
402 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

10.4 Downhill Simplex Method in
Multidimensions

With this section we begin consideration of multidimensional minimization,
that is, finding the minimum of a function of more than one independent variable.
This section stands apart from those which follow, however: All of the algorithms
after this section will make explicit use of a one-dimensional minimization algorithm
as a part of their computational strategy. This section implements an entirely
self-contained strategy, in which one-dimensional minimization does not figure.

The downhill simplex method is due to Nelder and Mead [1]. The method
requires only function evaluations, not derivatives. It is not very efficient in terms
of the number of function evaluations that it requires. Powell’s method (§10.5) is
almost surely faster in all likely applications. However, the downhill simplex method
may frequently be the best method to use if the figure of merit is “get something
working quickly” for a problem whose computational burden is small.

The method has a geometrical naturalness about it which makes it delightful
to describe or work through:

A simplex is the geometrical figure consisting, in N dimensions, of N + 1
points (or vertices) and all their interconnecting line segments, polygonal faces, etc.
In two dimensions, a simplex is a triangle. In three dimensions it is a tetrahedron,
not necessarily the regular tetrahedron. (The simplex method of linear programming,
described in §10.8, also makes use of the geometrical concept of a simplex. Otherwise
it is completely unrelated to the algorithm that we are describing in this section.) In
general we are only interested in simplexes that are nondegenerate, i.e., that enclose
a finite inner N -dimensional volume. If any point of a nondegenerate simplex is
taken as the origin, then the N other points define vector directions that span the
N -dimensional vector space.

In one-dimensional minimization, it was possible to bracket a minimum, so that
the success of a subsequent isolation was guaranteed. Alas! There is no analogous
procedure in multidimensional space. For multidimensional minimization, the best
we can do is give our algorithm a starting guess, that is, an N -vector of independent
variables as the first point to try. The algorithm is then supposed to make its own way
downhill through the unimaginable complexity of an N -dimensional topography,
until it encounters a (local, at least) minimum.

The downhill simplex method must be started not just with a single point,
but with N + 1 points, defining an initial simplex. If you think of one of these
points (it matters not which) as being your initial starting point P0, then you can
take the other N points to be

Pi = P0 + λei (10.4.1)

where the ei’s are N unit vectors, and where λ is a constant which is your guess
of the problem’s characteristic length scale. (Or, you could have different λi’s for
each vector direction.)

The downhill simplex method now takes a series of steps, most steps just
moving the point of the simplex where the function is largest (“highest point”)
through the opposite face of the simplex to a lower point. These steps are called



10.4 Downhill Simplex Method in Multidimensions 403

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

simplex at beginning of step

reflection

reflection and expansion

contraction

multiple

contraction

(a)

(b)

(c)

(d)

high
low

Figure 10.4.1. Possible outcomes for a step in the downhill simplex method. The simplex at the
beginning of the step, here a tetrahedron, is shown, top. The simplex at the end of the step can be any one
of (a) a reflection away from the high point, (b) a reflection and expansion away from the high point, (c) a
contraction along one dimension from the high point, or (d) a contraction along all dimensions towards
the low point. An appropriate sequence of such steps will always converge to a minimum of the function.

reflections, and they are constructed to conserve the volume of the simplex (hence
maintain its nondegeneracy). When it can do so, the method expands the simplex
in one or another direction to take larger steps. When it reaches a “valley floor,”
the method contracts itself in the transverse direction and tries to ooze down the
valley. If there is a situation where the simplex is trying to “pass through the eye
of a needle,” it contracts itself in all directions, pulling itself in around its lowest
(best) point. The routine name amoeba is intended to be descriptive of this kind of
behavior; the basic moves are summarized in Figure 10.4.1.

Termination criteria can be delicate in any multidimensional minimization
routine. Without bracketing, and with more than one independent variable, we
no longer have the option of requiring a certain tolerance for a single independent



404 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

variable. We typically can identify one “cycle” or “step” of our multidimensional
algorithm. It is then possible to terminate when the vector distance moved in that
step is fractionally smaller in magnitude than some tolerance tol. Alternatively,
we could require that the decrease in the function value in the terminating step be
fractionally smaller than some tolerance ftol. Note that while tol should not
usually be smaller than the square root of the machine precision, it is perfectly
appropriate to let ftol be of order the machine precision (or perhaps slightly larger
so as not to be diddled by roundoff).

Note well that either of the above criteria might be fooled by a single anomalous
step that, for one reason or another, failed to get anywhere. Therefore, it is frequently
a good idea to restart a multidimensional minimization routine at a point where
it claims to have found a minimum. For this restart, you should reinitialize any
ancillary input quantities. In the downhill simplex method, for example, you should
reinitialize N of the N + 1 vertices of the simplex again by equation (10.4.1), with
P0 being one of the vertices of the claimed minimum.

Restarts should never be very expensive; your algorithm did, after all, converge
to the restart point once, and now you are starting the algorithm already there.

Consider, then, our N -dimensional amoeba:

SUBROUTINE amoeba(p,y,mp,np,ndim,ftol,funk,iter)
INTEGER iter,mp,ndim,np,NMAX,ITMAX
REAL ftol,p(mp,np),y(mp),funk,TINY
PARAMETER (NMAX=20,ITMAX=5000,TINY=1.e-10) Maximum allowed dimensions and func-

tion evaluations, and a small num-
ber.

EXTERNAL funk
C USES amotry,funk

Multidimensional minimization of the function funk(x) where x(1:ndim) is a vector
in ndim dimensions, by the downhill simplex method of Nelder and Mead. The matrix
p(1:ndim+1,1:ndim) is input. Its ndim+1 rows are ndim-dimensional vectors which are
the vertices of the starting simplex. Also input is the vector y(1:ndim+1), whose compo-
nents must be pre-initialized to the values of funk evaluated at the ndim+1 vertices (rows)
of p; and ftol the fractional convergence tolerance to be achieved in the function value
(n.b.!). On output, p and y will have been reset to ndim+1 new points all within ftol of
a minimum function value, and iter gives the number of function evaluations taken.

INTEGER i,ihi,ilo,inhi,j,m,n
REAL rtol,sum,swap,ysave,ytry,psum(NMAX),amotry
iter=0

1 do 12 n=1,ndim Enter here when starting or have just overall contracted.
sum=0. Recompute psum.
do 11 m=1,ndim+1

sum=sum+p(m,n)
enddo 11

psum(n)=sum
enddo 12

2 ilo=1 Enter here when have just changed a single point.
if (y(1).gt.y(2)) then Determine which point is the highest (worst), next-highest,

and lowest (best),ihi=1
inhi=2

else
ihi=2
inhi=1

endif
do 13 i=1,ndim+1 by looping over the points in the simplex.

if(y(i).le.y(ilo)) ilo=i
if(y(i).gt.y(ihi)) then

inhi=ihi
ihi=i

else if(y(i).gt.y(inhi)) then
if(i.ne.ihi) inhi=i



10.4 Downhill Simplex Method in Multidimensions 405

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

endif
enddo 13

rtol=2.*abs(y(ihi)-y(ilo))/(abs(y(ihi))+abs(y(ilo))+TINY)
Compute the fractional range from highest to lowest and return if satisfactory.

if (rtol.lt.ftol) then If returning, put best point and value in slot 1.
swap=y(1)
y(1)=y(ilo)
y(ilo)=swap
do 14 n=1,ndim

swap=p(1,n)
p(1,n)=p(ilo,n)
p(ilo,n)=swap

enddo 14

return
endif
if (iter.ge.ITMAX) pause ’ITMAX exceeded in amoeba’
iter=iter+2

Begin a new iteration. First extrapolate by a factor−1 through the face of the simplex across
from the high point, i.e., reflect the simplex from the high point.

ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,-1.0)
if (ytry.le.y(ilo)) then

Gives a result better than the best point, so try an additional extrapolation by a factor 2.
ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,2.0)

else if (ytry.ge.y(inhi)) then
The reflected point is worse than the second-highest, so look for an intermediate lower point,
i.e., do a one-dimensional contraction.
ysave=y(ihi)
ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,0.5)
if (ytry.ge.ysave) then Can’t seem to get rid of that high point. Better contract

around the lowest (best) point.do 16 i=1,ndim+1
if(i.ne.ilo)then

do 15 j=1,ndim
psum(j)=0.5*(p(i,j)+p(ilo,j))
p(i,j)=psum(j)

enddo 15

y(i)=funk(psum)
endif

enddo 16

iter=iter+ndim Keep track of function evaluations.
goto 1 Go back for the test of doneness and the next iteration.

endif
else

iter=iter-1 Correct the evaluation count.
endif
goto 2
END

FUNCTION amotry(p,y,psum,mp,np,ndim,funk,ihi,fac)
INTEGER ihi,mp,ndim,np,NMAX
REAL amotry,fac,p(mp,np),psum(np),y(mp),funk
PARAMETER (NMAX=20)
EXTERNAL funk

C USES funk
Extrapolates by a factor fac through the face of the simplex across from the high point,
tries it, and replaces the high point if the new point is better.

INTEGER j
REAL fac1,fac2,ytry,ptry(NMAX)
fac1=(1.-fac)/ndim
fac2=fac1-fac
do 11 j=1,ndim

ptry(j)=psum(j)*fac1-p(ihi,j)*fac2
enddo 11



406 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

ytry=funk(ptry) Evaluate the function at the trial point.
if (ytry.lt.y(ihi)) then If it’s better than the highest, then replace the highest.

y(ihi)=ytry
do 12 j=1,ndim

psum(j)=psum(j)-p(ihi,j)+ptry(j)
p(ihi,j)=ptry(j)

enddo 12

endif
amotry=ytry
return
END

CITED REFERENCES AND FURTHER READING:

Nelder, J.A., and Mead, R. 1965, Computer Journal, vol. 7, pp. 308–313. [1]

Yarbro, L.A., and Deming, S.N. 1974, Analytica Chimica Acta, vol. 73, pp. 391–398.

Jacoby, S.L.S, Kowalik, J.S., and Pizzo, J.T. 1972, Iterative Methods for Nonlinear Optimization
Problems (Englewood Cliffs, NJ: Prentice-Hall).

10.5 Direction Set (Powell’s) Methods in
Multidimensions

We know (§10.1–§10.3) how to minimize a function of one variable. If we
start at a point P in N -dimensional space, and proceed from there in some vector
direction n, then any function of N variables f(P) can be minimized along the line
n by our one-dimensional methods. One can dream up various multidimensional
minimization methods that consist of sequences of such line minimizations. Different
methods will differ only by how, at each stage, they choose the next direction n to
try. All such methods presume the existence of a “black-box” sub-algorithm, which
we might call linmin (given as an explicit routine at the end of this section), whose
definition can be taken for now as

linmin: Given as input the vectors P and n, and the
function f , find the scalar λ that minimizes f(P +λn).
Replace P by P + λn. Replace n by λn. Done.

All the minimization methods in this section and in the two sections following
fall under this general schema of successive line minimizations. (The algorithm
in §10.7 does not need very accurate line minimizations. Accordingly, it has its
own approximate line minimization routine, lnsrch.) In this section we consider
a class of methods whose choice of successive directions does not involve explicit
computation of the function’s gradient; the next two sections do require such gradient
calculations. You will note that we need not specify whether linmin uses gradient
information or not. That choice is up to you, and its optimization depends on your
particular function. You would be crazy, however, to use gradients in linmin and
not use them in the choice of directions, since in this latter role they can drastically
reduce the total computational burden.


