```
                pll=(x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m)
                pmm=pmmp1
                pmmp1=pll
            enddo }1
            plgndr=pll
        endif
endif
return
END
```


CITED REFERENCES AND FURTHER READING:

Magnus, W., and Oberhettinger, F. 1949, Formulas and Theorems for the Functions of Mathematical Physics (New York: Chelsea), pp. 54ff. [1]
Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathematics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by Dover Publications, New York), Chapter 8. [2]

6.9 Fresnel Integrals, Cosine and Sine Integrals

Fresnel Integrals

The two Fresnel integrals are defined by

$$
\begin{equation*}
C(x)=\int_{0}^{x} \cos \left(\frac{\pi}{2} t^{2}\right) d t, \quad S(x)=\int_{0}^{x} \sin \left(\frac{\pi}{2} t^{2}\right) d t \tag{6.9.1}
\end{equation*}
$$

The most convenient way of evaluating these functions to arbitrary precision is to use power series for small x and a continued fraction for large x. The series are

$$
\begin{align*}
& C(x)=x-\left(\frac{\pi}{2}\right)^{2} \frac{x^{5}}{5 \cdot 2!}+\left(\frac{\pi}{2}\right)^{4} \frac{x^{9}}{9 \cdot 4!}-\cdots \tag{6.9.2}\\
& S(x)=\left(\frac{\pi}{2}\right) \frac{x^{3}}{3 \cdot 1!}-\left(\frac{\pi}{2}\right)^{3} \frac{x^{7}}{7 \cdot 3!}+\left(\frac{\pi}{2}\right)^{5} \frac{x^{11}}{11 \cdot 5!}-\cdots
\end{align*}
$$

There is a complex continued fraction that yields both $S(x)$ and $C(x)$ simultaneously:

$$
\begin{equation*}
C(x)+i S(x)=\frac{1+i}{2} \operatorname{erf} z, \quad z=\frac{\sqrt{\pi}}{2}(1-i) x \tag{6.9.3}
\end{equation*}
$$

where

$$
\begin{align*}
e^{z^{2}} \operatorname{erfc} z & =\frac{1}{\sqrt{\pi}}\left(\frac{1}{z+} \frac{1 / 2}{z+} \frac{1}{z+} \frac{3 / 2}{z+} \frac{2}{z+} \cdots\right) \\
& =\frac{2 z}{\sqrt{\pi}}\left(\frac{1}{2 z^{2}+1-} \frac{1 \cdot 2}{2 z^{2}+5-} \frac{3 \cdot 4}{2 z^{2}+9-} \cdots\right) \tag{6.9.4}
\end{align*}
$$

In the last line we have converted the "standard" form of the continued fraction to its "even" form (see $\S 5.2$), which converges twice as fast. We must be careful not to evaluate the alternating series (6.9.2) at too large a value of x; inspection of the terms shows that $x=1.5$ is a good point to switch over to the continued fraction.

Note that for large x

$$
\begin{equation*}
C(x) \sim \frac{1}{2}+\frac{1}{\pi x} \sin \left(\frac{\pi}{2} x^{2}\right), \quad S(x) \sim \frac{1}{2}-\frac{1}{\pi x} \cos \left(\frac{\pi}{2} x^{2}\right) \tag{6.9.5}
\end{equation*}
$$

Thus the precision of the routine frenel may be limited by the precision of the library routines for sine and cosine for large x.

SUBROUTINE frenel ($\mathrm{x}, \mathrm{s}, \mathrm{c}$)
INTEGER MAXIT
REAL $c, s, x, E P S, F P M I N, P I, P I B Y 2, X M I N$
PARAMETER (EPS=6.e-8, MAXIT=100,FPMIN=1.e-30,XMIN=1.5, PI=3.1415927, $\mathrm{PIBY} 2=1.5707963$)
Computes the Fresnel integrals $S(x)$ and $C(x)$ for all real x.
Parameters: EPS is the relative error; MAXIT is the maximum number of iterations allowed; FPMIN is a number near the smallest representable floating-point number; XMIN is the dividing line between using the series and continued fraction; $\mathrm{PI}=\pi ; \mathrm{PIBY} 2=\pi / 2$.
INTEGER k, n
REAL a,absc,ax,fact,pix2,sign,sum,sumc,sums,term,test
COMPLEX b,cc,d,h,del,cs
LOGICAL odd
$\operatorname{absc}(h)=\operatorname{abs}(\operatorname{real}(h))+\operatorname{abs}(\operatorname{aimag}(h)) \quad$ Statement function.
ax=abs (x)
if(ax.lt.sqrt(FPMIN))then $\mathrm{s}=0$.
$\mathrm{c}=\mathrm{ax}$
else if(ax.le.XMIN)then
Special case: avoid failure of convergence test because of underflow.
sum=0.
sums=0.
sumc $=\mathrm{ax}$
sign=1.
fact=PIBY2*ax*ax
odd=.true.
term=ax
n=3
do $11 \mathrm{k}=1$, MAXIT
term=term*fact/k
sum=sum+sign*term/n
test=abs (sum)*EPS
if (odd) then
sign=-sign
sums=sum
sum=sumc
else
sumc=sum

sum=sums

endif
if(term.lt.test)goto 1
odd=.not. odd
$\mathrm{n}=\mathrm{n}+2$
enddo ${ }_{11}$
pause 'series failed in frenel'
s=sums
$\mathrm{c}=$ sumc
else
pix2=PI*ax*ax
$\mathrm{b}=\operatorname{cmplx}(1 .,-\mathrm{pix} 2)$
Evaluate continued fraction by modified Lentz's method (§5.2).

```
    cc=1./FPMIN
    d=1./b
    h=d
    n=-1
    do 12 k=2,MAXIT
        n=n+2
        a=-n*(n+1)
        b=b+4.
        d=1./(a*d+b) Denominators cannot be zero.
        cc=b+a/cc
        del=cc*d
        h=h*del
        if(absc(del-1.).lt.EPS)goto 2
    enddo }1
    pause 'cf failed in frenel'
    h=h*cmplx(ax,-ax)
    cs=cmplx (.5,.5)*(1.-cmplx(cos(.5*pix2),sin(.5*pix2))*h)
    c=real(cs)
    s=aimag(cs)
endif
if(x.lt.0.)then Use antisymmetry.
    c=-c
    s=-s
endif
return
END
```


Cosine and Sine Integrals

The cosine and sine integrals are defined by

$$
\begin{align*}
& \operatorname{Ci}(x)=\gamma+\ln x+\int_{0}^{x} \frac{\cos t-1}{t} d t \\
& \operatorname{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} d t \tag{6.9.6}
\end{align*}
$$

Here $\gamma \approx 0.5772 \ldots$ is Euler's constant. We only need a way to calculate the functions for $x>0$, because

$$
\begin{equation*}
\operatorname{Si}(-x)=-\operatorname{Si}(x), \quad \operatorname{Ci}(-x)=\operatorname{Ci}(x)-i \pi \tag{6.9.7}
\end{equation*}
$$

Once again we can evaluate these functions by a judicious combination of power series and complex continued fraction. The series are

$$
\begin{align*}
& \mathrm{Si}(x)=x-\frac{x^{3}}{3 \cdot 3!}+\frac{x^{5}}{5 \cdot 5!}-\cdots \\
& \mathrm{Ci}(x)=\gamma+\ln x+\left(-\frac{x^{2}}{2 \cdot 2!}+\frac{x^{4}}{4 \cdot 4!}-\cdots\right) \tag{6.9.8}
\end{align*}
$$

The continued fraction for the exponential integral $E_{1}(i x)$ is

$$
\begin{align*}
E_{1}(i x) & =-\operatorname{Ci}(x)+i[\operatorname{Si}(x)-\pi / 2] \\
& =e^{-i x}\left(\frac{1}{i x+} \frac{1}{1+} \frac{1}{i x+} \frac{2}{1+} \frac{2}{i x+} \cdots\right) \tag{6.9.9}\\
& =e^{-i x}\left(\frac{1}{1+i x-} \frac{1^{2}}{3+i x-} \frac{2^{2}}{5+i x-} \cdots\right)
\end{align*}
$$

The "even" form of the continued fraction is given in the last line and converges twice as fast for about the same amount of computation. A good crossover point from the alternating series to the continued fraction is $x=2$ in this case. As for the Fresnel integrals, for large x the precision may be limited by the precision of the sine and cosine routines.

```
SUBROUTINE cisi(x,ci,si)
INTEGER MAXIT
REAL ci,si,x,EPS,EULER,PIBY2,FPMIN,TMIN
PARAMETER (EPS=6.e-8,EULER=.57721566,MAXIT=100,PIBY2=1.5707963,
    FPMIN=1.e-30,TMIN=2. )
    Computes the cosine and sine integrals }\textrm{Ci}(x)\mathrm{ and }\textrm{Si}(x). \textrm{Ci}(0)\mathrm{ is returned as a large negative
    number and no error message is generated. For }x<0\mathrm{ the routine returns }\textrm{Ci}(-x)\mathrm{ and you
    must supply the -i\pi yourself.
    Parameters: EPS is the relative error, or absolute error near a zero of }\operatorname{Ci}(x);\operatorname{EULER}=\gamma\mathrm{ ;
    MAXIT is the maximum number of iterations allowed; PIBY2 }=\pi/2\mathrm{ ; FPMIN is a number
    near the smallest representable floating-point number; TMIN is the dividing line between
    using the series and continued fraction.
INTEGER i,k
REAL a,err,fact,sign,sum,sumc,sums,t,term,absc
COMPLEX h,b,c,d,del
LOGICAL odd
absc(h)=abs(real(h))+abs(aimag(h)) Statement function.
t=abs(x)
if(t.eq.0.)then Special case.
    si=0.
    ci=-1./FPMIN
    return
endif
if(t.gt.TMIN)then Evaluate continued fraction by modified Lentz's
    b=cmplx(1.,t)
    c=1./FPMIN
    d=1./b
    h=d
    do 11 i=2,MAXIT
        a=-(i-1)**2
        b=b+2.
        d=1./(a*d+b) Denominators cannot be zero.
        c=b+a/c
        del=c*d
        h=h*del
        if(absc(del-1.).lt.EPS)goto 1
    enddo }1
    pause 'cf failed in cisi'
    continue
    h=cmplx}(\operatorname{cos}(t),-\operatorname{sin}(t))*
    ci=-real(h)
    si=PIBY2+aimag(h)
else
    if(t.lt.sqrt(FPMIN))then
        sumc=0.
        sums=t
    else
        sum=0.
        sums=0.
        sumc=0.
        sign=1.
        fact=1.
        odd=.true.
        do 12 k=1,MAXIT
            fact=fact*t/k
            term=fact/k
```

Evaluate both series simultaneously.
Special case: avoid failure of convergence test because of underflow.

```
            sum=sum+sign*term
            err=term/abs(sum)
            if(odd)then
                        sign=-sign
                        sums=sum
                        sum=sumc
            else
                        sumc=sum
            sum=sums
            endif
            if(err.lt.EPS)goto 2
            odd=.not.odd
            enddo }1
            pause 'maxits exceeded in cisi'
    endif
    si=sums
    ci=sumc+log(t)+EULER
endif
if(x.lt.0.)si=-si
return
END
```

CITED REFERENCES AND FURTHER READING:
Stegun, I.A., and Zucker, R. 1976, Journal of Research of the National Bureau of Standards, vol. 80B, pp. 291-311; 1981, op. cit., vol. 86, pp. 661-686.
Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathematics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by Dover Publications, New York), Chapters 5 and 7.

6.10 Dawson's Integral

Dawson's Integral $F(x)$ is defined by

$$
\begin{equation*}
F(x)=e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t \tag{6.10.1}
\end{equation*}
$$

The function can also be related to the complex error function by

$$
\begin{equation*}
F(z)=\frac{i \sqrt{\pi}}{2} e^{-z^{2}}[1-\operatorname{erfc}(-i z)] \tag{6.10.2}
\end{equation*}
$$

A remarkable approximation for $F(x)$, due to Rybicki [1], is

$$
\begin{equation*}
F(z)=\lim _{h \rightarrow 0} \frac{1}{\sqrt{\pi}} \sum_{n \text { odd }} \frac{e^{-(z-n h)^{2}}}{n} \tag{6.10.3}
\end{equation*}
$$

What makes equation (6.10.3) unusual is that its accuracy increases exponentially as h gets small, so that quite moderate values of h (and correspondingly quite rapid convergence of the series) give very accurate approximations.

