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Chapter 6 

Algebraic eigenvalue problems 

Das also war des Pudels Kern! GOETHE. 

6.0. Introduction 

Determination of eigenvalues and eigenvectors of matrices is one of the most important problems of 
numerical analysis. Theoretically, the problem has been reduced to finding the roots of an algebraic 

equation and to solving linear homogeneous systems of equations. In practical computation, as a 
rule, this method is unsuitable, and better methods must be applied. 

When there is a choice between different methods, the following questions should be answered: 

(a) Are both eigenvalues and eigenvectors asked for, or are eigenvalues alone sufficient? 
(b) Are only the absolutely largest eigenvalue(s) of interest? 
(c) Does the matrix have special properties (real symmetric, Hermitian, and so on)? 

If the eigenvectors are not needed less memory space is necessary, and further, if only the largest 
eigenvalue is wanted, a particularly simple technique can be used. Except for a few special cases a direct 
method for computation of the eigenvalues from the equation  is never used. 

Further it turns out that practically all methods depend on transforming the initial matrix one way or 
other without affecting the eigenvalues. The table on p. 114 presents a survey of the most important 
methods giving initial matrix, type of transformation, and transformation matrix.  As a rule, the 
transformation matrix is built up successively, but the resulting matrix need not have any simple 
properties, and if so, this is indicated by a horizontal line. It is obvious that such a compact table can give 
only a superficial picture; moreover, in some cases the computation is performed in two steps.  Thus a 
complex matrix can be transformed to a normal matrix following Eberlein, while a normal matrix can be 
diagonalized following Goldstine-Horwitz. Incidentally, both these procedures can be performed 
simultaneously giving a unified method as a result. Further, in some cases we have recursive techniques 
which differ somewhat in principle from the other methods. 

It is not possible to give here a complete description of all these methods because of the great number of 
special cases which often give rise to difficulties. However, methods which are important in principle will 
be treated carefully 
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Initial matrix Technique Transformation matrix Method, originator 

Real Iteration and deflation 
 

Power method 

Real, symmetric Diagonalization Orthogonal Jacobi 

Hermitian Diagonalization Unitary Generalized Jacobi 

Normal Diagonalization Unitary Goldstine-Horwitz 

Real, symmetric Tridiagonalization Orthogonal (rotations) Givens 

Real, symmetric Tridiagonalization Orthogonal (reflections) Householder 

Real Tridiagonalization 
 

Lanczos 

Real Tridiagonalization Unitary La Budde 

Real Triangularization Unitary Ruthishauser (LR) 

Hessenberg Triangularization Unitary (rotations) Francis (QR) 

Complex Triangularization Unitary (reflections) Lotkin, Greenstadt 

Complex Reduction to Hessenberg form 
 

Givens 

Complex Reduction to Hessenberg form 
 

Householder 

Complex Reduction to normal matrix 
 

Patricia Eberlein 

Tridiagonal Sturm sequence and interpolation 
 

Givens, Wilkinson, Wielandt 

Hessenberg Recursive evaluation and interpolation 
 

Hyman, Wielandt 
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and in other cases at least the main features will be discussed. On the whole we can distinguish four 
principal groups with respect to the kind of transformation used initially: 

1. Diagonalization, 
2. Almost diagonalization (tridiagonalization), 
3. Triangularization, 
4. Almost triangularization (reduction to Hessenberg form). 

The determination of the eigenvectors is trivial in the first case and almost trivialin the third case. In the 
other two cases a recursive technique is easily established which will work without difficulties in 
nondegenerate cases. To a certain amount we shall discuss the determination of eigenvectors, for 
example, Wilkinson's technique which tries to avoid a dangerous error accumulation. Also Wielandt's 
method, aiming at an improved determination of approximate eigenvectors, will be treated. 

6.1. The power method 

We assume that the eigenvalues of are  where  Now 

we let  operate repeatedly on a vector  which we express as a linear combination of the 

eigenvectors  

  (6.1.1) 

Then we have 

 

and through iteration we obtain 

   (6.1.2). 

For large values of  the vector 

 

will converge toward  that is, the eigenvector of  The eigenvalue is obtained as 

   (6.1.3) 

where the index  signifies the  component in the corresponding vector. The rate of 

convergence is determined by the quotient  convergence is faster the  
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smaller is. For numerical purposes the algorithm just described can be formulated in the following 

way. Given a vector we form two other vectors, 
 

and  

    (6.1.4) 

The initial vector should be chosen in a convenient way, often one tries  vector with all 

components equal to 1. 

EXAMPLE 

 

Starting from 

 

we find that 

 

and  

After round-off, we get 

 

If the matrix is Hermitian and all eigenvalues are different, the eigenvectors, as shown before, are 

orthogonal. Let be the vector obtained after iterations: 

 

We suppose that all are normalized: 
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Then we have  

 

and 

 

Further,  When  increases, all  tend to zero, 

and with , we get Rayleigh's quotient 

      (6.1.5) 

Example 

With    and  

we obtain for  and 3, ,and  respectively, 
compared with the correct value  The corresponding eigenvector is 

 

The quotients of the individual vector components give much slower convergence; for example,

 

The power method can easily be modified in such a way that certain other eigenvalues can also be 

computed. If, for example, has an eigenvalue  then has an eigenvalue Using 

this principle, we can produce the two outermost eigenvalues. Further, we know that is an 

eigenvalue of  and analogously that is an eigenvalue of  If we know 

that an eigenvalue is close to we can concentrate on that, since  becomes large as soon 

as is close to  

We will now discuss how the absolutely next largest eigenvalue can be calculated if we know the largest 

eigenvalue and the corresponding eigenvector  Let be the first row vector of and form 

     (6.1.6) 

Here is supposed to be normalized in such a way that the first component is  Hence the first row 

of is zero. Now let and be an eigenvalue and the corresponding eigenvector with the first 

component of equal to Then 
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we have 

 

since and (note that the first component of as well as of  is 1). 

Thus is an eigenvalue and is an eigenvector of  Since has the first component 

equal to 0, the first column of is irrelevant, and in fact we need consider only the

-matrix, which is obtained when the first row and first column of are removed. We determine an 
eigenvector of this matrix, and by adding a zero as first component, we get a vector Then we obtain

from the relation 

 

Multiplying with we find and hence  When and

have been determined, the process, which is called deflation, can be repeated. 

EXAMPLE 

The matrix 

 

has an eigenvalue and the corresponding eigenvector 

 

or normalized, 

 

Without difficulty we find 

 

Now we need consider only 

 

and we find the eigenvalues which are also eigenvalues of 
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the original matrix The two-dimensional eigenvector belonging to is 

 

and hence 

 

Since we get and 

 

With we find 

 

and  Hence and 

 

and all eigenvalues and eigenvectors are known. 

If is Hermitian, we have when Now suppose that  

and form 

     (6.1.7) 

It is easily understood that the matrix has the same eigenvalues and eigenvectors as  except  
which has been replaced by zero. In fact, we have  

and  and so on. Then we can again use the power method on 
the matrix  
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With the starting vector 

 

we find the following values for Rayleigh's quotient:
 and  

compared with the correct value  

If the numerically largest eigenvalue of a real matrix is complex,  then  must also 

be an eigenvalue. It is also clear that if  is the eigenvector belonging to  then  is the 

eigenvector belonging to  

Now suppose that we use the power method with a real starting vector 
  

Then we form with so large that the contributions from all the other eigenvectors can be 

neglected. Further, a certain component of is denoted by  Then 

where  and the initial component of

corresponding to is Hence 

 

where we have put Now we form 

 

Hence 

   
(6.1.8) 

Then we easily find 

 

In particular, if that is, if the numerically largest eigenvalues are ofthe form with real   
then we have the simpler formula 

    

(6.1.10) 

6.2. Jacobi's method 

In many applications we meet the problem of diagonalizing real, symmetric matrices.  This problem is 
particularly important in quantum mechanics. 

In Chapter 3 we proved that for a real symmetric matrix all eigenvalues are real, and that there 

exists a real orthogonal matrix such that  is diagonal. We shall now try to produce the 
desired orthogonal matrix as a— product of very special orthogonal matrices.  Among the off-diagonal 
elements 
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we choose the numerically largest element: The elements 
  

and form a submatrix which can easily be transformed to diagonal form. We put 

 

and get 

   

(6.2.1) 

Now choose the angle such that that is, tan  This equation 

gives 4 different values of and in order to get as small rotations as possible we claim 

 
Putting 

 
and  

we obtain: 

 

since the angle must belong to the first quadrant if tan and to the fourth quadrant if tan

Hence we have for the angle  

 

where the value of the arctan-function is chosen between  After a few simple 

calculations we get finally: 

     (6.2.2) 

(Note that and  

We perform a series of such two-dimensional rotations; the transformation matrices have the form given 

above in the elements and  and are identical with the unit matrix 

elsewhere. Each time we choose such values and that  We shall show that with the 

notation   the matrix for increasing will approach a diagonal 
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matrix with the eigenvalues of along the main diagonal.  Then it is obvious that we get the 

eigenvectors as the corresponding columns of  since we have that is, 

Let be the column vector of and the diagonal element of  Then we 
have 

 

If  is denoted by we know from Gershgorin's theorem that  for some 

value of and if the process has been brought sufficiently far, every circle defined in this way contains 
exactly one eigenvalue. Thus it is easy to see when sufficient accuracy has been attained and the 
procedure can be discontinued. 

The convergence of the method has been examined by von Neumann and Goldstine in the following 

way. We put  and, as before,  The 

orthogonal transformation affects only the  row and column and the  row and column. Taking 

only off-diagonal elements into account, we find for and relations of the form 

 

and hence Thus will be changed only through the cancellation of the 

elements and that is, 

 

Since was the absolutely largest of all off-diagonal elements, we have 

 

and 

 

Hence we get the final estimate, 

    (6.2.3) 

After  iterations, has decreased with at least the factor  and for a 

sufficiently large we come arbitrarily close to the diagonal matrix containing the eigenvalues. 

In a slightly different modification, we go through the matrix row by row performing a rotation as soon 

as  Here is a prescribed tolerance which, of course, has to be changed each time the 

whole matrix has been passed. This modification seems to be more powerful than the preceding one. 

The method was first suggested by Jacobi. It has proved very efficient for diagonalization of real 
symmetric matrices on automatic computers. 
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Example 

 

Choosing  we obtain, tan  and  

After the first rotation, we have 

 

Here we take  and obtain tan and  
 After the second rotation we have 

 

and after 10 rotations we have 

 

After  rotations the diagonal elements are   and 

 while the remaining elements are equal to  to  decimals accuracy.  The sum 

of the diagonal elements is  and the product  in good agreement with 
the exact characteristic equation: 

 

Generalization to Hermitian matrices, which are very important in modern physics, is quite natural. As 

has been proved before, to a given Hermitian matrix we can find a unitary matrix such that 

 becomes a diagonal matrix. Apart from trivial factors, a two-dimensional unitary matrix has 
the form 

 

A two-dimensional Hermitian matrix 
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is transformed to diagonal form by  where 

 

Putting we separate the real and imaginary parts and then multiply the resulting equations, 

first by and then by  and  and finally add them together. Using 

well-known trigonometric formulas, we get 

  (6.2.4) 

In principle we obtain from the first equation and then can be solved from the second. Rather 

arbitrarily we demand and hence 

 

where 

 

Since  the remaining equation has the solution 

 

with  and  Now we want to 
choose according to  in order to get as small a rotation as possible which 

implies 

 

The following explicit solution is now obtained (note that  and  cannot both be equal to  
because then  would already be diagonal): 

   

(6.2.5) 

As usual the value of the arctan-function must be chosen between  and 

  



6.3. Givens' method 125 
 

 The element can now be written 

 

and consequently: 

    (6.2.6) 

If we get and recover the result in Jacobi's method. 

This procedure can be used repeatedly on larger Hermitian matrices, where the unitary matrices differ 

from the unit matrix only in four places. In the places and we introduce 

the elements of our two-dimensional matrix. The product of the special matrices is a 

new unitary matrix approaching when is increased. 

Finally we mention that a normal matrix (defined through can always be diagonalized 
with a unitary matrix. The process can be performed following a technique suggested by Goldstine and 

Horwitz which is similar to the method just described for Hermitian matrices. The reduction of an 

arbitrary complex matrix to normal form can be accomplished through a method given by Patricia 

Eberlein  In practice, both these processes are performed simultaneously. 

6.3. Givens' method 

Again we assume that the matrix is real and symmetric. In Givens' method we can distinguish among 
three different phases.  The first phase is concerned with  orthogonal 

transformations, giving as result a band matrix with unchanged characteristic equation.   In the second 
phase a sequence of, functions is generated, and it is shown that it forms a Sturm sequence, the 

last member of which is the characteristic polynomial. With the aid of the sign changes in this sequence, 
we can directly state how many roots larger than the inserted value the characteristic equation has. 

By testing for a number of suitable values we can obtain all the roots. During the third phase, the 
eigenvectors are computed. The orthogonal transformations are performed in the following order. The 

elements and  define a two-dimensional subspace, and we start by performing a 

rotation in this subspace. This rotation affects all elements in the second and third  rows and in the 

second and third columns.  However, the quantity defining the orthogonal matrix 

 

is now determined from the condition and not, as in Jacobi's method, by 

 We have and  The 

next rotation is performed in the (2, 4)-plane with the new 
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 determined from that is, tan  that the  element 

was changed during the preceding Now all elements in the second and fourth rows and in 
the second and fourth columns are changed, and it should be particularly observed that the element

 is not affected. In the same way, we make the elements  equal to zero by 

rotations in the -planes. 

Now we pass to the elements and they are all set to zero by rotations in the planes

 During the first of these rotations, the elements in the third and fourth 
rows and in the third and fourth columns are changed, and we must examine what happens to the 

elements  and which were made equal to zero earlier. We find 

 

Further, we get and  By now the 

procedure should be clear, and it is easily understood that we finally obtain a band matrix, that is, such a 

matrix that
 

In this special case we have Now we put 

    

(6.3.1) 

 has been obtained from by a series of orthogonal transformations, 

 

with  In Chapter it was proved that and have the same eigenvalues and 

further that, if is an eigenvector of and an eigenvector of (both with the same eigenvalue), then 
we have  Thus the problem has been reduced to the computation of eigenvalues and 

eigenvectors of the band matrix  

We can suppose that all  otherwise  could be split into two determinants 

of lower order  Now we form the following sequence of functions: 

    (6.3.2) 

with  and  We find at once that  which can be interpreted 

as the determinant of the -element in the matrix  
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Analogously, we have which is the -minor of  
By induction, it is an easy matter to prove that is the characteristic polynomial. 

Next we shall examine the roots of the equation  For we have 

the only root.  For  we observe that  
, Hence we have two real roots and with, for example,

 For  we will use a method which can easily be 

generalized to an induction proof.  Then we write  
 

and obtain from 

(6.3.2): 

 

Now it suffices to examine the sign of
 

in a few suitable points: 

 

We see at once that the equation has three real roots and  such that

 In general, if has the roots

and the roots then 

 

where 

 

By successively putting and we find that  has different 

signs in two arbitrary consecutive points.  Hence has  real roots, separated by the roots 

of  

We are now going to study the number of sign changes in the sequence 

 It is evident that and Suppose  that and

are two such real numbers that in the closed interval  Then obviously

 First we examine what happens if the equation has a root

in the interval.  From   it follows for  that

 Hence and have different signs, and clearly this is also 

true in an interval  Suppose, for example, that then we may 

have the following combination of signs: 

 

Hence, the number of sign changes does not change when we pass through a root of

 When however, the situation is different. 
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Suppose, for example, that & odd.  Denoting the roots of by  
 

and 

the roots of by we have 

 

Then we see that Now we let increase until it reaches the 

neighborhood of | where we find the following scheme: 

 

Hence Then we let increase again (now a sign change of may 

appear, but, as shown before, this does not affect until we reach the neighborhood of where we 

have 

 

and hence  Proceeding in the same way through all the roots  

we infer that the number of sign changes decreases by one unit each time a root is passed. Hence we 

have proved that if  is the number of eigenvalues of the matrix which are larger than then 

     (6.3.3) 

The sequence is called a  The described technique makes it possible to 

compute all eigenvalues in a given interval ("telescope method"). 

For the third phase, computation of the eigenvectors, we shall follow J. H. Wilkinson in  Let be 
an exact eigenvalue of Thus we search for a vector such that  Since this is a 

homogeneous system in variables, and since we can obtain a nontrivial 

solution by choosing  equations and determine the components of (apart from a constant 

factor); the remaining equation must then be automatically satisfied. In practical work it turns out, even 
for quite well-behaved matrices, that the result to a large extent depends on which equation was 
excluded from the  Essentially, we can say that the serious errors which appear on an 

unsuitable choice of equation to be excluded depend on numerical compensations; thus round-off 
errors achieve a dominant influence. 

Let us assume that the equation is excluded, while the others are solved by elimination. The solution 

(supposed to be exact) satisfies the equations used for elimination but gives an error when 
inserted into the  
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Actually, we have solved the system 

 

(We had to use an approximation instead of the exact eigenvalue .) Since constant factors may be 
omitted, this system can be written in a simpler way: 

     (6.3.5) 

where is a column vector with the component equal to and the others equal to  If the 

eigenvectors of are this vector can be expressed as a linear combination, that is, 

     (6.3.6) 

and from (6.3.5) we get 

 

  (6.3.7) 

Now let and we obtain 

   (6.3.8) 

Under the assumption that our solution approaches as (apart from trivial 

factors). However, it may well happen that is of the same order of magnitude as (that is, the vector

 is almost orthogonal to ), and under such circumstances it is clear that the vector in (6.3.8) 

cannot be a good approximation of  Wilkinson suggests that (6.3.5) be replaced by 

     (6.3.9) 

where we have the vector at our disposal. This system is solved by Gaussian elimination, where it 

should be observed that the equations are permutated properly to make the pivot element as large as 
possible. The resulting system is written: 

   (6.3.10) 

As a rule, most of the coefficients are zero.   Since the have been obtained from the

which we had at our disposal, we could as well choose the constants deliberately. It seems to be a 

reasonable choice to take all  
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equal to no eigenvector should then be disregarded.  Thus we choose 

      (6.3.11) 

The system is solved, as usual, by back-substitution, and last, the vector is normalized. Even on rather 

pathological matrices, good results have been obtained by Givens' method. 

6.4. Householder's method 
This method, also, has been designed for real, symmetric matrices. We shall essentially follow the 

presentation given by Wilkinson  The first step consists of reducing the given matrix to a band 
matrix. This is done by orthogonal transformations representing reflections. The orthogonal matrices, 

will be denoted by with the general structure 

     (6.4.1) 

Here is a column vector such that 

      (6.4.2) 

It is evident that is symmetric. Further, we have 

 

that is, is also orthogonal. 

The matrix acting as an operator can be given a simple geometric interpretation. Let t operate on a 

vector from the left: 

 

In Fig. 6.4 the line is perpendicular to the unit vector in a plane defined by and  The distance 

from the endpoint of to is  and the mapping means a reflection in a 
plane perpendicular to  

 

Figure 6.4 
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Those vectors which will be used are constructed with the first  components zero, or 

 

With this choice we form  Further, by (6.4.2) we have 

 

Now put and form successively 

     (6.4.3) 

 At the first transformation, we get zeros in the positions 

 and in the corresponding places in the first column. The final result will 

become a band matrix as in Givens' method. The matrix  contains elements in the row,

 which must be reduced to zero by transformation with this gives equations for the

elements  and further we have the condition that the sum of the 

squares must be  

We carry through one step in the computation in an example: 

 

 

The transformation must now produce zeros instead of and   Obviously, the matrix

has the following form: 

 

Since in the first row of only the first element is not zero, for example, the -element of 

 can become zero only if the corresponding element is zero already in  Putting

 we find that the first row of has the following elements: 

 

Now we claim that 

    (6.4.4) 

Since we are performing an orthogonal transformation, the sum of the squares 
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of the elements in a row is invariant, and hence 

 

Putting we obtain 

     (6.4.5) 

Multiplying (6.4.5) by and (6.4.4) by and we get 

 

The sum of the first three terms is and further  Hence 

     (6.4.6) 

Inserting this into (6.4.5), we find that  and from (6.4.4),  and

 

In the general case, two square roots have to be evaluated, one for and one for  Since we have
in the denominator, we obtain the best accuracy if is large. This is accomplished by choosing a 

suitable sign for the square-root extraction for  Thus the quantities ought to be defined as follows:

    (6.4.7) 

The sign for this square root is irrelevant and we choose plus.  Hence we obtain for and  

    (6.4.8) 

The end result is a band matrix whose eigenvalues and eigenvectors are computed exactly as in Givens' 

method.  In order to get an eigenvector of an eigenvector of the band matrix has to be 

multiplied by the matrix   this should be done by iteration: 

     (6.4.9) 

6.5. Lanczos' method 
The reduction of real symmetric matrices to tridiagonal form can be accomplished through methods 
devised by Givens and Householder. For arbitrary matrices a similar reduction can be performed by a 
technique suggested by Lanczos. In this method two systems of vectors are constructed,

 and which are biorthogonal; that is, for we have  
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The initial vectors and can be chosen arbitrarily though in such a way that  The new 
vectors are formed according to the rules 

 

The coefficients are determined from the biorthogonality condition, and for 
 

we 

form: 

 

If we get 

 
 

Analogously 

 
 

Let us now consider the numerator in the expression for when  

 

because of the biorthogonality. Hence we have for and similarly we also have

under the same condition.  In this way the following simpler formulas are obtained: 

 

If the vectors are considered as columns in a matrix and if further a tridiagonal 

matrix is formed from the coefficients and with one's in the remaining diagonal: 

 

then we can simply write and provided the vectors  are linearly 
independent 
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If similar matrices are formed from the vectors and from the coefficients

we get 

 

Certain complications may arise, for example, that some or may become zero, but it can 

also happen that even if and  The simplest way out is to choose other 
initial vectors even if it is sometimes possible to get around the difficulties by modifying the formulas 
themselves. 

Obviously, Lanczos' method can be used also with real symmetric or Hermi tian matrices. Then one 
chooses just one sequence of vectors which must form an orthogonal system. For closer details, 
particularly concerning the determination of the eigenvectors, Lanczos' paper should be consulted; a 

detailed discussion of the degenerate cases is given by Causey and Gregory  

Here we also mention still one method for tridiagonalization of arbitrary real matrices, first given by La 
Budde. Space limitations prevent us from a closer discussion, and instead we refer to the original paper

 

6.6. Other methods 
Among other interesting methods we mention the method. Starting from a matrix we 

split it into two triangular matrices  with  and then we form  Since

the new matrix has the same eigenvalues as  Then we treat in the same 

way as and so on, obtaining a sequence of matrices which in general converges 
toward an upper triangular matrix. If the eigenvalues are real, they will appear in the main diagonal. 
Even the case in which complex eigenvalues are present can be treated without serious complications. 

Closer details are given in  where the method is described by its inventor, H. Rutishauser. Here we 
shall also examine the more general eigenvalue problem, 

 

where and are symmetric and, further, is positive definite.  Then we can split according to
where is a lower triangular matrix. Hence 

 

and  where   Since  
the problem has been reduced to the usual type treated before. 

6.7. Complex matrices 
For computing eigenvalues and eigenvectors of arbitrary complex matrices (also, real nonsymmetric 
matrices fall naturally into this group), we shall first discuss a triangularization method suggested by 

Lotkin and Greenstadt  
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The method depends on the lemma by Schur stating that for each square matrix  there exists a 

unitary matrix such that where is a (lower or upper) triangular matrix (see Section 
3.7). In practical computation one tries to find as a product of essentially two-dimensional unitary 
matrices, using a procedure similar to that described for Hermitian matrices in Section 6.2. It is possible 
to give examples for which the method does not converge (the sum of the squares of the absolute 

values of the subdiagonal elements is not monotonically decreasing, cf. but in practice 

convergence is obtained in many cases. We start by examining the two-dimensional case and put 

  (6.7.1) 

From we get  Further, we suppose that  where 

 

and obtain 

    (6.7.2) 

Clearly we have  Claiming  we find with  

 

and 

  (6.7.3) 

Here we conveniently choose the sign that makes as small as possible; with and

we get  Hence is obtained directly from the elements and

 Normally, we must take the square root of a complex number, and this can be done by the formula 

 

where  When has been determined, we get and from 

     (6.7.4) 

Now we pass to the main problem and assume that is an arbitrary complex matrix  We choose 

that element below the main diagonal which is largest 
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in absolute value, and perform an essentially two-dimensional unitary transformation which makes this 

element zero.   This procedure is repeated until  is less than a given tolerance. Denoting 

the triangular matrix by  we have with where are the

 individual essentially two-dimensional unitary matrices.  Clearly, the eigenvalues 
are  

In order to compute the eigenvectors, we start with the triangular matrix, and we shall restrict ourselves 
to the case when all eigenvalues are different. We see directly that the vector whose first component is

and whose other components are is an eigenvector belonging to the first eigenvalue  Next we 

see that we can determine such a value that the vector with first component and second 

component becomes an eigenvector.  The condition is  from which we can 

determine (we suppose that  We proceed in the same way and collect all eigenvectors to 

a triangular matrix  and further we form a diagonal matrix with the diagonal elements  

 Then we have 

 (6.7.5) 

and obviously  The quantities are computed recursively from the relation 

    (6.7.6) 

valid for  First we put and then we use (6.7.6) for

and in this way the eigenvector belonging to the eigenvalue can 
be determined.  Last, we obtain the eigenvectors of the original matrix from 

     (6.7.7) 

When the method is used on a computer, we must reserve two memory places for each element (even if

is real). Only in special cases are all results real. The method described here depends on annihilation 

of a subdiagonal element which, however, does not guarantee that decreases.  An 

alternative technique can be constructed aiming at minimization of by choosing  and

conveniently.  The equations become fairly complicated but can be solved numerically and, as a rule, 
the minimum point need not be established 
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to a very high degree of accuracy.  The value of the method is still difficult to estimate as it has not yet 
been tried sufficiently in practice. 

6.8. Hyman's method 

A matrix is said to be of upper Hessenberg form if for and of lower Hessenberg 

form if for  In the following we shall choose to work with the upper Hessenberg 
form. An arbitrary complex matrix can quite easily be reduced to Hessenberg f orm which will now be 
demonstrated. Essentially the reduction goes as in Givens' method demanding  
steps. In the general case the transformations are unitary, but for real matrices we can use real 
(orthogonal) transformations which is a great advantage. 

Starting from an arbitrary complex matrix we perform a two-dimensional rotation in the

-plane under the condition  

 The first rotation occurs in the -plane with the 

condition next in the -plane with and so on. In this way all elements in the 

first column except and are annihilated. After that we rotate in the -plane with  
and so on. Introduce the notations 

 

with making unitary.  Then we get 

 

and splitting into real and imaginary parts: 

 

Squaring and adding we get  and a trivial 

elimination also gives the angle  

 

In the real case we have giving and  

We shall also briefly show how the reduction can be made by use of reflections following Householder 
(also cf.  Putting we shall describe one step in the reduction leading from to

where 
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and 

 

is of upper Hessenberg form. The matrix will then be produced through  leaving

 as well as the null-matrix of dimension  unchanged while the vector

must be annihilated except for the first component . In this way a new Hessenberg matrix of 

dimension  is formed by moving one new row and one new column to  
Now we choose 

 

with and being a column vector with  elements. A 
simple computation gives 

 

Hence and that is,  (we 

suppose Euclidean vector norm). Further  and  

 and since is real, arg  Here  is a 

vector with the first component and all other components  Thus the argument of is 

equal to the argument of the top element of the vector  Finally, since 

 

we get 

 

and is completely determined. If this procedure is repeated we finally reach the matrix which is 

of upper Hessenberg form. 

After having produced a Hessenberg matrix with the same eigenvalues as we now turn 

to the computation of these. Let be a vector with unknown components and an arbitrary (complex) 
number. Then form the 
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following linear system of equations: 

   (6.8.2) 

We suppose that all elements and as the system is homogeneous we 

can choose, for example,  Then we can solve as a first-degree polynomial from the last 

equation.  From the next to last equation,  is obtained as a second-degree polynomial in and 
so on; and finally  is determined from the second equation as a polynomial of degree in  If 

all these values of are inserted into the expression  

 we get as result the characteristic polynomial   apart 

from a constant factor. It is now possible to compute the eigenvalues from these results by 
interpolation, first linear and then quadratic. 

The method described here is such that the values obtained are exact eigenvalues of another matrix 

differing only slightly from ("reverse error computation, cf. Section 4.4. and Wilkinson,  p. 

147). It is quite possible that the errors in the eigenvalues may become large; this means that the eigen-

value problem is conditioned and we can expect numerical difficulties irrespective of the 
method chosen. 

The interpolation can be improved by computing the first and possibly also the second derivative of the 
characteristic polynomial by iteration. The following formulas are used: 

 

Denoting the characteristic polynomial by and putting 

 

we have 

 

Then Newton-Raphson's method can be used (possibly a variant independent 
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of multiplicity): 

 

Example 

 

Starting with we compute and  

 

Hence (correct value  Let us now once again write down expressions as 

polynomials in for the set which is also extended by an extra variable associated with 

the first equation of the system: 

 

Using we get 

 

Comparing powers on both sides, we find 

   (6.8.4) 
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This relation can be written in matrix form; for we get 

 

   (6.8.5) 

Taking determinants on both sides we find in particular which can easily be 

generalized to arbitrary The characteristic equation is now 

 

This method of generating the characteristic equation and then the eigenvalues by some standard 
technique, as a rule is unsuitable for stability reasons except possibly if the computation of coefficients 
can be performed within the rational field. 

Computation of the eigenvectors from (6.8.2) cannot be recommended since instability will occur. 

However, it is possible to use an idea by Wielandt, in principle inverse interpolation. Let be an 

approximate eigenvalue  where is an exact eigenvalue) and an approximate 

eigenvector. Further we suppose that the exact eigenvectors are  Successive iterations 
are now computed from 

 

where is a suitable scale factor compensating for the fact that is almost singular which will 

cause no trouble otherwise. Now suppose, for example, which leads to 

 

that is,  and 
we have the same effect as when the power method is applied.  The solution of the system

is performed by standard means, for example, following Gauss or Crout. 

If the eigenvector problem is ill-conditioned in itself, this technique, of course, will not help. Consider, for 
example, 
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This relation can be written in matrix form; for we get 

 

   (6.8.5) 

Taking determinants on both sides we find in particular which can easily be 

generalized to arbitrary The characteristic equation is now 

 

This method of generating the characteristic equation and then the eigenvalues by some standard 
technique, as a rule is unsuitable for stability reasons except possibly if the computation of coefficients 
can be performed within the rational field. 

Computation of the eigenvectors from (6.8.2) cannot be recommended since instability will occur. 

However, it is possible to use an idea by Wielandt, in principle inverse interpolation. Let be an 

approximate eigenvalue  where is an exact eigenvalue) and an approximate 

eigenvector. Further we suppose that the exact eigenvectors are  Successive iterations 
are now computed from 

 

where is a suitable scale factor compensating for the fact that is almost singular which will 

cause no trouble otherwise. Now suppose, for example, which leads to 

 

that is,  and 
we have the same effect as when the power method is applied.  The solution of the system

is performed by standard means, for example, following Gauss or Crout. 

If the eigenvector problem is ill-conditioned in itself, this technique, of course, will not help. Consider, for 
example, 
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and the vector is also determined.  Obviously, uniqueness is secured apart from factors in the 

diagonal elements of and hence the condition  will determine and completely. 

Now we start from and form sequences of matrices and  by use of the following 
algorithm: 

 

This means that first is partitioned in a product of a unitary and an upper triangular matrix, and then

is computed as It  also means that  is formed from through a similarity 
transformation with a unitary matrix. Next, we put 

 

and so we obtain 

 

Then we form 

 

 

But and consequently which gives 

 

Here is unitary and upper triangular, and in principle they could be computed from by 

partition in a product of a unitary and an upper triangular matrix. In this way we would also obtain
through a similarity transformation: 

 

We now assert that the matrix for increasing  more and more will approach an upper triangular 
matrix. We do not give a complete proof but restrict ourselves to the main points; further details can be 

found in  The following steps are needed for the proof: 

1. is written which is always possible if all eigenvalues are 

different (this restriction can be removed afterward). Further we assume with 

 

2. Then we also have  

3. is partitioned as and where is unitary,  and

upper triangular, and lower triangular with ones in the main diagonal (both partitions are unique). 

For the latter partition a permutation might be necessary. 

4. Then we get   The decisive point is that  as is easily 

shown, in subdiagonal elements will contain quotients
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 so that this matrix actually will approach the identity matrix.  If so, we are left with  

5. But and are unitary while and are upper triangular. Since the partition is unique, we can 

draw the conclusion that 

and  

6. (since  and

The matrix is an upper triangular matrix with the same eigenvalues as  

As already mentioned, the will become too laborious for arbitrary matrices, and instead it is 

used on special matrices, preferably Hessenberg or symmetric band-matrices. The method has good 
stability properties and seems to be one of the most promising at present. Several algorithms in ALGOL 

treating this method have already been published  
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EXERCISES 
1. Find the largest eigenvalue of the matrix 

 

correct to three places. 

2. Find the absolutely smallest eigenvalue and the corresponding eigenvector of the matrix 

 

using the fact that is an eigenvalue of if is an eigenvalue of  

3. Find the largest eigenvalue and the corresponding eigenvector of the Hermitian matrix 

 

4. Using the fact that is an eigenvalue of if is an eigenvalue of  find the highest 
and the lowest eigenvalue of the matrix 

 
 

Choose and the starting vectors 

 

respectively.  (Desired accuracy: two decimal places.) 

5. The matrix 
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has an eigenvalue close to  Compute this eigenvalue to six places, using the matrix 

 

6. is a matrix with one eigenvalue and another all remaining eigenvalues 

are such that  Generalize the power method so that it can be used in this case. Use the 

result for computing for the matrix 

 

(two decimals). 

7. Find the largest eigenvalue of the modified eigenvalue problem when 

 and  

8. Show that 

 

can be written where is a constant matrix. Also find the eigenvalues and 
the eigenvectors of  is called circulant.) 

9. In the matrix of type all diagonal elements are while all the others are  Find such 

numbers and that  Use this relation for finding eigenvalues is 

simple, and one is and the eigenvectors of  

10.  Using the find and when 

 

11.  is a matrix with eigenvalues (all different). Put 

 

Show that  

12.  A real, symmetric matrix has the largest eigenvalue equal to and the next largest equal to
and both are greater than zero. All the other eigenvalues are considerably less in absolute value 

than these two. By use of the power method one has obtained a vector of the form

where and are eigenvectors corresponding, to the eigenvalues and  From these values 

a series of consecutive Rayleigh quotients is constructed.  Show how can be accurately 

determined from three such quotients  
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