```
    do 11 j=3,nl
    f1=d
    f2=f2+twox
    d=d+1.
    pl(j)=(f2*pl(j-1)-f1*pl(j-2))/d
    enddo 11
endif
return
END
```


Multidimensional Fits

If you are measuring a single variable y as a function of more than one variable - say, a vector of variables \mathbf{x}, then your basis functions will be functions of a vector, $X_{1}(\mathbf{x}), \ldots, X_{M}(\mathbf{x})$. The χ^{2} merit function is now

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{N}\left[\frac{y_{i}-\sum_{k=1}^{M} a_{k} X_{k}\left(\mathbf{x}_{i}\right)}{\sigma_{i}}\right]^{2} \tag{15.4.24}
\end{equation*}
$$

All of the preceding discussion goes through unchanged, with x replaced by \mathbf{x}. In fact, if you are willing to tolerate a bit of programming hack, you can use the above programs without any modification: In both lfit and svdfit, the only use made of the array elements $x(i)$ is that each element is in turn passed to the user-supplied routine funcs, which duly returns the values of the basis functions at that point. If you set $x(i)=i$ before calling lfit or svdfit, and independently provide funcs with the true vector values of your data points (e.g., in a COMMON block), then funcs can translate from the fictitious x (i)'s to the actual data points before doing its work.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill), Chapters 8-9.
Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ: Prentice-Hall).
Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9.

15.5 Nonlinear Models

We now consider fitting when the model depends nonlinearly on the set of M

How is this problem different from the general nonlinear function minimization problem already dealt with in Chapter 10? Superficially, not at all: Sufficiently close to the minimum, we expect the χ^{2} function to be well approximated by a quadratic form, which we can write as

$$
\begin{equation*}
\chi^{2}(\mathbf{a}) \approx \gamma-\mathbf{d} \cdot \mathbf{a}+\frac{1}{2} \mathbf{a} \cdot \mathbf{D} \cdot \mathbf{a} \tag{15.5.1}
\end{equation*}
$$

where \mathbf{d} is an M-vector and \mathbf{D} is an $M \times M$ matrix. (Compare equation 10.6.1.) If the approximation is a good one, we know how to jump from the current trial parameters $\mathbf{a}_{\text {cur }}$ to the minimizing ones $\mathbf{a}_{\text {min }}$ in a single leap, namely

$$
\begin{equation*}
\mathbf{a}_{\min }=\mathbf{a}_{\mathrm{cur}}+\mathbf{D}^{-1} \cdot\left[-\nabla \chi^{2}\left(\mathbf{a}_{\mathrm{cur}}\right)\right] \tag{15.5.2}
\end{equation*}
$$

(Compare equation 10.7.4.)
On the other hand, (15.5.1) might be a poor local approximation to the shape of the function that we are trying to minimize at $\mathbf{a}_{\text {cur }}$. In that case, about all we can do is take a step down the gradient, as in the steepest descent method (§10.6). In other words,

$$
\begin{equation*}
\mathbf{a}_{\text {next }}=\mathbf{a}_{\text {cur }}-\text { constant } \times \nabla \chi^{2}\left(\mathbf{a}_{\text {cur }}\right) \tag{15.5.3}
\end{equation*}
$$

where the constant is small enough not to exhaust the downhill direction.
To use (15.5.2) or (15.5.3), we must be able to compute the gradient of the χ^{2} function at any set of parameters \mathbf{a}. To use (15.5.2) we also need the matrix \mathbf{D}, which is the second derivative matrix (Hessian matrix) of the χ^{2} merit function, at any \mathbf{a}.

Now, this is the crucial difference from Chapter 10: There, we had no way of directly evaluating the Hessian matrix. We were given only the ability to evaluate the function to be minimized and (in some cases) its gradient. Therefore, we had to resort to iterative methods not just because our function was nonlinear, but also in order to build up information about the Hessian matrix. Sections 10.7 and 10.6 concerned themselves with two different techniques for building up this information.

Here, life is much simpler. We know exactly the form of χ^{2}, since it is based on a model function that we ourselves have specified. Therefore the Hessian matrix is known to us. Thus we are free to use (15.5.2) whenever we care to do so. The only reason to use (15.5.3) will be failure of (15.5.2) to improve the fit, signaling failure of (15.5.1) as a good local approximation.

Calculation of the Gradient and Hessian

The model to be fitted is

$$
\begin{equation*}
y=y(x ; \mathbf{a}) \tag{15.5.4}
\end{equation*}
$$

The gradient of χ^{2} with respect to the parameters \mathbf{a}, which will be zero at the χ^{2} minimum, has components

$$
\begin{equation*}
\frac{\partial \chi^{2}}{\partial a_{k}}=-2 \sum_{i=1}^{N} \frac{\left[y_{i}-y\left(x_{i} ; \mathbf{a}\right)\right]}{\sigma_{i}^{2}} \frac{\partial y\left(x_{i} ; \mathbf{a}\right)}{\partial a_{k}} \quad k=1,2, \ldots, M \tag{15.5.6}
\end{equation*}
$$

Taking an additional partial derivative gives

$$
\begin{equation*}
\frac{\partial^{2} \chi^{2}}{\partial a_{k} \partial a_{l}}=2 \sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}}\left[\frac{\partial y\left(x_{i} ; \mathbf{a}\right)}{\partial a_{k}} \frac{\partial y\left(x_{i} ; \mathbf{a}\right)}{\partial a_{l}}-\left[y_{i}-y\left(x_{i} ; \mathbf{a}\right)\right] \frac{\partial^{2} y\left(x_{i} ; \mathbf{a}\right)}{\partial a_{l} \partial a_{k}}\right] \tag{15.5.7}
\end{equation*}
$$

It is conventional to remove the factors of 2 by defining

$$
\begin{equation*}
\beta_{k} \equiv-\frac{1}{2} \frac{\partial \chi^{2}}{\partial a_{k}} \quad \alpha_{k l} \equiv \frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial a_{k} \partial a_{l}} \tag{15.5.8}
\end{equation*}
$$

making $[\alpha]=\frac{1}{2} \mathbf{D}$ in equation (15.5.2), in terms of which that equation can be rewritten as the set of linear equations

$$
\begin{equation*}
\sum_{l=1}^{M} \alpha_{k l} \delta a_{l}=\beta_{k} \tag{15.5.9}
\end{equation*}
$$

This set is solved for the increments δa_{l} that, added to the current approximation, give the next approximation. In the context of least-squares, the matrix [α], equal to one-half times the Hessian matrix, is usually called the curvature matrix.

Equation (15.5.3), the steepest descent formula, translates to

$$
\begin{equation*}
\delta a_{l}=\text { constant } \times \beta_{l} \tag{15.5.10}
\end{equation*}
$$

Note that the components $\alpha_{k l}$ of the Hessian matrix (15.5.7) depend both on the first derivatives and on the second derivatives of the basis functions with respect to their parameters. Some treatments proceed to ignore the second derivative without comment. We will ignore it also, but only after a few comments.

Second derivatives occur because the gradient (15.5.6) already has a dependence on $\partial y / \partial a_{k}$, so the next derivative simply must contain terms involving $\partial^{2} y / \partial a_{l} \partial a_{k}$. The second derivative term can be dismissed when it is zero (as in the linear case of equation 15.4.8), or small enough to be negligible when compared to the term involving the first derivative. It also has an additional possibility of being ignorably small in practice: The term multiplying the second derivative in equation (15.5.7) is $\left[y_{i}-y\left(x_{i} ; \mathbf{a}\right)\right]$. For a successful model, this term should just be the random measurement error of each point. This error can have either sign, and should in general be uncorrelated with the model. Therefore, the second derivative terms tend to cancel out when summed over i.

Inclusion of the second-derivative term can in fact be destabilizing if the model fits badly or is contaminated by outlier points that are unlikely to be offset by
compensating points of opposite sign. From this point on, we will always use as the definition of $\alpha_{k l}$ the formula

$$
\begin{equation*}
\alpha_{k l}=\sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}}\left[\frac{\partial y\left(x_{i} ; \mathbf{a}\right)}{\partial a_{k}} \frac{\partial y\left(x_{i} ; \mathbf{a}\right)}{\partial a_{l}}\right] \tag{15.5.11}
\end{equation*}
$$

This expression more closely resembles its linear cousin (15.4.8). You should understand that minor (or even major) fiddling with $[\alpha]$ has no effect at all on what final set of parameters \mathbf{a} is reached, but affects only the iterative route that is taken in getting there. The condition at the χ^{2} minimum, that $\beta_{k}=0$ for all k, is independent of how $[\alpha]$ is defined.

Levenberg-Marquardt Method

Marquardt [1] has put forth an elegant method, related to an earlier suggestion of Levenberg, for varying smoothly between the extremes of the inverse-Hessian method (15.5.9) and the steepest descent method (15.5.10). The latter method is used far from the minimum, switching continuously to the former as the minimum is approached. This Levenberg-Marquardt method (also called Marquardt method) works very well in practice and has become the standard of nonlinear least-squares routines.

The method is based on two elementary, but important, insights. Consider the "constant" in equation (15.5.10). What should it be, even in order of magnitude? What sets its scale? There is no information about the answer in the gradient. That tells only the slope, not how far that slope extends. Marquardt's first insight is that the components of the Hessian matrix, even if they are not usable in any precise fashion, give some information about the order-of-magnitude scale of the problem.

The quantity χ^{2} is nondimensional, i.e., is a pure number; this is evident from its definition (15.5.5). On the other hand, β_{k} has the dimensions of $1 / a_{k}$, which may well be dimensional, i.e., have units like cm^{-1}, or kilowatt-hours, or whatever. (In fact, each component of β_{k} can have different dimensions!) The constant of proportionality between β_{k} and δa_{k} must therefore have the dimensions of a_{k}^{2}. Scan the components of $[\alpha]$ and you see that there is only one obvious quantity with these dimensions, and that is $1 / \alpha_{k k}$, the reciprocal of the diagonal element. So that must set the scale of the constant. But that scale might itself be too big. So let's divide the constant by some (nondimensional) fudge factor λ, with the possibility of setting $\lambda \gg 1$ to cut down the step. In other words, replace equation (15.5.10) by

$$
\begin{equation*}
\delta a_{l}=\frac{1}{\lambda \alpha_{l l}} \beta_{l} \quad \text { or } \quad \lambda \alpha_{l l} \delta a_{l}=\beta_{l} \tag{15.5.12}
\end{equation*}
$$

It is necessary that $a_{l l}$ be positive, but this is guaranteed by definition (15.5.11) another reason for adopting that equation.

Marquardt's second insight is that equations (15.5.12) and (15.5.9) can be combined if we define a new matrix α^{\prime} by the following prescription

$$
\begin{align*}
\alpha_{j j}^{\prime} & \equiv \alpha_{j j}(1+\lambda) \\
\alpha_{j k}^{\prime} & \equiv \alpha_{j k} \quad(j \neq k) \tag{15.5.13}
\end{align*}
$$

and then replace both (15.5.12) and (15.5.9) by

$$
\begin{equation*}
\sum_{l=1}^{M} \alpha_{k l}^{\prime} \delta a_{l}=\beta_{k} \tag{15.5.14}
\end{equation*}
$$

When λ is very large, the matrix α^{\prime} is forced into being diagonally dominant, so equation (15.5.14) goes over to be identical to (15.5.12). On the other hand, as λ approaches zero, equation (15.5.14) goes over to (15.5.9).

Given an initial guess for the set of fitted parameters a, the recommended Marquardt recipe is as follows:

- Compute $\chi^{2}(\mathbf{a})$.
- Pick a modest value for λ, say $\lambda=0.001$.
- (\dagger) Solve the linear equations (15.5.14) for $\delta \mathbf{a}$ and evaluate $\chi^{2}(\mathbf{a}+\delta \mathbf{a})$.
- If $\chi^{2}(\mathbf{a}+\delta \mathbf{a}) \geq \chi^{2}(\mathbf{a})$, increase λ by a factor of 10 (or any other substantial factor) and go back to (\dagger).
- If $\chi^{2}(\mathbf{a}+\delta \mathbf{a})<\chi^{2}(\mathbf{a})$, decrease λ by a factor of 10 , update the trial solution $\mathbf{a} \leftarrow \mathbf{a}+\delta \mathbf{a}$, and go back to (\dagger).
Also necessary is a condition for stopping. Iterating to convergence (to machine accuracy or to the roundoff limit) is generally wasteful and unnecessary since the minimum is at best only a statistical estimate of the parameters a. As we will see in $\S 15.6$, a change in the parameters that changes χ^{2} by an amount $\ll 1$ is never statistically meaningful.

Furthermore, it is not uncommon to find the parameters wandering around near the minimum in a flat valley of complicated topography. The reason is that Marquardt's method generalizes the method of normal equations (§15.4), hence has the same problem as that method with regard to near-degeneracy of the minimum. Outright failure by a zero pivot is possible, but unlikely. More often, a small pivot will generate a large correction which is then rejected, the value of λ being then increased. For sufficiently large λ the matrix $\left[\alpha^{\prime}\right]$ is positive definite and can have no small pivots. Thus the method does tend to stay away from zero pivots, but at the cost of a tendency to wander around doing steepest descent in very un-steep degenerate valleys.

These considerations suggest that, in practice, one might as well stop iterating on the first or second occasion that χ^{2} decreases by a negligible amount, say either less than 0.01 absolutely or (in case roundoff prevents that being reached) some fractional amount like 10^{-3}. Don't stop after a step where χ^{2} increases: That only shows that λ has not yet adjusted itself optimally.

Once the acceptable minimum has been found, one wants to set $\lambda=0$ and compute the matrix

$$
\begin{equation*}
[C] \equiv[\alpha]^{-1} \tag{15.5.15}
\end{equation*}
$$

which, as before, is the estimated covariance matrix of the standard errors in the
 fitted parameters a (see next section).

The following pair of subroutines encodes Marquardt's method for nonlinear parameter estimation. Much of the organization matches that used in lfit of $\S 15.4$. In particular the array ia ($1: \mathrm{ma}$) must be input with components one or zero corresponding to whether the respective parameter values a(1:ma) are to be fitted for or held fixed at their input values, respectively.

The routine mrqmin performs one iteration of Marquardt's method. It is first called (once) with alamda <0, which signals the routine to initialize. alamda is returned on the first and all subsequent calls as the suggested value of λ for the next iteration; a and chisq are always returned as the best parameters found so far and their χ^{2}. When convergence is deemed satisfactory, set alamda to zero before a final call. The matrices alpha and covar (which were used as workspace in all previous calls) will then be set to the curvature and covariance matrices for the converged parameter values. The arguments alpha, a, and chisq must not be modified between calls, nor should alamda be, except to set it to zero for the final call. When an uphill step is taken, chisq and a are returned with their input (best) values, but alamda is returned with an increased value.

The routine mrqmin calls the routine mrqcof for the computation of the matrix $[\alpha]$ (equation 15.5.11) and vector β (equations 15.5 .6 and 15.5.8). In turn mrqcof calls the user-supplied routine funcs ($\mathrm{x}, \mathrm{a}, \mathrm{y}, \mathrm{dyda}$), which for input values $\mathrm{x} \equiv x_{i}$ and $\mathrm{a} \equiv \mathbf{a}$ returns the model function $\mathrm{y} \equiv y\left(x_{i} ; \mathbf{a}\right)$ and the vector of derivatives dyda $\equiv \partial y / \partial a_{k}$.

```
SUBROUTINE mrqmin(x,y,sig,ndata,a,ia,ma, covar, alpha,nca,
chisq,funcs,alamda)
INTEGER ma,nca,ndata,ia(ma), MMAX
REAL alamda,chisq,funcs,a(ma),alpha(nca,nca), covar(nca,nca),
    sig(ndata),x(ndata),y(ndata)
PARAMETER (MMAX=20) Set to largest number of fit parameters.
C USES covsrt,gaussj,mrqcof
    Levenberg-Marquardt method, attempting to reduce the value }\mp@subsup{\chi}{}{2}\mathrm{ of a fit between a set of
    data points x(1:ndata), y(1:ndata) with individual standard deviations sig(1:ndata),
    and a nonlinear function dependent on ma coefficients a (1:ma). The input array ia (1:ma)
    indicates by nonzero entries those components of a that should be fitted for, and by zero
    entries those components that should be held fixed at their input values. The program
    returns current best-fit values for the parameters a(1:ma), and \chi}\mp@subsup{\chi}{}{2}=chisq. The ar
    rays covar(1:nca,1:nca), alpha(1:nca,1:nca) with physical dimension nca ( }\geq\mathrm{ the
    number of fitted parameters) are used as working space during most iterations. Supply a
    subroutine funcs(x,a,yfit,dyda,ma) that evaluates the fitting function yfit, and its
    derivatives dyda with respect to the fitting parameters a at x. On the first call provide
    an initial guess for the parameters a, and set alamda<0 for initialization (which then sets
    alamda=.001). If a step succeeds chisq becomes smaller and alamda decreases by a
    factor of 10. If a step fails alamda grows by a factor of 10. You must call this routine
    repeatedly until convergence is achieved. Then, make one final call with alamda=0, so
    that covar(1:ma,1:ma) returns the covariance matrix, and alpha the curvature matrix.
    (Parameters held fixed will return zero covariances.)
INTEGER j,k,l,mfit
REAL ochisq,atry(MMAX),beta(MMAX),da(MMAX)
SAVE ochisq,atry,beta,da,mfit
if(alamda.lt.0.)then Initialization.
```

 mfit=0
 do \(11 \mathrm{j}=1\), ma
 if (ia(j).ne.0) mfit=mfit+1
 enddo 11
 alamda=0.001
 call mrqcof(\(x, y\), sig, ndata, a,ia, ma, alpha, beta, nca, chisq,funcs)
 ochisq=chisq
 do \(12 \mathrm{j}=1\), ma
 \(\operatorname{atry}(j)=a(j)\)
 enddo 12
 endif
do $14 \mathrm{j}=1$,mfit \quad Alter linearized fitting matrix, by augmenting
do $13 \mathrm{k}=1$, mfit
diagonal elements.

```
        covar(j,k)=alpha(j,k)
    enddo }1
    covar(j,j)=alpha(j,j)*(1.+alamda)
    da(j)=beta(j)
enddo }1
call gaussj(covar,mfit,nca,da,1,1) Matrix solution.
if(alamda.eq.0.)then Once converged, evaluate covariance matrix.
    call covsrt(covar,nca,ma,ia,mfit)
    return
endif
j=0
do 15 l=1,ma
Did the trial succeed?
    if(ia(1).ne.0) then
        j=j+1
        atry(l)=a(l)+da(j)
    endif
enddo }1
call mrqcof(x,y,sig,ndata, atry,ia,ma, covar,da,nca,chisq,funcs)
if(chisq.lt.ochisq)then Success, accept the new solution.
    alamda=0.1*alamda
    ochisq=chisq
    do 17 j=1,mfit
            do 16 k=1,mfit
                alpha(j,k)=covar(j,k)
            enddo 16
            beta(j)=da(j)
    enddo }1
    do 18 l=1,ma
        a(l)=atry(1)
    enddo 18
else Failure, increase alamda and return.
    alamda=10.*alamda
    chisq=ochisq
endif
return
END
```

Notice the use of the routine covsrt from $\S 15.4$. This is merely for rearranging the covariance matrix covar into the order of all ma parameters. The above routine also makes use of

```
SUBROUTINE mrqcof(x,y,sig,ndata,a,ia,ma,alpha,beta,nalp,
    chisq,funcs)
INTEGER ma,nalp,ndata,ia(ma),MMAX
REAL chisq,a(ma), alpha(nalp,nalp),beta(ma),sig(ndata),x(ndata),
    y(ndata)
EXTERNAL funcs
PARAMETER (MMAX=20)
    Used by mrqmin to evaluate the linearized fitting matrix alpha, and vector beta as in
    (15.5.8), and calculate }\mp@subsup{\chi}{}{2}
INTEGER mfit,i,j,k,l,m
REAL dy,sig2i,wt,ymod,dyda(MMAX)
mfit=0
do 11 j=1,ma
    if (ia(j).ne.0) mfit=mfit+1
enddo }1
do 13 j=1,mfit Initialize (symmetric) alpha, beta.
    do 12 k=1,j
```

```
        alpha(j,k)=0.
    enddo 12
    beta (j)=0.
enddo }1
chisq=0.
do }16\mathrm{ i=1,ndata Summation loop over all data.
    call funcs(x(i),a,ymod,dyda,ma)
    sig2i=1./(sig(i)*sig(i))
    dy=y(i)-ymod
    j=0
    do 15 l=1,ma
        if(ia(l).ne.0) then
            j=j+1
            wt=dyda(l)*sig2i
            k=0
            do 14 m=1,1
                if(ia(m).ne.0) then
                                    k=k+1
                                    alpha(j,k)=alpha(j,k)+wt*dyda(m)
                endif
            enddo }1
            beta(j)=beta(j)+dy*wt
        endif
    enddo }1
    chisq=chisq+dy*dy*sig2i And find }\mp@subsup{\chi}{}{2}\mathrm{ .
enddo 16
do 18 j=2,mfit
                                Fill in the symmetric side.
    do 17 k=1,j-1
        alpha(k,j)=alpha(j,k)
    enddo }1
enddo 18
return
END
```


Example

The following subroutine fgauss is an example of a user-supplied subroutine funcs. Used with the above routine mrqmin (in turn using mrqcof, covsrt, and gaussj), it fits for the model

$$
\begin{equation*}
y(x)=\sum_{k=1}^{K} B_{k} \exp \left[-\left(\frac{x-E_{k}}{G_{k}}\right)^{2}\right] \tag{15.5.16}
\end{equation*}
$$

which is a sum of K Gaussians, each having a variable position, amplitude, and width. We store the parameters in the order $B_{1}, E_{1}, G_{1}, B_{2}, E_{2}, G_{2}, \ldots, B_{K}$, visit website http://www.nr.com or call 1-800-872-7423 (North America only),or send email to trade@cup.cam.ac.uk (outside North America). E_{K}, G_{K}.

```
SUBROUTINE fgauss(x,a,y,dyda,na)
INTEGER na
REAL x,y,a(na),dyda(na)
    y(x;a) is the sum of na/3 Gaussians (15.5.16). The amplitude, center, and width of the
    Gaussians are stored in consecutive locations of a: a(i) = B , a(i+1) = E Ek,a(i+2)=
    G
INTEGER i
REAL arg,ex,fac
y=0.
do 11 i=1,na-1,3
    arg=(x-a(i+1))/a(i+2)
    ex=exp(-arg**2)
    fac=a(i)*ex*2.*arg
    y=y+a(i)*ex
    dyda(i)=ex
    dyda(i+1)=fac/a(i+2)
    dyda(i+2)=fac*arg/a(i+2)
enddo 11
return
END
```


More Advanced Methods for Nonlinear Least Squares

The Levenberg-Marquardt algorithm can be implemented as a model-trust region method for minimization (see $\S 9.7$ and ref. [2]) applied to the special case of a least squares function. A code of this kind due to Moré [3] can be found in MINPACK [4]. Another algorithm for nonlinear least-squares keeps the secondderivative term we dropped in the Levenberg-Marquardt method whenever it would be better to do so. These methods are called "full Newton-type" methods and are reputed to be more robust than Levenberg-Marquardt, but more complex. One implementation is the code NL2SOL [5].

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill), Chapter 11.
Marquardt, D.W. 1963, Journal of the Society for Industrial and Applied Mathematics, vol. 11, pp. 431-441. [1]
Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic Press), Chapter III. 2 (by J.E. Dennis).
Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall). [2]
Moré, J.J. 1977, in Numerical Analysis, Lecture Notes in Mathematics, vol. 630, G.A. Watson, ed. (Berlin: Springer-Verlag), pp. 105-116. [3]
Moré, J.J., Garbow, B.S., and Hillstrom, K.E. 1980, User Guide for MINPACK-1, Argonne National Laboratory Report ANL-80-74. [4]
Dennis, J.E., Gay, D.M, and Welsch, R.E. 1981, ACM Transactions on Mathematical Software, vol. 7, pp. 348-368; op. cit., pp. 369-383. [5].

15.6 Confidence Limits on Estimated Model Parameters

Several times already in this chapter we have made statements about the standard errors, or uncertainties, in a set of M estimated parameters \mathbf{a}. We have given some formulas for computing standard deviations or variances of individual parameters (equations $15.2 .9,15.4 .15,15.4 .19$), as well as some formulas for covariances between pairs of parameters (equation 15.2.10; remark following equation 15.4.15; equation 15.4.20; equation 15.5.15).

In this section, we want to be more explicit regarding the precise meaning of these quantitative uncertainties, and to give further information about how quantitative confidence limits on fitted parameters can be estimated. The subject can get somewhat technical, and even somewhat confusing, so we will try to make precise statements, even when they must be offered without proof.

Figure 15.6 .1 shows the conceptual scheme of an experiment that "measures" a set of parameters. There is some underlying true set of parameters $\mathbf{a}_{\text {true }}$ that are known to Mother Nature but hidden from the experimenter. These true parameters are statistically realized, along with random measurement errors, as a measured data set, which we will symbolize as $\mathcal{D}_{(0)}$. The data set $\mathcal{D}_{(0)}$ is known to the experimenter. He or she fits the data to a model by χ^{2} minimization or some other technique, and obtains measured, i.e., fitted, values for the parameters, which we here denote $\mathbf{a}_{(0)}$.

Because measurement errors have a random component, $\mathcal{D}_{(0)}$ is not a unique realization of the true parameters $\mathbf{a}_{\text {true }}$. Rather, there are infinitely many other realizations of the true parameters as "hypothetical data sets" each of which could have been the one measured, but happened not to be. Let us symbolize these by $\mathcal{D}_{(1)}, \mathcal{D}_{(2)}, \ldots$ Each one, had it been realized, would have given a slightly different set of fitted parameters, $\mathbf{a}_{(1)}, \mathbf{a}_{(2)}, \ldots$, respectively. These parameter sets $\mathbf{a}_{(i)}$ therefore occur with some probability distribution in the M-dimensional space of all possible parameter sets \mathbf{a}. The actual measured set $\mathbf{a}_{(0)}$ is one member drawn from this distribution.

Even more interesting than the probability distribution of $\mathbf{a}_{(i)}$ would be the distribution of the difference $\mathbf{a}_{(i)}-\mathbf{a}_{\text {true }}$. This distribution differs from the former one by a translation that puts Mother Nature's true value at the origin. If we knew this distribution, we would know everything that there is to know about the quantitative uncertainties in our experimental measurement $\mathbf{a}_{(0)}$.

So the name of the game is to find some way of estimating or approximating the probability distribution of $\mathbf{a}_{(i)}-\mathbf{a}_{\text {true }}$ without knowing $\mathbf{a}_{\text {true }}$ and without having available to us an infinite universe of hypothetical data sets.

Monte Carlo Simulation of Synthetic Data Sets

Although the measured parameter set $\mathbf{a}_{(0)}$ is not the true one, let us consider a fictitious world in which it was the true one. Since we hope that our measured parameters are not too wrong, we hope that that fictitious world is not too different from the actual world with parameters $\mathbf{a}_{\text {true }}$. In particular, let us hope - no, let us assume - that the shape of the probability distribution $\mathbf{a}_{(i)}-\mathbf{a}_{(0)}$ in the fictitious world is the same, or very nearly the same, as the shape of the probability distribution

