402 Chapter 10. Minimization or Maximization of Functions

10.4 Downhill Simplex Method in
Multidimensions

With this section we begin consideration of multidimensional minimization,
that is, finding the minimum of a function of more than one independent variable.
This section stands apart from those which follow, however: All of the algorithms
after thissection will make explicit use of aone-dimensional minimization agorithm
as a part of their computational strategy. This section implements an entirely
self-contained strategy, in which one-dimensiona minimization does not figure.

The downhill simplex method is due to Nelder and Mead [1]. The method
requires only function evaluations, not derivatives. It is not very efficient in terms
of the number of function evaluations that it requires. Powell’s method (§10.5) is
almost surely faster inall likely applications. However, the downhill simplex method
may frequently be the best method to use if the figure of merit is “get something
working quickly” for a problem whose computational burden is small.

The method has a geometrical naturalness about it which makes it delightful
to describe or work through:

A simplex is the geometrical figure consisting, in N dimensions, of N + 1
points (or vertices) and all their interconnecting line segments, polygonal faces, etc.
In two dimensions, a simplex is atriangle. In three dimensionsit is a tetrahedron,
not necessarily the regular tetrahedron. (The simplex method of linear programming,
describedin§10.8, al so makes use of thegeometrical concept of asimplex. Otherwise
it iscompletely unrelated to the algorithm that we are describing in this section.) In
general we are only interested in simplexes that are nondegenerate, i.e., that enclose
a finite inner N-dimensional volume. If any point of a nondegenerate simplex is
taken as the origin, then the N other points define vector directions that span the
N-dimensional vector space.

In one-dimensional minimization, it was possibleto bracket aminimum, so that
the success of a subsequent isolation was guaranteed. Alas! Thereis no analogous
procedure in multidimensional space. For multidimensional minimization, the best
we can do is give our algorithm a starting guess, that is, an N-vector of independent
variablesasthefirst point totry. The agorithmisthen supposed to make its own way
downhill through the unimaginable complexity of an N-dimensiona topography,
until it encounters a (local, at least) minimum.

The downhill simplex method must be started not just with a single point,
but with NV + 1 points, defining an initial smplex. If you think of one of these
points (it matters not which) as being your initia starting point Py, then you can
take the other N points to be

P, =Py +)e (10.4.1)

where the g;’s are N unit vectors, and where)\ is a constant which is your guess
of the problem’s characteristic length scale. (Or, you could have different \;'s for
each vector direction.)

The downhill simplex method now takes a series of steps, most steps just
moving the point of the simplex where the function is largest (“highest point”)
through the opposite face of the smplex to a lower point. These steps are called

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

10.4 Downhill Simplex Method in Multidimensions 403

simplex at beginning of step

high
low

reflection

@

reflection and expansion

(b)

contraction

(©

multiple
contraction

(d)

Figure 10.4.1. Possible outcomes for a step in the downhill simplex method. The simplex at the
beginning of the step, here atetrahedron, is shown, top. The simplex at the end of the step can be any one
of (a) areflection away from the high point, (b) areflection and expansion away from the high point, (c) a
contraction along one dimension from the high point, or (d) a contraction along all dimensions towards
thelow point. An appropriatesequenceof such stepswill always convergeto aminimum of the function.

reflections, and they are constructed to conserve the volume of the simplex (hence
maintain its nondegeneracy). When it can do so, the method expands the simplex
in one or another direction to take larger steps. When it reaches a “valley floor,”
the method contracts itself in the transverse direction and tries to ooze down the
valley. If there is a situation where the simplex is trying to “pass through the eye
of aneedle” it contracts itself in al directions, pulling itself in around its lowest
(best) point. The routine name amoeba is intended to be descriptive of thiskind of
behavior; the basic moves are summarized in Figure 10.4.1.

Termination criteria can be delicate in any multidimensional minimization
routine. Without bracketing, and with more than one independent variable, we
no longer have the option of requiring a certain tolerance for a single independent

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

404 Chapter 10. Minimization or Maximization of Functions

variable. We typically can identify one “cycle’” or “step” of our multidimensiona
algorithm. It is then possible to terminate when the vector distance moved in that
step is fractionally smaller in magnitude than some tolerance tol. Alternatively,
we could require that the decrease in the function value in the terminating step be
fractionally smaller than some tolerance ftol. Note that while tol should not
usually be smaller than the square root of the machine precision, it is perfectly
appropriateto let ftol be of order the machine precision (or perhaps dightly larger
so as not to be diddled by roundoff).

Notewsdll that either of the above criteriamight be fooled by a singleanomal ous
step that, for onereason or another, failed to get anywhere. Therefore, itisfrequently
a good idea to restart a multidimensional minimization routine a a point where
it claims to have found a minimum. For this restart, you should reinitialize any
ancillary input quantities. In the downhill simplex method, for example, you should
reinitialize N of the N + 1 vertices of the ssimplex again by equation (10.4.1), with
Py being one of the vertices of the claimed minimum.

Restarts should never be very expensive; your algorithmdid, after all, converge
to the restart point once, and now you are starting the algorithm already there.

Consider, then, our N-dimensional amoeba:

SUBROUTINE amoeba(p,y,mp,np,ndim,ftol,funk,iter)

INTEGER iter,mp,ndim,np,NMAX, ITMAX

REAL ftol,p(mp,np),y(mp),funk,TINY

PARAMETER (NMAX=20,ITMAX=5000,TINY=1.e-10) Maximum allowed dimensions and func-

EXTERNAL funk tion evaluations, and a small num-

USES anotry, funk ber.
Multidimensional minimization of the function funk(x) where x(1:ndim) is a vector
in ndim dimensions, by the downhill simplex method of Nelder and Mead. The matrix
p(1:ndim+1,1:ndim) is input. Its ndim+1 rows are ndim-dimensional vectors which are
the vertices of the starting simplex. Also input is the vector y (1:ndim+1), whose compo-
nents must be pre-initialized to the values of funk evaluated at the ndim+1 vertices (rows)
of p; and ftol the fractional convergence tolerance to be achieved in the function value
(n.b.1). On output, p and y will have been reset to ndim+1 new points all within ftol of
a minimum function value, and iter gives the number of function evaluations taken.

INTEGER i,ihi,ilo,inhi,j,m,n

REAL rtol,sum,swap,ysave,ytry,psumn(NMAX) ,amotry

iter=0
do 12 n=1,ndim Enter here when starting or have just overall contracted.
sum=0. Recompute psum.

do 11 m=1,ndim+1
sum=sum+p (m,n)
enddo 11
psum(n)=sum
enddo 12
ilo=1 Enter here when have just changed a single point.
if (y(1).gt.y(2)) then Determine which point is the highest (worst), next-highest,
ihi=1 and lowest (best),
inhi=2
else
ihi=2
inhi=1
endif
do 13 i=1,ndim+1 by looping over the points in the simplex.
if(y(i).le.y(ilo)) ilo=i
if (y(i).gt.y(ihi)) then
inhi=ihi
ihi=i
else if(y(i).gt.y(inhi)) then
if(i.ne.ihi) inhi=i

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

10.4 Downhill Simplex Method in Multidimensions 405

endif
enddo 13
rtol=2.*abs (y(ihi)-y(ilo))/(abs (y(ihi))+abs (y(ilo)) +TINY)
Compute the fractional range from highest to lowest and return if satisfactory.
if (rtol.lt.ftol) then If returning, put best point and value in slot 1.
swap=y (1)
y(1)=y(ilo)
y(ilo)=swap
do 14 n=1,ndim
swap=p(1,n)
p(1,n)=p(ilo,n)
p(ilo,n)=swap
enddo 14
return
endif
if (iter.ge.ITMAX) pause ’ITMAX exceeded in amoeba’
iter=iter+2
Begin a new iteration. First extrapolate by a factor —1 through the face of the simplex across
from the high point, i.e., reflect the simplex from the high point.
ytry=amotry(p,y,psum,mp,np,ndim, funk,ihi,-1.0)
if (ytry.le.y(ilo)) then
Gives a result better than the best point, so try an additional extrapolation by a factor 2.
ytry=amotry(p,y,psum,mp,np,ndim, funk,ihi,2.0)
else if (ytry.ge.y(inhi)) then
The reflected point is worse than the second-highest, so look for an intermediate lower point,
i.,e., do a one-dimensional contraction.
ysave=y (ihi)
ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,0.5)
if (ytry.ge.ysave) then Can't seem to get rid of that high point. Better contract
do 1 i=1,ndim+1 around the lowest (best) point.
if(i.ne.ilo)then
dois j=1,ndim
psum(j)=0.5*(p (i, j)+p(ilo,j))
p(i,)=psun(3)

enddo 15
y (i) =funk(psum)
endif
enddo 16
iter=iter+ndim Keep track of function evaluations.
goto 1 Go back for the test of doneness and the next iteration.
endif
else
iter=iter-1 Correct the evaluation count.
endif
goto 2
END

FUNCTION amotry(p,y,psum,mp,np,ndim,funk,ihi,fac)
INTEGER ihi,mp,ndim,np,NMAX
REAL amotry,fac,p(mp,np),psum(np),y(mp),funk
PARAMETER (NMAX=20)
EXTERNAL funk
USES funk
Extrapolates by a factor fac through the face of the simplex across from the high point,
tries it, and replaces the high point if the new point is better.
INTEGER j
REAL facl,fac2,ytry,ptry(NMAX)
facl=(1.-fac)/ndim
fac2=facl-fac
dou j=1,ndim
ptry(j)=psum(j)*facl-p(ihi, j)*fac2
enddo 11

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

406 Chapter 10. Minimization or Maximization of Functions

ytry=funk(ptry) Evaluate the function at the trial point.
if (ytry.lt.y(ihi)) then If it’s better than the highest, then replace the highest.
y(ihi)=ytry
do12 j=1,ndim
psum(j)=psum(j)-p(ihi, j)+ptry(j)
p(ihi, j)=ptry(j)
enddo 12
endif
amotry=ytry
return
END

CITED REFERENCES AND FURTHER READING:
Nelder, J.A., and Mead, R. 1965, Computer Journal, vol. 7, pp. 308-313. [1]
Yarbro, L.A., and Deming, S.N. 1974, Analytica Chimica Acta, vol. 73, pp. 391-398.

Jacoby, S.L.S, Kowalik, J.S., and Pizzo, J.T. 1972, Iterative Methods for Nonlinear Optimization
Problems (Englewood Cliffs, NJ: Prentice-Hall).

10.5 Direction Set (Powell’s) Methods in
Multidimensions

We know (§10.1-§10.3) how to minimize a function of one variable. If we
gtart at a point P in N-dimensiona space, and proceed from there in some vector
direction n, then any function of NV variables f(P) can be minimized aong the line
n by our one-dimensional methods. One can dream up various multidimensional
mi nimi zation methodsthat consist of sequences of such lineminimizations. Different
methods will differ only by how, at each stage, they choose the next direction n to
try. All such methods presume the existence of a*“black-box” sub-algorithm, which
we might call 1inmin (given as an explicit routine a the end of this section), whose
definition can be taken for now as

linmin: Given as input the vectors P and n, and the
function f, find the scalar A that minimizes f (P + An).
Replace P by P 4+ An. Replace n by An. Done.

All the minimization methods in this section and in the two sections following
fal under this genera schema of successive line minimizations. (The agorithm
in §10.7 does not need very accurate line minimizations. Accordingly, it has its
own approximate line minimization routine, 1nsrch.) In this section we consider
a class of methods whose choice of successive directions does not involve explicit
computation of the function’sgradient; the next two sections do requiresuch gradient
calculations. You will note that we need not specify whether 1inmin uses gradient
information or not. That choice is up to you, and its optimization depends on your
particular function. You would be crazy, however, to use gradientsin 1inmin and
not use them in the choice of directions, since in this latter role they can drastically
reduce the total computational burden.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

