```
REAL arr(n),heap(m)
C USES sort
    Returns in heap (1:m) the largest m elements of the array arr (1:n), with heap(1) guar-
    anteed to be the the mth largest element. The array arr is not altered. For efficiency, this
    routine should be used only when m}<<n\mathrm{ .
INTEGER i,j,k
REAL swap
if (m.gt.n/2.or.m.lt.1) pause 'probable misuse of hpsel'
do 11 i=1,m
    heap(i)=arr(i)
enddo 11
call sort(m,heap) Create initial heap by overkill! We assume m}<<n\mathrm{ .
do }12\textrm{i}=\textrm{m}+1,\textrm{n}\mathrm{ (For each remaining element..
    if(arr(i).gt.heap(1))then Put it on the heap?
        heap (1)=arr(i)
        j=1
        continue Sift down.
            k=2*j
            if(k.gt.m)goto 2
            if(k.ne.m)then
                if(heap(k).gt.heap(k+1))k=k+1
            endif
            if(heap(j).le.heap(k))goto 2
            swap=heap(k)
            heap(k)=heap(j)
            heap(j)=swap
            j=k
        goto 1
        continue
    endif
enddo 12
return
end
```

CITED REFERENCES AND FURTHER READING:
Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), pp. 126ff. [1]
Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading, MA: Addison-Wesley).

8.6 Determination of Equivalence Classes

A number of techniques for sorting and searching relate to data structures whose details are beyond the scope of this book, for example, trees, linked lists, etc. These structures and their manipulations are the bread and butter of computer science, as distinct from numerical analysis, and there is no shortage of books on the subject.

In working with experimental data, we have found that one particular such manipulation, namely the determination of equivalence classes, arises sufficiently often to justify inclusion here.

The problem is this: There are N "elements" (or "data points" or whatever), numbered $1, \ldots, N$. You are given pairwise information about whether elements are in the same equivalence class of "sameness," by whatever criterion happens to be of interest. For example, you may have a list of facts like: "Element 3 and element 7 are in the same class; element 19 and element 4 are in the same class; element 7 and element 12 are in the same class," Alternatively, you may have a procedure, given the numbers of two elements
j and k, for deciding whether they are in the same class or different classes. (Recall that an equivalence relation can be anything satisfying the RST properties: reflexive, symmetric, transitive. This is compatible with any intuitive definition of "sameness.")

The desired output is an assignment to each of the N elements of an equivalence class number, such that two elements are in the same class if and only if they are assigned the same class number.

Efficient algorithms work like this: Let $F(j)$ be the class or "family" number of element j. Start off with each element in its own family, so that $F(j)=j$. The array $F(j)$ can be interpreted as a tree structure, where $F(j)$ denotes the parent of j. If we arrange for each family to be its own tree, disjoint from all the other "family trees," then we can label each family (equivalence class) by its most senior great-great-. . .grandparent. The detailed topology of the tree doesn't matter at all, as long as we graft each related element onto it somewhere.

Therefore, we process each elemental datum " j is equivalent to k " by (i) tracking j up to its highest ancestor, (ii) tracking k up to its highest ancestor, (iii) giving j to k as a new parent, or vice versa (it makes no difference). After processing all the relations, we go through all the elements j and reset their $F(j)$'s to their highest possible ancestors, which then label the equivalence classes.

The following routine, based on Knuth [1], assumes that there are m elemental pieces of information, stored in two arrays of length m, lista, listb, the interpretation being that $\operatorname{lista}(\mathrm{j})$ and $\operatorname{listb}(\mathrm{j}), \mathrm{j}=1 \ldots \mathrm{~m}$, are the numbers of two elements which (we are thus told) are related.

```
SUBROUTINE eclass(nf,n,lista,listb,m)
INTEGER m,n,lista(m),listb(m),nf(n)
    Given \(m\) equivalences between pairs of \(n\) individual elements in the form of the input arrays
    lista ( \(1: m\) ) and listb \((1: m)\), this routine returns in \(n f(1: n)\) the number of the equiva-
    lence class of each of the \(n\) elements, integers between 1 and \(n\) (not all such integers used).
INTEGER j,k,l
do \(11 \mathrm{k}=1, \mathrm{n}\) Initialize each element its own class.
    \(n f(k)=k\)
enddo \({ }_{11}\)
do \(12 \mathrm{l}=1\), m For each piece of input information...
    j=lista(1)
    if \((\operatorname{nf}(j) . n e . j)\) then \(\quad\) Track first element up to its ancestor.
        \(j=n f(j)\)
    goto 1
    endif
    \(\mathrm{k}=1 \mathrm{istb}(\mathrm{l})\)
    if \((n f(k) . n e . k)\) then \(\quad\) Track second element up to its ancestor.
        \(\mathrm{k}=\mathrm{nf}\) (k)
    goto 2
    endif
    if ( \(\mathrm{j} . \mathrm{ne} . \mathrm{k}\) ) \(\mathrm{nf}(\mathrm{j})=\mathrm{k} \quad\) If they are not already related, make them so.
enddo 12
do \(13 \mathrm{j}=1\),n Final sweep up to highest ancestors.
    if \((n f(j) . n e . n f(n f(j)))\) then
                \(n f(j)=n f(n f(j))\)
    goto 3
    endif
enddo 13
return
END
```

```
SUBROUTINE eclazz(nf,n,equiv)
INTEGER n,nf(n)
LOGICAL equiv
EXTERNAL equiv
    Given a user-supplied logical function equiv which tells whether a pair of elements, each
    in the range 1...n, are related, return in nf equivalence class numbers for each element.
INTEGER jj,kk
nf(1)=1
do 12 jj=2,n Loop over first element of all pairs.
    nf(jj)=jj
    do 11 kk=1,jj-1 Loop over second element of all pairs.
        nf(kk)=nf(nf(kk)) Sweep it up this much.
        if (equiv(jj,kk)) nf(nf(nf(kk)))=jj Good exercise for the reader to figure
    enddo 11 out why this much ancestry is
enddo }1
    necessary!
do 13 jj=1,n
    Only this much sweeping is needed finally.
    nf(jj)=nf(nf(jj))
enddo 13
return
END
```


CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1968, Fundamental Algorithms, vol. 1 of The Art of Computer Programming (Reading, MA: Addison-Wesley), §2.3.3. [1]
Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 30.

