 3
−2/3 0 0 0 1/3 3
↑

→ 0 0 1 −5/2 1/2 3/2
1 0 0 3/2 −1/2 3/2
0 1 0 −1/2 1/2 5/2
0 0 0 1 0 4

↑

3
1
2

5
4

BS = (3/2, 5/2, 3/2, 0, 0), z = −4

This is the situation in Theorem 3.2.1 (iii) detected by a zero in the last row for a
nonbasic variable, here x5, when no negative numbers exist in the elements of this row.
Here by pivoting on a nonnegative element of the fifth column, we can obtain a second
feasible solution from the last tableau without changing the value of z, evidently due to
the above mentioned zero.

Step 3.

1◦ l = 2, s = 5

2◦ min(3/2
1/2

,∞, 5/2
1/2

) = 3 ⇒ k = 1

3◦ After normalization: 4◦ After subtractions:

→ 0 0 2 −5 1 3
1 0 0 3/2 −1/2 3/2
0 1 0 −1/2 1/2 5/2
0 0 0 1 0 4

↑

→ 0 0 2 −5 1 3
1 0 1 −1 0 3
0 1 −1 2 0 1
0 0 0 1 0 4

↑

NB
5
1
2

NF
4
3

BS = (3, 1, 0, 0, 3), z = −4

The situation is repeated, now with x3. If we proceed, we have:

Step 4.

1◦ l = 2, s = 3

2◦ min(3
2
, 3

1
,∞) = 3/2 ⇒ k = 1

3◦ After normalization: 4◦ After subtractions:

→ 0 0 1 −5/2 1/2 3/2
1 0 1 −1 0 3
0 1 −1 2 0 1
0 0 0 1 0 4

↑

0 0 1 −5/2 1/2 3/2
1 0 0 3/2 −1/2 3/2
0 1 0 −1/2 1/2 5/2
0 0 0 1 0 4

NB
3
1
2

NF
4
5

BS = (3/2, 5/2, 3/2, 0, 0), z = −4
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This is identical to the state after Step 2, so one can see the cycling between Step 3
and Step 4. Naturally, there is no need to continue. The basic optimal solution is given
by the convex span of the solutions obtained within the cycle. Here we have

BOS =
(

3−
3

2
θ, 1 +

3

2
θ,

3

2
θ, 0, 3− 3θ

)

where 0 ≤ θ ≤ 1.

Remark 6.4.1. From the above, one can see that the cycling is possible not only for
degenerate problems.
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Chapter 7.

Case Study Assignments

All the offered assignments are based on the above considered algorithms of the sim-
plex method. We have ten basic algorithms numbered by figures from 0 to 9. Corre-
sponding variants are listed below:

0. The standard simplex method with the obvious initial basic solution and with the
correct form of a basis. Permissible for programming constraints are “≥” and “≤”.
Before inputing a problem, constraints “≥” should be replaced by “≤” using a
premultiplier −1. The algorithm is described in Section 3.4.

1. The standard simplex method with the obvious initial basic solution and without the
correct form of a basis. Permissible for programming are constraints “≥” and “≤”.
This algorithm is described in Section 3.5.

2. The standard simplex method with generation the basic feasible solution by using
artificial variables and artificial objective function, with the correct form of a basis.
This algorithm is described in Section 3.6. It is subclassified into the following 5
assignment variants marked by the second figure in the variant number:

2.1. Permissible for programming are constraints “≥”. Before inputing a problem,
constraints “≤” should be replaced by “≥” using a premultiplier −1.

2.2. Permissible for programming are constraints “≥” and “≤”.

2.3. Permissible for programming are constraints “=” and “≤”. Constraints “≥”
should be replaced by “≤” using a premultiplier −1 before inputing a problem
into computer.

2.4. Permissible for programming are constraints “=” and “≥”. Constraints “≤”
should be replaced by “≥” using a premultiplier −1 before inputing a problem
into computer.

2.5. Permissible for programming are constraints “=”, “≥” and “≤”.

3. The dual simplex method with the obvious initial basic solution and with the cor-
rect form of a basis. Permissible for programming are the same constraints as in
variant 0. This algorithm is described in Section 4.1.
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4. The dual simplex method with the obvious initial basic solution and without the
correct form of a basis. Permissible for programming are the same constraints as
in variant 1. This algorithm is described in Section 4.2.

5. The dual simplex method with artificial variables and artificial objective function (for
constraints “=” only) used to generate a basic feasible solution without the correct
form for a basis. This algorithm is described in Section 4.3. It is classified into the
following 3 assignment variants marked by the second figure in the variant number:

5.1. Permissible for programming are constraints “=” and “≤”. Constraints “≥”
should be replaced by “≤” using a premultiplier −1 before inputing a problem
into computer.

5.2. Permissible for programming are constraints “=” and “≥”. Constraints “≤”
should be replaced by “≥” using a premultiplier −1 before inputing a problem
into computer.

5.3. Permissible for programming are constraints “=”, “≥” and “≤”.

6. The revised (conventional) simplex method with the obvious basic solution. Permis-
sible for programming are the same constraints as in variant 0. This algorithm is
described in Section 5.4.

7. The revised (conventional) simplex method with generation the basic feasible solution
by using artificial variables and artificial objective function. This algorithm is
described in Section 5.6. It is classified into the following 5 assignment variants
marked by the second figure in the variant number:

7.1. Corresponds to 2.1.

7.2. Corresponds to 2.2.

7.3. Corresponds to 2.3.

7.4. Corresponds to 2.4.

7.5. Corresponds to 2.5.

8. The revised dual simplex method with the obvious initial basic solution. Permissi-
ble for programming are the same constraints as in variant 0. This algorithm is
described in Section 5.5.

9. The revised dual simplex method with artificial variables and artificial objective func-
tion (for constraints “=” only) used to generate a basic (non-feasible) solution. This
algorithm is described in Section 5.7. Permissible for programming are the same
constraints as in variant 5.1.

Remark 7.1.2. Variants 6 to 9 (the revised simplex method) require the correct form of
a basis: amongst the coefficients for basic variables there are “+1”s only and no “−1”s.

122



Thus we have the following 20 assignment variants of the first level of complexity
(level 1):

0 1 2.1 2.2 2.3 2.4 2.5 3 4 5.1
5.2 5.3 6 7.1 7.2 7.3 7.4 7.5 8 9

The next 50 variants will be obtained by placing a requirement on the program design
to implement ”What if ...” mode of operation. This means that, having solved a problem
within any variant of the first level of complexity, the program must suggest to continue
the solution by introducing one more constraint. The type of this additional constraint
is identified by the third figure added to any of the above 20 variant numbers according
to the following table:

≤ ≥ =
1 2 3

From these 50 variants the following 30 variants are rated in the advanced complexity
class (level 2):

0.1 2.1.1 2.3.1 3.1 5.1.1
0.2 2.1.2 2.3.2 3.2 5.1.2
0.3 2.1.3 2.4.1 3.3 5.2.1
1.1 2.2.1 2.4.2 4.1 5.2.2
1.2 2.2.2 2.5.1 4.2 5.3.1
1.3 2.2.3 2.5.2 4.3 5.3.2

The remaining 20 variants of 50 fall into the heightened complexity class (level 3):

6.1 7.1.2 7.2.3 7.4.2 8.2
6.2 7.1.3 7.3.1 7.5.1 8.3
6.3 7.2.1 7.3.2 7.5.2 9.1

7.1.1 7.2.2 7.4.1 8.1 9.2

Therefore, we have 70 variants in total: 20 variants of the first (basic) level of com-
plexity, 30 variants of the second (advanced) level of complexity, and 20 variants of the
third (heightened) level of complexity.

The level of complexity chosen by a student may be brought into correlation with
the grade he/she has a clame on in the result of this case study: satisfactory, good or
excelent. Because variants of advanced and heightened complexity levels are derivative of
basic level variants, the student can change to higher level during his/her work in order
to improve his/her rating.

The computing program should have the convenient interface (a user’s menu), demon-
strate student’s individual work and make full use of computer resources and program-
ming language potentialities for savings in computer time and memory. It is recommended
to prepare in advance some demonstrational problems to show the computing program
in action.
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Conclusion

In this book, we have solved the problem to provide students with the complete and
carefully adjusted set of possible case study assignments for linear programming by the
simplex method. All the case study variants differ not in the input data but in the
algorithms ought to be implemented in a student-designed software.

The book contains not only the necessary theoretical facts but also all the grounds for
each variant of the simplex method, suggestions on how to implement the calculations and
a number of illustrative examples. All this makes the book self-sufficient, not requiring
to address the other books, while performing the individual case study project. Students
are given the possibility to develop their own projects selected from the set of 70 different
variants.
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