
372 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

This equation, if used with i ranging over the roots already polished, will prevent a
tentative root from spuriously hopping to another one’s true root. It is an example
of so-called zero suppression as an alternative to true deflation.

Muller’s method, which was described above, can also be useful at the
polishing stage.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 7. [1]

Peters G., and Wilkinson, J.H. 1971, Journal of the Institute of Mathematics and its Applications,
vol. 8, pp. 16–35. [2]

IMSL Math/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042). [3]

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §8.9–8.13. [4]

Adams, D.A. 1967, Communications of the ACM, vol. 10, pp. 655–658. [5]

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §4.4.3. [6]

Henrici, P. 1974, Applied and Computational Complex Analysis, vol. 1 (New York: Wiley).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§5.5–5.9.

9.6 Newton-Raphson Method for Nonlinear
Systems of Equations

We make an extreme, but wholly defensible, statement: There are no good, gen-
eral methods for solving systems of more than one nonlinear equation. Furthermore,
it is not hard to see why (very likely) there never will be any good, general methods:
Consider the case of two dimensions, where we want to solve simultaneously

f(x, y) = 0

g(x, y) = 0
(9.6.1)

The functions f and g are two arbitrary functions, each of which has zero
contour lines that divide the (x, y) plane into regions where their respective function
is positive or negative. These zero contour boundaries are of interest to us. The
solutions that we seek are those points (if any) that are common to the zero contours
of f and g (see Figure 9.6.1). Unfortunately, the functions f and g have, in general,
no relation to each other at all! There is nothing special about a common point from
either f’s point of view, or from g’s. In order to find all common points, which are
the solutions of our nonlinear equations, we will (in general) have to do neither more
nor less than map out the full zero contours of both functions. Note further that
the zero contours will (in general) consist of an unknown number of disjoint closed
curves. How can we ever hope to know when we have found all such disjoint pieces?

For problems in more than two dimensions, we need to find points mutually
common to N unrelated zero-contour hypersurfaces, each of dimension N − 1.

9.6 Newton-Raphson Method for Nonlinear Systems of Equations 373

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

g = 0

g
=

0

f = 0

f = 0

f pos
M

g pos

f pos

f pos
f neg

g = 0

g neg

g pos

g neg

g pos

y

x

no root here!
two roots here

Figure 9.6.1. Solution of two nonlinear equations in two unknowns. Solid curves refer to f(x, y),
dashed curves to g(x, y). Each equation divides the (x, y) plane into positive and negative regions,
bounded by zero curves. The desired solutions are the intersections of these unrelated zero curves. The
number of solutions is a priori unknown.

You see that root finding becomes virtually impossible without insight! You
will almost always have to use additional information, specific to your particular
problem, to answer such basic questions as, “Do I expect a unique solution?” and
“Approximately where?” Acton [1] has a good discussion of some of the particular
strategies that can be tried.

In this section we will discuss the simplest multidimensional root finding
method, Newton-Raphson. This method gives you a very efficient means of
converging to a root, if you have a sufficiently good initial guess. It can also
spectacularly fail to converge, indicating (though not proving) that your putative
root does not exist nearby. In §9.7 we discuss more sophisticated implementations
of the Newton-Raphson method, which try to improve on Newton-Raphson’s poor
global convergence. A multidimensional generalization of the secant method, called
Broyden’s method, is also discussed in §9.7.

A typical problem givesN functional relations to be zeroed, involving variables
xi, i = 1, 2, . . . , N :

Fi(x1, x2, . . . , xN) = 0 i = 1, 2, . . . , N. (9.6.2)

We let x denote the entire vector of values xi and F denote the entire vector of
functions Fi. In the neighborhood of x, each of the functions Fi can be expanded
in Taylor series

Fi(x + δx) = Fi(x) +

N∑
j=1

∂Fi
∂xj

δxj + O(δx2). (9.6.3)

374 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The matrix of partial derivatives appearing in equation (9.6.3) is the Jacobian
matrix J:

Jij ≡
∂Fi
∂xj

. (9.6.4)

In matrix notation equation (9.6.3) is

F(x + δx) = F(x) + J · δx + O(δx2). (9.6.5)

By neglecting terms of order δx2 and higher and by setting F(x + δx) = 0, we
obtain a set of linear equations for the corrections δx that move each function closer
to zero simultaneously, namely

J · δx = −F. (9.6.6)

Matrix equation (9.6.6) can be solved by LU decomposition as described in
§2.3. The corrections are then added to the solution vector,

xnew = xold + δx (9.6.7)

and the process is iterated to convergence. In general it is a good idea to check the
degree to which both functions and variables have converged. Once either reaches
machine accuracy, the other won’t change.

The following routinemnewt performs ntrial iterations starting from an initial
guess at the solution vector x of length n variables. Iteration stops if either the sum
of the magnitudes of the functionsFi is less than some tolerance tolf, or the sum of
the absolute values of the corrections to δxi is less than some tolerance tolx. mnewt
calls a user supplied subroutine usrfun which must return the function values F and
the Jacobian matrix J. If J is difficult to compute analytically, you can try having
usrfun call the routine fdjac of §9.7 to compute the partial derivatives by finite
differences. You should not make ntrial too big; rather inspect to see what is
happening before continuing for some further iterations.

SUBROUTINE mnewt(ntrial,x,n,tolx,tolf)
INTEGER n,ntrial,NP
REAL tolf,tolx,x(n)
PARAMETER (NP=15) Up to NP variables.

C USES lubksb,ludcmp,usrfun
Given an initial guess x for a root in n dimensions, take ntrial Newton-Raphson steps to
improve the root. Stop if the root converges in either summed absolute variable increments
tolx or summed absolute function values tolf.

INTEGER i,k,indx(NP)
REAL d,errf,errx,fjac(NP,NP),fvec(NP),p(NP)
do 14 k=1,ntrial

call usrfun(x,n,NP,fvec,fjac) User subroutine supplies function values at x in fvec
and Jacobian matrix in fjac.errf=0.

do 11 i=1,n Check function convergence.
errf=errf+abs(fvec(i))

enddo 11

if(errf.le.tolf)return
do 12 i=1,n Right-hand side of linear equations.

p(i)=-fvec(i)
enddo 12

9.6 Newton-Raphson Method for Nonlinear Systems of Equations 375

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

call ludcmp(fjac,n,NP,indx,d) Solve linear equations using LU decomposition.
call lubksb(fjac,n,NP,indx,p)
errx=0. Check root convergence.
do 13 i=1,n Update solution.

errx=errx+abs(p(i))
x(i)=x(i)+p(i)

enddo 13

if(errx.le.tolx)return
enddo 14

return
END

Newton’s Method versus Minimization

In the next chapter, we will find that there are efficient general techniques for
finding a minimum of a function of many variables. Why is that task (relatively)
easy, while multidimensional root finding is often quite hard? Isn’t minimization
equivalent to finding a zero of anN -dimensional gradient vector, not so different from
zeroing anN -dimensional function? No! The components of a gradient vector are not
independent, arbitrary functions. Rather, they obey so-called integrability conditions
that are highly restrictive. Put crudely, you can always find a minimum by sliding
downhill on a single surface. The test of “downhillness” is thus one-dimensional.
There is no analogous conceptual procedure for finding a multidimensional root,
where “downhill” must mean simultaneously downhill inN separate function spaces,
thus allowing a multitude of trade-offs, as to how much progress in one dimension
is worth compared with progress in another.

It might occur to you to carry out multidimensional root finding by collapsing
all these dimensions into one: Add up the sums of squares of the individual functions
Fi to get a master function F which (i) is positive definite, and (ii) has a global
minimum of zero exactly at all solutions of the original set of nonlinear equations.
Unfortunately, as you will see in the next chapter, the efficient algorithms for finding
minima come to rest on global and local minima indiscriminately. You will often
find, to your great dissatisfaction, that your function F has a great number of local
minima. In Figure 9.6.1, for example, there is likely to be a local minimum wherever
the zero contours of f and g make a close approach to each other. The point labeled
M is such a point, and one sees that there are no nearby roots.

However, we will now see that sophisticated strategies for multidimensional
root finding can in fact make use of the idea of minimizing a master function F , by
combining it with Newton’s method applied to the full set of functions Fi. While
such methods can still occasionally fail by coming to rest on a local minimum of
F , they often succeed where a direct attack via Newton’s method alone fails. The
next section deals with these methods.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 14. [1]

Ostrowski, A.M. 1966, Solutions of Equations and Systems of Equations, 2nd ed. (New York:
Academic Press).

Ortega, J., and Rheinboldt, W. 1970, Iterative Solution of Nonlinear Equations in Several Vari-
ables (New York: Academic Press).

376 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

9.7 Globally Convergent Methods for Nonlinear
Systems of Equations

We have seen that Newton’s method for solving nonlinear equations has an
unfortunate tendency to wander off into the wild blue yonder if the initial guess
is not sufficiently close to the root. A global method is one that converges to
a solution from almost any starting point. In this section we will develop an
algorithm that combines the rapid local convergence of Newton’s method with a
globally convergent strategy that will guarantee some progress towards the solution
at each iteration. The algorithm is closely related to the quasi-Newton method of
minimization which we will describe in §10.7.

Recall our discussion of §9.6: the Newton step for the set of equations

F(x) = 0 (9.7.1)

is
xnew = xold + δx (9.7.2)

where
δx = −J−1 · F (9.7.3)

Here J is the Jacobian matrix. How do we decide whether to accept the Newton step
δx? A reasonable strategy is to require that the step decrease |F|2 = F · F. This is
the same requirement we would impose if we were trying to minimize

f =
1

2
F · F (9.7.4)

(The 1
2 is for later convenience.) Every solution to (9.7.1) minimizes (9.7.4), but

there may be local minima of (9.7.4) that are not solutions to (9.7.1). Thus, as
already mentioned, simply applying one of our minimum finding algorithms from
Chapter 10 to (9.7.4) is not a good idea.

To develop a better strategy, note that the Newton step (9.7.3) is a descent
direction for f :

∇f · δx = (F · J) · (−J−1 · F) = −F · F < 0 (9.7.5)

Thus our strategy is quite simple: We always first try the full Newton step,
because once we are close enough to the solution we will get quadratic convergence.
However, we check at each iteration that the proposed step reduces f . If not, we
backtrack along the Newton direction until we have an acceptable step. Because the
Newton step is a descent direction for f , we are guaranteed to find an acceptable step
by backtracking. We will discuss the backtracking algorithm in more detail below.

Note that this method essentially minimizes f by taking Newton steps designed
to bring F to zero. This is not equivalent to minimizing f directly by taking Newton
steps designed to bring∇f to zero. While the method can still occasionally fail by
landing on a local minimum of f , this is quite rare in practice. The routine newt

below will warn you if this happens. The remedy is to try a new starting point.

