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5.3 Polynomials and Rational Functions

A polynomia of degree N — 1 is represented numerically as a stored array
of coefficients, c(j) with j= 1,...,N. We will aways take c(1) to be the
constant term in the polynomial, c (V) the coefficient of 2V —1; but of course other
conventions are possible. There are two kinds of manipulations that you can do
with a polynomial: numerical manipulations (such as evaluation), where you are
given the numerical value of its argument, or algebraic manipulations, where you
want to transform the coefficient array in some way without choosing any particular
argument. Let’s start with the numerical.

We assume that you know enough never to evaluate a polynomial thisway:

p=c (1) +c(2) *x+c (3) ¥x*k*2+c (4) *x*k*3+c (5) *x**4

Come the (computer) revolution, all persons found guilty of such criminal
behavior will be summarily executed, and their programs won't be! It is a matter
of taste, however, whether to write

p=c(1)+x*(c(2)+x*(c(3)+x*(c(4)+x*c(5))))

or
p=(((c(8)*x+c(4)) *x+c(3))*x+c(2)) *xx+c(1)

If the number of coefficients is alarge number n, one writes

p=c(n)

dou j=n-1,1,-1
p=p*x+c(j)

enddo 11

Another useful trick is for evauating a polynomial P(z) and its derivative
dP(x)/dz simultaneously:

p=c(n)

dp=0.

dou j=n-1,1,-1
dp=dp*x+p
p=p*x+c(j)

enddo 11

which returns the polynomial as p and its derivative as dp.
The above trick, which is basicaly synthetic division[1,2], generalizes to the
evaluation of the polynomial and nd-1 of its derivatives simultaneously:
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168 Chapter 5.  Evaluation of Functions

SUBROUTINE ddpoly(c,nc,x,pd,nd)
INTEGER nc,nd
REAL x,c(nc),pd(nd)
Given the coefficients of a polynomial of degree nc-1 as an array c (1:nc) with ¢ (1) being
the constant term, and given a value x, and given a value nd>1, this routine returns the
polynomial evaluated at x as pd(1) and nd-1 derivatives as pd(2:nd).
INTEGER 1i,j,nnd
REAL const
pd(1)=c(nc)
dou j=2,nd
pd(j)=0.
enddo 11
do 13 i=nc-1,1,-1
nnd=min(nd,nc+1-1)
do 12 j=nnd,2,-1
pd(§)=pd (j)*x+pd (j-1)
enddo 12
pd(1)=pd (1)*x+c (i)
enddo 13
const=2. After the first derivative, factorial constants come in.
do 14 i=3,nd
pd(i)=const*pd(i)
const=const*i
enddo 14
return
END

As a curiosity, you might be interested to know that polynomials of degree
n > 3 can be evaluated in fewer than n multiplications, at least if you are willing
to precompute some auxiliary coefficients and, in some cases, do an extra addition.
For example, the polynomial

P(x) = ao + a1z + agx” + azz® + asa’ (5.3.1)
where a4 > 0, can be evaluated with 3 multiplicationsand 5 additions as follows:
P(z) = [(Az + B)? + Az + C][(Az+ B)* + D]+ E (5.3.2)

where A, B, C, D, and E are to be precomputed by

A= (a4)1/4
_ CL3—A3
B= 4A3
D =3B%+8B%+ CMAZ# (5.3.3)
c=22 9B 6B2-D

A2
E=ay— B~ B*C+D)-CD

Fifth degree polynomials can be evaluated in 4 multiplies and 5 adds; sixth degree
polynomias can be evaluated in 4 multiplies and 7 adds; if any of this strikes
you as interesting, consult references [3-5]. The subject has something of the same
entertaining, if impractical, flavor as that of fast matrix multiplication, discussed
in §2.11.
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5.3 Polynomials and Rational Functions 169

Turn now to algebraic manipulations. You multiply a polynomia of degree
n—1 (array of lengthn) by amonomial factor « — a by abit of codelikethefollowing,

c(n+1)=c(n)

dou j=n,2,-1
c(=c(j-1-c(j)*a

enddo 11

c(1l)=-c(1)*a

Likewise, you divideapolynomial of degreen — 1 by amonomial factor x — a
(synthetic division again) using

rem=c (n)

c(n)=0.

do 11 i=n-1,1,-1
swap=c (i)
c(i)=rem
rem=swap+rem*a

enddo 11

which leaves you with a new polynomial array and a numerical remainder rem.

Multiplication of two general polynomials involves straightforward summing
of the products, each involving one coefficient from each polynomia. Division
of two general polynomias, while it can be done awkwardly in the fashion taught
using pencil and paper, is susceptible to a good deal of streamlining. Witness the
following routine based on the algorithm in[3].

SUBROUTINE poldiv(u,n,v,nv,q,r)

INTEGER n,nv

REAL q(n),r(n),u(n),v(av)
Given the n coefficients of a polynomial in u(1:n), and the nv coefficients of another
polynomial in v(1:nv), divide the polynomial u by the polynomial v (“u"/"“v") giving
a quotient polynomial whose coefficients are returned in q(1:n-nv+1), and a remainder
polynomial whose coefficients are returned in r(1:nv-1). The arrays q and r are dimen-
sioned with lengths n, but the elements r(av) ...r(n) and q(n-nv+2)...q(n) will be
returned as zero.

INTEGER j,k

dou j=1,n
r(j)=u(j)
q(j)=0.

enddo 11

do 13 k=n-nv,0,-1
q(k+1)=r (nv+k)/v(av)
do 12 j=nv+k-1,k+1,-1

r(j)=r(j)-q(k+1)*v(j-k)

enddo 12

enddo 13

do 1 j=nv,n
r(j)=0.

enddo 14

return

END
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170 Chapter 5.  Evaluation of Functions

Rational Functions

You evauate a rationa function like

Du(x) _potpiz+---+pua”

R P
(@) Qu(z) q+qr+- -+ g

(5.3.4)

in the obviousway, namely as two separate polynomiasfollowed by adivide. Asa
matter of convention one usually chooses gy = 1, obtained by dividing numerator
and denominator by any other ¢o. It is often convenient to have both sets of
coefficients stored in a single array, and to have a standard subroutine available
for doing the evaluation:

FUNCTION ratval(x,cof,mm,kk)

INTEGER kk,mm

DOUBLE PRECISION ratval,x,cof (mm+kk+1) Note precision! Change to REAL if desired.
Given mm, kk, and cof (1:mm+kk+1), evaluate and return the rational function (cof (1) +
cof (2)x+ --- + cof (mm+1) ™) /(1 + cof (mm+2)x + - - - + cof (mm+kk+1)xkk).

INTEGER j

DOUBLE PRECISION sumd,sumn

sumn=cof (mm+1)

dou j=mm,1,-1
sumn=sumn*x+cof (j)

enddo 11

sumd=0.d0

do 12 j=mm+kk+1,mm+2,-1
sumd= (sumd+cof (j))*x

enddo 12

ratval=sumn/(1.d0+sumd)

return

END
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5.4 Complex Arithmetic 171

5.4 Complex Arithmetic

Since FORTRAN has the built-in data type COMPLEX, you can generaly let the
compiler and intrinsic function library take care of complex arithmetic for you.
Generdly, but not always. For a program with only a small number of complex
operations, you may want to code these yoursdf, in-line. Or, you may find that
your compiler is not up to snuff: It isdisconcertingly common to encounter complex
operations that produce overflows or underflows when both the complex operands
and the complex result are perfectly representable. This occurs, we think, because
software companies assign inexperienced programmers to what they believe to be
the perfectly trivial task of implementing complex arithmetic.

Actualy, complex arithmetic is not quite trivial. Addition and subtraction
are done in the obvious way, performing the operation separately on the real and
imaginary parts of the operands. Multiplication can aso be donein the obviousway,
with 4 multiplications, one addition, and one subtraction,

(a+1b)(c +id) = (ac — bd) + i(bc + ad) (5.4.1)

(the addition before the ¢ doesn’t count; it just separates thereal and imaginary parts
notationally). But it is sometimes faster to multiply via

(a+ib)(c+id) = (ac — bd) + i[(a + b)(c + d) — ac — bd] (5.4.2)

which has only three multiplications(ac, bd, (a + b)(c + d)), plus two additionsand
three subtractions. The total operations count is higher by two, but multiplication
is a slow operation on some machines.

While it is true that intermediate results in equations (5.4.1) and (5.4.2) can
overflow even when thefinal result isrepresentable, this happens only when thefina
answer is on the edge of representability. Not so for the complex modulus, if you
or your compiler are misguided enough to compute it as

la +ib] = /a2 + b2 (bad!) (5.4.3)

whose intermediate result will overflow if either a or b is as large as the sguare
root of the largest representable number (e.g., 101 as compared to 103%). Theright
way to do the calculation is

e [l VITEE ol 2 b
la-+ 2] {|b|\/1+<a/b>2 la] < b (544)

Complex division should use a similar trick to prevent avoidable overflows,
underflow, or loss of precision,

[a+b(d/c)] +i[b—a(d/c)]
a+ib c+d(d/c)
c+id ) [a(c/d)+b] +ilb(c/d) — a]
clefd)+d

l¢| > |d]
(5.4.5)

e < |d]
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