
5.3 Polynomials and Rational Functions 167

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Thompson, I.J., and Barnett, A.R. 1986, Journal of Computational Physics, vol. 64, pp. 490–509.
[5]

Lentz, W.J. 1976, Applied Optics, vol. 15, pp. 668–671. [6]

Jones, W.B. 1973, in Padé Approximants and Their Applications, P.R. Graves-Morris, ed. (Lon-
don: Academic Press), p. 125. [7]

5.3 Polynomials and Rational Functions

A polynomial of degree N − 1 is represented numerically as a stored array
of coefficients, c(j) with j= 1, . . . , N . We will always take c(1) to be the
constant term in the polynomial, c(N) the coefficient of xN−1; but of course other
conventions are possible. There are two kinds of manipulations that you can do
with a polynomial: numerical manipulations (such as evaluation), where you are
given the numerical value of its argument, or algebraic manipulations, where you
want to transform the coefficient array in some way without choosing any particular
argument. Let’s start with the numerical.

We assume that you know enough never to evaluate a polynomial this way:

p=c(1)+c(2)*x+c(3)*x**2+c(4)*x**3+c(5)*x**4

Come the (computer) revolution, all persons found guilty of such criminal
behavior will be summarily executed, and their programs won’t be! It is a matter
of taste, however, whether to write

p=c(1)+x*(c(2)+x*(c(3)+x*(c(4)+x*c(5))))

or

p=(((c(5)*x+c(4))*x+c(3))*x+c(2))*x+c(1)

If the number of coefficients is a large number n, one writes

p=c(n)
do 11 j=n-1,1,-1

p=p*x+c(j)
enddo 11

Another useful trick is for evaluating a polynomial P (x) and its derivative
dP (x)/dx simultaneously:

p=c(n)
dp=0.
do 11 j=n-1,1,-1

dp=dp*x+p
p=p*x+c(j)

enddo 11

which returns the polynomial as p and its derivative as dp.
The above trick, which is basically synthetic division [1,2], generalizes to the

evaluation of the polynomial and nd-1 of its derivatives simultaneously:

168 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE ddpoly(c,nc,x,pd,nd)
INTEGER nc,nd
REAL x,c(nc),pd(nd)

Given the coefficients of a polynomial of degree nc-1 as an array c(1:nc) with c(1) being
the constant term, and given a value x, and given a value nd>1, this routine returns the
polynomial evaluated at x as pd(1) and nd-1 derivatives as pd(2:nd).

INTEGER i,j,nnd
REAL const
pd(1)=c(nc)
do 11 j=2,nd

pd(j)=0.
enddo 11

do 13 i=nc-1,1,-1
nnd=min(nd,nc+1-i)
do 12 j=nnd,2,-1

pd(j)=pd(j)*x+pd(j-1)
enddo 12

pd(1)=pd(1)*x+c(i)
enddo 13

const=2. After the first derivative, factorial constants come in.
do 14 i=3,nd

pd(i)=const*pd(i)
const=const*i

enddo 14

return
END

As a curiosity, you might be interested to know that polynomials of degree
n > 3 can be evaluated in fewer than n multiplications, at least if you are willing
to precompute some auxiliary coefficients and, in some cases, do an extra addition.
For example, the polynomial

P (x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 (5.3.1)

where a4 > 0, can be evaluated with 3 multiplications and 5 additions as follows:

P (x) = [(Ax+ B)2 + Ax+ C][(Ax+ B)2 +D] + E (5.3.2)

where A,B, C,D, and E are to be precomputed by

A = (a4)1/4

B =
a3 − A3

4A3

D = 3B2 + 8B3 +
a1A − 2a2B

A2

C =
a2

A2
− 2B − 6B2 −D

E = a0 − B4 − B2(C + D)− CD

(5.3.3)

Fifth degree polynomials can be evaluated in 4 multiplies and 5 adds; sixth degree
polynomials can be evaluated in 4 multiplies and 7 adds; if any of this strikes
you as interesting, consult references [3-5]. The subject has something of the same
entertaining, if impractical, flavor as that of fast matrix multiplication, discussed
in §2.11.

5.3 Polynomials and Rational Functions 169

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Turn now to algebraic manipulations. You multiply a polynomial of degree
n−1 (array of lengthn) by a monomial factorx−aby a bit of code like the following,

c(n+1)=c(n)
do 11 j=n,2,-1

c(j)=c(j-1)-c(j)*a
enddo 11

c(1)=-c(1)*a

Likewise, you divide a polynomial of degree n− 1 by a monomial factor x− a
(synthetic division again) using

rem=c(n)
c(n)=0.
do 11 i=n-1,1,-1

swap=c(i)
c(i)=rem
rem=swap+rem*a

enddo 11

which leaves you with a new polynomial array and a numerical remainder rem.
Multiplication of two general polynomials involves straightforward summing

of the products, each involving one coefficient from each polynomial. Division
of two general polynomials, while it can be done awkwardly in the fashion taught
using pencil and paper, is susceptible to a good deal of streamlining. Witness the
following routine based on the algorithm in [3].

SUBROUTINE poldiv(u,n,v,nv,q,r)
INTEGER n,nv
REAL q(n),r(n),u(n),v(nv)

Given the n coefficients of a polynomial in u(1:n), and the nv coefficients of another
polynomial in v(1:nv), divide the polynomial u by the polynomial v (“u”/“v”) giving
a quotient polynomial whose coefficients are returned in q(1:n-nv+1), and a remainder
polynomial whose coefficients are returned in r(1:nv-1). The arrays q and r are dimen-
sioned with lengths n, but the elements r(nv) . . . r(n) and q(n-nv+2). . . q(n) will be
returned as zero.

INTEGER j,k
do 11 j=1,n

r(j)=u(j)
q(j)=0.

enddo 11

do 13 k=n-nv,0,-1
q(k+1)=r(nv+k)/v(nv)
do 12 j=nv+k-1,k+1,-1

r(j)=r(j)-q(k+1)*v(j-k)
enddo 12

enddo 13

do 14 j=nv,n
r(j)=0.

enddo 14

return
END

170 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Rational Functions

You evaluate a rational function like

R(x) =
Pµ(x)

Qν(x)
=
p0 + p1x+ · · ·+ pµx

µ

q0 + q1x+ · · ·+ qνxν
(5.3.4)

in the obvious way, namely as two separate polynomials followed by a divide. As a
matter of convention one usually chooses q0 = 1, obtained by dividing numerator
and denominator by any other q0. It is often convenient to have both sets of
coefficients stored in a single array, and to have a standard subroutine available
for doing the evaluation:

FUNCTION ratval(x,cof,mm,kk)
INTEGER kk,mm
DOUBLE PRECISION ratval,x,cof(mm+kk+1) Note precision! Change to REAL if desired.

Given mm, kk, and cof(1:mm+kk+1), evaluate and return the rational function (cof(1)+

cof(2)x+ · · ·+ cof(mm+1)xmm)/(1 + cof(mm+2)x+ · · ·+ cof(mm+kk+1)xkk).
INTEGER j
DOUBLE PRECISION sumd,sumn
sumn=cof(mm+1)
do 11 j=mm,1,-1

sumn=sumn*x+cof(j)
enddo 11

sumd=0.d0
do 12 j=mm+kk+1,mm+2,-1

sumd=(sumd+cof(j))*x
enddo 12

ratval=sumn/(1.d0+sumd)
return
END

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 183, 190. [1]

Mathews, J., and Walker, R.L. 1970, Mathematical Methods of Physics, 2nd ed. (Reading, MA:
W.A. Benjamin/Addison-Wesley), pp. 361–363. [2]

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), §4.6. [3]

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 4.

Winograd, S. 1970, Communications on Pure and Applied Mathematics, vol. 23, pp. 165–179. [4]

Kronsjö, L. 1987, Algorithms: Their Complexity and Efficiency, 2nd ed. (New York: Wiley). [5]

5.4 Complex Arithmetic 171

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

5.4 Complex Arithmetic

Since FORTRAN has the built-in data type COMPLEX, you can generally let the
compiler and intrinsic function library take care of complex arithmetic for you.
Generally, but not always. For a program with only a small number of complex
operations, you may want to code these yourself, in-line. Or, you may find that
your compiler is not up to snuff: It is disconcertingly common to encounter complex
operations that produce overflows or underflows when both the complex operands
and the complex result are perfectly representable. This occurs, we think, because
software companies assign inexperienced programmers to what they believe to be
the perfectly trivial task of implementing complex arithmetic.

Actually, complex arithmetic is not quite trivial. Addition and subtraction
are done in the obvious way, performing the operation separately on the real and
imaginary parts of the operands. Multiplication can also be done in the obvious way,
with 4 multiplications, one addition, and one subtraction,

(a+ ib)(c+ id) = (ac− bd) + i(bc + ad) (5.4.1)

(the addition before the i doesn’t count; it just separates the real and imaginary parts
notationally). But it is sometimes faster to multiply via

(a+ ib)(c+ id) = (ac− bd) + i[(a+ b)(c+ d)− ac− bd] (5.4.2)

which has only three multiplications (ac, bd, (a+ b)(c+ d)), plus two additions and
three subtractions. The total operations count is higher by two, but multiplication
is a slow operation on some machines.

While it is true that intermediate results in equations (5.4.1) and (5.4.2) can
overflow even when the final result is representable, this happens only when the final
answer is on the edge of representability. Not so for the complex modulus, if you
or your compiler are misguided enough to compute it as

|a+ ib| =
√
a2 + b2 (bad!) (5.4.3)

whose intermediate result will overflow if either a or b is as large as the square
root of the largest representable number (e.g., 1019 as compared to 1038). The right
way to do the calculation is

|a+ ib| =
{
|a|
√

1 + (b/a)2 |a| ≥ |b|
|b|
√

1 + (a/b)2 |a| < |b|
(5.4.4)

Complex division should use a similar trick to prevent avoidable overflows,
underflow, or loss of precision,

a+ ib

c+ id
=


[a+ b(d/c)] + i[b− a(d/c)]

c+ d(d/c)
|c| ≥ |d|

[a(c/d) + b] + i[b(c/d)− a]

c(c/d) + d
|c| < |d|

(5.4.5)

